
UNIVERSIDAD DE GRANADA

Departamento de Ciencias de la Computación e Inteligencia
Artificial

Programa de Doctorado en Tecnoloǵıas de la información y la
Comunicación

Application of Neuro-Symbolic Artificial
Intelligence to Sequential Decision

Making

Tesis Doctoral

Carlos Núñez Molina

Directores

Juan Fernández Olivares

Pablo Mesejo Santiago

Granada, diciembre de 2024

Editor: Universidad de Granada. Tesis Doctorales
Autor: Carlos Núñez Molina
ISBN: 978-84-1195-751-9
URI: https://hdl.handle.net/10481/103207

https://hdl.handle.net/10481/103207

T́ıtulo en Español: Aplicación de Inteligencia Artificial Neuro-Simbólica para
Procesos de Decisión Secuencial
T́ıtulo en Inglés: Application of Neuro-symbolic Artificial Intelligence to Sequen-
tial Decision Making
Programa de doctorado: Programa de Doctorado en Tecnoloǵıas de la infor-
mación y la Comunicación
Doctorando: Carlos Núñez Molina
Directores: Juan Fernández Olivares, Pablo Mesejo Santiago

To my father,
the first scientist I ever met.

Acknowledgements
Agradecimientos

I feel strange while writing this, not knowing exactly what to say. This chapter
of my life started when Juan, who back then was my AI professor, invited me and
other students to visit his lab. After this visit, he would offer me the opportunity
to start doing research with him. I must admit that, at first, I was not particularly
enthusiastic about my research topic. Juan’s main area of expertise was Automated
Planning, while I, like most young AI students, wanted nothing to do with GOFAI
and instead aspired to work on cutting-edge Deep Learning (I am glad LLMs were
not a thing back then). Nonetheless, Juan placed his trust in me and granted me the
freedom to use Deep Reinforcement Learning instead of more traditional approaches.
Thanks to this, I was able to engage in a research project I genuinely enjoyed. Along
the way, I would find out that what truly fascinates me is the integration of classical,
symbolic AI with modern, Deep Learning techniques, and that this is called “Neuro-
symbolic AI”. For granting me the opportunity to conduct research, trusting me from
the very beginning, and accompanying me throughout this long journey, I want to
express my most heartfelt thanks to Juan, my thesis supervisor. Likewise, I wish
to express my deepest gratitude to Pablo, my thesis co-supervisor who, alongside
Juan, has carefully guided me throughout the four years of this PhD dissertation. I
am deeply grateful to have you not only as my supervisors but also as my friends.

As I write this, I find it impossible to forget about Masataro Asai. While Juan
and Pablo introduced me to the world of research and supported me throughout
this journey, it was you who launched my career to new heights. You granted me
the opportunity to carry out research at a top institution, the MIT-IBM Watson AI
Lab, an opportunity so extraordinary that it surpassed even my wildest dreams. You
closely supervised me, teaching me how to properly conduct meaningful, high-quality
research. We worked hand in hand, programming and writing papers together. Over
time, I started to consider you not only my mentor and colleague, but also my dear
friend. Thank you, Masa, for everything you have done for me.

Por último, quiero dedicar unas palabras de agradecimiento a mi entorno más
cercano. A mis padres, por apoyarme y creer siempre en mı́, y por inculcarme el
valor de la perseverancia y el esfuerzo, tan necesarios en la vida. A mi abuela, que
desde que era pequeñito siempre me ha escuchado con gran atención e interés, sin
importar de lo que le hablara. A mis amigos, por todos los buenos momentos que
hemos pasado juntos y por permitirme desconectar del trabajo. Y especialmente a
Aida, mi pareja, por ser mi fan número uno, por escucharme con más atención de
la que yo mismo me presto y por apoyarme incondicionalmente. Eres lo mejor que
me ha pasado en la vida.

Over the course of this journey, I have come to realize just how many people have
been supporting me, each of you fulfilling a different role, all of you encouraging me
to pursue my dreams no matter what. For this reason, I believe this thesis is not
mine alone, but also yours. Thank you.

Contents

Main Acronyms 13

Resumen 14
1. Introducción al problema . 14
2. Desarrollo realizado . 15
3. Conclusiones y trabajos futuros . 17

Abstract 18

I. Introduction 21
I.1. Objectives . 23
I.2. Publications . 25
I.3. Software contributions . 26
I.4. Structure of the dissertation . 27

Part I Fundamentals . 29

II. Theoretical Background 30
II.1. Sequential Decision Processes . 30
II.2. Automated Planning . 33

II.2.1. Planning Task Representation 33
II.2.2. Planning Heuristics . 35

II.3. Machine Learning . 36
II.3.1. Convolutional Neural Networks 37
II.3.2. Neural Logic Machines . 38

II.4. Reinforcement Learning . 38
II.4.1. Q-Learning and Deep Q-Learning 39
II.4.2. Proximal Policy Optimization 40

Part II Related Work ... 43

III. Related Work 44
III.1. Methods to solve MDPs . 44

III.1.1. Automated Planning . 46
III.1.2. Reinforcement Learning . 49
III.1.3. Learn to plan . 52

III.2. Methods to learn the structure of MDPs 55
III.2.1. Action model learning . 55
III.2.2. Domain exploitation . 60

10

CONTENTS 11

III.3. Towards an ideal method for SDM 65
III.4. Future directions for Sequential Decision Making 70

Part III Proposals . 73

IV. Goal Selection with Deep Q-Learning 74
IV.1. Introduction . 74
IV.2. Related works . 74
IV.3. Materials . 76

IV.3.1. GVGAI and the Boulder Dash game 76
IV.4. Methods . 77

IV.4.1. The planning and acting architecture 77
IV.4.2. Goal selection learning . 79

IV.5. Experiments and analysis of results 82
IV.5.1. Experiment 1: Performance of Deep Q-Planning with respect

to dataset size . 82
IV.5.2. Experiment 2: Comparison of Deep Q-Planning with a state-

of-the-art planner . 83
IV.5.3. Experiment 3: Comparison of Deep Q-Planning with Deep

Q-Learning . 84
IV.5.4. Discussion . 87

IV.6. Conclusion . 88

V. Heuristic Learning with Admissible Bounds 90
V.1. Introduction . 90
V.2. Related works . 90
V.3. Methods . 92

V.3.1. Formulation of heuristic learning as a Supervised Learning task 92
V.3.2. Utilizing bounds for learning heuristics 94

V.4. Experiments and analysis of results 97
V.4.1. Experimental setup . 97
V.4.2. Heuristic accuracy analysis . 99
V.4.3. Planning performance analysis 100

V.5. Conclusion . 101

VI. Problem Generation with Neuro-Symbolic AI 102
VI.1. Introduction . 102
VI.2. Related works . 103
VI.3. Methods . 103

VI.3.1. Problem properties . 104
VI.3.2. Formulation of problem generation as an MDP 107
VI.3.3. Learning to generate problems with RL 108

VI.4. Experiments and analysis of results 109
VI.4.1. Experimental setup . 109
VI.4.2. Results and discussion . 111

VI.5. Conclusion . 115

Part IV Final Remarks .. .117

12 CONTENTS

VII. Final Remarks 118
VII.1. Conclusions . 118
VII.2. Future works . 120
VII.3. Acknowledgements . 121

VIII. Bibliography 122

Part V Appendix .. .139

A. Heuristic Learning with Admissible Bounds 140
A.1. Truncated Gaussian implementation 140

A.1.1. Numerically stable formulas for Truncated Gaussian 140
A.1.2. Truncated Gaussian with missing bounds 141
A.1.3. Truncated Gaussian with open bounds 142

A.2. Parameter details . 142
A.2.1. Model hyperparameters . 142
A.2.2. Parameters of instance generators 143

A.3. Full experimental results for NLM models 143
A.4. Full experimental results for HGN models 144
A.5. Full experimental results for linear regression models 146
A.6. Experimental results with different lower bounds 146
A.7. Experimental results with different residuals 147
A.8. Planning domain descriptions . 147

A.8.1. Blocksworld . 148
A.8.2. Ferry . 150
A.8.3. Gripper . 151
A.8.4. Visitall . 151

B. Problem Generation with Neuro-Symbolic AI 153
B.1. Problem generation example . 153
B.2. PDDL domains . 155
B.3. Consistency rules . 159
B.4. Parameters for domain-specific generators 167
B.5. NeSIG hyperparameters . 167

Main Acronyms

Acronym Description

AI Artificial Intelligence

AP Automated Planning

CP Classical Planning

CNN Convolutional Neural Network

DL Deep Learning

DNN Deep Neural Network

DRL Deep Reinforcement Learning

FOL First Order Logic

MDP Markov Decision Process

ML Machine Learning

MSE Mean Squared Error

NLL Negative Log Likelihood

NLM Neural Logic Machine

NSP Subsymbolic/Non-Symbolic Planning

POMDP Partially Observable Markov Decision Process

PP Probabilistic Planning

RL Reinforcement Learning

RRL Relational Reinforcement Learning

SDM Sequential Decision Making

SDP Sequential Decision Process

SP Symbolic Planning

SSP MDP Stochastic Shortest-Path Markov Decision Process

13

Resumen en Español
Thesis Summary in Spanish

1 Introducción al problema

La Toma de Decisiones Secuenciales (o SDM, por sus siglas en inglés) [145]
es un importante subcampo dentro de la Inteligencia Artificial (IA) que estudia
cómo crear agentes, ya sean f́ısicos o virtuales, capaces de tomar decisiones de manera
inteligente con el fin de alcanzar un objetivo o realizar una tarea determinada. La
SDM constituye un marco general que ha sido aplicado con éxito a campos tan
diversos como la robótica [133], la loǵıstica [205], los juegos [217], las finanzas [36]
y el procesamiento del lenguaje natural [242], entre otros muchos.

A lo largo de los años del campo, se han propuesto una gran cantidad de métodos
que pueden categorizarse en dos enfoques principales: Planificación Automática
(AP) [84] y Aprendizaje por Refuerzo (RL) [224]. Estos dos paradigmas di-
fieren principalmente en la forma de resolver las tareas de SDM y en cómo re-
presentan su conocimiento. La AP aprovecha el conocimiento disponible sobre las
dinámicas del entorno, codificado en lo que se conoce como un dominio de planifi-
cación o modelo de acciones, para llevar a cabo un proceso de búsqueda y razona-
miento con el fin de encontrar una poĺıtica o plan (secuencia de acciones) que re-
suelva la tarea correspondiente. Este conocimiento a menudo se describe de manera
simbólica, por ejemplo, utilizando lógica. Por otro lado, los métodos de RL permiten
a los agentes aprender a actuar de manera óptima utilizando, en la mayoŕıa de casos,
solo los datos obtenidos al interactuar con su entorno, no requiriendo conocimiento
a priori sobre sus dinámicas y sin llevar a cabo ningún proceso de planificación. El
conocimiento inferido del entorno a menudo se codifica de manera subsimbólica, por
ejemplo, mediante valores numéricos que representan los parámetros o pesos de un
modelo de Aprendizaje Automático (ML) [20].

En los últimos años, ha surgido un gran interés por integrar los campos de la AP
y el RL, con la esperanza de obtener un método de SDM que exhiba las habilidades
de aprendizaje de RL junto con las capacidades de razonamiento de AP. Entre los
distintos acercamientos para realizar esta integración se encuentran: el RL basado
en modelos [160], los métodos de ML para aprender el conocimiento utilizado en AP
(por ejemplo, para aprender dominios de planificación y heuŕısticas) [117], y aquellos
enfoques denominados neuro-simbólicos [182], en los cuales se centra esta tesis, que
combinan las redes neuronales profundas (DNN) empleadas en los métodos actuales
de RL con las representaciones simbólicas comúnmente utilizadas en AP.

14

Resumen 15

2 Desarrollo realizado

El objetivo de esta tesis doctoral es avanzar el campo de la SDM mediante
el estudio y desarrollo de métodos novedosos de IA neuro-simbólica. El
trabajo realizado durante el desarrollo de la tesis puede agruparse en cuatro con-
tribuciones principales.

Como primera contribución [182], se realizó una amplia revisión (review)
del campo de la SDM, abarcando tanto métodos para resolver tareas de SDM
como métodos para aprender su estructura, y poniendo especial énfasis en la re-
presentación del conocimiento empleada por las distintas técnicas: simbólica, sub-
simbólica o h́ıbrida. Hasta donde sabemos, ningún otro trabajo en la literatura
ofrece una visión tan completa del campo. Como parte de esta revisión, se pro-
pusieron una serie de caracteŕısticas que un método ideal de SDM debeŕıa cumplir
y se utilizaron para analizar las ventajas y desventajas de las distintas técnicas de
SDM. Como resultado de este análisis, argumentamos que un método ideal de SDM
debeŕıa integrar los paradigmas del AP y el RL, al mismo tiempo que emplea una
representación h́ıbrida (simbólica y subsimbólica) para su conocimiento. Dado que
la IA neuro-simbólica es el enfoque que actualmente más se acerca a esta integración,
se concluyó que representa un acercamiento muy prometedor para la consecución de
un método ideal de SDM. Por lo tanto, la revisión realizada sirve para justificar la
importancia y relevancia de la presente tesis doctoral. Esta primera contribución se
aborda en el Caṕıtulo III.

Como segunda contribución [179, 183], se desarrolló un método neuro-
simbólico para mejorar la eficiencia de los algoritmos de AP en esce-
narios de tiempo real mediante la selección de objetivos. Nuestra pro-
puesta, denominada Deep Q-Planning (DQP), integra el algoritmo de RL profundo
Deep Q-Learning [158] con el planificador simbólico FastForward [108]. En cada
iteración, Deep Q-Learning se utiliza para seleccionar el siguiente subobjetivo a al-
canzar, mientras que el planificador FastForward se encarga de encontrar un plan
para conseguir el subobjetivo elegido desde el estado actual. Gracias a la combi-
nación de RL profundo para seleccionar objetivos con la AP para alcanzarlos, DQP
es capaz de aprovechar la sinergia existente entre la AP y el RL para obtener solu-
ciones de calidad de manera eficiente. Para evaluar la propuesta, se recurrió al juego
conocido como Boulder Dash que proporciona el entorno General Video Game AI
(GVGAI) [144]. Los resultados obtenidos muestran que, en comparación con Deep
Q-Learning, DQP requiere considerablemente menos datos (como mı́nimo un orden
de magnitud menos) y generaliza mucho mejor a nuevos niveles. En comparación
con el planificador FastDownward, DQP reduce drásticamente los tiempos de re-
solución de tareas a cambio de obtener planes solo un 9% más largos (peores) de
media. Esta segunda contribución se aborda en el Caṕıtulo IV.

La tercera contribución [178] fue fruto de una colaboración con el MIT-IBM
Watson AI Lab y se correspondió con un enfoque neuro-simbólico para mejorar el
rendimiento de los algoritmos de AP mediante el aprendizaje de heuŕısticas. Esta
propuesta conllevó el desarrollo de un método para aprovechar el conocimiento
simbólico codificado en las heuŕısticas admisibles de cara a aprender
mejores heuŕısticas. Nuestro método modela la heuŕıstica aprendida como una
distribución Gaussiana Truncada T N en lugar de una Gaussiana N (sin truncar).
La cota inferior de esta distribución T N se establece al valor de una heuŕıstica

16 Resumen

admisible, asegurando de esta forma que las predicciones heuŕısticas siempre sean
mayores que dicha heuŕıstica admissible. El modelo elegido (T N en lugar de N)
resulta en una nueva función de pérdida a minimizar durante el entrenamiento,
diferente al Error Cuadrático Medio (MSE) utilizado normalmente. Llevamos a
cabo experimentos donde nuestra función de pérdida se comparó con el MSE de
cara a aprender heuŕısticas en una gran variedad de escenarios, incluyendo cuatro
clásicos dominios de planificación: blocksworld, ferry, gripper y visitall. Los resul-
tados obtenidos muestran que nuestra función de pérdida basada en T N provoca
que el entrenamiento converja más rápido y, en general, produce heuŕısticas más
precisas que mejoran el rendimiento de los algoritmos de planificación. Más concre-
tamente, al utilizar la arquitectura de DNN conocida como Neural Logic Machine
(NLM) [53] junto con nuestra configuración propuesta learn/hFF (donde el modelo
predice tanto σ como µ y se utiliza aprendizaje residual), nuestra función de pérdida
supera al MSE en términos de precisión heuŕıstica en 3 de los 4 dominios conside-
rados, y mejora los resultados de planificación en todos ellos. Esto confirma que
nuestro método basado en T N permite extraer de manera efectiva el conocimiento
almacenado en las heuŕısticas admisibles, mejorando de esta forma la calidad de las
heuŕısticas aprendidas. Esta tercera contribución se aborda en el Caṕıtulo V.

Por último, como cuarta contribución [181], se implementó un método neuro-
simbólico para generar problemas de planificación válidos (es decir, re-
solubles y consistentes), diversos y dif́ıciles para cualquier dominio de
planificación clásica. El enfoque propuesto, denominado NeSIG (Neuro-Symbolic
Instance Generator), formula la generación de problemas como un Proceso de De-
cisión de Markov (MDP) [224]. El estado inicial del problema se genera añadiendo
secuencialmente átomos y objetos a un estado vaćıo. A continuación, el objetivo
del problema se obtiene ejecutando una secuencia de acciones en el estado inicial
generado. Dos poĺıticas generativas, codificadas como NLMs y entrenadas con RL
profundo, son las encargadas de guiar este proceso generativo hacia problemas con-
sistentes, diversos y dif́ıciles. La diversidad se define como la distancia o disimilitud
entre problemas, mientras que la dificultad se mide resolviendo los problemas ge-
nerados con un algoritmo de AP. Por el contrario, la consistencia depende de la
semántica del dominio PDDL [96] y de las preferencias humanas, por lo que la infor-
mación acerca de esta debe ser proporcionada por el diseñador humano. Para reducir
el esfuerzo humano lo máximo posible, se implementó un lenguaje semideclarativo
que combina Python y lógica de primer orden, lo que permite codificar las reglas
de consistencia con facilidad. Se llevaron a cabo experimentos en cinco dominios
distintos (blocksworld, logistics, sokoban, miconic y satellite), comparando el en-
foque propuesto con generadores de problemas creados a mano para cada dominio.
Los resultados obtenidos muestran que NeSIG aprende a generar problemas válidos
y diversos de mucha mayor dificultad, 6.8 veces más de media (geométrica), que
los generadores manuales, al mismo tiempo que reduce el esfuerzo humano nece-
sario para generarlos. Además, se evaluó la capacidad de generalización de NeSIG
mediante una comparativa con los generadores manuales a lo largo de los cinco
dominios, diferentes planificadores (tanto óptimos como no óptimos) y diferentes
tamaños de problema (hasta más del doble del tamaño de entrenamiento). De las
20 combinaciones dominio-planificador evaluadas, en 15 de ellas NeSIG supera la
dificultad del generador manual para todos los tamaños de problema. Por lo tanto,
concluimos que NeSIG también presenta notables capacidades de generalización,

Resumen 17

siendo capaz de generalizar tanto a distintos tamaños de problema como a distintos
planificadores. Esta cuarta contribución se aborda en el Caṕıtulo VI.

Adicionalmente, durante el desarrollo de la tesis se han implementado varios
proyectos Python de código abierto, los cuales han sido distribuidos mediante
el Python Package Index (PyPI). Los proyectos desarrollados son: lifted-pddl [174],
un eficiente parser para AP que a d́ıa de hoy acumula 14000 descargas (según el sitio
web pepy.tech); stable-truncated-gaussian [177], una implementación estable y
diferenciable de la distribución Gaussiana Truncada T N utilizando la biblioteca
Pytorch (13000 descargas); neural-logic-machine [176], que implementa la arqui-
tectura NLM también utilizando Pytorch (2000 descargas); y pddl-prover [175],
que permite la evaluación automática de fórmulas lógicas en estados de planificación
(2000 descargas).

3 Conclusiones y trabajos futuros

En conclusión, las cuatro aportaciones presentadas en esta tesis doctoral han
contribuido al avance del campo de la SDM, tanto desde una perspectiva teórica,
gracias a la revisión bibliográfica y análisis de los distintos enfoques existentes en el
campo, como desde una perspectiva emṕırica, mediante el desarrollo de novedosos
métodos neuro-simbólicos tanto para resolver MDP como para aprender su estruc-
tura. Esperamos que el trabajo desarrollado en la presente tesis haya servido para
mostrar el gran potencial que posee la IA neuro-simbólica para mejorar la SDM,
especialmente mediante la integración de la AP y el RL, y el campo de la IA en su
totalidad.

La aplicación de la IA neuro-simbólica a la SDM es un enfoque prometedor que
presenta numerosas oportunidades de investigación. A continuación, se proponen
posibles ĺıneas de trabajo futuro para las tres contribuciones emṕıricas aportadas en
esta tesis. En relación a la arquitectura DQP de selección de objetivos, se podŕıa ex-
tender su aplicabilidad a entornos estocásticos mediante el uso de Deep Q-Learning
para monitorizar la ejecución y reaccionar a situaciones inesperadas. Otra posibili-
dad seŕıa experimentar con distintos modelos de ML como las Redes Neuronales de
Grafos (Graph Neural Networks) [204], de cara a mejorar el proceso de selección de
objetivos. En relación al método de aprendizaje de heuŕısticas, se podŕıa explorar
cómo extender el enfoque basado en Gaussianas Truncadas T N a otros escenar-
ios, como aquellos donde se dispone de cotas superiores además de cotas inferiores.
También se podŕıa aplicar este enfoque al RL, mejorando el aprendizaje de los valores
de estado V (s) y Q-values Q(s, a) mediante el uso de cotas inferiores y/o superiores
de estos valores. Por último, en relación al método de generación de problemas,
existe la posibilidad tanto de extender y mejorar el acercamiento propuesto como
de adaptarlo para una aplicación concreta. Por una parte, se podŕıa extender este
método para generar problemas de acuerdo a distintos tipos de preferencias y con
variables numéricas, y utilizar Redes Generativas de Flujo (GFlowNets) [16] para
obtener un mejor balance entre calidad y diversidad. Por otra parte, NeSIG podŕıa
ser aplicado al diseño de niveles de videojuegos, a la creación de problemas para
optimizar el proceso de aprendizaje de un agente (es decir, para la generación au-
tomática de curŕıculos) y a la generación adversaria de problemas, donde el objetivo
es obtener problemas dif́ıciles para un algoritmo en espećıfico.

Abstract

Sequential Decision Making (SDM) [145] is an important subfield within
Artificial Intelligence (AI) devoted to creating agents, either physical or virtual,
capable of making intelligent decisions in order to achieve a goal or fulfill some
task. SDM provides a general framework that has been successfully applied to fields
as diverse as robotics [133], logistics [205], games [217], finance [36], and natural
language processing [242], just to name a few.

Throughout the many years of the field, a large number of different methods
have been proposed, which can be categorized into two main approaches: Auto-
mated Planning (AP) [84] and Reinforcement Learning (RL) [224]. These
two competing paradigms mainly differ in how they obtain their solution and how
they represent their knowledge. AP exploits the prior knowledge about the environ-
ment dynamics, encoded in what is known as a planning domain or action model, to
carry out a search and reasoning process for a policy or plan (sequence of actions)
that achieves the task goal. This knowledge is often described in a symbolic manner,
e.g., by using logic. On the other hand, standard RL methods learn to act optimally
using only the data obtained by interacting with the environment, requiring no prior
knowledge about its dynamics and performing no planning at all. The knowledge
learned from the environment is often encoded in a subsymbolic manner, e.g., as
real numbers representing the parameters of a Machine Learning (ML) [20] model.

In recent years, there has been growing interest in bridging the gap between
AP and RL, in the hopes of obtaining an SDM method with the learning abilities of
RL and the reasoning capabilities of AP. A few examples of the integration between
both fields are: model-based RL [160], ML methods for learning the prior knowl-
edge used in AP (e.g., planning domains and heuristics) [117], and neuro-symbolic
approaches [182], which combine the deep neural networks (DNNs) employed in
modern RL with the symbolic representations commonly utilized in AP.

This doctoral dissertation focuses on the study, design and implementation of
novel neuro-symbolic methods for SDM, introducing four main contributions
to the field. The first contribution [182] is a broad review of the state of the
art, covering symbolic, subsymbolic and hybrid (e.g., neuro-symbolic) methods for
SDM. Existing SDM techniques are classified into two distinct groups: methods that
solve SDM tasks and those that learn their structure. A taxonomy is proposed for
each group. Methods for solving SDM tasks are classified into Automated Planning,
Reinforcement Learning and a recent group of methods that learn to plan [160],
thus combining the AP and RL approaches. Methods for learning the structure
of SDM tasks are classified into techniques that learn an action model and those
that learn a different type of structural knowledge, such as state invariants and
landmarks. Furthermore, the advantages and drawbacks of the different approaches
for solving SDM tasks are discussed. Based on this discussion, it is concluded that

18

Abstract 19

neuro-symbolic AI is the current approach that most closely resembles an ideal
integration of AP and RL, thus justifying the relevance and significance of this
doctoral dissertation. This first contribution is addressed in Chapter III.

The second and third major contributions of this thesis involve neuro-symbolic
methods for solving SDM tasks. In the first of these methods [179, 183], Fast-
Forward [108], a classical AP algorithm, is combined with Deep Q-Learning [158],
a widely-employed RL technique, to solve SDM tasks with real-time restrictions.
The goal of the task to solve is decomposed into a series of subgoals (provided as
prior knowledge to the system) so that, by sequentially attaining a subset of them,
the task goal is achieved. At each decision-making step, Deep Q-Learning selects
the next subgoal to achieve and FastForward finds a plan that reaches the selected
subgoal from the current state. This neuro-symbolic architecture, named Deep
Q-Planning (DQP), is tested on a video game environment used as a standard
test-bed for intelligent system applications. Results show DQP outperforms stan-
dalone AP and RL methods when both plan quality (length) and time requirements
are considered. On the one hand, DQP is considerably more sample-efficient than
Deep Q-Learning and generalizes much better to new game levels. On the other
hand, DQP drastically reduces problem-solving times when compared to FastFor-
ward, at the expense of obtaining plans with only 9% more actions on average. This
second contribution is addressed in Chapter IV.

The second neuro-symbolic method [178] for solving SDM tasks was developed
as part of a research collaboration with the MIT-IBM Watson AI Lab. It entails a
novel approach for improving heuristic learning methods by leveraging the prior
knowledge contained in symbolic, domain-independent, admissible heuristics. The
decisions made (sometimes unknowingly) in the heuristic learning literature are
analyzed from a statistical lens. From this analysis, it is concluded that Mean
Squared Error (MSE) is not an appropriate loss to train heuristic learning methods.
Therefore, a novel loss function is proposed, which models the heuristic to be
learned as a Truncated Gaussian instead of as a Gaussian distribution, as MSE does.
The lower bound of this Truncated Gaussian distribution is set to the value of an
admissible heuristic, thereby leveraging the prior information it contains. This novel
loss function is compared to MSE in several heuristic learning scenarios, comprising
different planning domains and ML models, including neuro-symbolic ones. Results
show the proposed loss function improves convergence speed during training and
yields more accurate heuristics that result in better planning performance. This
third contribution is addressed in Chapter V.

As the fourth major contribution of this thesis [181], a novel neuro-symbolic
method for learning the structure of SDM tasks is introduced. The method,
namedNeSIG (Neuro-Symbolic Instance Generator), learns to automatically
generate problems for any particular planning domain so that they are valid, diverse
and difficult to solve. Having a large set of planning problems is useful for many
applications, e.g., as benchmarks for comparing the performance of AP algorithms
and for obtaining data to train ML methods, such as those proposed as the second
and third contributions of this thesis. NeSIG follows an incremental approach to
problem generation. It first obtains the initial state of the problem by sequentially
adding atoms and objects to it. Then, NeSIG obtains the problem goal by execut-
ing actions at the generated initial state. This generation process is guided by two
generative policies, trained with RL to obtain valid, diverse and difficult problems.

20 Abstract

Since information about consistency (a subproperty of validity) must be specified
by the user, a novel semi-declarative language is implemented for doing so in an
easy manner. NeSIG is evaluated by generating problems for several planning do-
mains. Results show it is able to generate valid and diverse problems of greater
difficulty than handcrafted, domain-specific generators, while requiring less human
effort. Additionally, it successfully generates larger problems than those seen during
training. This fourth contribution is addressed in Chapter VI.

All the code developed in the course of this thesis has been made publicly avail-
able. A subset of this code has also been released as several open-source Python
packages and distributed via the Python Package Index (PyPI). The list of Python
packages developed are the following: lifted-pddl [174], a lightweight parser for
AP (currently accumulating 14000 downloads according to the pepy.tech website);
stable-truncated-gaussian [177], a stable and differentiable implementation of
the Truncated Gaussian distribution using Pytorch (13000 downloads); neural-
logic-machine [176], a simple Pytorch implementation of Neural Logic Machines,
a deep neural network suitable for logic data (2000 downloads); and pddl-prover
[175], a prover for automatically evaluating conditions (logic formulas) on planning
states (2000 downloads).

In conclusion, this dissertation presents significant advancements on neuro-
symbolic AI for SDM, comprising a review that proposes a novel taxonomy of SDM
methods and justifies the need for neuro-symbolic approaches, two different neuro-
symbolic methods for improving the efficiency of AP algorithms (either by select-
ing subgoals with RL or learning better planning heuristics) and, lastly, a neuro-
symbolic technique for automatically generating planning problems. In addition,
several open-source packages have been distributed and have received significant at-
tention from the research community, judging from the large number of downloads.

Chapter I

Introduction

“In preparing for battle I have always found
that plans are useless, but planning is indis-
pensable.” — Dwight D. Eisenhower

Sequential Decision Making (SDM) [145] is an important subfield within
AI devoted to solving Sequential Decision Processes (SDPs). In an SDP, an
agent situated in an environment, which can be either physical or virtual, must
make a series of decisions in order to complete a task or achieve a goal. These
ordered decisions must be selected according to some optimality criteria, such as
the maximization of reward or the minimization of cost. SDPs provide a general
and powerful framework which has been successfully applied to solve problems in
fields as diverse as robotics [133], logistics [205], games [217], finance [36] and natural
language processing [242], just to name a few.

Throughout the years, many AI methods have been proposed to solve SDPs,
i.e., find the sequence of decisions which optimizes the corresponding metric, such
as reward or cost. They can be grouped in two main categories: Automated Plan-
ning (AP) [84] and Reinforcement Learning (RL) [224]. These two paradigms
mainly differ in how they obtain a solution and how they represent their
knowledge:

• AP techniques exploit the existing prior knowledge about the environment
dynamics, encoded in what is known as the action model or planning domain,
to carry out a search and reasoning process in order to find a valid plan or
policy, i.e., a mapping from states to actions used to achieve a set of goals.
They can be grouped up according to the type of knowledge representation
employed. Many of them require a symbolic description of the action model
in a formal language often based on first-order logic (FOL), such as PDDL
[96] (for deterministic tasks) or PPDDL [253] and RDDL [202] (for stochastic
tasks). Some AP techniques do not have such requirement and can represent
the action model in a subsymbolic manner, often as a black-box which outputs
the next state resulting from the application of a given action at the current
state. We will refer to the first group of techniques as Symbolic Planning
(SP), and use the name Subsymbolic/Non-Symbolic Planning (NSP)
for the latter.

• RL, on the other hand, seeks to learn the policy (mapping from states to
actions) that maximizes reward, automatically from data with no planning

21

22 CHAPTER I. INTRODUCTION

whatsoever. The main precursor of RL is Optimal Control [18, 224], a field
primarily concerned with providing optimal solutions to SDPs with complete
knowledge of the dynamics using dynamic programming methods. Unlike their
predecessor, most RL methods, known as model-free RL, focus on obtaining
approximate solutions to SDPs where the action model is unknown. Addi-
tionally, the vast majority of RL methods represent their learned knowledge
in a subsymbolic manner, although a subset of them, known as relational RL,
use a symbolic knowledge representation. Classical RL methods employ a
tabular representation, i.e., for every possible state-action pair they store the
corresponding policy information, usually the expected future reward. On the
other hand, modern RL methods, known as Deep RL (DRL) [74], represent
their policy as a deep neural network (DNN) [142], which allows them to
generalize their learned knowledge, not needing to store information about the
policy for every single state-action pair.

Although AP and RL share the common goal of solving SDPs, each field has
historically followed a separate path: the former proposing an often symbolic,
reasoning-based paradigm, whereas the latter opts for a predominantly subsym-
bolic, learning-based approach. This division between RL and AP represents
a particular instance of a larger discussion which has taken place throughout the
history of AI, confronting two approaches: symbolic and subsymbolic AI. The
symbolic approach states that symbol manipulation constitutes an essential part of
intelligence [199] and was the predominant view during the majority of the 20th cen-
tury. In the 21th century however, this claim has been highly contested due to the
great success of Machine Learning (ML), specifically Deep Learning (DL) [142],
in many real-world problems such as natural language processing [28] and computer
vision [138], while performing no symbol manipulation whatsoever.

Nevertheless, despite the recent successes of ML and DL, there exists great in-
terest in the reconciliation of both AI paradigms in what is often referred to as
neuro-symbolic AI , a hybrid approach that attempts to combine the DNNs
employed in subsymbolic, DL methods with the symbolic knowledge rep-
resentations and reasoning capabilities of symbolic AI. Many researchers
[47, 78, 139, 153, 215] advocate for hybrid, neuro-symbolic approaches as a way to
harness the strengths of ML and DL while addressing their limitations, such as data-
inefficiency, poor generalization and lack of interpretability [12, 77, 152]. The need
for neuro-symbolic AI is also supported by research from other cognitive sciences.
One of the most prominent examples comes from the work of the psychologist Daniel
Kahneman. In his famous book Thinking Fast and Slow [121], Kahneman explains
how the human mind has two different modes of thinking: System I, which is fast
and intuitive, and System II, which is slow and logical. Many AI researchers have
drawn parallels between Kahneman’s System I and subsymbolic AI, and System
II and symbolic AI arguing that, just as humans rely on both types of thinking,
integrating the symbolic and subsymbolic paradigms is crucial for developing AI
systems that more closely resemble the human mind.

Analogously, many works have pursued this unification for the particular case
of SDM. As a result, there have been many proposals which try to bridge the
gap between RL and AP, with a surge of interest in recent years (see Figure 1).
A few notable examples are: model-based RL [160], relational RL [227], ML and
DL methods for learning the prior knowledge of AP (e.g., planning heuristics and

CHAPTER I. INTRODUCTION 23

action models) [117], models which learn to plan [160] and, lastly, neuro-symbolic
methods for SDM [182].

Figure 1: Number of publications that integrate AP and RL. This figure was obtained by
introducing the following query in Scopus (search performed on February 5 2024): TITLE-ABS-
KEY ((”reinforcement learning” AND ”automated planning”) OR (”model-based reinforcement
learning” OR ”model-based RL”) OR (”relational reinforcement learning” OR ”relational RL”
) OR (”automated planning” AND (”machine learning” OR ”deep learning”)) OR (”learn
to plan” OR ”learning to plan”) OR (neurosymbolic OR neuro-symbolic OR neuralsymbolic OR
neural-symbolic)) AND (LIMIT-TO (SUBJAREA , ”COMP”) OR LIMIT-TO (SUBJAREA ,
”MATH”) OR LIMIT-TO (SUBJAREA , ”ENGI”)) AND PUBYEAR > 1979 AND PUBYEAR
< 2024 . © Elsevier B.V.

This dissertation focuses on the study and implementation of neuro-symbolic AI
for SDM, making several significant contributions to the field. These include theo-
retical contributions, such as a comprehensive review of the field of SDM that serves
to justify the need for neuro-symbolic methods, and empirical advances, comprising
neuro-symbolic methods for both solving SDPs and learning their structure. The fol-
lowing subsections detail the objectives and contributions of this thesis, both in the
form of scientific publications and open-source software, and outline the structure
of the rest of the document.

I.1 Objectives

The primary objective of this thesis is to advance the state of the art in
neuro-symbolic AI for SDM, mostly by the integration of AP techniques with
DL methods, including DRL. In order to achieve this, four more concrete subgoals
are proposed, one of them (G1) being theoretical in nature (i.e., a review) whereas
the others are empirical. The three empirical subgoals can be further subdivided in
two groups according to the taxonomy proposed in the review of G1, which classifies
SDM methods into those that solve SDPs and those that learn their structure.
The first group, comprising subgoals G2 and G3, corresponds to neuro-symbolic
methods for solving SDPs. More specifically, it entails methods for improving
the performance of SP algorithms, either through goal selection (G2) or heuristic

24 CHAPTER I. INTRODUCTION

learning (G3). The second group contains a single subgoal, G4, corresponding to a
neuro-symbolic method for learning the structure of SDPs. In particular,
G4 pursues the automated generation of planning problems which, among many
other applications, can be used to obtain synthetic data for training DL methods,
such as those in G2 and G3. The four previous subgoals are illustrated in Figure 2
and are further detailed below:

• G1 - Review of SDM. The first subgoal of this thesis is to write a com-
prehensive review of SDM, comprising symbolic (e.g., SP), subsymbolic (e.g.,
DRL) and hybrid (e.g., neuro-symbolic) methods for both solving SDPs and
learning their structure (e.g., the action model). The existing SDM methods
must be compared across several dimensions, and their advantages and dis-
advantages must be analyzed. Additionally, this review should also serve to
justify the need for neuro-symbolic AI, e.g., as a promising approach towards
achieving an ideal method for SDM.

• G2 - Goal Selection. The second subgoal is to improve the time efficiency
of SP algorithms so that they can be applied to solve tasks with real-time
restrictions, without severely degrading the quality (i.e., plan length) of the
solutions obtained. In order to achieve this, the proposed method will have
access to prior information about subgoals so that, by achieving a subset of
them in the correct order, the task can be solved optimally. Therefore, the
method must be neuro-symbolic in nature and use DRL to learn to select a
sequence of subgoals so that, when these are achieved by the SP algorithm,
the resulting plan solves the corresponding task in as few actions as possible.

• G3 - Heuristic Learning. This subgoal is framed within a research collab-
oration between the University of Granada and the MIT-IBM Watson
AI Lab. It aims to improve the performance of current SP algorithms by
developing better heuristic learning methods, i.e., methods that utilize ML
or DL to learn planning heuristics from data. To do so, the proposed heuris-
tic learning approach must leverage existing prior knowledge in the form of
symbolic, admissible heuristics which, so far, have only been used as training
targets in the related literature. Additionally, the different decisions made
when designing the method must be well-justified and adhere to established
principles in the field of Statistics, such as the Principle of Maximum Entropy.
Finally, the resulting approach must be general and flexible, being able to im-
prove the quality of learned heuristics in a wide variety of scenarios, such as
for different planning domains and ML models.

• G4 - Problem Generation. The final subgoal is to design and implement a
method that automatically learns to generate problems for any given planning
domain, encoded in the PDDL language. Generated problems must satisfy
certain properties. Firstly, they must be valid, i.e., they must be solvable
and their initial state must be consistent, meaning it represents a possible ini-
tial situation in the system modeled by the corresponding planning domain.
Secondly, they must be diverse, i.e., the proposed method must be able to gen-
erate many different types of problems. Thirdly, they must be difficult to solve
by any given state-of-the-art SP algorithm. In addition to generating valid,

CHAPTER I. INTRODUCTION 25

diverse and difficult problems, the method should require less prior knowl-
edge and human effort than handcrafted, domain-specific problem generators,
which need to be tailored to each particular domain.

By achieving these subgoals, this dissertation aims to significantly advance the
field of SDM through the study and implementation of neuro-symbolic AI, demon-
strating its potential for effectively bridging the gap between AP and RL.

Figure 2: Diagram of contributions. The figure shows the four main contributions of this
PhD dissertation: a review of the state of the art in SDM (G1), a neuro-symbolic method for
learning to select goals (G2), a neuro-symbolic method for improving heuristic learning (G3) and,
lastly, a neuro-symbolic method for generating planning problems (G4). These contributions can be
classified as either theoretical or empirical. Additionally, empirical contributions can be subdivided
in methods for solving SDPs and those for learning their structure.

I.2 Publications

All the subgoals proposed in Section I.1 have been successfully achieved during
the development of this thesis, and their results published in several peer-reviewed
journals and conference proceedings. Each of these papers is associated with a
subgoal of the thesis, with the exception of [173]. This paper contains the thesis
proposal that was presented during the Doctoral Consortium at IJCAI 2022, and
was published in the conference proceedings of that year. The complete list of
publications with associated subgoals is provided below:

Works published in JCR-indexed journals

G1. Núñez-Molina, C., Mesejo, P., and Fernández-Olivares, J. (2024c). A review
of symbolic, subsymbolic and hybrid methods for sequential decision making. ACM
Comput. Surv., 56(11):1–36 — Impact Factor (2023): 23.8 (Q1, D1), 1st/143 in
subject category “Computer Science, Theory & Methods”

26 CHAPTER I. INTRODUCTION

G2. Núñez-Molina, C., Fernández-Olivares, J., and Pérez, R. (2022). Learning
to select goals in automated planning with deep-q learning. Expert Syst. Appl.,
202:117265 — Impact Factor (2022): 8.5 (Q1), 22nd/145 in subject category “Com-
puter Science, Artificial Intelligence”

Works published in conferences

G4. Núñez-Molina, C., Mesejo, P., and Fernández-Olivares, J. (2024b). NeSIG:
A neuro-symbolic method for learning to generate planning problems. In ECAI,
volume 392, pages 4084–4091 — GGS Conference Rating: A- (Class 2)

G3. Núñez-Molina, C., Asai, M., Mesejo, P., and Fernández-Olivares, J. (2024a).
On using admissible bounds for learning forward search heuristics. In IJCAI, pages
6761–6769 — GGS Conference Rating: A++ (Class 1)

G1-4. Núñez-Molina, C. (2022a). Application of neurosymbolic AI to sequential
decision making. In IJCAI 2022 Doctoral Consortium, pages 5863–5864 — GGS
Conference Rating: A++ (Class 1)

G2. Núñez-Molina, C., Vellido, I., Nikolov-Vasilev, V., Pérez, R., and Fdez-
Olivares, J. (2021). A proposal to integrate deep q-learning with automated planning
to improve the performance of a planning-based agent. In CAEPIA, pages 23–32 —
GGS Conference Rating: not ranked

Research Works under Review

G4. Núñez-Molina, C., Mesejo, P., and Fernández-Olivares, J. Automated plan-
ning instance generation with neuro-symbolic AI. Artif. Intell. Submitted on Oc-
tober 3, 2024 — Impact Factor (2023): 5.1 (Q1), 44th/197 in subject category
“Computer Science, Artificial Intelligence”

I.3 Software contributions

All the code developed during the course of this thesis has been made publicly
available, ensuring full reproducibility of the results presented in the publications of
Section I.2. A subset of this code is provided in the form of standalone, open-source
Python packages, distributed using the Python Package Index (PyPI), in order to
facilitate its use in other projects. The complete list of released packages can be
found below, along with their total number of downloads (according to the pepy.tech
website) by December 2, 2024:

• lifted-pddl [174] (13,599 downloads). This project implements a lightweight
framework for the efficient parsing and manipulation of PDDL. It achieves this
by working on the PDDL description in its lifted form, i.e., without grounding
it first. This framework provides functionality for parsing PDDL domain and
problem files and inspecting their elements, obtaining the list of applicable
functions at a given state, and obtaining the next state resulting from applying
a particular action to the current state (successor function).

CHAPTER I. INTRODUCTION 27

• stable-truncated-gaussian [177] (12,865 downloads). This package was de-
veloped as part of [178]. It contains a differentiable implementation of the
Truncated Gaussian (Normal) distribution using Pytorch, which is numeri-
cally stable even when the µ parameter of the distribution lies outside the
interval [a, b] given by its bounds. In this situation, a naive evaluation of the
mean, variance and log-probability of the distribution could result in catas-
trophic cancellation and other numerical issues. At the moment, this package
provides numerically-stable methods for calculating the mean, variance, log-
probability, KL-divergence and sampling from the distribution.

• pddl-prover [175] (1,924 downloads). This project contains the implementa-
tion of the novel semi-declarative language used for encoding consistency con-
straints in [181, Núñez-Molina et al.]. More generally, it implements a Python
prover for evaluating conditions on PDDL states. It provides a declarative
syntax for constructing arbitrary FOL formulas (including counting quanti-
fiers) in Python, along with an algorithm for evaluating the truth value of
these formulas on a knowledge base. This knowledge base must be encoded in
the same manner as PDDL states, as a set of true FOL atoms.

• simple-nlm [176] (2,026 downloads). This package provides a simple-
to-use, Pytorch implementation of Neural Logic Machines (NLMs) [53],
which has been utilized in several of the works of this thesis [181, 178,
Núñez-Molina et al.]. It contains two different NLM implementations: one
is time-efficient and specifically optimized for GPU usage, whereas the other
sacrifices speed in order to reduce memory consumption.

I.4 Structure of the dissertation

This dissertation is organized into five main parts in addition to the Introduction:
Fundamentals, Related Work, Proposals, Final Remarks and Appendix.

Part I, Fundamentals, covers the theoretical background required in order to
understand this dissertation. It first provides a general formulation of SDM tasks in
terms of Stochastic Shortest-Path Markov Decision Processes (SSP MDPs). Then,
it introduces the field of AP, explaining how AP tasks can be represented and the
concept of heuristics. Next, it briefly overviews the field of ML, describing two of the
DNN architectures used in this thesis: Convolutional Neural Networks (CNNs) and
Neural Logic Machines (NLMs). Finally, it outlines the field of RL, focusing on the
Q-Learning, Deep Q-Learning and Proximal Policy Optimization (PPO) algorithms.

Part II, Related Work , provides a comprehensive review of existing work in
the SDM literature, thus aligning with the first subgoal (G1) of this dissertation
(see Section I.1) and framing the role of the contributions presented in the overall
landscape of SDM. This review covers both methods for solving SDM tasks (e.g.,
AP and RL) and methods for learning their structure (e.g., the action model).
Additionally, it analyzes the advantages and disadvantages of existing approaches
and theorizes about the characteristics of an ideal method for SDM. Based on this
analysis, it is concluded that neuro-symbolic AI poses a promising approach for
achieving an ideal method for SDM via the integration of AP and RL, thus justifying
the relevance and significance of this doctoral dissertation.

28 CHAPTER I. INTRODUCTION

Part III, Proposals , presents the empirical contributions of this thesis, corre-
sponding to subgoals G2, G3 and G4. Chapter IV describes the Deep Q-Planning
(DQP) algorithm, a neuro-symbolic method for improving the performance of AP
in real-time scenarios via goal selection, thus aligning with subgoal G2. Chapter
V describes a statistically-motivated, neuro-symbolic approach for leveraging the
prior knowledge contained in symbolic, admissible heuristics in order to improve
heuristic learning and, therefore, the performance of AP algorithms, which aligns
with subgoal G3. Finally, Chapter VI describes NeSIG (Neuro-Symbolic Instance
Generator), a neuro-symbolic technique for generating valid, diverse and difficult
problems for any Classical Planning domain with low human effort, thus aligning
with subgoal G4.

Part IV, Final Remarks, summarizes the conclusions of this doctoral dis-
sertation, suggests possible avenues for future work to extend the contributions
presented, provides the acknowledgements, and lists the complete bibliography.

Finally, Part V, Appendix , provides appendixes for Chapters V and VI.

Part I

Fundamentals

29

Chapter II

Theoretical Background

II.1 Sequential Decision Processes

The field of SDM aims to solve tasks where an agent, situated in either a virtual
or physical environment, must make a series of decisions or execute a sequence
of actions in order to achieve a particular goal. These tasks receive the name of
Sequential Decision Processes (SDPs). This thesis focuses on SDPs with a
finite number of states and actions (decisions) and where time is discrete, i.e., after
the execution of an action the environment immediately transitions from time instant
t to t + 1. For totally observable environments where the agent has access to full
information about the current state, this type of SDPs are commonly described
as a finite Markov Decision Process (MDP) [224]. However, there exist different
alternative formulations for MDPs. In this dissertation, we will use the one given
by finite Stochastic Shortest-Path MDPs (SSP MDPs) [167], as they provide
a general MDP formulation which suits both AP and RL. An SSP MDP, which is
depicted in Figure 3, is constituted by the following elements:

• State space S, the finite set of states of the system. In some SSP MDPs,
at the beginning of the task the agent always starts from a state s randomly
sampled from a set of initial states Si ⊂ S. In other SSP MDPs, the agent
may start from any state s ∈ S, i.e., Si = S.

• Action space A, the finite set of actions the agent can execute. In some SSP
MDPs, only a subset of applicable actions App(s) ⊂ A are available to the
agent at a given state s. In other SSP MDPs, the agent can execute every
action at every state, i.e., App(s) = A ∀s ∈ S.

• Transition function T : S × A × S → [0, 1]. It describes the dynamics of
the environment, by specifying the probability T (s, a, s′) = P (s′|s, a) of the
environment (SSP MDP) transitioning into state s′ after the agent executes
an (applicable) action a ∈ App(s) at the current state s. If given some state
s ∈ S and action a ∈ App(s) the environment always transitions into the same
state s′ (i.e., P (s′|s, a) = 1 and P (s′′|s, a) = 0 ∀s′′ ̸= s′), the MDP is said to
be deterministic. Otherwise, it is stochastic.

• Cost function C : S × A × S → [0,∞). It gives a finite strictly positive
cost c(s, a, s′) > 0 when the agent goes from state s to s′ by executing the

30

CHAPTER II. THEORETICAL BACKGROUND 31

(applicable) action a. Transitions from a goal state are the only ones with a
cost of zero.

• Goal set G ⊆ S. It contains a finite set of goal states sg ∈ S, one of which
must be reached by the agent. For every goal state sg ∈ G, action a ∈ A
and non-goal state s /∈ G, the following conditions are met: T (sg, a, sg) = 1,
T (sg, a, s) = 0, c(sg, a, sg) = 0. Intuitively, these conditions mean that goal
states are terminal, since once reached the agent cannot leave them and no
longer incurs in additional costs.

Figure 3: SDM task, as formulated by SSP MDPs. At each step, the agent must execute
an action a ∈ App(s) that is applicable at the current state s of the SSP MDP. Then, the agent
receives from the environment the next state s′ and associated cost C(s, a, s′). This process repeats
until the agent eventually reaches a goal g ∈ G.

A policy π : S×A→ [0, 1] is a (possibly partial) function that maps states s ∈ S
to probability distributions over applicable actions a ∈ App(s). The state value (or
simply value) V π(s) of a state s under some policy π is equal to the total cost that we
expect to obtain if, starting from s, we follow policy π until G is reached. Similarly,
a Q-value Qπ(s, a) represents the expected cost obtained by first executing action a
at s and, then, executing actions according to π until G is reached. State values and
Q-values are related by the following equation: V π(s) =

∑
a∈App(s)

(
π(a|s) ·Qπ(s, a)

)
.

A solution of an SSP MDP is an optimal policy π∗, i.e., a policy that minimizes the
expected cost needed to reach G. If π∗ is optimal, then its value function V ∗ satisfies
the following property: V ∗(s) ≤ V π(s) ∀s, π. A policy is said to be complete if it is
defined for every MDP state s ∈ S. However, for MDPs with a single initial state
si it is often more efficient to only compute a policy π for some subset of states
S ′ ⊂ S, e.g., those reachable from si by following π. Such a policy is deemed partial.
Finally, if both a policy π and MDP are deterministic and the MDP contains a single
initial state si, then π can be simply represented as a plan, i.e., as a sequence of
actions a0, a1, ..., an that reach G when executed from si. This can be done because,
in the deterministic setting, the execution of π from some state s0 always results in
the same sequence (trajectory) of states and actions s0, a0, s1, a1, ..., sn−1, an−1, sn.
Figure 4 shows a graphical comparison between the three different types of policies.

We previously stated that SSP MDPs are suitable for both AP and RL. However,
in most RL tasks the goal is to find a policy π∗ which maximizes the total sum of

32 CHAPTER II. THEORETICAL BACKGROUND

Figure 4: Comparison between complete policies, partial policies and plans. Nodes in the
image represent MDP states, and arrows show the possible transitions between them. A complete
policy is defined for the entire MDP state space S (blue square in the picture). A partial policy is
defined for a subset S′ ⊂ S of states (dashed green area in the picture). Finally, a plan only stores
the action to execute for the states S′′ ⊂ S′ of a single trajectory from si to some sg (gold-coloured
nodes with bold emphasis in the picture).

rewards, known as the return, instead of minimizing the cost needed to reach a
goal state sg ∈ G. In finite-horizon (FH) MDPs, the return must be maximized
over a finite number of time steps, known as an episode. In infinite-horizon
(IFH) MDPs on the other hand, the goal is to maximize the discounted return,
where each individual reward is scaled down by a factor γ, over an infinite number
of time steps. It can be proven that both types of reward-based MDPs, FH and IFH
MDPs, can be expressed as an equivalent SSP MDP, in terms of goals and costs
instead of rewards [167]. Therefore, the reward-based MDPs usually employed in
RL are merely subclasses of the more general SSP MDPs. For this reason, in this
dissertation we will interchangeably employ the reward-based formulation of RL and
the goal-based formulation of AP, knowing that both of them can be expressed as
SSP MDPs.

Finally, all types of MDPs exhibit a very important feature, known as theMarkov
property. This property states that, in any MDP, the cost (or reward) and transition
function only depend on the current state of the MDP and the action executed
by the agent at that state. This property allows agents to select actions by only
considering the information about their current state and not their past history, i.e.,
past states and actions. If the environment is partially observable, i.e., the agent
lacks information about the current state, the SDP must be described as a Partially
Observable Markov Decision Process (POMDP) [148]. POMDPs share the
same formulation as (totally observable) MDPs and also follow the Markov property.
However, the current state of POMDPs is hidden and the agent only receives partial
information in the form of observations about the state. These observations must
then be used by the agent to infer the actual state of the environment and solve the
POMDP.

CHAPTER II. THEORETICAL BACKGROUND 33

II.2 Automated Planning

Automated Planning (AP) [84] proposes a deliberative paradigm for solving
SDPs. In order to be applied, AP methods require an action model (also known as
a world model or planning domain) containing information about the environment
dynamics and how the agent can affect them, i.e., the available actions for the agent
and how these affect the state of the world. This prior knowledge is then leveraged
by AP techniques to conduct a reasoning process, often involving search, in order
to find a policy or plan that achieves the MDP goals from the initial state set Si.

Throughout the years, many different AP algorithms have been proposed, which
can be classified according to several criteria. Firstly, based on their knowledge
representation, AP methods can be categorized in Symbolic Planning (SP) and
Subsymbolic/Non-Symbolic Planning (NSP) [182]. The first group of meth-
ods requires a symbolic specification of the action model, often in a formal logic-
based language such as PDDL or RDDL (see Section II.2.1), describing the envi-
ronment dynamics in full detail. Conversely, the second group of methods does not
require any particular representation (e.g., in PDDL) for the action model. Gen-
erally, a black-box action model suffices, i.e., a model that returns the next state
(and cost/reward, if needed) resulting from the application of a particular action
at a given state, without providing any further information about the environment
dynamics. Additionally, there exist novel AP methods that combine the symbolic
and subsymbolic knowledge representations. For instance, the approach proposed
in [73] only requires a symbolic description for states and goals, so actions and their
effects can be encoded as a black-box procedure.

AP techniques can also be split according to the type of MDPs they can be
applied to solve. Probabilistic Planning (PP) [167] methods solve the general
class of (stochastic or deterministic) MDPs, and are used to find a policy that
minimizes the expected cost needed to reach a goal g ∈ G. Some PP algorithms
compute complete policies, i.e., they find the optimal action to take for every MDP
state s ∈ S. For efficiency purposes, other PP algorithms compute partial policies,
i.e., they only find the optimal action to take for a subset of the states in S, such
as those reachable from the initial state set Si. Contrary to PP methods, Classical
Planning (CP) [84] focuses on solving deterministic MDPs with single initial state
si. Solving this particular subclass of MDPs entails finding the cost-optimal plan
that reaches a goal g ∈ G from si. An example of a CP task, represented symbolically
using PDDL, is depicted in Figure 5. Finally, Chapter III provides specific examples
for the different categories of AP methods described in this section.

II.2.1 Planning Task Representation

As explained in the previous section, many AP algorithms, known as SP, require
a symbolic description of the action model. In these cases, AP tasks are usually
represented using a declarative, FOL-based language such as PDDL [96], which
stands for Planning Domain Definition Language. In PDDL, tasks are split into two
different items: a planning domain and a planning problem. The PDDL domain
represents the general aspects of the task, corresponding to the state encoding and
environment dynamics. More specifically, it describes the existing types of objects,
predicates (or relations) and the actions available to the agent. For each action,

34 CHAPTER II. THEORETICAL BACKGROUND

Figure 5: CP task, encoded using PDDL. The task belongs to the PDDL domain known as
blocksworld, consisting of blocks that can be stacked one upon another with a gripper arm. The
blue arrow represents a plan that achieves a goal state (right) starting from the initial state of the
task (left).

it details which conditions need to be true at the current state for it to be applied
(known as preconditions), and the atoms (facts) that will be made true (positive/add
effects) and false (negative/delete effects) once it is executed. Figure 6 shows an ex-
tract from the blocksworld PDDL domain. In contrast, the PDDL problem encodes
the specific aspects of the task, corresponding to the particular objects it contains,
the initial state si (described as the set of atoms that are initially true), and the
goal G to achieve (often described as a conjunction of atoms that must be made
true). The elements in the PDDL domain are represented in lifted form, i.e., in
terms of FOL variables. These variables will then be instantiated on the objects
of a particular problem to obtain the ground representation of the planning task,
required by the vast majority of SP algorithms.

Figure 6: Symbolic and subsymbolic action models. Left: Extract from a symbolic action
model, corresponding to the PDDL description of action stack in the blocksworld domain. Given
the ground, symbolic description of a state s, as a set of true atoms, and an applicable action a,
it makes it possible to obtain the resulting next state s′ by applying the effects of a to s. Right:
Subsymbolic action model, corresponding to a black-box. It receives a subsymbolic representation
of s (e.g., as an image or as a set of state variables) and a as inputs, and outputs s′. The symbolic
action model is amenable to interpretation, whereas the subsymbolic one is usually not.

Representing planning tasks as a domain-problem tuple offers great reusability,
as the same PDDL domain can be utilized by all the tasks that model the same
system/environment and which only differ in their initial state and goal to achieve.
For instance, all blocksworld tasks model the same system: a table filled with blocks
that can be stacked on top of each other with a gripper. Therefore, we can use a
single planning domain to encode these common elements, and a different planning
problem for each task, describing the particular initial and goal configurations of

CHAPTER II. THEORETICAL BACKGROUND 35

the blocks.
One limitation of PDDL is that it is only useful for encoding deterministic tasks,

such as those in CP. PDDL is extended to the general, PP case by the PPDDL
[253] language, which adds support for stochastic action effects that occur with a
given probability. RDDL [202] is an alternative language for modeling PP tasks. In
RDDL, everything (including actions) is represented as a parameterized variable of a
particular type. This modeling approach is better suited than PPDDL for domains
where actions have many uncorrelated effects, as it is often the case in systems with
many objects that mostly evolve independently from each other.

II.2.2 Planning Heuristics

Planning is computationally expensive. Solving the general class of (stochastic)
SSP MDPs (as in PP) is EXPTIME-complete, whereas solving deterministic SSP
MDPs with a single initial state (as in CP) is PSPACE-complete [167]. For this
reason, if we hope to apply AP methods to real-world problems, we need to harness
control knowledge to direct the search, which often comes in the form of planning
heuristics (see Figure 7).

Figure 7: Planning with a heuristic. The figure illustrates how heuristics help reduce planning
effort. For simplicity, we depict the case where the MDP is deterministic and search is carried out
from the initial state si to a goal state sg. When no heuristic is employed, the planning algorithm
needs to explore the state space in all directions until sg is finally found (see blue circle in the
image). A heuristic can prevent this by providing guidance and reducing the number of states
that are explored (green ellipse in the image). Finally, if this heuristic is optimal/perfect (i.e., it
predicts the optimal cost for every state s ∈ S), only those states on the optimal plan(s) from
si to sg need to be explored. Analogously, for stochastic MDPs, the only states that need to be
explored are those reachable from si by following the optimal policy π∗.

A heuristic h(s, P) is a function of a planning problem P and a state s of such
problem which, for deterministic MDPs, estimates the cost of the optimal plan from
s to the goal G of P . This optimal cost is sometimes referred to as the perfect
heuristic h∗. In the case of stochastic MDPs, heuristics provides an estimate of the
expected cost from s to G under the optimal policy π∗, i.e., they estimate V ∗(s).
Heuristics are said to be admissible if, for every state s ∈ S, their value h(s, P)
is no larger than the optimal cost h∗(s, P). In other words, admissible heuristics

36 CHAPTER II. THEORETICAL BACKGROUND

provide an optimistic estimate of the cost to reach the goal. When heuristics do
not meet this property, they are called inadmissible. Additionally, heuristics can be
classified into domain-specific, i.e., those that are tailored to problems from a specific
domain, and domain-independent, i.e., those that are applicable to many different
planning domains, such as the entire set of CP domains. Finally, in situations where
heuristics are unavailable, they can be learned from data using ML, an approach
that receives the name of heuristic learning. Examples of both heuristics and
heuristic learning methods can be found in Chapter III.

II.3 Machine Learning

Machine Learning (ML) [20] is an important AI subfield comprising methods
for learning from data. ML methods are often classified according to the type of data
they learn from in Supervised Learning, Unsupervised Learning and Reinforcement
Learning. In a Supervised Learning task, the goal is to predict the value of a tar-
get variable y associated with a particular input x. Supervised Learning techniques
learn the relationship between x and y from examples of input-output pairs (x, y).
On the other hand, in an Unsupervised Learning task data is unlabelled, i.e., the
target variable y is absent and only x is available. Unsupervised Learning methods
make possible to learn the structure of unlabelled data and extract patterns from
it. Examples of methods in this category include: clustering [203] (i.e., organizing
data in groups sharing similar characteristics), dimensionality reduction [116] (i.e.,
representing data with a smaller number of features), and generative modelling [23]
(i.e., learning the data distribution in order to generate new samples). Lastly, Re-
inforcement Learning (RL) comprises methods that are able to learn from a
reward signal measuring the quality of a sequence of agent’s decisions or actions.
Whereas in Supervised Learning we know the correct output y (i.e., answer) for each
input x in the training dataset, in RL we only receive feedback about how good a
particular sequence of outputs y1, y2, ..., yn (actions) is.

Throughout the years, many different learning models have been proposed, of
which a few notable examples are: logistic regression [45], support vector machines
[44], Bayesian networks [189], decision trees [193], and neural networks [198]. Among
these models, neural networks have enjoyed great popularity due to many reasons,
such as their biological inspiration in the human brain and their universal function
approximation capabilities. For many years, the training of neural networks with
many layers, i.e., deep neural networks (DNNs), proved to be a difficult endeav-
our, mainly due to the presence of unstable (either exploding or vanishing) gradients
in the training process [17]. Nonetheless, important advances in the last decades,
such as novel activation functions [166], better optimization algorithms [131] and
the use of residual connections [98], along with ample computational resources, have
made it possible to train DNNs of increasingly larger sizes. This trend has given rise
to the promising field of Deep Learning (DL) [142], which has been responsible
for many of the AI advancements in the 21st century, encompassing fields as diverse
as natural language processing [28], computer vision [138], and SDM [74]. Despite
the relative youth of the field, a large number of different DNN architectures have
been proposed, in what is sometimes referred to as the neural network zoo. Ex-
amples include: feed-forward DNNs [85], Convolutional Neural Networks (CNNs)

CHAPTER II. THEORETICAL BACKGROUND 37

[138], Long-Short Term Memory (LSTM) networks [106], Graph Neural Networks
(GNNs) [204], Transformers [238], and Neural Logic Machines (NLMs) [53]. In the
following subsections, we explain in more detail the CNN and NLM architectures,
due to their importance in this dissertation.

II.3.1 Convolutional Neural Networks

A Convolutional Neural Network (CNN) [138] is a type of neural network
specialized to the structure of images, which is inspired by the animal visual cortex.
One of the most significant breakthroughs of CNNs was achieved in the ImageNet
LSVRC-2012 competition [49], where the goal was to classify high-resolution im-
ages into 1000 classes. The winning model in this competition was a deep CNN
named AlexNet [138] (see Figure 8), which managed to outperform the competing
approaches by a great margin. From this moment onwards, CNNs became the sta-
ple method in computer vision, although they have recently found competition in
alternative DNN architectures such as the Vision Transformer [54]. Due to their
great success, CNNs have also been applied to non-image data types such as time
series [256] and audio [2].

Figure 8: AlexNet architecture. This CNN receives an image of size 224x224 pixels with 3
colour channels. Then, it successively applies convolutions and pooling operations to extract high-
level features from the image. These features are then used by a feed-forward neural network
(labelled as dense in the image) to predict the probability that the input image belongs to each
of 1000 different classes. Additionally, the computation of the CNN operations is split across two
different GPUs, as depicted in the image. Figure extracted from [138].

CNNs are based on the convolution operation. Given an NxM matrix of real
numbers, which receives the name of kernel, a convolution traverses the input im-
age obtaining, for each region of adjacent pixels, a new value as the weighted sum
of the kernel with the values of the pixels in that region. The stride dictates how
many pixels the kernel moves between consecutive convolutions, whereas the padding
determines the values added to the image borders, in case they are needed. Convo-
lutions make it possible to extract local features from images. The first layers in a
CNN often learn to extract simple, low-level features such as lines and shapes. Then,
these simple features are hierarchically composed in the following CNN layers by the
application of more convolution operations, in order to extract high-level features
such as entire objects (e.g., the wheel of a car). These high-level features are then
utilized to solve the task at hand, e.g., to classify the input image into one of several
classes. In addition to convolutions, CNNs sometimes also employ other techniques

38 CHAPTER II. THEORETICAL BACKGROUND

such as pooling operations, used to aggregate features from adjacent regions in the
image.

II.3.2 Neural Logic Machines

A Neural Logic Machine (NLM) [53] is a deep neural network capable of
learning from FOL data and performing logic reasoning. An NLM receives as input a
set of predicates grounded on a set of objects. Then, it sequentially applies first-order
rules to obtain a different set of output predicates instantiated on the same objects.
Input predicates are represented as binary tensors containing the truth value for
each grounding of the predicate on the set of objects. Given some input predicate p,
if p(oi, oj, ..., ok) is true (where i, j, k represent object indexes), then its associated
tensor will contain a value of 1 at the (i, j, ..., k) position, and 0 otherwise. Output
predicates and those inferred internally by the NLM are also represented as tensors,
but they contain real values between 0 and 1. The NLM operates with these tensors
by using neural modules that approximate boolean operators (and, or, not) and
quantifications (∀ and ∃), being expressive enough to learn any set of definite Horn
clauses in FOL without cyclic references among predicates, and perform inference
with them. Therefore, NLMs are more expressive than alternative architectures such
as Graph Neural Networks [11], which is why they are used in this dissertation.

Figure 9: Architecture of a Neural Logic Machine. An NLM is characterized by its breadth
(maximum predicate arity) and depth (number of layers). Each NLM layer receives a group of
predicates instantiated on a set of objects, and outputs a new group of predicates instantiated
on the same objects. The expand and reduce operations implement the FOL quantifiers ∀ and ∃,
connecting predicates of different arity. The boolean operators and, or and not are implemented
by feed-forward neural networks (MLPs). Image extracted from [53].

II.4 Reinforcement Learning

Reinforcement Learning (RL) [224] is a subfield of ML that provides an
alternative approach to AP for solving MDPs. Instead of employing an action
model to synthesize a solution of the MDP, RL techniques use the data gathered
from the environment to learn the optimal policy that maximizes reward. Most
RL methods represent their learned knowledge subsymbolically, although a subset
of them known as Relational Reinforcement Learning (RRL) [227] employ
a symbolic knowledge representation. In order to learn the optimal policy, RL
algorithms must balance the exploration of the environment, i.e., the process of

CHAPTER II. THEORETICAL BACKGROUND 39

trying out new actions and observing their outcomes, with the exploitation of the
learned knowledge, i.e., selecting the best action found so far (which might not
be the optimal one). This is known as the exploration-exploitation tradeoff.
Additionally, many environments exhibit sparse rewards, meaning that the agent
only receives a reward after the execution of a long sequence of actions. This hinders
the learning process, as the agent must determine the responsibility of each action
in the final outcome (represented by the obtained reward), in what is known as the
credit assignment problem.

Most RL methods, known as model-free RL, do not require a model of the
environment (action model) in order to learn the optimal policy. Nonetheless, there
exist other techniques, known as model-based RL, which leverage the prior knowl-
edge contained in the action model to facilitate the learning process. RL algorithms
can also be classified in value-based and policy-based RL. The first group of
methods learn the optimal state values V ∗(s) or Q-values Q∗(s, a), which are then
used to obtain the optimal policy π∗. For instance, given Q∗(s, a), the optimal ac-
tion a∗ at state s is the one with maximal Q-value: a∗ = argmaxa∈App(s) Q

∗(s, a).
Conversely, policy-based RL explicitly learns π∗ without first needing to estimate
V ∗(s) or Q∗(s, a). There also exist a third group of methods known as actor-critic
RL that combine the two previous approaches, learning both a policy π and its
corresponding value (either V π(s) or Qπ(s, a)) at the same time. Lastly, approaches
pertaining to classical RL employ a tabular representation, i.e., for every possible
state or state-action pair they store the corresponding policy information, usually
V π(s) or Qπ(s, a). On the other hand, modern RL methods, known as Deep Re-
inforcement Learning (DRL), represent their policy as a DNN, which allows
them to generalize their learned knowledge, not needing to store policy information
for every single state. The following subsections describe two DRL algorithms that
have been employed in this thesis: Deep Q-Learning [158], based on the classical
Q-Learning algorithm [244], and Proximal Policy Optimization (PPO) [209]. Chap-
ter III provides additional examples for the different RL categories described in this
section.

II.4.1 Q-Learning and Deep Q-Learning

The Bellman Optimality Equation [15] plays a central role in RL. It provides
a recursive formulation of the optimal Q-value of a state s in terms of the optimal
Q-values of other states s′ and MDP rewards r:

Q∗(s, a) = Es′,r

(
r + γ max

a′∈App(s′)
Q∗(s′, a′)

)
=
∑
s′,r

P (s′, r|s, a)
(
r + γ max

a′∈App(s′)
Q∗(s′, a′)

)
(II.1)

where γ is the MDP discount factor and Es′,r represents the expectation over next
states and rewards. This expectation is required since, in stochastic MDPs, the
execution of the same action a at the same state s will not always result in the
same next state s′ and reward r. It can be calculated by using P (s′, r|s, a), which
represents the probability of the MDP transitioning into s′ and outputting reward
r when a is executed at s.

40 CHAPTER II. THEORETICAL BACKGROUND

Q-Learning [244] is a widely-known classical, value-based RL algorithm that
provides a simple method, based on the Bellman Optimality Equation, for learning
the Q-values Q∗(s, a) of the optimal policy π∗. Due to its model-free nature, Q-
Learning cannot compute the expectation Es′,r over next states and rewards in
Equation II.1. The reason is that, after taking an action at the current state, the
environment transitions into another state, so the agent cannot simply go back to
the previous state to execute the same action again, looking for a different outcome.
Q-Learning solves this problem by slowly updating (according to the learning rate
α ∈ [0, 1]) the current Q-value estimates Q(s, a) with the rewards r and next states
s′ observed from the environment, which are sampled from P (s′, r|s, a), until Q(s, a)
eventually converges to Q∗(s, a). The exact update rule is shown below:

Qnew(s, a)← (1− α) ·Qold(s, a) + α ·
(
r + γ max

a′∈App(s′)
Qold(s′, a′)

)
(II.2)

One limitation of Q-Learning is that it needs to store Q(s, a) for every (s, a)
pair, which results infeasible for MDPs with large state spaces as in most real-world
applications. Deep Q-Learning [158] addresses this issue by using a DNN to
predict the Q-values (see Figure 10), which allows it to generalize to unseen states
and removes the need to store information for every (s, a) pair. The loss function
L employed by this algorithm can be regarded as an adaptation of the Q-Learning
update rule (see Equation II.2) and is detailed below:

L =
(
Q(s, a)−Qtarget(s, a)

)2
=
(
Q(s, a)−

(
r + γ max

a′∈App(s′)
Q(s′, a′)

))2
(II.3)

where Q(s,a) represents the Q-value predicted by the DNN for the (s, a) pair and
Qtarget(s, a) is the value the DNN is trained to predict, which receives the name of
TD-target. When calculating the gradient of this loss L, the TD-target is considered
a constant term so that gradients flow though Q(s, a) but not Q(s′, a′).

II.4.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [209] is an actor-critic DRL algorithm
that has been successfully applied to solve a wide variety of tasks. PPO is composed
of two main parts, an actor and a critic, which can be implemented either as separate
DNNs or as a single one. The goal of the actor is to learn the optimal policy π∗,
i.e., select actions that maximize the expected return. On the other hand, the critic
is tasked with evaluating the quality of the actions taken by the actor, in order
to guide the learning of π∗. Given a state s and action a′, the advantage A(s, a′)
measures the relative quality of a′ when compared to the rest of actions a ∈ App(s),
i.e., it describes how better (or worse) a′ is when compared to the average action at
s. The following formula provides a simple way of calculating the advantage:

A(s, a′) = Q(s, a′)− V (s) (II.4)

where Q(s, a′) is the Q-value representing the expected return obtained by following
the current policy π after executing a′ at s, and V (s) is the state value measuring
the expected returned obtained by following π from s. Q(s, a′) can be calculated as

CHAPTER II. THEORETICAL BACKGROUND 41

Figure 10: Deep Q-Learning for Atari. The figure shows a CNN trained with the Deep Q-
Learning algorithm for playing an Atari game. The CNN receives as input the current MDP state
s, represented as the concatenation of the last four game frames. Then, it predicts in parallel the
Q-value Q(s, a) associated with each action a ∈ App(s), i.e., each valid combination of controller
inputs. The feedback obtained from the environment (in the form of rewards and new states) when
playing the game is used to compute the loss in Equation II.3. By minimizing it, the agent learns
to improve its gameplay, achieving superhuman performance in some games. Image extracted from
[159].

the (possibly discounted) sum of rewards obtained during an episode, whereas V (s)
is learned by the DNN of the critic.

Policy gradient methods are a group of RL techniques that estimate the gradient
of the expected return R with respect to the policy parameters θ (e.g., the weights of
a DNN). By ascending this gradient, the agent learns to favour actions that resulted
in high return in the past, thus approaching the optimal policy. A common formula
for estimating the policy gradient is shown below:

∇θR = Es,a∼ τ

[
∇θ log π(a|s)A(s, a)

]
(II.5)

where τ represents a trajectory, i.e., a sequence of states, actions and rewards,
and π(a|s) represents the probability of taking action a at state s according to the
(stochastic) policy π.

Trust Region RL methods improve policy gradient techniques by preventing large
policy updates during training. This helps reduce training instability and improves
data efficiency, as we can now safely train for several epochs on the same data, i.e.,
(s, a, r) samples. PPO offers a simple, yet effective, implementation of this approach
with its clipped surrogate objective. Let ρ(s, a) denote the ratio πnew(a|s)/πold(a|s)
between the probability of executing a at s output by the current policy πnew and
the old policy πold (i.e., the one that was used to collect the training data). Then,
PPO maximizes the following objective LCLIP for training the actor:

LCLIP = Es,a∼ τ

[
min

(
ρ(s, a)A(s, a), clip

(
ρ(s, a), 1− ϵ, 1 + ϵ

)
A(s, a)

)]
(II.6)

42 CHAPTER II. THEORETICAL BACKGROUND

where clip(x, a, b) is a function that clips x to the interval [a, b], and ϵ is a hyperpa-
rameter that controls the maximum allowed magnitude of policy updates. Figure
11 shows the relationship between LCLIP , the policy probability ratio ρ and the
advantage A.

Figure 11: PPO loss diagram. The figure shows how LCLIP (see Equation II.6) changes with
respect to ρ when the advantage A is positive (left) and when it is negative (right). When the
action executed at a particular state is good, i.e., A > 0, LCLIP encourages the increase in action
probability (ρ) up to a certain threshold (1 + ϵ), whereas it discourages any decrease in ρ. When
the executed action is bad, i.e., A < 0, LCLIP encourages the decrease in action probability (ρ) up
to a certain threshold (1− ϵ), whereas it discourages any increase in ρ. Therefore, LCLIP prevents
large policy updates which could make training unstable. Image adapted from [209].

Finally, PPO maximizes the following objective LCLIP+V F+S for simultaneously
training the actor and the critic:

LCLIP+V F+S = Es,a∼ τ

[
LCLIP − c1L

V F + c2S[π](s)

]
(II.7)

where LV F represents the critic loss, measuring the errors made by the critic when
predicting the value function V π(s), S is an entropy bonus that encourages the actor
to learn highly-stochastic policies π, and c1, c2 are coefficients controlling the weight
of the different terms in the LCLIP+V F+S loss.

Part II

Related Work

43

Chapter III

Related Work

This chapter presents a broad overview of existing work in the field of
SDM, thus aligning with the first subgoal (G1) of this dissertation, as described
in Section I.1. It comprises methods with symbolic, subsymbolic and hybrid (e.g.,
neuro-symbolic) knowledge representations, for both solving MDPs and learning
their structure (e.g., the action model). Due to its broad scope, this chapter does
not cover SDPs with continuous state and/or action spaces. Existing techniques are
classified into a novel taxonomy and compared with each other across several dimen-
sions. Additionally, Section III.3 theorizes what properties an ideal method for
SDM should exhibit. Based on these properties, the advantages and disadvantages
of the different approaches for solving MDPs are analyzed. As a result, it is argued
that an ideal method for SDM should integrate the AP and RL paradigms for solving
an MDP, while combining the symbolic and subsymbolic knowledge representations.
Since neuro-symbolic AI is the current approach most closely resembling this ideal
integration, it is concluded that it poses a very promising avenue of research, thus
justifying the relevance and significance of this doctoral dissertation.

This chapter is organized as follows. Sections III.1 and III.2 describe the taxon-
omy of methods for SDM, the first focusing on methods for solving MDPs whereas
the latter focuses on methods for learning the structure of MDPs. Next, Section III.3
discusses the characteristics of an ideal method for SDM, as previously explained.
Lastly, Section III.4 proposes several directions to further advance the field of SDM
via the integration of symbolic and subsymbolic AI.

III.1 Methods to solve MDPs

In this section we present an overview of the main methods to solve MDPs
(see Figure 12). Historically, there have been two competing paradigms. AP [84]
proposes a synthesis-based approach, in which prior information about the MDP is
used to carry out a search and reasoning process in order to find its solution. RL
[224], on the other hand, presents a learning-based approach inspired by ML, where
the agent does not synthesize an MDP solution but rather learns it from data. In
this chapter, we also discuss a novel family of methods that learn to plan [160], thus
combining the AP and RL approaches. In the same manner as AP, these methods
carry out a planning process to find a solution of the MDP. However, unlike them,
they learn how to actually perform the planning computations automatically from
data, similarly to how RL techniques learn the optimal policy also from data. Table

44

CHAPTER III. RELATED WORK 45

Table 1: Comparison among methods to solve MDPs. The first column groups the methods
in Section III.1 according to their knowledge representation: symbolic, subsymbolic or a combi-
nation (hybrid). Solution Representation (Sol.): complete policy (C), partial policy (P) or
plan. Action Model (Model): whether the method uses an action model (✓), learns it from
data (⃝) or does not need it (×). Stochasticity (Stoch.): can the method tackle stochastic
MDPs? Heuristic (Heur.): whether the method leverages prior control knowledge in the form of
a heuristic or not. Generalizability (Gen.): can the policy obtained by the method generalize
to novel states and/or goals? In principle, methods that utilize DNNs learn a policy applicable to
any state s ∈ S (i.e., a complete policy) and can generalize to new states and/or goals not seen
during training, although the generalization capability will depend on the particular algorithm.
Among those which can generalize, methods with a symbolic or hybrid knowledge representation
often do it better.

Methods Sol. Model Stoch. Heur. Gen.

S
u
b
sy
m
b
ol
ic

PI, VI [224] C ✓ ✓ × ×
LAO* [94], LRTDP [26] P ✓ ✓ ✓ ×

MCTS [29] P ✓ ✓ × ×
A* [95] plan ✓ × ✓ ×

DFS [229], BFS [30] plan ✓ × × ×
Q-Learning [244] C × ✓ × ×

Deep Q-Learning [158],
REINFORCE [246], A2C

[157]
C × ✓ × ✓

Dyna [223] C ⃝ ✓ × ×
AlphaZero [217] C ✓ ✓ × ✓

MuZero [207] C ⃝ ✓ × ✓

VIN [228] C × ✓ × ✓

UPN [221] C × × × ✓

MCTSnet [90] C ✓ × × ✓

IBP [187], TreeQN [62],
DRC [89]

C ⃝ ✓ × ✓

S
y
m
b
ol
ic

SPUDD [107] C ✓ ✓ × ×
Symbolic LAO* [64],

SSiPP [234]
P ✓ ✓ ✓ ×

FF-Replan [251] plan ✓ ✓ ✓ ×
FF [108], FD [100] plan ✓ × ✓ ×

Relational Q-Learning [57],
Deep Symbolic Policy [140]

C × ✓ × ✓

H
y
b
ri
d

SDRL [149] C ✓ ✓ × ✓

SORL [120] C ⃝ ✓ × ✓

DRL with Relational
Inductive Biases [255]

C × ✓ × ✓

ASNet [233] C ✓ ✓ ✓ ✓

1 shows an overview of the methods discussed in this section, classified according to

46 CHAPTER III. RELATED WORK

their properties.

Figure 12: Proposed taxonomy of methods to solve MDPs, with section numbers indicated.
Model-free and model-based RL methods with a symbolic or hybrid knowledge representation are
placed in the Relational Reinforcement Learning category.

III.1.1 Automated Planning

AP [84] comprises methods that harness the information about the environment
dynamics, encoded in the planning domain, to synthesize a solution of the MDP.
Some AP techniques, known as Probabilistic Planning (PP) [167], solve the general
class of stochastic MDPs and are used to find a policy that minimizes the expected
cost needed to reach G from si. Conversely, Classical Planning (CP) [84] methods
tackle the specific class of deterministic MDPs with a single initial state si and their
goal is to find a minimal-cost plan from si to G. We group AP methods according
to the type of knowledge representation employed in Subsymbolic/Non-Symbolic
Planning (NSP) and Symbolic Planning (SP). Additionally, in Section III.1.1.3, we
explain how both NSP and SP techniques can exploit available knowledge to solve
the MDP more efficiently.

III.1.1.1 Subsymbolic Planning

We use the name NSP to refer to those AP methods which do not require a sym-
bolic (e.g., FOL-based) description of the MDP. NSP methods only need as action
model a transition function that maps a state-action (s, a) pair into its correspond-
ing next state s′ and do not care about how such a function is implemented. For
this reason, these techniques are very versatile and can be applied to a wide range of

CHAPTER III. RELATED WORK 47

situations where the environment dynamics are known but are not given in a formal,
logic-based description.

Subsymbolic PP algorithms can be grouped according to whether they obtain
complete or partial policies. Two foundational algorithms that find complete policies
are Policy Iteration (PI) and Value Iteration (VI) [224]. PI is a dynamic program-
ming algorithm that involves two steps: policy evaluation, where the value V π(s)
of the current policy π is computed for every state s ∈ S, and policy improvement,
where π is updated by selecting, for each s, the action a that optimizes Qπ(s, a).
These two steps are repeated until π converges to the optimal policy π∗. VI is an-
other dynamic programming algorithm. It directly estimates the value V ∗(s) of π∗

by iteratively updating the current estimate of V ∗(s) using the Bellman Optimality
Equation (see Equation II.1 in previous chapter). Once V ∗(s) is computed, π∗ can be
obtained by simply selecting, for each state s, the action a with best Q∗(s, a). Some
PP methods that obtain partial policies leverage a heuristic (see Section III.1.1.3) to
direct the search. LAO* [94] gradually expands states reachable from si, initializes
their value with a heuristic and backs up this information by running VI or PI on
those states whose value could have changed. LRTDP [26] repeatedly samples tra-
jectories from si using the current policy π, initializes the value of new states with a
heuristic and updates π and the values of states in the trajectories using the Bellman
Optimality Equation. Unlike these methods, MCTS [29] does not require a heuris-
tic. This algorithm gradually builds a search tree from si, estimating state values
from the results of sampled trajectories. MCTS was originally developed for deter-
ministic environments, but it has been extended to manage stochasticity. Finally,
subsymbolic CP methods can also be grouped according to the use of heuristics. A
widely-known CP algorithm that leverages heuristics is A* [95], which can in fact
be viewed as a specialization of LAO* for deterministic MDPs. Other CP methods
like depth-first search (DFS) [229] and breadth-first search (BFS) [30] explore S
without heuristics. DFS does so by exploring as far as possible along the current
trajectory before moving to the next, whereas BFS expands all states with depth n
before exploring those with depth n+ 1.

III.1.1.2 Symbolic Planning

We use the name SP to refer to those methods which, unlike NSP, require a sym-
bolic description of the MDP in a formal language, such as (P)PDDL or RDDL. Sym-
bolic MDP descriptions provide several advantages over subsymbolic ones. Firstly,
languages such as (P)PDDL and RDDL make it possible to specify a wide variety
of MDPs with ease. Secondly, all the planning tasks within a domain can reuse the
same PDDL domain specification, thereby reducing design effort. Thirdly, symbolic
MDP descriptions can be exploited by SP algorithms to speed up planning.

Many symbolic PP algorithms leverage MDP descriptions by using algebraic de-
cision diagrams (ADDs). ADDs represent MDP elements (e.g., values, transitions
and costs) as functions of boolean variables (e.g., FOL atoms), using a special type
of decision tree. They encode the inner MDP structure and group similar states
together (like those that share the same value), which allows for more efficient im-
plementations of the NSP algorithms seen in the previous section. For example,
SPUDD [107] integrates VI with ADDs, whereas Symbolic LAO* [64] does so for
LAO*. Other PP techniques use symbolic descriptions to compute heuristics. FF-
Replan [251] solves the all-outcomes determinization (see Section III.1.1.3) of the

48 CHAPTER III. RELATED WORK

MDP with the classical planner FastForward (FF) [108]. Then, it executes the plan
on the original, stochastic MDP until it fails, at which point FF is called again.
SSiPP [234] works by successively decomposing the MDP into subproblems and
solving them. For each subproblem, it computes a policy that can be executed
for at least t time steps before a new policy is needed. Finally, much effort has
been devoted to developing planners for the symbolic CP case, such as FF and
FastDownward (FD) [100], which mainly differ in the search algorithms and heuris-
tics employed. New classical and probabilistic planners are periodically compared
with each other in the International Planning Competitions [236], which evaluate
planners on a set of benchmark (P)PDDL/RDDL domains.

III.1.1.3 Control knowledge

The term control knowledge refers to all the information used to guide the search
and reasoning process of AP algorithms, in order to solve planning tasks as efficiently
as possible. This knowledge often comes in the form of planning heuristics, used to
estimate the expected cost from a state s to the goal G.

Most SP techniques exploit symbolic MDP descriptions to compute powerful
domain-independent heuristics. A popular technique for doing so is called delete-
relaxation [128], in which the heuristic estimate is computed in a simplified version
of the planning task where the delete effects of actions are ignored. There exist
a wide variety of symbolic, domain-independent heuristics for CP, both admissible
and inadmissible. Notable admissible heuristics include hLMcut [102], hmax [25] and
h+ [19], whereas hFF [108], hadd [25] and hGC [68] are prominent examples of inad-
missible heuristics. Probabilistic planners often leverage heuristics by obtaining a
deterministic version (determinization) of the MDP being solved and computing a
CP heuristic on it, which is then used as a heuristic for the original, stochastic MDP.
The most widely employed one is known as the all-outcome determinization [251].
Given a stochastic MDP M , it obtains a deterministic version M ′ of M which con-
tains a separate deterministic action for each probabilistic effect of every action in
M . Alternatively, some methods utilize domain-specific heuristics to solve problems
from a particular planning domain in a very efficient manner. For instance, the L1
norm or Manhattan distance provides a simple heuristic which has been successfully
applied to many pathfinding problems [33].

In some situations, domain-independent heuristics may be unfeasible to compute
(e.g., when a symbolic MDP description is not provided) and we may also lack the
prior knowledge needed to derive a domain-specific heuristic. In order to address
these cases, heuristics can be learned from example trajectories thanks to the use
of ML. Example methods include linear regression [250], regression trees and sup-
port vector machines [235]. Neuro-symbolic approaches have also been applied to
heuristic learning. [212] utilizes Graph Neural Networks [12] to predict the heuristic
value from the delete-relaxation representation of the problem, whereas [79] leverages
domain-independent heuristics to efficiently learn domain-specific heuristics with a
Neural Logic Machine [53] trained using DRL. A more comprehensive analysis of
methods for learning control knowledge can be found in [117].

CHAPTER III. RELATED WORK 49

III.1.2 Reinforcement Learning

RL [224] is a subfield of ML that provides an alternative approach to AP for
solving MDPs. Instead of employing an action model to synthesize a solution of
the MDP, RL techniques use the data gathered from the environment to learn the
optimal policy that maximizes the expected return. We group RL techniques in
model-free methods, i.e., those which do not require a prior action model in order
to learn the optimal policy, and model-based methods, i.e., those that leverage an
existing action model to facilitate the learning process. The vast majority of RL
methods, both model-free and model-based, represent their knowledge in a subsym-
bolic manner (e.g., as the weights of a DNN). Therefore, we distinguish a third group
of methods, regardless of whether they use an action model or not, which utilize a
symbolic knowledge representation, known as Relational RL (RRL).

III.1.2.1 Model-free RL

Model-free RL provides methods to learn the optimal policy when the model
of the world, i.e., the action model, is unknown. These methods can be further
grouped in (model-free) value-based and policy-based RL. Value-based techniques
learn the optimal state values V ∗(s) or Q-values Q∗(s, a), which are then used to
obtain the optimal policy π∗. A classical algorithm for value-based RL is Q-Learning
[244], which can be seen as an adaptation of the Value Iteration algorithm to the
model-free setting where the environment dynamics are unknown. It leverages the
Bellman Optimality Equation to estimate the Q∗(s, a) values from the rewards and
state transitions observed when executing actions in the environment. These Q-
values are stored in a table for every possible combination of states and actions,
which results infeasible for MDPs with large state spaces. Deep Q-Learning [158]
solves this problem by using a DNN to approximate the Q-values. Since this DNN is
capable of generalizing to new states, it does not need to memorize the Q(s, a) value
for every (s, a) pair, thus making it possible to apply this algorithm to real-world
problems with large state spaces. A more exhaustive description of both Q-Learning
and Deep Q-Learning can be found in Section II.4.1.

In contrast to value-based methods, policy-based RL explicitly learns π∗ without
first needing to estimate V ∗(s) or Q∗(s, a). One of the most well-known algorithms
in this category is REINFORCE [246]. REINFORCE is a policy gradient algorithm
that utilizes a DNN to approximate the policy, i.e., given an input state s it re-
turns a probability distribution π(a|s) over the actions a ∈ App(s). This DNN is
then trained using gradient-based methods to maximize the probability of selecting
actions with a large Qπ(s, a) associated, where Qπ(s, a) is often estimated as the
(possibly discounted) sum of rewards obtained by first executing a at s and then
following π until the end of the episode. One main issue of REINFORCE is that
Qπ(s, a) is not always a good measure of action optimality, since this measure does
not only depend on the action a but, also, on the state s it is executed. Advantage
Actor Critic (A2C) [157] addresses this issue by substituting Qπ(s, a) for the advan-
tage Aπ(s, a) = Qπ(s, a)− V π(s), which measures how good a is when compared to
the average action at s. As an actor-critic method, A2C trains a separate DNN for
the actor and the critic. The critic learns to predict the value V π(s) of a given state,
which is then used to calculate Aπ(s, a). The actor learns π∗ by using the same
method as REINFORCE. However, it utilizes the advantage Aπ(s, a) obtained from

50 CHAPTER III. RELATED WORK

the critic to measure action optimality, instead of Qπ(s, a) (see Equation II.5). Thus,
A2C entails a hybrid approach that integrates both value-based and policy-based
RL. In addition to A2C, several improvements over REINFORCE have been pro-
posed over the years. One notable example is Proximal Policy Optimization (PPO)
[209], described in Section II.4.2. Finally, a deeper view into classical RL and DRL
methods can be found in [224, 143, 211].

III.1.2.2 Model-based RL

Model-based RL tries to combine the fields of RL and AP. It enhances standard,
model-free RL algorithms with a model of the world, which can be employed in two
main ways. The first alternative is to use the action model as a simulator to obtain
data for training the policy, thus minimizing the required amount of interaction
with the real world. For this reason, model-based RL techniques are more sample-
efficient, i.e., need less data to learn the optimal policy, than model-free methods
[122]. A second alternative is to integrate a deliberative process into the decision-
making cycle of RL. Instead of simply selecting the best action according to the
policy, we can use the action model to carry out a planning process, guided by the
learned policy/value function, in order to select the next action to execute. This
approach blurs the line between model-based RL and AP with a learned heuristic.
Finally, we can differentiate between model-based RL methods which require the
action model to be given a priori and those which do not. This second category of
methods use the data collected from the environment to learn the action model in
addition to a policy, employing some of the techniques commented in Section III.2.1.

Figure 13: Model-free vs model-based RL. Adapted from [160] with permission by the authors.
The figure compares the architectures of a model-free RL algorithm, Deep Q-Learning, and two
model-based RL methods, Dyna and AlphaZero. Thick lines and colored elements are used by
the algorithm, whereas grayed out elements and dotted lines are not, and are displayed just for
comparative purposes. Deep Q-Learning learns a (state) value function from data, which is then
used to select the action to execute with no planning whatsoever. On the other hand, Dyna utilizes
data to learn both a value function and action model. This model is used to obtain extra data to
train the value function, which ultimately decides the action to execute. AlphaZero utilizes data
to train both a value function and a policy. These are used to guide a planning process over an
action model provided in advance, in order to decide the next action to execute.

We will use Dyna [223] and AlphaZero [217] as illustrative examples of the differ-
ent existing model-based RL algorithms. One of the oldest examples of model-based

CHAPTER III. RELATED WORK 51

RL can be found in Dyna. This method learns a subsymbolic, black-box model of
the world. Then, it trains the Q-Learning algorithm on both experience obtained
from the real world and data sampled using the learned action model. Dyna per-
forms reactive execution, i.e., the action to execute is selected according to the value
function trained with Q-Learning, with no planning involved whatsoever. AlphaZero
is a novel model-based RL method which has been successfully applied to play the
games of chess, shogi and Go at superhuman level. Unlike Dyna, it requires a prior
model of the world, although a newer version of this method known as MuZero [207]
overcomes this limitation. AlphaZero trains both a value function and a policy,
implemented as a single CNN (see Section II.3.1), which together guide the plan-
ning process performed by the MCTS algorithm. This planning process outputs a
probability distribution from which the action to execute is sampled. The value
function is trained to predict the game winner from the current state whereas the
policy is trained to match the probabilities obtained by MCTS. Thus, in AlphaZero
there exists a clear synergy between RL and AP: RL is used as a heuristic to guide
the planning process, which in return makes it possible to obtain data to train the
RL policy, acting as a policy improvement operator. A comparison between Deep Q-
Learning, Dyna and AlphaZero is shown in Figure 13. Finally, a more comprehensive
review of model-based RL is provided in [160, 191].

III.1.2.3 Relational RL

Relational Reinforcement Learning (RRL) [227] can be considered the intersec-
tion of RL and Relational Learning [83]. It is comprised of methods that combine
RL with the symbolic representations employed in SP. These symbolic representa-
tions are well suited for MDPs that can be naturally described in terms of objects
and their interactions, known as object-oriented MDPs [52]. RRL methods often
leverage lifted representations, i.e., symbolic representations with variables, to ab-
stract from concrete objects and, thus, naturally generalize to tasks with varying
number of objects. In addition, the knowledge learned by RRL techniques is more
amenable to interpretation than the one typically learned in DRL. One of the best
known RRL algorithms is relational Q-Learning [57]. This method utilizes a sym-
bolic knowledge representation for the goal-conditioned Q-values Q∗(s, a, g), which
generalize Q-values Q∗(s, a) to different goals g. This function is learned with a
relational regression tree [137] which, given the current state s, goal g to achieve
and action a to execute, predicts the associated Q-value Q∗(s, a, g) (see Figure 14).

In recent years, there has been a renewed interest in RRL. [149] proposes a
model-based, symbolic DRL framework which integrates SP with hierarchical DRL.
It leverages a symbolic action model containing a high-level description of the envi-
ronment dynamics to compute plans composed of subtasks to achieve. Then, DRL
is used to learn a low-level policy for each subtask. In [120], the previous neuro-
symbolic framework is augmented with the ability to learn the symbolic action model
from trajectories. To do so, a function that maps subsymbolic, low-level states to
symbolic, high-level states is required. [140] utilizes a recurrent neural network to
generate symbolic policies represented as concise mathematical expressions. Gener-
ated policies are then evaluated on the environment, and the obtained rewards are
used to train the policy generator with RL itself. On the other hand, [255] proposes
a Deep RRL algorithm that departs from the classical RRL definition, since it does
not actually use a symbolic representation. Instead, the scene objects are detected

52 CHAPTER III. RELATED WORK

Figure 14: Regression tree learned with relational Q-Learning (adapted from [57]). The
example corresponds to the blocksworld domain (see Figure 5). The tree encodes the Q∗(s, a, g)
value for the goal g = on(A,B) and action a = stack(D,E). Inner nodes (orange) check the truth
value of a grounded predicate of the state s, whereas leaf nodes (blue) return the corresponding
Q-value.

with a CNN and a deep attention-based model [238] is used to reason about their in-
teractions. The authors show their approach improves the efficiency, generalization
and interpretability of conventional DRL. More information about RRL techniques
can be found in [227, 254, 3].

III.1.3 Learn to plan

As we have previously explained, many MDP-solving techniques use an action
model, which can be either known or learned from data. This model of the world
can be used in several ways. The first option is to plan over it. We can use a
symbolic planner, e.g., FF, or an NSP procedure, e.g., MCTS, depending on the
type of knowledge representation used by the model, in order to simulate different
courses of action and find the best one. The second option is to leverage the action
model to obtain data for training model-based RL methods. In addition to these
two options, there exists a third alternative which has not been discussed yet: to
learn to plan [160]. This idea combines the RL and AP approaches and it is inspired
by the novel area of algorithmic reasoning [31], which studies how to teach DNNs
to compute algorithms. In the case of SDM, instead of considering the planning
procedure as an external process, we can integrate it into the computational graph
of our DNN, i.e., the graph containing the sequence of operations performed by
the model to transform the inputs into outputs. There exist three main ways to
embed the planning procedure into a DNN. Firstly, we can learn an action model
that is compatible with a planning algorithm chosen a priori. Secondly, given an
action model, we can learn how to perform the actual planning computations on it.
Finally, we can jointly learn the action model and planning algorithm at the same
time. These different approaches are compared in Figure 15.

CHAPTER III. RELATED WORK 53

Figure 15: Learning to plan approaches. Green arrows represent the action model which
determines the transitions between states (we assume determinism for simplicity purposes). Yellow
items represent the different aspects of a planning algorithm, which mainly comprises 1) expanding
some state (s4 in the image example), 2) executing one or more actions (a1, a2 in the example),
3) evaluating the resulting states (s5, s6) and 4) propagating this new information to the other
states (yellow dashed lines). Some methods only learn the action model (green items) for a given
planning algorithm [228, 221], other techniques only learn the planning computations (yellow items)
[90, 187, 233] and, finally, some learn both [62, 89].

III.1.3.1 Fix the planning algorithm and learn the action model

Some methods choose a planning algorithm a priori and embed it into the com-
putational graph of the decision-making model. If the planning procedure is dif-
ferentiable, meaning the gradient of the learned policy/value function can be back-
propagated through the planning operations, it is possible to learn an action model
compatible with it by using gradient-based optimization techniques. The action
model is trained to output the optimal policy or value function as a result of the
iterative computations performed by the chosen planning algorithm. Therefore, the
action model learns a representation of the dynamics tailored to the task at hand
and planning algorithm employed, as opposed to most action models which represent
the environment dynamics in a general, task-independent way. This special type of
action models belong to the family of value-equivalent action models (see Section
III.2.1.2).

Value Iteration Networks (VINs) [228] are a good example of this. The authors
of this work propose a differentiable implementation of the classical Value Iteration
algorithm using recurrent CNNs. This planning procedure is then embedded into a
DNN architecture which can be trained end-to-end to predict the optimal policy by
using standard RL and Supervised Learning, i.e., ML methods which are trained on
labeled samples corresponding to (input, output) pairs. The obtained model gener-
alizes better than reactive policies, i.e., those that do not perform planning, when
applied to new problems of the same domain. Universal Planning Networks (UPNs)
[221] follow a similar approach. This work proposes a DNN architecture which learns
a policy for a continuous task. The architecture integrates a differentiable planning
module, which performs planning by gradient descent, and is trained end-to-end

54 CHAPTER III. RELATED WORK

with Supervised Learning to predict the optimal policy. The resulting action model
exhibits a state representation suitable for gradient descent planning, which can be
adapted to other tasks.

These methods are similar to those discussed in Section III.2.1.2 like MuZero,
since they also learn a value-equivalent action model that is suitable for planning.
The difference between both types of methods is how the planning process is imple-
mented. In MuZero, planning is performed explicitly, outside the computational
graph. It learns a state representation useful for predicting the rewards, value
function and policy for any given state. In VINs and UPNs, however, planning
is performed implicitly, as a differentiable process embedded into the computational
graph to predict the optimal policy. Thus, they may learn a slightly different state
representation to that employed by MuZero and other models where planning is
performed as a separate process.

III.1.3.2 Fix the action model and learn the planning algorithm

Other methods follow the opposite approach. Given an action model, which can
be either known a priori or learned as a first step, they learn how to plan over it
in order to solve the corresponding SDM task. The planning algorithm obtained
will be able to harness the information contained in the action model to predict the
optimal policy or value function. The existing methods in the literature provide
different amounts of freedom to the planning algorithm, by controlling which parts
of it are fixed a priori and which ones must be learned.

[90] proposes MCTSnet, a DNN architecture that embeds the MCTS algorithm
into its computational graph. This model learns how to perform the different MCTS
operations (selection, expansion, simulation and backpropagation) in order to play
the Sokoban game. Other works give even more freedom to the planning process.
[187] proposes Imagination-Based Planner (IBP), a DNN architecture capable of
constructing, evaluating and executing plans. It learns when to plan, which states
to expand and when to stop planning. Both MCTSnet and IBP utilize a subsym-
bolic representation for their learned knowledge. Instead, [233] proposes Action
Schema Networks (ASNets), a neuro-symbolic model for learning to plan. ASNets
correspond to DNNs specialized to the structure of planning problems. They are
composed of alternating action and proposition layers, with the specific network
topology given by the associated planning domain and problem to solve, and a final
layer which outputs the policy. Policies learned by ASNets are shown to generalize
to different problems of the same domain.

III.1.3.3 Learn both the action model and planning algorithm

Lastly, some methods combine the two previous approaches. They embed a dif-
ferentiable action model and differentiable planning procedure into the same com-
putational graph, and then jointly optimize both parts to solve a particular SDM
task. Although this idea represents the most end-to-end approach for learning to
plan, the resulting model is hard to optimize, due to its great complexity and the
interdependence between the action model and planning algorithm, as the quality
of one depends on the quality of the other and vice versa.

In [62], RL is used to jointly learn an action model and how to plan over it.
The proposed method, called TreeQN, employs the learned model to try all possible

CHAPTER III. RELATED WORK 55

action sequences up to a predefined depth, learning to predict the state values and
rewards along the simulated trajectories. These values are then backed up the search
tree to estimate the Q-values at the current state. [89] proposes the Deep Repeated
ConvLSTM (DRC) model, a powerful DNN architecture capable of learning to plan
even though it incorporates no inductive bias for that purpose beyond its iterative
nature. The model is composed of stacked ConvLSTM [216] blocks which are re-
peatedly unrolled to predict the policy and value function. The authors show that
DRC exhibits characteristics of planning, such as an increase in performance when
given additional thinking time.

III.2 Methods to learn the structure of MDPs

Every MDP has a different underlying structure. Its most important features are
encoded in the action model, which describes the environment dynamics and how
the agent can affect them, being required by many of the MDP-solving methods seen
in the previous section, such as AP and model-based RL. Additionally, there exist
specific aspects of the MDP structure, e.g., landmarks [109] and state invariants [71],
which if known can facilitate its resolution and provide insight into the properties
of the MDP. Moreover, some learning methods [212, 10, 110] require training data
in the form of problem instances and example trajectories, which often need to be
provided by domain experts. In this section, we discuss the main methods (see
Figure 16) for learning these different aspects of the MDP structure.

Figure 16: Proposed taxonomy of methods to learn the structure of MDPs, with section
numbers indicated.

III.2.1 Action model learning

The action model, which also receives the names of planning domain and world
model, represents the most important aspects of the MDP structure. It encodes the
dynamics of the environment and how the agent can affect them, i.e., the available
actions for the agent and the effect each action has on the world state. The action
model is essential for AP techniques, which need it to carry out their deliberative
process. It is also advantageous for RL as it has been shown that those techniques

56 CHAPTER III. RELATED WORK

which use an action model, i.e., model-based RL, are more sample-efficient than
those which do not, i.e., model-free RL [122]. Here, we discuss methods for auto-
matically learning the action model from data. These techniques can be categorized
according to the scope of the learned model in methods which learn task-general
action models and those which learn task-specific action models.

III.2.1.1 Task-general action models

These methods try to learn a general model that represents the dynamics of the
environment as accurately as possible and which can, in theory, be applied to solve
any task of the corresponding domain. These techniques can be further grouped
according to the type of knowledge representation employed by the learned model
(see Figure 17).

Figure 17: Comparison between methods to learn task-general action models. Methods
are grouped according to their knowledge representation (Y axis) and the type of MDPs they can be
applied to (X axis): deterministic MDPs (Det. FO), stochastic MDPs (Stoch. FO), deterministic
POMDPs (Det. PO) and stochastic POMDPs (Stoch. PO). Methods for learning (stochastic)
POMDPs are the most general, as they can be applied to every other MDP category. Methods
that use a symbolic or hybrid representation for their learned action model tend to generalize
better to states not seen during training. Finally, we note that all the hybrid methods presented
in this section tackle the deterministic fully observable case. These works focus on improving the
properties (e.g., data-efficiency, interpretability and generalizability) of subsymbolic methods via
their proposed hybrid representation, leaving more complex settings (e.g., stochastic and PO) for
future work.

Task-general models with subsymbolic knowledge representation. These
models represent the environment dynamics in a subsymbolic way, often as a black-
box which receives as inputs a state s of the world and an action a to execute, and
outputs the next state s′. They are usually trained with ML and DL techniques,
e.g., linear regression [226], random forests [104] and DNNs [240], in a supervised
manner on samples of the form (s, a, s′) collected from the environment.

For an effective learning of subsymbolic action models, some aspects which con-
tribute to the uncertainty of the model must be considered. Firstly, we need to take
into account the estimation errors which occur when the model is applied to regions
of the state-space not seen during training. Most works, such as PILCO [48], ad-
dress this problem by estimating the uncertainty in the model predictions. Secondly,
most environments are non-deterministic, so the learned action model must reflect
this stochasticity in some way. Two possible solutions are to approximate the entire
next state distribution [129] and to learn a generative model from which we can
draw samples [50]. Thirdly, some environments exhibit partial observability, i.e.,

CHAPTER III. RELATED WORK 57

they are POMDPs. Action models for POMDPs need to incorporate information
about previous states using methods such as belief states [41] or recurrent neural
networks [39]. Finally, in order to perform a multi-step look-ahead, the predicted
next state s′ must be repeatedly fed into the model as input. To prevent prediction
errors from accumulating, some works use multi-step prediction losses for training
[1] whereas others learn different models for each n-step prediction [8]. A deeper
view into subsymbolic action models can be found in [160, 191].

Task-general models with symbolic knowledge representation. These mo-
dels encode the environment dynamics in a symbolic manner, in terms of a set of
objects and their relations, using an interpretable, formal language often based on
FOL. In CP, the most popular language is PDDL, whereas PPDDL and RDDL are
the languages used for describing stochastic MDPs. Further details on symbolic
action model representations can be found in Section II.2.1.

Methods for learning symbolic action models usually receive as input a set of tra-
jectories (s0, a0, s1, ..., an−1, sn), obtained by solving planning problems of the corre-
sponding domain. Then, they try to find the planning domain, i.e., the preconditions
and effects of each action in the domain, which best fits the given trajectories. The
simplest scenario corresponds to learning planning domains for totally-observable,
deterministic environments. This is a well-studied problem which has been solved
in numerous ways [213, 243, 241]. Action preconditions are inferred by analysing
the predicates which appear at the states preceding an action whereas action effects
are learned by comparing the predicates of the states before and after applying the
action, in what is known as the delta-state. Other works learn planning domains
for environments with uncertainty, which can come in the form of non-deterministic
actions or partial observability of states (POMDPs). [184, 188, 118] tackle the case
of non-determinism whereas [248, 257, 163] do the same for partially observable en-
vironments. [210] also tackles partially observable environments but is able to learn
more expressive domains than the previous methods, with numerical variables and
relations. The hardest case corresponds to learning action models for environments
which present both non-determinism and partial observability. This problem has
been poorly studied, with just one preliminary work trying to address it [249]. Fi-
nally, we can classify the existing methods according to the type of algorithm used
to learn the planning domain, e.g., RL [201], Supervised Learning [163], inductive
rule learning [210], MAX-SAT [248] and transfer learning [257]. A more thorough
analysis of symbolic action models can be found in [117, 6].

Task-general models with hybrid knowledge representation. Several works
use a hybrid knowledge representation for the action model, one that sits between the
black-box representation usually employed by subsymbolic methods and the logic-
based representation of symbolic methods. They encode the action model in terms
of objects and their relations, which results in better interpretability and generaliza-
tion to novel situations (e.g., different number of objects) than purely subsymbolic
models. [13] learns a physics simulator which receives as input a graph encoding a
set of objects and interactions to consider, and applies a DNN to predict the new
states of the objects. [35] also learns a physics simulator but implements it as an
encoder-decoder architecture, where the encoder summarizes each pair-wise inter-
action of an object with its neighbours and the decoder predicts the future state of
the object. [124] learns a set of abstract schemas which encode local cause-effect
relationships between objects; these schemas are instantiated with the objects at

58 CHAPTER III. RELATED WORK

the scene to form the schema network, a probabilistic model used to predict the
reward obtained by executing a given sequence of actions. [132] uses a CNN to
extract objects from images, obtains an embedding for each object with an encoder
and predicts the interactions between objects with a Graph Neural Network (see
Figure 18). Lastly, [9] proposes Latplan, a neuro-symbolic method which uses Vari-
ational Autoencoders [130] to learn a planning domain from image pairs describing
environment transitions. The learned domain is represented as grounded PDDL,
i.e., as a PDDL model with only constants and no variables, thus corresponding to
propositional logic instead of FOL.

Figure 18: Action model with a hybrid knowledge representation. Reproduced with per-
mission by the authors of [132]. Firstly, the object extractor (a CNN) receives an image represen-
tation of the current state st and outputs a set of object masks mt, used to extract the objects
in st (each one associated with a different color in the image). Secondly, the object encoder (a
multilayer perceptron or MLP) receives mt and returns a set of abstract object states zt. Thirdly,
the transition model (a Graph Neural Network) receives zt and the action to apply to each object
as inputs, and predicts the resulting abstract state zt + ∆zt. This prediction is then compared
with the ground truth zt+1, in order to train the model. © Thomas Kipf

III.2.1.2 Task-specific action models

Unlike the techniques previously discussed, these methods learn a model specifi-
cally tailored for a task or set of tasks, i.e., a task-specific action model. This model
represents the dynamics of the environment and, additionally, encodes task-related
knowledge which is useful for solving the corresponding tasks. Techniques for learn-
ing task-specific action models can be further categorized according to how they
integrate this extra knowledge inside the action model (see Figure 19).
Value-equivalent action models. The dynamics of complex environments are
very difficult to model accurately (as task-general action models try to do), since
states are composed of a large number of interrelated elements. However, in most
cases only a subset of these state features are actually relevant for the task at
hand. Value-equivalent models [87] are a type of subsymbolic action models which,
instead of being trained to predict the next state as accurately as possible, learn
a state representation useful for predicting the value, i.e., reward, of future states.
Thanks to this, they learn to only focus on task-relevant state features and abstract
away those aspects of the environment not useful to solve the task. One of the
most successful implementations of this idea can be found in MuZero [207]. This
work extends the AlphaZero [217] algorithm to the scenario where no action model
is provided a priori. MuZero learns a value-equivalent action model which is used
by the MCTS planning procedure to predict the value of future states and select
the best action. MuZero achieved state-of-the-art results on the Atari video game
environment and matched the performance of AlphaZero on Go, chess and shogi.

CHAPTER III. RELATED WORK 59

Figure 19: Comparison among methods to learn task-specific action models . Methods
are grouped according to how they integrate task-specific knowledge into the action model. Value-
equivalent models: in the image example, the current state st is encoded into a task-specific
latent representation xt, which is then unrolled with action at to predict the next latent state xt+1,
reward rt and value V (xt+1). Temporally-extended actions: in the image example, applying
the temporally-extended action ot to st is equivalent to executing the sequence of primitive actions
at, at+1. Goals: in the image example, the sequence of goals g1, g2, g3 guides the low-level policy
(first from si to sg1 , then from sg1 to sg2 and, finally, to sg3 = sg). Dotted arrows abstract several
state transitions. Hierarchical decomposition methods: in the image example, the high-level
task T is decomposed into three subtasks (each represented by a different shape): t1, t2 and t3.

Value Prediction Networks [185] follow a similar approach, training an action model
to predict future rewards and values, which is then used by a search algorithm. In a
similar fashion, the Predictron [218] learns an action model which can be repeatedly
rolled forward to predict the value of the state received as input.

Hierarchical action models. These models distribute knowledge across multi-
ple levels of hierarchy or abstraction. The bottom level represents the environment
dynamics in a general, task-independent way akin to task-general action models.
Then, one or more higher levels encode specific, task-dependent knowledge which
facilitates the resolution of the corresponding task(s). The main methods for repre-
senting hierarchical knowledge are temporally-extended actions [225], goals [4] and
hierarchical decomposition methods [81].

Temporally-extended actions [225], also known as macroactions [136] and op-
tions [225], are a type of abstract, high-level actions whose execution extends across
several time steps, as opposed to primitive, low-level actions which are applied in
just one step. A set of options defined over an MDP constitutes a semi-Markov
Decision Process [225], a special type of MDP where actions take variable amounts
of time to finish. Options consist of three components: a policy, an initiation set
and a termination condition. In order to start executing an option, the current state
must belong to the initiation set. Once started, the agent selects actions according
to the option policy until the termination condition is met. Options make it possible
to group actions which are often executed together. In AP, this translates into a
reduction in the depth of the search tree [117] whereas, in RL, options facilitate
exploration and value propagation, which in turn speeds up learning [156]. Nev-
ertheless, options also increase the number of alternatives to choose from at each
state. For this reason, it is important to carefully consider how many options to
use. Options have been successfully learned and applied to both the field of AP

60 CHAPTER III. RELATED WORK

[68, 27, 43] and RL [222, 150, 134].

Goal Reasoning [4] provides a design philosophy for agents whose behaviour
revolves around goals. It makes it possible to design agents which not only learn
how to obtain a particular goal, but also reason about what should be the goal to
achieve in the first place. This is especially important for dynamic environments
where unexpected events (discrepancies) may require a change in the goals to pursue.
Goal-Driven Autonomy [162] provides a general framework for goal-reasoning agents
that detect discrepancies, generate possible explanations for them, formulate new
goals and manage (prioritize) the pending goals. [245] proposes an agent which
learns to formulate goals using expert demonstrations for the StarCraft game. [192]
learns to predict future goals based on current and past states and performs an
anticipatory planning process which considers both current and future goals. In
[179], we propose a neuro-symbolic method which combines DRL with SP to select
and achieve goals in order to reduce planning times. Finally, in RL goals have also
been utilized as a method to improve exploration [70, 141]. These methods learn
a goal space from which goals are sampled in order to direct exploration towards
interesting regions of the state space.

Hierarchical decomposition methods make it possible to split a complex problem
into a series of subproblems which are simpler to solve, in order to reduce compu-
tational effort. The most common way to perform this decomposition is provided
by Hierarchical Task Networks (HTN) [81]. HTN domains contain a set of tasks,
which can be grouped in either primitive or compound. Primitive tasks correspond
to actions that can be directly executed in the environment, in a similar fashion to
PDDL actions. Conversely, compound tasks cannot be directly executed and need
to be decomposed into a series of primitive or compound tasks. Every compound
task has associated one or more decomposition methods, representing different ways
to achieve the same task. Each decomposition method has some preconditions which
must be true in order to be applied and defines a sequence of subtasks the original
task can be decomposed into. HTN planners receive as inputs an HTN domain and
a compound task to achieve, known as the goal task. Then, they find a valid decom-
position of the goal task as a sequence of primitive tasks by repeatedly applying the
decomposition methods available. There exist a wide variety of HTN planners such
as NOAH [200], Nonlin [230], SHOP2 [168] and SIADEX [32]. One issue of HTN
planning is the substantial time investment needed to encode HTN domains. To
alleviate this burden, several methods have been developed to automatically learn
HTN domains from data [110, 170, 37]. This learning data is comprised of a set of
trajectories obtained from experts and, often, some additional information such as
annotated tasks or partial method definitions.

III.2.2 Domain exploitation

The structure of an MDP is completely determined by a planning domain and
problem tuple. Some aspects of this structure are explicitly encoded in these ele-
ments, e.g., the environment dynamics and available actions are described in the
planning domain. However, other properties of the MDP, such as state invariants
and landmarks, do not appear in these descriptions. Throughout the years, many
techniques have tried to learn this additional structural information with differ-
ent purposes, such as facilitating the resolution of the MDP or generating data for

CHAPTER III. RELATED WORK 61

training some of the methods discussed in Section III.1. Unlike methods for learning
action models, this field lacks a proper structure. Thus, we propose to group these
techniques under the name domain exploitation. In addition, we further categorize
them in methods that learn information about the entire domain and those which
only learn information about a specific problem or task.

III.2.2.1 Task-general domain exploitation

These methods learn information about the entire domain and do not focus on
any particular task. We discuss four different approaches: state invariants, state
space clustering, planning problem generation and scenario planning (see Figure
20).

Figure 20: Comparison among task-general domain exploitation methods. State in-
variants: the figure shows an example exactly-1 invariant where, at each state (blue node), the
yellow block is on top of exactly one other block. State space clustering: the figure shows
an example state clustering method which groups together states that are densely connected (red
and green circles in the image). Planning problem generation: these methods generate a set
of planning problems pertaining to some particular domain. Scenario planning: in the image
example, a company (represented by a blue building) wants to foresee possible future scenarios,
both good (green circle) and bad (red circle), to select the best course of action.

State invariants. These are properties which hold true for every valid, i.e., reach-
able, state of the MDP. The most widely-known invariant type corresponds to mutex
constraints [21], which declare that several state properties are mutually exclusive,
i.e., cannot be true at the same time. For example, in the blocksworld domain, a
block X1 can never be on top of more than one other block at the same time, i.e.,
the set of atoms {on(X1, X2), ..., on(X1, Xn)} are pair-wise mutually exclusive for
all n blocks at the state. Another invariant is given by the exactly-n constraint
which, given a set P = {p1, p2, ..., pm} of properties, states that exactly n proper-
ties from P must be true in every MDP state. For example, at each blocksworld
state s, the arm must either be holding one block Xi (i.e., holding(Xi) ∈ s) or be
empty (i.e., handempty() ∈ s). This corresponds to an exactly-1 invariant where
P = {holding(X1), ..., holding(Xn), handempty()}. There exist many methods for
automatically extracting state invariants given a symbolic (e.g., PDDL) domain de-
scription. Most methods [101, 82, 196] extract invariants via inductive reasoning:
they prove that, if a given invariant is true at some state s, it will remain true at
all successor states s′ of s (i.e., those obtained by executing an applicable action at
s). Some methods follow a different approach. For instance, TIM [71] models the
behavior of objects in the domain using finite state machines. It forms classes of
objects with shared behavior, from which state invariants are inferred. Finally, state

62 CHAPTER III. RELATED WORK

invariants have many applications in SP. For example, the FD planner [100] needs
to extract mutex constraints in order to translate the planning task from PDDL
to a different encoding in terms of multi-valued variables, whereas the STAN [146]
planner leverages the state invariants extracted by TIM in order to enhance system
performance.

State space clustering. Some methods apply clustering techniques to the state
space of the MDP. They group states together according to a notion of similarity or
distance between states, which must be properly defined in order to obtain clusters
with the desired qualities. This definition can incorporate information about the task
at hand or be completely task-agnostic. Thus, some state space clustering techniques
are task-general and obtain a clustering for the entire domain while others are task-
specific and focus on obtaining a clustering suitable for a concrete task. Additionally,
several methods require a symbolic description of the MDP whereas others do not
impose this restriction. [219] proposes a RL algorithm that groups together states
s with similar value V ∗(s) using a form of soft aggregation, where a state belongs
to each cluster with a certain probability. The RL agent learns a value function at
the cluster level, and calculates the value of a given state as the weighted sum of
the values of the clusters it belongs to. [67] partitions the MDP state space into a
smaller number of abstract states or clusters and uses the resulting abstract MDP
to compute the optimal policy in a more efficient manner. The used clustering
algorithm groups together states that are connected and have similar value. In SP,
the most popular approach for state clustering selects a subset P of state variables
(e.g., atoms), called a pattern, and assigns any two MDP states si, sj to the same
abstract state (i.e., cluster) if they share the same value for all variables in P . The
clustering obtained is then often leveraged to calculate a planning heuristic, known
as a pattern database heuristic, based on distances computed over the abstract state
space induced by the pattern P [58, 59, 197].

Planning problem generation. Given a planning domain, we may be interested
in obtaining a set of planning problems pertaining to that particular domain. Among
other applications, they can be used as training data for methods that apply ML to
SP (e.g., [212, 10]) and as benchmarks to compare planning performance, as done
in the International Planning Competitions. In most situations, these problems
need to be created by hand or produced by hard-coded, domain-specific problem
generators, which requires great effort from the human designers. Nonetheless, there
exist several methods for automatically generating planning problems. [65] generates
problems through random walks. It randomly generates an initial state si and
executes n random actions to arrive at another state sn. Then, it selects a subset
of the atoms of sn, which constitutes the goal g, and returns the corresponding
planning problem (si, g). Problems generated with this method are always solvable
but they may be inconsistent, i.e., the initial state si generated may correspond to
an impossible situation of the world (e.g., in blocksworld, a state where a block is
simultaneously on top of two blocks). [75] also employs a random walk approach
but is able to generate problems that are valid, i.e., both solvable and consistent. To
achieve this, it receives as inputs the domain description along with some additional
information that determines the characteristics of the problems generated, in order
to preserve consistency. [232] proposes Autoscale, a method that leverages domain-
specific generators in order to obtain problems that are valid, diverse and of graded
difficulty, for their use in planning competitions. In [181], we propose NeSIG, a

CHAPTER III. RELATED WORK 63

neuro-symbolic method that uses DRL to learn to generate problems for a given
PDDL domain, so that they are valid, diverse and difficult to solve. Lastly, [126]
generates complete planning tasks (i.e., domain-problem pairs) that are difficult,
diverse and of a particular structure specified by the user.
Scenario planning. This is a decision support technique where the goal is to gen-
erate a variety of possible future scenarios to help organizations foresee the future
and adapt to it. [127] proposes a semi-automatic, neuro-symbolic method for per-
forming scenario planning in the real world. It uses DNNs to extract forces and their
causal relations from a set of documents encoded in natural language. These forces
are the elements of study in scenario planning, e.g., pandemic, lockdown and loss
of benefits. The causal relations between forces determine what causes what, e.g.,
pandemic may cause lockdown which in turn may cause loss of benefits. Once this
information has been extracted, it is translated into a PDDL planning domain and
problem, which can then be solved with a symbolic planner. The solutions (plans)
found by the planner correspond to possible future scenarios, which can be provided
to human experts for their analysis.

III.2.2.2 Task-specific domain exploitation

We now present methods that, instead of extracting information about the entire
domain, focus on a specific problem/task and its solution. We discuss three different
approaches: goal recognition or inverse RL, landmark detection, and policy valida-
tion or safe RL (see Figure 21).

Figure 21: Comparison among task-specific domain exploitation methods. Goal recog-
nition & inverse RL: the figure shows an example goal recognition task, where we want to deter-
mine whether the agent (represented by a robot) is pursuing goal g1 or g2. From the agent’s actions
(blue dotted line in the image), it results evident that it is pursuing g2. Landmark detection:
the figure shows an example state landmark (yellow node with a triangle), as every trajectory from
si to sg must necessarily traverse this state. Policy validation & safe RL: the image depicts
an example safe RL task. Policy π2 is unsafe, as it traverses an unsafe state (red crossed node),
whereas π1 is safe since it does not traverse that state.

Goal recognition & inverse RL. Goal recognition, also referred to as plan recog-
nition, is the problem of finding the goals that best explain the observed behaviour
of an agent. [194] follows a plan recognition as planning approach. Instead of using a
library of plans, the proposed method only needs to know the planning domain, the
possible set G of goals and a partially observed plan p representing the behaviour of
the agent. Then, the authors use standard SP techniques to find those goals g ∈ G
for which the optimal plan that achieves them is compatible with the observations
in p. Several works have extended this approach, such as [220], which provides a

64 CHAPTER III. RELATED WORK

relaxation of the problem formulation that allows it to consider noisy and missing
observations.

In the context of RL, goal recognition is known by the name of inverse RL. Here,
a different formulation is employed, in terms of rewards instead of goals. The aim
of inverse RL is to infer the reward function being optimized by an agent, given
its policy or some observations about its behaviour. [172] provides a foundational
method to address this problem. It takes an expert’s policy as input and utilizes
linear programming to obtain the reward function that maximally differentiates the
input policy from others, in terms of their optimality. [40] follows a different ap-
proach. It uses Bayesian inference to estimate the posterior probability of the reward
functions, given some prior distribution over them and the observed behaviour data.
A comprehensive survey of inverse RL is provided in [7].

Landmark detection. In SP, landmarks are properties (or actions) that must be
true (or executed) at some point for every plan that solves a particular planning
problem. Landmarks have been successfully applied to a wide range of problems,
such as computing planning heuristics [125] and performing goal recognition [190].
One of the most widely used methods for automatically obtaining planning land-
marks can be found in [109]. Given the description of a CP task, this work is able to
extract as landmarks those facts (propositions) which must necessarily be made true
during the execution of any solution plan. The proposed method also approximates
the order in which these landmarks must be achieved, and encodes this information
as a directed graph where the nodes correspond to landmarks and the edges to or-
der restrictions between them. Then, this graph is used to decompose the planning
task into smaller sub-tasks. An iterative algorithm is used where, at each step,
the leaf nodes of the graph (corresponding to those landmarks that can be directly
achieved) are handed to the planner as goals and deleted from the graph. This
process is repeated until all the landmarks have been achieved. The experiments
carried out by the authors show this method can significantly reduce planning times
when used in conjunction with state-of-the-art planners. [111] presents a method to
automatically extract landmarks for HTN planning. The proposed method repre-
sents the HTN task with an AND/OR graph which is used to obtain different types
of landmarks corresponding to facts, actions and methods. The authors show this
technique is able to extract more than twice the number of landmarks obtained by
other methods, which can then be employed to improve the time performance of
HTN planners.

Policy validation & safe RL. Given an MDP and a policy (or plan), we may
be interested in testing whether the policy actually corresponds to a valid solution
of the MDP or not. This problem receives the name of policy (or plan) validation.
In SP, one of the most important plan validation systems is VAL [112], which was
initially developed to automatically validate the plans produced as part of the 3rd
International Planning Competition. It can check whether a given plan, represented
in PDDL, is executable and achieves the corresponding goals. In case the plan is
flawed, VAL gives advice on how the user can fix it. Additionally, VAL provides
different visualization options. Another form of plan validation can be found in the
plan monitoring process carried out by online planning architectures. These systems,
which interleave planning and execution, must be able to detect discrepancies, i.e.,
unexpected events that require a modification in the behaviour of the agent. For
example, the goal reasoning framework proposed in [162] allows agents to detect

CHAPTER III. RELATED WORK 65

discrepancies, infer their causes and generate new goals to pursue, which may require
a new plan.

Policy safety is a very important aspect of policy validation. Given a policy,
we may be interested in determining if there exists some state in the MDP for
which our policy performs very poorly. Safe RL tries to address this issue. It
comprises RL techniques which, in addition to maximizing reward, satisfy certain
criteria regarding the performance (safety) of the system during the learning and/or
deployment processes. This is especially important for real-world environments with
critical safety requirements, such as helicopter flight [135] and gas turbine control
[93]. One possible approach to safe RL is to transform the reward function so that
it includes some notion of risk. For example, [99] proposes a pessimistic version of
the classical Q-Learning algorithm. Instead of predicting the expected total reward
Q∗(s, a) associated with a state s and action a, it estimates the minimum possible
total reward (under the optimal policy) for (s, a). This way, it learns the policy
that maximizes reward for the worst-case scenario. Other works focus on adapting
the exploration process followed by the agent in order to learn the policy. In [231],
a human user is allowed to guide an RL agent. The human teacher can provide
feedback to the agent in the form of a reward function and, additionally, restrict the
set of actions the agent can take at any given moment. Thanks to this guidance,
the RL agent is able to learn the optimal policy more efficiently while exploring the
state space in a safer way. A comprehensive survey of safe RL can be found in [76].

III.3 Towards an ideal method for SDM

In this section, we try to provide further insight into the existing methods for
solving MDPs. Firstly, we propose to categorize these methods along two main
dimensions: how they solve the MDP and how they represent their knowledge. Sec-
ondly, we discuss what properties an ideal method for SDM should exhibit. Based on
these properties, we then analyse the advantages and disadvantages of the different
approaches for solving MDPs.

We note that the existing methods for solving MDPs differ from one another
in two main aspects. Firstly, they differ in the approach employed to obtain a
solution of the MDP. Some methods (e.g., AP algorithms) use an action model to
synthesize their solution, often by performing a search or reasoning process over
it. Conversely, other methods (e.g., model-free RL algorithms) do not require a
model of the MDP and, instead, learn their solution using the data obtained by
interacting with the environment. Secondly, methods for solving MDPs differ in
the type of knowledge representation employed. Whereas some methods represent
their knowledge symbolically using a formal, logic-based language (e.g., PDDL),
other methods encode their knowledge subsymbolically, usually into the weights of
a DNN.

Figure 22 shows a diagram with different methods for solving MDPs, organized
according to how they solve the MDP (Y axis) and how they represent their knowl-
edge (X axis). The bottom of the diagram contains methods that employ an action
model to synthesize a solution of the MDP, i.e., AP methods. AP methods that
employ a symbolic knowledge representation, i.e., SP methods, are placed on the
bottom left corner of the diagram, whereas those with a subsymbolic representation,
i.e., NSP methods, are placed on the bottom right corner. The top of the diagram

66 CHAPTER III. RELATED WORK

Figure 22: Diagram of methods according to their knowledge representation and
method for obtaining their solution. Methods placed in the middle of an axis represent
hybrid approaches that combine the two extremes of the corresponding axis, i.e., methods that
both learn from data and synthesize their solution with a model (Y axis) and methods that inte-
grate symbolic and subsymbolic knowledge representations (X axis). Colored bubbles are used to
group similar methods together.

corresponds to methods that do not require an action model and instead learn the
MDP solution from the data obtained by interacting with the environment, i.e.,
model-free RL methods. Most model-free RL methods, from both tabular RL and
DRL, represent their knowledge subsymbolically and, thus, are placed on the top
right corner of the diagram. Some of them, known as model-free RRL, do employ
a symbolic knowledge representation and, hence, are placed on the top left corner.
Some RL methods, known as model-based RL, leverage an action model in order to
learn their solution of the MDP. Since they combine the two alternative methods
for obtaining the MDP solution, they are placed in the middle of the Y axis on the
diagram. Since all the model-based RL methods discussed in the paper employ a
subsymbolic knowledge representation, they are placed on the right of the diagram.
The middle right part of the diagram also corresponds to those methods that learn
to plan, as they represent their knowledge subsymbolically and both employ an ac-
tion model and learn their solution from data. The Deep RRL method proposed
in [255] corresponds to a model-free RL algorithm (thus placed on the top of the
diagram) that employs a DNN with a relational inductive bias in the form of an
attention mechanism. Therefore, this work uses a subsymbolic knowledge represen-
tation that shares some properties with symbolic ones and, hence, is placed between
the middle and right part of the X axis. Finally, neuro-symbolic models combine
both methods for obtaining a solution, the learn from data of RL and synthesize with
a model of AP, and additionally integrate the symbolic and subsymbolic knowledge
representations. This is why they are placed in the middle of our diagram.

In light of so many different approaches for solving MDPs, we may wonder what

CHAPTER III. RELATED WORK 67

are the advantages and disadvantages of the existing methods. In order to answer
this question, we first discuss what properties an ideal AI for SDM should exhibit.
We frame this question from the perspective of a user who simply wants to solve a
particular SDM task in the best way possible. Firstly, an ideal SDM method should
be applicable to any task posed by the user. Secondly, the method should be easy
to use, requiring as little human effort as possible. Furthermore, it should solve the
task efficiently. In addition, it should be interpretable by the user. Finally, the
solution obtained by the method should generalize to other tasks different from the
one it was obtained for. These requirements give shape to five different properties
that result desirable for MDP-solving methods:

• Applicability. An ideal method for SDM should be capable of solving all
different sorts of MDPs. Nonetheless, there exist many characteristics that
make MDPs more difficult to solve and, thus, limit the applicability of SDM
methods. In this work, we have focused on two of them: stochasticity and
partial observability (i.e., POMDPs). A few other MDP features that limit
applicability are: continuity (i.e., MDPs with continuous state spaces S and/or
action spaces A), multiple agents (e.g., games like chess where an opponent
must be beaten), noisy state observations (e.g., a robot with faulty sensors)
and/or noisy actions (e.g., a robot with faulty actuators), the size of the state
space, and the complexity of the MDP dynamics.

• Ease of use. This property refers to the amount of human effort needed to
adapt an SDM method to a particular task, so the larger the effort, the harder
it is to use. An ideal method for SDM should require as little human effort
as possible. The amount of effort is directly proportional to the quantity of
prior knowledge (about the MDP to solve) required by the method and how
difficult it is to encode this knowledge in a suitable representation for it.

• Efficiency. An ideal method for SDM should obtain a solution of the MDP
as efficiently as possible. In Computer Science, efficiency is usually measured
in terms of the time and space (i.e., memory) an algorithm needs to solve
a problem. Analogously, efficiency in AP is usually measured as the time a
method spends to find the MDP solution or, alternatively, as the number of
tasks from a set that it is able to solve given some time and memory limits,
what is known as coverage. On the other hand, efficiency in RL is often mea-
sured as the amount of data a method needs to achieve a certain performance,
what is known as data-efficiency.

• Interpretability. In recent years, there has been great interest in develop-
ing interpretable/explainable AI (XAI) [91] systems for many different ap-
plications, including SDM [34, 105]. An ideal SDM method should be fully
interpretable, i.e., humans should be able to understand how it works, the
characteristics of the solution obtained by the method and the reasons behind
the actions it takes. In addition to understanding and verifying the system,
interpretability allows us to modify its behaviour, thus opening the door to
building collaborative systems where humans and SDM methods cooperate to
solve problems.

• Generalizability. In some cases, we may be interested in solving not one but
a set of different (although similar) MDPs. Solving each MDP separately may

68 CHAPTER III. RELATED WORK

be computationally intractable if the number of MDPs in the set is very large
(or even infinite). For this reason, an ideal method for SDM should be able
to generalize, i.e., the solution obtained by the method for a particular MDP
should also be applicable to solve other similar MDPs.

We now leverage these five desirable properties to compare the different existing
methods for solving MDPs, assessing their advantages and disadvantages.

Regarding applicability, most subsymbolic methods manage many different types
of MDPs either off the shelf or with some minor modifications. For example, Deep
Q-Learning naturally manages non-determinism and has been extended to also man-
age partial observability and noise [97], and continuous state and action spaces [88].
On the other hand, the symbolic community has historically focused on solving the
CP case so, even though there exist symbolic methods capable of managing aspects
such as non-determinism (e.g., probabilistic planners) and partial observability [56],
their support is currently more limited than the one provided by subsymbolic meth-
ods. We believe the reason behind this is that, in order to manage these extensions
to the CP case, symbolic techniques require more complex methods for represent-
ing knowledge (e.g., PPDDL instead of PDDL for non-determinism) and reasoning
with it, which must be designed by humans, as opposed to subsymbolic techniques
where a DNN usually takes care of everything and naturally manages all these as-
pects. Therefore, subsymbolic methods exhibit better applicability, in general, than
symbolic ones. Additionally, it may be the case that we do not have access to an
action model (e.g., the MDP dynamics are unknown) and we cannot learn it with
the methods described in Section III.2.1 because either we lack the necessary data or
the dynamics are too complex to learn. In these scenarios, methods that synthesize
an MDP solution with a model, such as AP, cannot be employed. Therefore, these
methods exhibit worse applicability than those that learn their solution from data
without a model, such as model-free RL.

Regarding ease of use, SDM methods that require an action model (e.g., AP)
are harder to use than those which do not (e.g., model-free RL). This is due to
the fact that, as previously commented, in some situations the action model cannot
be learned and needs to be designed by a human expert, thus requiring additional
human effort. Additionally, symbolic methods generally require more human effort,
and thus provide worse ease of use, than subsymbolic ones. Symbolic methods
require knowledge to be represented symbolically, in a logic-based language such as
PDDL. Nonetheless, some MDPs may be hard (or even impossible) to describe using
FOL or some other logic. On the other hand, subsymbolic methods often impose no
restrictions on how knowledge must be represented, so the user can choose whichever
representation scheme it likes (including symbolic ones). For example, subsymbolic
model-based RL methods such as AlphaZero and Dyna are indifferent to how the
action model is represented, as long as it allows them to obtain the next state s′

and reward r associated with a given state-action (s, a) pair.
The efficiency of SDM methods is directly proportional to the amount of task

knowledge that they leverage. On the one hand, methods that employ an action
model are usually more efficient than those which do not. For example, it has
been shown that model-based RL achieves higher data-efficiency than model-free
RL [122]. On the other hand, symbolic representations often provide more knowl-
edge than their subsymbolic counterparts and, hence, result in higher efficiency.
For instance, SP techniques make use of powerful domain-independent heuristics to

CHAPTER III. RELATED WORK 69

speed up search which, in order to be computed, require a symbolic description of the
action model, so they cannot be exploited by AP methods with purely subsymbolic
representations.

Regarding interpretability, SDM methods that synthesize their solution with a
model (e.g., AP) tend to be more interpretable than those which do not (e.g., model-
free RL). This is mainly due to the fact that methods in the first category solve the
MDP via an iterative process, carrying out a series of steps which can then be
analyzed in order to provide insight that is out of reach for model-free methods.
For instance, [151] provides a visualization tool of the search tree of CP algorithms,
showing the heuristic value for different stages of the search. This is useful for
understanding how different planners solve the task, step by step. Additionally,
symbolic methods are more interpretable than subsymbolic ones, as they represent
their knowledge in a logic-based language that is comprehensible to humans (or, at
least, human experts). For example, PDDL action models explicitly state what are
the effects of each action, whereas subsymbolic models do not. Another example is
the solution obtained by symbolic methods. For instance, the solution obtained by
a CP algorithm is encoded as a sequence of grounded actions and, hence, is more
interpretable than the one obtained by a DRL method (which is encoded in the
weights of a DNN).

Finally, generalizability depends on the specific scope of each SDM method.
Some methods (e.g., CP algorithms) focus on solving a single MDP, whereas others
(e.g., Generalized Planning [119] and many DRL algorithms) aim to solve a set of
different MDPs. Given the same scope, policies that carry out an iterative process
over an action model in order to select the action to execute, i.e., deliberative policies,
often generalize better than those which do not, i.e., reactive policies. For instance,
[228] shows that deliberative policies learned by VINs generalize better than reactive
policies when applied to new problems of the same domain. Besides, representing
knowledge symbolically also helps achieve good generalization. Two examples are
RRL, where FOL-based representations are leveraged in order to generalize to tasks
with different number of objects, and DNNs with relational inductive biases [255],
which generalize better than purely subsymbolic DNNs.

To summarize, SDM methods that synthesize their MDP solution with a model
exhibit better efficiency, interpretability and generalizability, whereas methods that
learn their solution from data, without a model, are more widely applicable and
easier to use. Analogously, symbolic methods present better efficiency, interpretabil-
ity and generalizability, whereas subsymbolic methods display better applicability
and ease of use. As a result of this analysis, we conclude that the two compet-
ing paradigms for obtaining the MDP solution (synthesizing it with a model versus
learning it from data) and representing knowledge (symbolically versus subsym-
bolically) are complementary, as the shortcomings of each one correspond to the
strengths of the other. Therefore, we argue that an ideal method for SDM should
integrate these different approaches into the same architecture: it should both learn
and plan in order to obtain its solution, and combine the symbolic and subsymbolic
representations for its knowledge. As shown in Figure 22, neuro-symbolic methods
perform this integration, which is why they are situated in the center of the diagram.
As a result, we believe neuro-symbolic AI poses a very promising approach towards
achieving an ideal method for SDM, one exhibiting the five desirable properties pre-
sented in this section. This conclusion serves as motivation for the neuro-symbolic

70 CHAPTER III. RELATED WORK

SDM methods developed during the course of this thesis, which are described in
Part III.

III.4 Future directions for Sequential Decision

Making

The study of related work conducted in this chapter has helped us to identify
promising opportunities to further advance the field of SDM via the integration of
symbolic and subsymbolic AI. We outline some of these approaches below:

• Interpretability. The interpretability of AI systems has become a big con-
cern in recent years due to the ever-increasing ubiquity of such systems, es-
pecially in safety-critical applications. Despite advancements in the fields of
DL and DRL to design more interpretable architectures such as Graph Neu-
ral Networks, the symbolic approach still has the upper hand when it comes
to interpretability. Neuro-symbolic methods make it possible to integrate the
capabilities of DL and DRL to extract complex patterns from data with the
interpretability of classical symbolic representations such as PDDL. They pose
a promising approach towards building systems that not only solve tasks in
an effective and efficient manner, but which are also able to explain their de-
cisions (actions) to a human supervisor. Additionally, it would be interesting
to explore representations not only interpretable by human experts, such as
PDDL, but also by any human user, such as natural language.

• Human-machine collaboration. The current paradigm for problem solving
entails building autonomous systems based on DL and DRL which try to rely
on the user as little as possible. However, in most real-world scenarios, humans
have access to crucial domain-specific knowledge which can greatly facilitate
the learning process of the agent. The main difficulty in providing this infor-
mation to the system comes from the fact that the knowledge representation
commonly employed in modern AI, based on DNNs, is very different to that
used by humans. Thus, in order to achieve effective human-machine collabo-
ration, it is essential to reconcile these two representations. One possibility is
provided once again by neuro-symbolic methods, since these techniques utilize
symbolic representations that are understandable by humans (experts). An
alternative approach is to implement a communication interface capable of
translating between the subsymbolic representation of the AI system and one
understandable by humans (e.g., natural language). Regardless of the chosen
method, the integration of both types of representation will make it possible
to build AI systems that effectively communicate and cooperate with humans.
For example, users will be able to easily provide prior knowledge to the agent
and guide its behaviour during the task-solving process. Additionally, it would
also be useful that the agent itself could query the human for assistance when
needed, e.g., in order to escape a dead-end situation.

• Goal Reasoning. Goal Reasoning enables the creation of AI systems that are
capable of reasoning about their own goals. This is similar to the way we hu-
mans think, as our actions are influenced by a set of goals, intentions, desires,

CHAPTER III. RELATED WORK 71

etc. which are not fixed but rather vary with time. Thus, Goal Reasoning pro-
vides an ideal framework to design AI agents which collaborate with humans.
Ideally, such a system should be able to function autonomously, being capable
of formulating, selecting and pursuing the necessary goals to achieve the corre-
sponding task. At the same time, the human user should be able to understand
the behaviour and intentions of the system and, at any given moment, modify
the goals the agent is pursuing. To build such a system, the neuro-symbolic
approach is a good fit. A neuro-symbolic goal reasoning method could use
DNNs to build a latent representation of the domain which allowed it to infer
interesting goals, encoded in a symbolic representation. Then, a symbolic rea-
soning method, e.g., an automated planner, could reason about which goals
should be pursued at each moment and the specific method for achieving them.
In Chapter IV, we propose a neuro-symbolic goal-reasoning approach where
an agent receives prior, symbolic knowledge about the environment and goals,
a DRL method is used for learning to select goals and, finally, a symbolic AP
technique is used to achieve the selected goals.

• Symbolic value-equivalent action models. Value-equivalent action mod-
els only encode those aspects of the environment dynamics which result useful
for the task at hand. This is an essential requirement to learn action models
of complex environments, such as those often encountered in real-world tasks,
as it is infeasible to accurately depict every aspect of their dynamics. How-
ever, so far all value-equivalent action models employ a subsymbolic knowledge
representation. We believe this value-equivalence principle would prove even
more useful in the case of symbolic action models. Subsymbolic action mod-
els employ DNNs to encode their knowledge and, since neural networks are
universal approximators, they can accurately represent any aspect of the en-
vironment regardless of how complex it is (although learning such a complex
representation would require huge amounts of data and would have the risk
of overfitting, thus the need for value-equivalent models). On the other hand,
some complex environments may be hard (or even impossible) to accurately
represent using a symbolic action model, in terms of a set of distinct objects
and their relations/interactions. Therefore, when confronted with such kind of
environments, we should instead try to obtain a symbolic description of only
those aspects of the dynamics that are needed to solve the task at hand, i.e.,
a symbolic value-equivalent model.

• Neuro-symbolic action models. The main idea behind symbolic value-
equivalent action models is to find a symbolic description of the environment
that is good enough for the task at hand, even if it completely ignores some
aspects about the dynamics. However, we might wonder if such a description
exists in the first place. For some environments, a symbolic description of their
dynamics may prove highly inaccurate and leave out aspects that result crucial
to solve the task. For example, it would be infeasible to obtain a high-quality
description of the dynamics of a complex physics simulator in PDDL and,
thus, the resulting symbolic action model would not be of great use to solve
any task in this domain. In these cases, those crucial aspects for which a good
symbolic description cannot be obtained should be encoded subsymbolically.
This neuro-symbolic action model would employ a symbolic representation

72 CHAPTER III. RELATED WORK

for those elements of the environment that can be properly encoded in such a
manner, and a subsymbolic representation for the rest. This approach could, in
theory, combine the best of both worlds: the abstraction and interpretability
of a symbolic representation with the accuracy and wide applicability of a
subsymbolic one.

Part III

Proposals

73

Chapter IV

Goal Selection with Deep
Q-Learning

IV.1 Introduction

This chapter presents a neuro-symbolic approach for improving the effi-
ciency of SP algorithms in real-time scenarios. This is achieved by learning
to select subgoals with Deep Q-Learning. Therefore, the method described in
this chapter fulfills the second subgoal (G2) of this dissertation.

The proposed method, called Deep Q-Planning (DQP), integrates a symbolic
planner and the DRL algorithm Deep Q-Learning into a hybrid, planning and acting
architecture in order to solve tasks where decisions must be made in real-time.
DQP receives as prior knowledge the task description in PDDL, along with a set of
subgoals that are useful for solving the task. At each step, it selects a subgoal from
this set using Deep Q-Learning. Then, an SP algorithm receives the chosen subgoal
and finds a plan to achieve it from the current state. Once the agent has finished
executing this plan, a new subgoal must be selected, thus repeating the cycle until
the task is solved.

This approach is tested on the General Video Game AI (GVGAI) environment
[144], used as a standard test-bed for intelligent system applications. Results show
DQP outperforms both the SP algorithm and Deep Q-Learning on their own, when
both plan quality (i.e., plan length) and time requirements are considered. On
the one hand, DQP is considerably more sample-efficient (by at least one order of
magnitude) than Deep Q-Learning, and generalizes much better to new game levels.
On the other hand, DQP drastically reduces problem-solving times when compared
to the planner on its own, at the expense of obtaining plans with only 9% more
actions on average. Therefore, DQP is able to exploit the synergy between AP and
RL in order to balance plan quality and time efficiency.

IV.2 Related works

The use of DNNs in AP has been a topic of great interest in recent years. Some
works have applied Deep Q-Learning to solve planning and scheduling problems as a
substitute for online search algorithms. [214] uses Deep Q-Learning to solve the ship
stowage planning problem, i.e., in which slot to place a set of containers so that the

74

CHAPTER IV. GOAL SELECTION WITH DEEP Q-LEARNING 75

slot scheme satisfies a series of constraints, and optimizes several objective functions
at the same time. [164] also employs Deep Q-Learning, but this time to solve the
lane changing problem. In this problem, autonomous vehicles must automatically
change lanes in order to avoid the traffic, and get to the exit as quickly as possible.
Here, Deep Q-Learning is only used to learn the long-term strategy, while relying on
a low-level module to change between adjacent lanes without collisions. The method
proposed in this chapter also employs Deep Q-Learning but, instead of being used
as a substitute for Classical Planning, it is integrated along with planning into a
planning and acting architecture.

There are other works which use neural networks to solve planning problems
but, instead of relying on RL techniques such as Deep Q-Learning, train a DNN so
that it learns to perform an explicit planning process. [233] proposes a novel neural
architecture known as Action Schema Networks (ASNet) which, as they explain in
their work, are specialised to the structure of planning problems much as CNNs are
specialised to the structure of images. [228] uses a CNN that performs the compu-
tations of the Value Iteration (VI) planning algorithm, thus making the planning
process differentiable. Therefore, both works use DNN architectures that learn to
plan (see Section III.1.3).

These DNNs are trained on a set of training problems and evaluated on different
problems of the same planning domain, showing better generalization abilities than
most RL algorithms. [228] argues that this happens because, in order to generalize
well, DNNs need to learn an explicit planning process, which most RL techniques do
not. Although our proposed architecture does not learn to plan, it does incorporate
an off-the-shelf planner which performs explicit planning. We believe this is why it
displays good generalization abilities.

Neural networks have also been applied to other aspects of planning. For in-
stance, [51] trains a DNN that learns a planning domain just from visual obser-
vations, assuming that actions have local preconditions and effects. The learned
domain is generalizable across different problems of the same domain and, thus, can
be used by a planner to solve these problems.

There exist several techniques which facilitate the application of AP to real-
time scenarios, such as Goal Reasoning [161], Anytime Planning [195], Hierarchical
Planning (e.g., HTN [81]) and domain-specific heuristics learned using ML [252].
[92] presents PELEA, a domain-independent, online execution architecture which
performs planning at two different levels, high and low, being able to learn domain
models, low-level policies and planning heuristics. [155] proposes T-REX, an online
execution system used to control autonomous underwater vehicles. This system
partitions deliberation across a set of concurrent reactors. Each reactor solves a
different part of the planning problem and cooperates with the others, interchanging
goals and state observations.

Some works incorporate Goal Selection into planning and acting architectures.
[114] proposes a Goal Reasoning architecture which combines Case-Based Reason-
ing with Q-Learning. In our proposed method, the focus is on learning to select
subgoals, using Deep Q-Learning instead of traditional Q-Learning, in order to give
our architecture the ability to generalize to new states. [22] makes use of a CNN
which learns to select subgoals from images. Unlike our method, the CNN is trained
by a hard-coded expert procedure in a supervised fashion, and the set of eligible
subgoals is always the same, regardless of the state of the game.

76 CHAPTER IV. GOAL SELECTION WITH DEEP Q-LEARNING

Finally, it is worth to mention previous disruptive work on Deep RL [159] that
addresses how to learn models to control the behavior of reactive agents in ATARI
games. Contrary to this work, we are interested in addressing how deliberative
behaviour (as planning is) can be improved by mainstream techniques in ML. This
is one of the main reasons we chose the GVGAI video game framework, since it
provides an important repertory of video games where deliberative behaviour is
mandatory to achieve a high-level performance.

IV.3 Materials

IV.3.1 GVGAI and the Boulder Dash game

The method described in this chapter has been tested on the GVGAI envi-
ronment [144], which comprises a wide variety of tile-based games. For example, it
comprises purely reactive games, such as Space Invaders, but also games that require
deliberative, long-term planning in order to be solved successfully, such as Sokoban.
Additionally, GVGAI game levels are described using plain text files (known as level
description files), as shown in Listing 1, which allows us to create as many levels as
we need to train and test our approach.

We have chosen to use a deterministic version of the GVGAI game known as
Boulder Dash (see Figure 23). We use this game to extract the trajectories/episodes
our planning and acting architecture is trained on. In our version of this game, there
are no enemies and boulders do not fall. The goal of the player is to collect nine
gems and then get to the exit, while minimizing the number of actions used.

Figure 23: A level of the Boulder Dash game.

The player has five different actions at their disposal: UP, DOWN, LEFT,
RIGHT, and USE. The four first actions let the player traverse the level, one tile
at a time. The last action, USE, is used by the player to break a boulder with its
pickaxe before passing through. The player is always pointing in one of four different
directions: NORTH, SOUTH, EAST or WEST. When the player uses a movement
action, they turn towards the corresponding direction or, if they were already facing

CHAPTER IV. GOAL SELECTION WITH DEEP Q-LEARNING 77

wwwwwwwwwwwwwwwwwwwwwwwwww

w...o.xx.o......o..xoxx..w

w... ooooooo..o...w

w.... xxxo.oxoo.ow

wx oxo ... oow

wwwwwwwwwwo... wxxw

w. -....o.............. wxxw

w - -........Ao....o.... wxxw

wooo -....w..w

w......x.... wwwwx -x.oow..w

w.--.....x..ooxxo -....w..w

w---..e........... -- -- -..w

wwwwwwwwwwwwwwwwwwwwwwwwww

Listing 1: Level description file for the Boulder Dash level shown in Figure 23. Each
letter represents a different type of object: “w” for walls, “o” for boulders, “x” for gems, “A” for
the player, “e” for the exit and “.” for dirt. The character “-” represents empty tiles.

that way, they move one tile. For instance, if the player executes action UP and was
facing SOUTH, they will now face NORTH. But, if the player was already facing
NORTH, they will move up one tile.

We have utilized a static version of Boulder Dash because we need a controllable
environment to conduct the experimentation of our proposed method. This way,
we can test and validate our goal selection method in an isolated manner, without
having to deal with dynamism or uncertainty. For instance, in the original version
of Boulder Dash boulders may fall and kill the agent. If this were also the case for
our version of the game, we could not assume that a valid plan is always successful,
i.e., that it always takes the agent from the current state of the game to a state
where the corresponding subgoal has been achieved. Thus, our architecture would
additionally need to detect and manage risks associated with the execution of plans
in environments with uncertainty, which is left for future work.

Despite this, our deterministic version of Boulder Dash still represents a great
challenge for RL and AP techniques, as the results of Section IV.5.4 show. Each
level contains 23 gems, but the agent only needs to obtain 9 of them. If we assume
the agent always obtains 9 gems and then gets to the exit, then the number of
total possible trajectories (plans) is given by the following expression1:

(
23
9

)
∗ 9! =

296.541.907.200. Therefore, there exist more than 200 billion different trajectories
for a single Boulder Dash level, meaning that Boulder Dash is very hard to solve
even without stochasticity.

IV.4 Methods

IV.4.1 The planning and acting architecture

The proposed planning and acting architecture is depicted in Figure 24. The
Execution Monitoring Module communicates with the GVGAI environment, re-
ceiving the current state s of the game. It also supervises the state of the current
plan. If it is not empty, it returns the next action a. If it is empty, the architecture

1The set of 9 subgoals can be achieved in 9! different ways by the agent.

78 CHAPTER IV. GOAL SELECTION WITH DEEP Q-LEARNING

needs to find a new plan. The Goal Formulation Module receives s and generates
the compound subgoal Gs, which is the set of the eligible subgoals g1, g2, ..., gn that
can be selected at state s. The final goal gf is also included in Gs. The Subgoal
Pattern contains the prior information about the domain needed to automatically
generate Gs given s. In the Boulder Dash game (see Section IV.3.1), each subgoal
g corresponds to getting one of the available gems in s, and the final goal gf cor-
responds to getting to the exit. Since all GVGAI games are tile-based, we have
associated each subgoal (and also the final goal) with getting to its corresponding
tile (cell). The Goal Selection Module receives the compound subgoal Gs, and
selects the best subgoal ĝ ∈ Gs given s. The PDDL Parser encodes ĝ as a PDDL
single goal, i.e., (got gem13), and s as a PDDL initial state, which together make
up the PDDL problem. The Planner Module receives the PDDL problem along
with the PDDL domain, which is provided by a human expert, and generates a
plan p(s, ĝ) which achieves ĝ starting from s. In case the Goal Selection Module
has selected as ĝ a subgoal which cannot be reached from the state s, the Planner
Module will not be able to find a valid plan p(s, ĝ), and will return an empty one.
We will refer to this as a goal selection error. In Boulder Dash, a goal selection
error occurs when the Goal Selection Module chooses the final goal, i.e., ĝ = gf , but
the agent has not obtained nine gems yet. When this happens, the Goal Selection
Module must select a new subgoal ĝ. Once a valid plan p(s, ĝ) has been found by
the planner, the Execution Monitoring Module receives it and the cycle completes.

Figure 24: Overview of the planning and acting architecture. It integrates an SP algo-
rithm (planner submodule in the figure) with the DRL algorithm Deep Q-Learning (goal selection
submodule) in order to control the behaviour of an agent in a real-time scenario (GVGAI in the
figure).

CHAPTER IV. GOAL SELECTION WITH DEEP Q-LEARNING 79

IV.4.2 Goal selection learning

This section first provides a formulation of goal selection as a deterministic MDP.
Then, it describes the architecture of the CNN used by the Goal Selection Module
and how it is trained.

IV.4.2.1 Goal selection as a deterministic MDP

The goal of our planning and acting architecture is to achieve the final goal gf ,
i.e., complete a game level, with as few actions as possible. To achieve this, it must
select a series of subgoals g1, g2, ..., gn, gf in the optimal order so as to minimize the
length of the total plan that solves the level. In order to select the best subgoal ĝ
for the current game state s, the Goal Selection Module iterates over every eligible
subgoal g ∈ Gs, and predicts the length lP (s,g) of the total plan associated with
each one. This value lP (s,g) corresponds to the length of the plan P (s, g) which,
starting from s, achieves g and, once obtained it, then achieves the final goal gf
(after obtaining the rest of the required subgoals in an optimal order). The best
subgoal ĝ is the one for which has been predicted the minimum length lP (s,ĝ). This
is the subgoal output by the Goal Selection Module.

In order to predict lP (s,g) for a given (s, g) pair, the Goal Selection Module
employs a CNN. This DNN receives as input the current state s of the game and a
subgoal g ∈ Gs, both encoded as a three-dimensional tensor, which will be referred
to as the one-hot tensor, and outputs the number of actions of the associated total
plan P (s, g). The first two dimensions of this one-hot tensor are associated with
the (x, y) position of a game tile, where the third one is used to encode the object
present at that tile. The information about objects is encoded as a one-hot vector.
In our version of Boulder Dash, there are six different types of objects: player,
exit, boulder, gem, wall and dirt. Each type is associated with a distinct number
i ∈ {1..6}, representing the i-th position of the one-hot vector. If an object of type
i is present at the (x, y) tile of the level, then the position (x, y, i) of the one-hot
tensor will contain a value of 1. In order to represent subgoals g, we simply treat
them as an additional type of object whose associated number is i = 7. This way, if
the subgoal g of a given (s, g) pair is at the (x, y) tile, then the associated one-hot
tensor will contain a value of 1 in its (x, y, 7) position.

Unlike most RL problems where the action space is fixed, i.e., where the set of
applicable actions App(s) is the same for every MDP state s ∈ S, in our problem the
set of eligible subgoals g ∈ Gs (i.e., applicable actions) depends on the current state
s of the game. In addition, each level will contain a different initial set of subgoals,
i.e., the subgoals will be in different positions. For this reason, the CNN needs to
receive both s and g (encoded as the one-hot tensor (s, g)) as inputs, and must be
able to generalize to both new states and subgoals.

We can associate two different deterministic MDPs to our version of Boulder
Dash: M = (S,A,C, T) and M g = (Sg, Gs, C

g, T g). M corresponds to the standard
RL description, whereas M g is an abstract MDP that describes the game from the
perspective of selecting subgoals ĝ ∈ Gs instead of executing actions â ∈ A.2 This

2Mg can also be formulated as a semi-MDP [225], where each eligible subgoal g ∈ Gs would be
associated with a different macroaction or option. The policy associated with each option g ∈ Gs

would be encoded by the plan p(s, g) obtained by the planner, its initiation set would be the set
of states from which g can be selected, and the termination condition would be the attainment of

80 CHAPTER IV. GOAL SELECTION WITH DEEP Q-LEARNING

alternative formulation M g is the one our planning and acting architecture is built
upon. The correspondence between M and M g is detailed below:

• Sg is the state space of M g, which only contains a subset of the states present
in the state space S of M , i.e., Sg ⊂ S. Sg contains the initial state of S and
also the final states s′ of the plans p(s, g) which achieve the subgoals, where
s ∈ Sg and g ∈ Gs.

• Gs is the compound subgoal, i.e., the set of eligible subgoals the agent can
choose from at state s. It always contains the final goal gf . G

◦
s ⊂ Gs is the set

of attainable subgoals for state s, containing the subgoals and/or final goal g
for which there exist a valid plan p(s, g) that achieves g starting from state s.
If the subgoal selected by the agent is not attainable, the Planner Module will
not be able to find a valid plan and a goal selection error will be produced (see
Section IV.4.1).

• Cg : S × Gs → [0,∞) is the cost function, which depends on the state s and
the selected subgoal ĝ ∈ Gs. If the subgoal is attainable, i.e., ĝ ∈ G◦

s, then the
cost is equal to the length lp(s,ĝ) of the plan p(s, ĝ) which achieves ĝ starting
from s. If ĝ is not attainable, then the cost is equal to some large value λ
which serves as a penalization for the agent.

• T g : S × Gs → S is the transition function, which determines the next state
s′ of the environment when the agent selects an eligible subgoal ĝ ∈ Gs at
state s. If the selected subgoal is attainable, i.e., ĝ ∈ G◦

s, then the next state
s′ corresponds to the final state of the plan p(s, ĝ) that achieves ĝ starting
from s. Since the planner used to obtain p(s, ĝ) is deterministic, i.e., for a
given (s, ĝ) it always obtains the same plan, the transition function T g is also
deterministic. If the chosen subgoal is not attainable, i.e., ĝ /∈ G◦

s, then s′ = s.

After defining all the elements of M g we can now adapt the notions of cumula-
tive/total cost C and deterministic policy π to this special type of MDP. A deter-
ministic policy πg : Sg → Gs maps each state s ∈ Sg to an eligible subgoal g ∈ Gs.
The cumulative cost Cg is the sum of the (immediate) costs cg(s, g) obtained by
the agent when it selects at each state s the subgoal πg(s) = ĝ, given by its policy,
until the end of the episode. The optimal policy πg∗ is the one which minimizes
Cg, as our goal is to solve each game level using the minimum possible number of
actions. πg∗ represents the optimal sequence of subgoal selections, where the last
subgoal is always the final goal gf . Finally, it is worth mentioning that one of the
main advantages of using M g to formulate and solve an RL problem, instead of the
standard MDP description M , is that the state space is reduced (since Sg ⊂ S) and,
thus, the problem is simplified. The implications of this will be explored in Section
IV.5.4.

Using the formulation provided by M g, we can adapt the Deep Q-Learning al-
gorithm to this new type of MDP. In this case, Deep Q-Learning predicts a Q-value
Q(s, g) for each (s, g) pair, where s ∈ Sg and g ∈ Gs, and selects the subgoal ĝ
with the lowest Q-value. This Q-value Q(s, g) represents the immediate cost cg(s, g)
plus the rest of the cumulative cost Cg, obtained by following the optimal policy

g (i.e., the completion of p(s, g)).

CHAPTER IV. GOAL SELECTION WITH DEEP Q-LEARNING 81

πg∗ , from the next state s′ until the end of the episode. If the subgoal is attainable
(g ∈ G◦

s), then Q∗(s, g) = lP (s,g). That is to say, the correct Q-value, i.e., the Q-
target Q∗(s, g), is equal to the length of the total plan P (s, g) associated with the
(s, g) pair. If g is not attainable, then Q∗(s, g) = cg(s, g) = λ, i.e., the Q-target
is equal to the penalization λ. As in standard Deep Q-Learning, the value of the
Q-target is unknown, so it needs to be recursively estimated with the Bellman Opti-
mality Equation (see Equation II.1). Thus, the loss function Lg minimized by Deep
Q-Learning for the MDP M g is as follows:

Lg =
(
Q(s, g)−Q∗(s, g)

)2
=


(
Q(s, g)− lP (s,g)

)2
, if g ∈ G◦

s.

(
Q(s, g)− λ

)2
, if g /∈ G◦

s.

(IV.1)

where
(
Q(s, g)− lP (s,g)

)2
=
(
Q(s, g)−

(
lp(s,g) + γ min

g′∈Gs′
Q(s′, g′)

))2
, s is the current

state, g ∈ Gs is an eligible subgoal at state s, s′ is the next state, and γ ∈ [0, 1] is
the discount factor for the costs.

IV.4.2.2 CNN architecture and training

The loss function Lg of Equation IV.1 is used to train the CNN of the Goal
Selection Module. The architecture of this network has been heavily inspired by
the one used in the original Deep Q-Learning paper [158], and is shown in Figure
25. Initially, the size of the one-hot tensor is (13, 26, 7), so we increase its first
two dimensions by adding zeros, i.e., we apply zero-padding, until both have the
same size of 30. As a result, the CNN receives a square one-hot tensor of size
(30, 30, 7) as input. Then, the CNN applies three convolutional layers. The first
layer contains 32 filters and the other two 64 filters each, the same as in [158]. The
first two convolutional layers apply kernels of size 4× 4 with a stride of size 2. The
third layer uses kernels of size 3× 3 with a stride of size 1. After the convolutional
layers, a fully-connected layer with 128 units is applied. Finally, the output layer
contains a single unit which outputs the Q-value. We apply batch normalization
[113] before each layer of the network except for the output layer. Regarding the
Deep Q-Learning algorithm, we have tested different discount factors, and found
the best value to be γ = 0.7. In addition, we have employed several auxiliary
techniques to improve the performance of Deep Q-Learning: Fixed Q-targets [159]
with τ = 10000, Double Q-learning [237] and Prioritized Experience Replay [206].

This CNN is trained in an offline fashion on datasets extracted from 200 training
levels, different from the levels used for testing. These datasets are collected by an
agent which performs random exploration on these levels, i.e., which plays the levels
by selecting subgoals completely at random. The process is the following. The
agent starts at the initial state s of the corresponding level. It selects a random
eligible subgoal ĝ ∈ Gs and tries to find a plan p(s, ĝ) to it. If ĝ is attainable, the
agent executes the obtained plan until it achieves ĝ and arrives at state s′. Then,
a new sample of the form (s, ĝ, lp(s,g), s

′) is created and added to the dataset of the
level. If ĝ = gf , then there is no next state, i.e., s′ = Null. If the subgoal ĝ is
not attainable, no valid plan will be found, so a sample of the form (s, ĝ, λ,Null) is

82 CHAPTER IV. GOAL SELECTION WITH DEEP Q-LEARNING

Figure 25: CNN architecture of the Goal Selection Module. This diagram shows how the
size of the one-hot tensor changes as it passes through the network layers. The CNN receives an
input of size (30, 30, 7), corresponding to the one-hot tensor of a given (s, g) pair, and outputs a
single prediction representing the Q-value Q(s, g).

created and added to the dataset. This entire process is repeated until the final goal
gf is selected and achieved, so every sample is part of a trajectory which successfully
solves the level. After achieving ĝ, this process starts again from the initial state of
the level. Once 500 unique samples have been gathered, the dataset is saved. This
algorithm is used to extract the training dataset for each level, for a total of 100000
unique samples, which are then used to train the CNN.

IV.5 Experiments and analysis of results

This section describes the experimental setup and analyzes the results obtained.
The goal of our experimentation is three-fold. Firstly, we assess the quality of
the plans obtained with our approach depending on the amount of training data
used. Secondly, we compare our model with a state-of-the-art planner. Thirdly,
we compare it with the standard Deep Q-Learning algorithm. This way, we are
able to evaluate the performance of our approach, named Deep Q-Planning (DQP),
with respect to both plan quality and time efficiency, when compared to alternative
methods.

IV.5.1 Experiment 1: Performance of Deep Q-Planning
with respect to dataset size

We have used the FastForward (FF) Planning System [108] for our Planner Mod-
ule because it is a state-of-the-art classical planner, and one of the most referenced in
the planning literature. Furthermore, it is compatible with PDDL2.1 features such
as conditional effects and PDDL functions, which are expressive enough to repre-
sent domains such as those of video games. Among the different search strategies
available for FF, we have decided to use best-first search (BFS). Initially, we tried
to obtain plans of optimal length, but this proved too computationally expensive
for some levels. Thus, we resorted to the evaluation function f = g+5 ∗ h for BFS,
where g is the current plan length, and h is a plan length estimate (i.e., heuristic
value). As a result, the Planner Module is able to obtain plans of almost optimal

CHAPTER IV. GOAL SELECTION WITH DEEP Q-LEARNING 83

length in real-time.

We conducted a first experiment designed to evaluate the performance (measured
as plan length) of our Deep Q-Planning approach as more training data is made
available. We trained the DQP model on the datasets extracted from 10, 25, 50
and 100 training levels, randomly selected among the 200 training levels, and finally
on the whole training dataset corresponding to all 200 levels. The DQP model
was trained for 1.2 million iterations for every dataset size, using the Adam [131]
optimizer with learning rate α = 1e−05 and batch size equal to 32. This translated
into 3 hours of training time on a machine with a Ryzen 5 3600X CPU and a RTX
2060 GPU when training 5 model instances in parallel. We set a penalization value
of λ = 200. (see Section IV.4.2).

For each dataset size, we trained 10 instances of the DQP model and evaluated
each one on 11 test levels, measuring the number of actions needed to solve them.
These test levels are different from the training ones, in order to measure the gener-
alization ability of the DQP model when applied to levels not seen during training.
In addition, they can be grouped into easy and hard levels. The easy levels corre-
spond to the 5 Boulder Dash levels provided in the GVGAI environment by default.
Additionally, we created 6 more levels to test the DQP model on. These levels were
purposely designed to be as hard to solve by the FF planner as possible, but without
increasing the level size. For example, we found that FF had trouble solving levels
which contained a large amount of boulders.

To put the length of the plans obtained by the DQP model into perspective,
we tried to compare them with the optimal plan for each test level. However, as
mentioned earlier, obtaining the optimal plans proved to be an intractable problem.
Thus, we compared the DQP model with a naive, baseline model, which we call the
Random Model (RM). This model works the same way as the DQP model except
for the fact that, instead of selecting the subgoal with lowest Q-value, it selects
a ĝ ∈ Gs completely at random. Therefore, for each trained DQP instance, we
divided the length of the plans obtained for every test level by the length of those
obtained using the Random Model. Then, we calculated the geometric average of
this quotient across all 11 test levels. This way, we obtained for each trained DQP
model a metric, called the action coefficient, representing the quality of the plans
obtained by the model on the test levels. For instance, an action coefficient of 0.6
means that the DQP model uses, on (geometric) average, only 60% of the actions
that the Random Model would need to solve the same 11 test levels. Figure 26 shows
the average action coefficient (across the 10 repetitions) of the DQP model, and its
standard deviation as the dataset size (i.e., number of training levels) increases.

IV.5.2 Experiment 2: Comparison of Deep Q-Planning with
a state-of-the-art planner

In addition to this first experiment, we conducted a second set of experiments to
compare the performance, measured as both plan quality and time efficiency, of the
DQP model with alternative, state-of-the-art approaches. The results are shown in
Table 2 and discussed in Section IV.5.4. The DQP model was trained on the entire
dataset, corresponding to all 200 training levels. For each test level, we obtained
the length of the total plan used to solve it and the time required to obtain this
plan. For the DQP model, this time is equal to the sum of the goal selection time

84 CHAPTER IV. GOAL SELECTION WITH DEEP Q-LEARNING

Figure 26: Plan quality of the DQP model for different dataset sizes. This plot shows the
average action coefficient (lower is better) of the DQP model as the number of training levels is
increased. Each error bar represents an interval of ±1 standard deviation.

and the planning time. The goal selection time is the total time used by the Goal
Selection Module to select each subgoal ĝ ∈ Gs. The planning time is the total time
used by the Planner Module to obtain each plan p(s, ĝ). We also consider all the
time wasted due to goal selection errors (i.e., when ĝ /∈ G◦

s).
We have decided to use a classical, symbolic planner which performs no goal

selection whatsoever as one of the approaches to compare the DQP model against.
Specifically, we have chosen FF since it is the same planner the DQP model uses.
Therefore, we have applied FF to solve every test level without selecting subgoals,
measuring both plan lengths and planning times. We have tested three different
search strategies for FF: best-first search with f = g + h, so every plan obtained is
optimal in length (OPT model), best-first search with exactly the same evaluation
function f = g+5∗h the DQP model uses in order to obtain close-to-optimal plans
(BFS model), and enforced hill-climbing with no optimization options (EHC model).
Since FF is deterministic, we have performed a single execution per test level. In
addition, we have set a maximum of one hour of planning time per level, after
which we assume the corresponding model could not solve the level, so a timeout is
produced.

IV.5.3 Experiment 3: Comparison of Deep Q-Planning with
Deep Q-Learning

We have also compared the DQP model with the standard Deep Q-Learning
algorithm, which we will refer to as the DQL model. We have trained the DQL
model in an offline fashion, on datasets extracted from the same 200 training levels
as DQP, and evaluated it on all 11 test levels, measuring both plan lengths and action
selection times. Just as with DQP, we have repeated each execution 10 times. We
have also established a maximum of 2000 actions per each test level. If the DQL
model does not complete a level under 2000 actions, we assume it could not solve
that level.

In order to extract the dataset for each training level, we have not used the ϵ-

CHAPTER IV. GOAL SELECTION WITH DEEP Q-LEARNING 85

Models
Plan Length (Number of Actions)

Easy Levels Hard Levels

0 1 2 3 4 5 6 7 8 9 10

DQP 85
±7

52
±5

72
±6

84
±12

67
±16

97
±18

137
±15

167
±27

108
±11

89
±12

106
±13

DQL − 1165
±0

− − − − − − − − −

RM 207
±47

188
±59

144
±32

177
±45

190
±46

214
±67

302
±90

456
±101

235
±91

239
±55

262
±74

BFS 81 67 55 77 43 − − − − − 116

EHC − 49 44 86 54 117 − 140 86 − −

OPT − 31 42 − 38 − − − − − −

Models
Time (seconds)

Easy Levels Hard Levels

0 1 2 3 4 5 6 7 8 9 10

DQP 1.39
±0.12

0.54
±0.05

1.41
±0.13

0.57
±0.07

1.35
±0.14

0.74
±0.08

1.49
±0.1

1.09
±0.19

1.58
±0.14

0.6
±0.06

1.43
±0.1

DQL − 1.88
±0

− − − − − − − − −

RM 0.47
±0.1

0.43
±0.12

0.32
±0.06

0.39
±0.1

0.45
±0.1

0.55
±0.12

0.61
±0.16

0.97
±0.2

0.58
±0.2

0.53
±0.11

0.52
±0.12

BFS 192.52 0.44 0.13 509.35 0.06 − − − − − 95.17

EHC − 0.07 0.04 0.32 0.07 813.41 − 102.21 284.06 − −

OPT − 4.75 8.62 − 305.92 − − − − − −

Models
Success Rate (%)

Easy Levels Hard Levels

0 1 2 3 4 5 6 7 8 9 10

DQL 0 10 0 0 0 0 0 0 0 0 0

Table 2: Comparison of DQP with alternative models. The table shows mean and std
values for plan length (uppermost table) and time requirements (middle table), when solving easy
and hard game levels, for all the models considered. A value of − means the corresponding model
could not solve that level. In case of BFS, EHC and OPT, this means a 1h timeout was produced.
In case of Deep Q-Learning (DQL), this means the model could not complete the level under
2000 actions. Since DQL is stochastic, we also show values (lower table) for its success rate, by
measuring how many times it is able to solve each level out of 10 executions. We have performed
10 repetitions for the DQP, DQL and RM models. Since FF is deterministic, we have performed
a single repetition for the BFS, EHC and OPT models.

greedy exploration-exploitation strategy commonly employed in RL. This is because,
unlike most RL settings, we separate training (exploration) and test (exploitation)
in two distinct phases, using different levels for each phase. Thus, we have designed
an algorithm inspired by ϵ-greedy but adapted to our problem. The agent starts at
the initial state of the level, selects a random subgoal ĝ ∈ Gs (i.e., gem), obtains
the plan p(s, ĝ), and executes it. Once ĝ has been achieved, the agent executes a
number n of random actions, where n has been uniformly sampled from 1 to 10.
After executing the random actions, it obtains and executes the plan to another
random subgoal. These two phases (plan execution and random walk) interleave
until the agent achieves gf and solves the level, at which point this process starts
again from the initial state. Each time the agent executes an action, a sample is
collected and, once 5000 unique samples have been gathered, the dataset is saved.

86 CHAPTER IV. GOAL SELECTION WITH DEEP Q-LEARNING

This algorithm is used to extract the training dataset of the DQL model for each of
the 200 levels, for a total of one million unique samples, ten times more samples than
for the DQP model. The plan execution phase guarantees each trajectory always
solves the level (the agent ultimately achieves gf), whereas the random walk phase
helps the agent explore all the state space. This way, we are able to obtain samples
with both good diversity and quality.

These samples are of the form (s, a, r, s′) and correspond to the MDP
M , which describes the game from a standard RL perspective (see Section
IV.4.2.1). Each sample is interpreted as follows: the agent is at a state of the
game s, it then executes an action a among the set of possible actions A =
{UP,DOWN,LEFT,RIGHT,USE}, arriving at the next state s′, and obtain-
ing the immediate cost c = 1. It is important to note that, unlike the DQP model,
planning is only used here to collect samples. The DQL model itself does not learn
to select subgoals, and does not perform any type of planning when solving the test
levels.

The DQP and DQL models use the same architecture and hyperparameters, with
the following exceptions:

• The CNN of the DQL model receives as inputs both the current state s and
a possible action a ∈ A, and returns the predicted Q-value Q(s, a). The
state s is encoded as a one-hot tensor, whereas the action a is encoded as a
separate one-hot vector, and does not form part of the one-hot tensor encoding.
The DQL model also needs to know the orientation of the agent (NORTH,
EAST, SOUTH or WEST), which is encoded as an additional one-hot vector.
These two one-hot vectors, corresponding to the action and the orientation,
are concatenated to the flattened output of the third convolutional layer, and
together are provided as input to the first fully-connected layer of the CNN.

• Since the DQL model selects actions instead of subgoals like DQP, game tra-
jectories are effectively longer and, thus, we need to apply a smaller discount
to costs (i.e., use a larger value for γ). The discount factor of DQL is set to
γ = 0.99, the same value used in [158]. In addition, we experimented with
different learning rates and number of training steps (up to 10 million). We
found that α = 5e− 06 was the optimal learning rate, and 6.5 million the best
number of training iterations.

• Finally, we have implemented a mechanism for detecting and avoiding loops.
A loop occurs when the DQL model arrives at a state s′ which has already
been visited. Since the agent is deterministic, it will execute the exact same
sequence of actions from that point onwards, and will be forever trapped in a
loop. In order to avoid this, our algorithm saves a record of the states visited
by the agent and how many times they have been visited. If the agent arrives
at an unvisited state s′, the action with the highest Q-value is selected. If s′

has already been visited, then the agent selects the action with the highest Q-
value which has not been tried yet. If every action has been executed, then the
agent simply takes a random action. This way, the agent can escape loops.
However, due to this loop detection mechanism, the behaviour of the DQL
model becomes stochastic. For this reason, apart from action selection times
and plan lengths, we have also measured its success rate for each test level,

CHAPTER IV. GOAL SELECTION WITH DEEP Q-LEARNING 87

i.e., how many times it is able to solve each level out of 10 total executions,
while using fewer than 2000 actions.

IV.5.4 Discussion

As Figure 26 shows, the action coefficient of the DQP model decreases as the
number of training levels increases. This means that the model performs better, i.e.,
obtains shorter plans, as it is trained on more data, which was to be expected. First,
the performance of the model improves rapidly from 10 to 50 training levels. Then,
it slows down from 50 to 100 levels, and there is only a slight improvement when
using 200 training levels instead of 100. Thus, the DQP model is able to obtain a
close-to-optimal performance when trained on 50000 samples split across 100 levels,
reaching an action coefficient of 0.41. This means that, on average, it obtains plans
with only 41% of the number of actions used by a model which selects subgoals at
random.

As it will be later argued, these are quite remarkable results, since they show that
the DQP model is able to properly generalize what has learned in the training levels
to the previously unseen test levels, while needing only a fraction of the training
data which standard RL algorithms use. Finally, we want to mention that, as more
training data is used, the standard deviation of the action coefficient is also reduced.
For a dataset of 100 training levels, the standard deviation is equal to 0.068 and,
for 200 levels, it is equal to 0.053. This means that, when trained on enough data,
the DQP model is able to obtain consistent, stable results across all executions.

Table 2 compares the results obtained by the different models, in terms of plan
lengths, time requirements and success rate (the latter metric is only used for the
DQL model). Regarding time requirements, we observe how the DQP model is
able to solve every test level in under two seconds of total time, which is equal
to the sum of goal selection and planning times. Besides, there is no significant
difference between the times obtained for easy and hard levels. The Random Model
also obtains similar times across all levels, although these times are smaller than
those of the DQP model. This happens because the RM model does not spend time
selecting subgoals, as they are selected at random.

The behaviour of the models based on Classical Planning (BFS, EHC and OPT)
is very different. Planning times for these models vary greatly depending on the
particular level, not being able to solve many of them under one hour. The BFS
model, which uses the exact same search strategy as the Planner Module of the DQP
model, can only solve three easy levels in reasonable time, approximately needs 1.5,
3 and 8 minutes to solve levels 10, 0 and 3, respectively, and cannot solve five out of
the six hard levels. The EHC model can only solve four easy levels in a reasonable
period of time, can find plans for three hard levels but at the cost of spending much
more planning time and, finally, cannot solve one easy level and three hard levels.
Lastly, the OPT model can only find the optimal plans for three easy levels, while
requiring more than five minutes for one of them.

In addition, it has a success rate of 10% for that level, meaning that it is only able
to do it once out of the ten executions. As these results surprised us, we performed
additional experimentation for the DQL model in order to validate the model. We
designed a simple level consisting of a small confined area with only 23 gems, the
agent and the exit. We collected 30000 samples from this level and trained the

88 CHAPTER IV. GOAL SELECTION WITH DEEP Q-LEARNING

DQL model only on the dataset extracted from this level. The DQL model was able
to consistently solve this simple level, although not in an optimal way. Therefore,
the bad performance of the DQL model shows that the standard Deep Q-Learning
algorithm needs to be trained on more than just one million samples (and possibly
also for more training iterations) to be able to successfully solve the Boulder Dash
game, especially when trained and tested on different sets of levels.

Unlike DQL, the DQP model is able to solve each test level and obtains plans
of good quality. It attains an action coefficient of 0.4 meaning that, by learning
to select subgoals with Deep Q-Learning, we are able to obtain plans on average
60% shorter than those obtained by selecting subgoals at random. If we divide the
length of the plans obtained by the DQP model by those obtained using the BFS
model, not considering those levels BFS cannot solve, and calculate the geometric
average (as we did to obtain the action coefficient), we obtain a value of 1.09. If
we repeat the same calculation for the EHC model, we now obtain a value of 1.15.
These values mean that, on average, the DQP model obtains plans with 9% and
15% more actions than the BFS and EHC models, respectively.

To sum up, the results of our experiments show how the DQP model performs
better than standard Deep Q-Learning and Classical Planning, when both plan
quality and time requirements are considered. On the one hand, we are able to
drastically increase the performance of Deep Q-Learning by applying it to select
subgoals instead of actions, and using a planner to achieve the selected subgoals.
Results show how the DQP model greatly outperforms DQL while being trained on
a dataset ten times smaller, meaning our DQP approach is at least one order of mag-
nitude more sample-efficient than standard DQL. Moreover, DQP also generalizes
better when applied to levels not seen during training, as DQL only solves 1 out of
the 11 test levels considered, and only does so in one out of the ten executions. We
attribute this gap in performance to the formulation of the task using goal selection
(i.e., as M g) instead of the standard RL approach (i.e., as M), which reduces the
state space (since Sg ⊂ S) and simplifies the learning problem.

On the other hand, the comparison between DQP and the models based on
Classical Planning has shown how our goal selection approach is able to substantially
reduce the time requirements of classical planners for most levels. In addition, it
achieves consistent, stable times across all 11 test levels, whereas FF exhibits drastic
variation in time performance, depending on the test level and the search strategy
applied. This comes at the expense of a small decrease in plan quality, as our
approach obtains plans with 9% more actions than the BFS model, which applies
the exact same search strategy as the Planner Module of the DQP model.

IV.6 Conclusion

In this chapter, we proposed a neuro-symbolic, planning and acting architecture
that combines DRL with a symbolic AP algorithm. Our method learns to select
subgoals using Deep Q-Learning, which are then achieved with the help of a classical,
PDDL-based planner. It was trained on a deterministic version of the game known
as Boulder Dash, using different levels for training and testing in order to measure
its generalization abilities. We conducted experiments to measure how the quality
(i.e., length) of the plans obtained with our approach improves as more training
data is made available. Additionally, we compared the performance of our model,

CHAPTER IV. GOAL SELECTION WITH DEEP Q-LEARNING 89

in terms of both plan quality and time requirements, with that of standard Deep
Q-Learning and Classical Planning methods.

The results obtained show our DQP model is able to find plans of good quality
while meeting real-time requirements. Thanks to goal selection, it is able to exploit
the existing synergy between AP and RL and obtain better results than any of these
techniques on their own. On the one hand, we adapted the MDP formulation to our
goal selection and planning approach, training the Deep Q-Learning algorithm to se-
lect subgoals instead of actions. This way, we were able to improve sample-efficiency
and generalization across levels, with DQP obtaining plans of better quality than
standard Deep Q-Learning despite the latter being trained on ten times more data.
On the other hand, our DQP model substantially reduces the time requirements
of AP techniques, at the expense of obtaining plans with only 9% more actions on
average. Thanks to goal selection, DQP is able to solve every game level under 2
seconds of total time. Conversely, when no goal selection is performed, the same
planner DQP uses can only solve 3 out of 11 levels under one minute.

Chapter V

Heuristic Learning with
Admissible Bounds

V.1 Introduction

This chapter presents a neuro-symbolic method for improving the per-
formance of SP algorithms by using heuristic learning, which was developed
as part of a collaboration between the University of Granada and the MIT-
IBM Watson AI Lab. More specifically, it describes a statistically-motivated
approach for leveraging the prior knowledge contained in symbolic, ad-
missible heuristics in order to learn better heuristics with ML. Therefore,
the method detailed in this chapter fulfills the third subgoal (G3) of this disserta-
tion.

This chapter first provides a statistical formulation of heuristic learning as a
particular type of supervised learning. Then, it analyzes from a statistical lens the
different decisions taken in the heuristic learning literature, such as the choice of
training targets and loss to optimize, putting particular focus on how admissible
heuristics are utilized during training. From the Principle of Maximum Entropy, it
is argued that the heuristic to be learned should be modelled as a Truncated Gaus-
sian (or Truncated Normal) T N distribution (see Figure 27), where an admissible
heuristic acts as its lower bound, thus contraining heuristic predictions to be larger
than this admissible heuristic. This modelling choice results in a novel training loss,
different from the standard Mean Squared Error (MSE) loss that models the learned
heuristic as a Gaussian (or Normal) N distribution.

The proposed loss function is compared to MSE for learning heuristics from
optimal plan costs in a variety of planning domains and learning settings. Exper-
iment results show that modelling the learned heuristic as a T N instead of a N ,
i.e., training with the proposed loss function instead of standard MSE, results in
faster learning and overall yields more accurate heuristics that improve planning
performance.

V.2 Related works

Using admissible heuristics as lower bounds of a T N distribution may appear
trivial in the hindsight. Existing works use T N for ML most often in the context

90

CHAPTER V. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS 91

 0

 1

-2 -1 0 1 2

μ=0

x=0.3

E[x] E[x]

E[x]

N(x | 0, 1)
TN(x | 0, 1, -1.1, 0.4)
TN(x | 0, 1, -0.6, ∞)
TN(x | 0, 1, 0.2, 1.7)

Figure 27: The Truncated Gaussian distribution. The figure shows the probability density
function (PDF) of several Truncated Gaussian T N (µ, σ, l, u) distributions. All distributions share
the same µ = 0 and σ = 1 parameters, whereas the lower bound l and upper bound u is different
for each one. A T N (µ, σ, l, u) distribution assigns a probability p(x) equal to zero for any data
point x outside the interval (l, u), therefore truncating the PDF of a Gaussian distribution N (µ, σ)
to this range. In the method described in this chapter, learned heuristics are modelled as a
T N (µ, σ, l = h, u = +∞), where the lower bound l = h is given by some admissible heuristic such
as h = hLMcut. This serves to encode the prior knowledge about the optimal heuristic/cost-to-go h∗

always being equal or larger than an admissible heuristic h. The mean of a T N (µ, σ, l, u) (denoted
as E[x] in the picture) will always lie in the (l, u) range, so the heuristic predictions obtained at
planning time (equal to E[x]) will never be lower than the admissible heuristic h used as the lower
bound l.

of safety-aware planning, where the upper/lower bounds are arbitrary constraints
imposed by the environment or by a domain expert. For example, [165] uses T N
to model a Simple Temporal Network with Uncertainty (STNU) [239], which can
model a distribution of time within a specific start time or deadline. [60] uses T N
to optimize wireless device allocations, where the truncation encodes the range of
signal power. In robotics, T N is often used to limit the measurement uncertainty
[123].

In contrast, the admissible heuristics used as lower bounds in our proposed
method are formal bounds automatically proved by symbolic algorithms. For ex-
ample, hLMcut [102] is computed by deriving a so-called landmark graph, and then
reducing the costs on the edges that constitute a cut of the graph. To the best of
our knowledge, the method detailed in this chapter is the first ever to combine such
formally derived bounds with a T N distribution.

For instance, in applications of ML to Operations Research problems, such as the
vehicle routing problem, existing work often tries to learn to solve these tasks without
the help of heuristics [169]. Although [247] uses the optimal solution obtained by
a traditional optimal method (e.g. Concorde solver) for training and combines it
with existing admissible heuristics (i.e., the LKH heuristic) during testing, it does
not utilize the heuristic for training.

In the context of heuristic learning for AP, off-the-shelf heuristics have only
been used as a training target [212] or as a basis for residual learning [252]. In
RL, it is common practice to accelerate training through reward shaping, which

92 CHAPTER V. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS

is theoretically equivalent to residual learning [171]. There exists an extension of
reward shaping [38] that uses hand-crafted heuristics, and [80] employed hFF [108]
to shape rewards for CP. However, to the best of our knowledge, none has leveraged
admissible heuristics as lower or upper bounds. [38] also discussed the pessimistic
and admissible heuristics as desirable properties of RL and planning heuristics, but
their method does not explicitly use the upper/lower bound property for training.

V.3 Methods

V.3.1 Formulation of heuristic learning as a Supervised
Learning task

Let p∗(x) be the unknown ground-truth probability distribution of an observable
random variable x. In Supervised Learning, our goal is to learn a model (i.e.,
distribution) p(x) that estimates p∗(x) as closely as possible, using a training dataset
X =

{
x(1), . . . , x(N)

}
composed ofN data points (i.e., examples) sampled from p∗(x).

Given a dataset X , we denote its empirical data distribution as q(x), which draws
samples from X uniformly. This distribution is different from both p(x) and p∗(x)
because it corresponds to a distribution over a finite set of points, i.e., a uniform
mixture of dirac’s delta δ distributions (see Equation V.1). TheMaximum Likelihood
Estimation (MLE) framework assumes that the ground-truth distribution p∗(x) is
equal to the estimate or model p(x) that maximizes the probability p(x) of observing
each training example x ∼ q(x). Therefore, under the MLE framework, we maximize
the expectation of p(x) over q(x), as shown in Equation V.2:

q(x) =
N∑
i=1

q(x|i)q(i) =
N∑
i=1

δ(x = x(i)) · 1
N

(V.1)

p∗(x) = argmax
p

Eq(x)p(x) = argmax
p

∑
x∈X

q(x) · p(x) = argmin
p

Eq(x) − log p(x)

(V.2)

Typically, we assume p∗(x) and p(x) are of the same family of functions param-
eterized by θ, such as a set of DNN weights or the trees in random forests, i.e.,
p∗(x) = pθ∗(x), p(x) = pθ(x). This makes MLE a problem of finding the θ maxi-
mizing Eq(x)pθ(x). This is often achieved by minimizing a loss such as the negative
log likelihood (NLL) − log p(x), since the logarithm is monotonic and preserves the
optima θ∗ (see right-most side of Equation V.2). Furthermore, Eq(x) . . . is often es-

timated by Monte-Carlo sampling, i.e., Eq(x) − log p(x) ≈ 1
N

∑N
i=1− log p(xi), where

each xi is sampled from q(x).
We further assume p(x) to follow a specific distribution such as the Gaussian (or

Normal) distribution N (µ, σ):

p(x) = N (x | µ, σ) = 1√
2πσ2

e−
(x−µ)2

2σ2 (V.3)

We emphasize that the choice of distribution determines the loss. When
the model designer assumes p(x) = N (µ, σ), then the NLL is a shifted and scaled

CHAPTER V. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS 93

squared error:

− log p(x) = (x−µ)2

2σ2 + log
√
2πσ2 (V.4)

Likewise, a Laplace distribution L(x|µ, b) = 1
2b
e−

|x−µ|
b represents the absolute error

because its NLL is |x−µ|
b

+ log 2b.
For this reason, the NLL loss is more fundamental and theoretically grounded

than losses such as the Mean Squared Error (MSE), although it is “more complex”
due to the division by 2σ2 and the second term in Equation V.4. A reader unfamiliar
with statistics may rightfully question why such complications are necessary or why
σ is not commonly used by the existing literature. It is because many applications
happen to require only a single prediction for a single input (i.e., a point estimate).
When we model the output distribution as a Gaussian N (µ, σ), we often predict µ,
which is simultaneously the mean and the mode of the distribution and does not
depend on σ.

Moreover, the MSE is a special case of the NLL loss that can be derived from
a Gaussian distribution N (µ, σ). To derive the MSE, we first simplify the loss into
the squared error (x − µ)2 by setting σ to an arbitrary constant, such as σ = 1√

2
,

because the variance/spread of the prediction does not matter in a point estimation
of µ. As a result, we can also ignore the second term of Equation V.4 which is now
a constant. We then compute the expectation Eq(x)(x − µ)2 with a Monte-Carlo
estimate that samples N data points x1, . . . xN ∼ q(x), predict µ = µθ using an ML
model with parameters θ, and compute the average 1

N

∑N
i=1(xi−µθ)

2, thus obtaining
the formula of the MSE loss. In other words, the MSE loss is nothing more
than the Monte-Carlo estimate of the NLL loss of a Gaussian with a fixed
σ = 1√

2
. In contrast, distributional estimates represent the entire p(x). For instance,

if p(x) = N (µ, σ), then the model predicts both µ and σ.
The MLE framework can be applied to the supervised heuristic learning setting

as follows. Let q(s, x) be the empirical data distribution, where s is a random variable
representing a state-goal pair (from now on, we will implicitly assume that states s
also contain goal information) and x is a random variable representing the cost-to-go
(regardless of whether it corresponds to a heuristic estimate, optimal or suboptimal
cost). Then, the goal is to learn p∗(x | s) where:

p∗(x | s) = argmax
θ

Eq(s,x)pθ(x|s) (V.5)

pθ(x | s) = N (x | µ = µθ(s), σ = 1√
2
) (V.6)

and µθ(s) is the main body of the learned model, such as a DNN parameterized by
weights θ. Supervised heuristic learning with distributional estimates is formalized
in a similar manner, where the only difference is that an additional model (e.g.
another DNN) with parameters θ2 predicts σ:

p(θ1,θ2)(x | s) = N (x | µ = µθ1(s), σ = σθ2(s)) (V.7)

V.3.1.1 The Principle of Maximum Entropy

The discussion above models p(x) as a Gaussian distribution. While the as-
sumption of normality (i.e., following a Gaussian) is ubiquitous, one must be able

94 CHAPTER V. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS

to justify such an assumption. The Principle of Maximum Entropy [115] states that
p(x) should be modeled as the maximum entropy (max-ent) distribution among all
those that satisfy our constraints or assumptions, where the entropy is defined as
Ep(x)⟨− log p(x)⟩. A set of constraints defines its corresponding max-ent distribution
which, being the most random among those that satisfy those constraints, minimizes
assumptions other than those associated with the given constraints. Conversely, a
non max-ent distribution implicitly encodes additional or different assumptions that
can result in an accidental, potentially harmful bias. For example, if we believe that
our random variable x has a finite mean, a finite variance and a support (also called
domain or range) equal to R, then it must be modeled as a Gaussian distribution
according to this principle because it is the max-ent distribution among all those
that satisfy these three constraints.

In other words, a person designing a loss function for training an ML model must
devise a reasonable set of constraints on the target variable x to be learned. Then, it
must identify the max-ent distribution p(x) associated with these constraints, which
will automatically determine the correct NLL loss for training the model. In this
chapter, we try to follow this principle as faithfully as possible.

V.3.2 Utilizing bounds for learning heuristics

In the previous section, we provided some statistical background on heuristic
learning. We now leverage this background to analyze many of the decisions taken
in the existing literature, sometimes unknowingly, putting particular focus on how
admissible heuristics are used during training. Based on this analysis, we argue that
the proper way of utilizing the information provided by admissible heuristics is using
them as the lower bound of a Truncated Gaussian T N distribution representing the
learned heuristic.

We previously explained that the heuristic to be learned is modeled as a prob-
ability distribution (e.g., a Gaussian N), instead of as a single value. The main
reason for this is that the ML model is unsure about the true heuristic value h∗

associated with a state s. When it predicts µ, it believes not only that µ is the most
likely value for h∗, but also that other values are still possible. The uncertainty of
this prediction is given by σ: the larger this parameter is, the more unsure the model
is about its prediction. The commonly used MSE loss is derived from the ad-hoc
assumption that σ is fixed, i.e., independent from s, which means that the model
is equally certain (or uncertain) about h∗ for every state s. This is unrealistic in
most scenarios: it is generally more difficult to accurately predict h∗ for states that
are further from the goal, for which the uncertainty should be larger. Therefore,
the model should predict σ in addition to µ, i.e., it should output a distributional
estimate of h∗ instead of a point estimate.

Another crucial decision involves selecting what to learn, i.e., the target or ground
truth to use for training. It is easy to see that training a model on a dataset
containing a practical (i.e., computable in polynomial time) heuristic, admissible or
otherwise, such as hLMcut or hFF, does not provide any practical benefits because,
even if the training is successful, all we get is a noisy, lossy and computationally-
expensive copy of a heuristic that is already efficient to compute. Worse still, trained
models always lose the admissibility property even if the training target is admissible.
To outperform existing poly-time heuristics, i.e., achieve a super-symbolic benefit

CHAPTER V. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS 95

from learning, it is imperative to train the model on data of better quality, such
as h+ as proposed in [212] or optimal solution costs h∗. Although obtaining these
datasets may prove computationally expensive in practice, e.g., h+ is NP-hard to
compute, we can aspire to learn a heuristic that outperforms the poly-time heuristics
by training on these targets.

If poly-time admissible heuristics are not ideal training targets, does this mean
they are completely useless for learning a heuristic? Intuitively, this should not be
the case, given the huge success of heuristic search where they provide strong search
guidance towards the goal. Our main question is then how we should exploit the
information they contain. To answer this question, we must revise the assumption
we previously made by using squared errors, i.e., that x = h∗ follows a Gaussian
distribution N (µ, σ). The issue with this assumption is that N (µ, σ) assigns a non-
zero probability p(x) to every x ∈ R, but we actually know that h∗ cannot take
some values, e.g., negative values. Additionally, given an admissible heuristic such
as hLMcut, we know that hLMcut ≤ h∗ holds for every state; therefore p(x) = 0 when
x < hLMcut. Analogously, if for some state s we know the cost hsat of a satisficing
(non-optimal) plan from s to the goal, then hsat acts as an upper bound of h∗.

According to the Principle of Maximum Entropy, which serves as our why, if we
have a lower l and upper u bound for h∗, then we should model h∗ using the max-ent
distribution with finite mean, finite variance, and a support equal to (l, u), which is
the Truncated Gaussian distribution T N (x|µ, σ, l, u), as proven by [55]. Equation
V.8 shows the formula for this distribution:

T N (x|µ, σ, l, u) =

{
1
σ

ϕ(x−µ
σ

)

Φ(u−µ
σ

)−Φ(l−µ
σ

)
l ≤ x ≤ u

0 otherwise,
(V.8)

where ϕ(x) = 1√
2π

exp x2

2
, Φ(x) = 1

2
(1 + erf(x)),

l is the lower bound, u is the upper bound, µ is the pre-truncation mean, σ is
the pre-truncation standard deviation, and erf is the error function. T N has the
following NLL loss:

− log T N (x|µ, σ, l, u) = (x− µ)2

2σ2
+ log

√
2πσ2 + log

(
Φ
(
u−µ
σ

)
− Φ

(
l−µ
σ

))
(V.9)

Modeling h∗ as a T N instead of N presents several advantages. Firstly, T N
constrains heuristic predictions to lie in the range (l, u) given by the bounds of the
distribution. Secondly, T N generalizes N as T N (µ, σ,−∞,∞) = N (µ, σ) when
no bounds are provided. Finally, T N opens the possibility for a variety of training
scenarios for heuristic learning, with a sensible interpretation of each type of data,
including admissible heuristics and satisficing solution costs.

In this chapter, we focus on the scenario where an admissible heuristic h is
provided along with the optimal solution cost h∗ for each state, leaving other set-
tings (e.g., satisficing costs hsat in addition to admissible heuristics) for future
work. In this case, h acts as the lower bound l of h∗, which is modeled as a
T N (x = h∗|µ, σ, h,∞), where µ and σ are predicted by an ML model. Note that
we cannot use h∗ as T N (h∗|µ, σ, h∗, h∗) since, during evaluation/test time, we do
not have access to the optimal cost h∗. Also, this modeling decision is feasible even
when no admissible heuristic is available (e.g., when the PDDL description of the
environment is not known, as in Atari games [14]) since we can always resort to the

96 CHAPTER V. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS

blind heuristic hblind(s) or simply do l = 0, which still results in a tighter bound
than the one provided by an untruncated Gaussian N (µ, σ) = T N (µ, σ,−∞,∞).

Finally, our setting is orthogonal and compatible with residual learning [252],
where the ML model does not directly predict µ but rather a residual or offset ∆µ
over a heuristic h, where µ = h +∆µ. Residual learning can be seen as initializing
the model output µ around h which, when h is a good unbiased estimator of h∗,
facilitates learning. This technique can be used regardless of whether h∗ is modeled
as a T N or N because it merely corresponds to a particular implementation of
µ = µθ(s), which is used by both distributions. Residual learning is analogous
to the data normalization commonly applied in standard regression tasks, where
features are rescaled and shifted to have a mean equal to 0 and variance equal to
1. However, residual learning is superior in the heuristic learning scenario because
targets (e.g., h∗) are skewed above 0 and because the heuristic used as the basis for
the residual can handle out-of-distribution data due to its symbolic nature.

V.3.2.1 Planning with a Truncated Gaussian heuristic

At planning time, we must obtain a point estimate of the output distribution,
which will be used as a heuristic to determine the ordering between search nodes.
As a point estimate, we can use any statistic of central tendency, thus we choose the
mean. It is important to note that the µ parameter of T N (µ, σ, l, u) is not the mean
of this distribution since µ corresponds to the mean of N (µ, σ) (i.e., the mean of
the distribution before truncation) and does not necessarily lie in the interval (l, u).
The mean of a Truncated Gaussian is obtained according to Equation V.10. It is
important to note that a naive implementation of this formula results in rounding
errors when calculating the mean. In the Appendix, we explain how it can be
implemented in a numerically stable manner.

E[x] = µ+ σ
ϕ(l−µ

σ
)− ϕ(u−µ

σ
)

Φ(u−µ
σ

)− Φ(l−µ
σ
)

(V.10)

Equation V.10 satisfies the constraint l ≤ E[x] ≤ u. This means that, when a
lower bound l is provided (e.g., by an admissible heuristic), the heuristic prediction
(equal to E[x]) returned by the model will never be smaller than l. Analogously,
when an upper bound u is also provided (e.g., by a satisficing solution cost), the
model will never predict a heuristic value larger than u. Due to this, our hypothesis
was that the use of a T N during planning would help the model make predictions
closer to h∗ than the bounds l, u themselves, potentially helping it achieve a super-
symbolic improvement over admissible heuristics. The results of our experiments
(see Section V.4) confirm this hypothesis.

In contrast, the mode argmaxx p(x) of the T N distribution is uninteresting.
While we could use it as an alternative point estimate, it is the same as the un-
truncated mean µ when the predicted µ is within the bounds, and equal to either
the upper or lower bound otherwise (see Figure 27). However, this inspires a naive
alternative that is applicable even to N , which is to clip the heuristic prediction
E[x] (equal to µ for N) to the interval [l, u]. This trick should only provide marginal
gains as it only improves really bad predictions, i.e., those which would lie outside
[l, u] otherwise, and does not affect predictions that correctly lie inside [l, u]. In our
experiments (see Section V.4), we show this approach is inferior to our first method.

CHAPTER V. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS 97

We emphasize again that despite the use of admissible heuristics during train-
ing the learned heuristic is itself inadmissible, the same as heuristics learned us-
ing any other method from existing literature. In case a distributional estimate
is employed, i.e., if the ML model also learns to predict σ, we could then discuss
likely-admissibility [61, 154]. However, this extension is left for future work.

V.4 Experiments and analysis of results

This section describes the experimental setup and analyzes the results obtained.
Experiments are designed to compare the accuracy and planning performance of
the heuristics learned with our proposed loss function versus standard MSE under
the domain-specific generalization setting, where learned heuristics are required to
generalize across different problems of a single domain. In this section, we focus on
the most important subset of experiments, leaving the rest of the experimentation
for the Appendix, which also provides an in-depth description of the experiment
configurations.

V.4.1 Experimental setup

Data Generation. We trained our system on four CP domains: blocksworld,
ferry, gripper, and visitall. For each domain, we generated three sets of problem
instances (train, validation, test) with parameterized generators used in the Inter-
national Planning Competitions [236]. We provided between 456 and 1536 instances
for training (the variation is due to the difference in the number of generator pa-
rameters in each domain), between 132 and 384 instances for validation and testing
(as separate sets), and 100 instances sampled from the test set for planning. The
Appendix describes the domains and generator parameters. Notably, the test in-
stances are generated with larger parameters in order to assess the generalization
capability. To generate the dataset from these instances, we optimally solved each
instance with A* [95] and hLMcut in FastDownward [100] under 5min runtime / 8GB
memory (train,val) and 30min runtime / 8GB memory (test). Whenever it failed to
solve an instance within the limits, we retried generation with a different random
seed up to 20 times until success, thus ensuring a specified number of instances were
generated. We also discarded trivial instances where the goal was already satisfied
at the initial state. For each state s in the optimal plan, we archived h∗ and the
values of several heuristics (e.g., hLMcut and hFF). Therefore, each instance was used
to obtain several data points.

Model Configurations. We evaluated three different ML methods to show that
our proposed approach is implementation-agnostic. Neural Logic Machine (NLM)
[53] is an architecture designed for inductive learning and reasoning over symbolic
data (see Section II.3.2 for more information). STRIPS-HGN [212] (HGN for short)
is another architecture based on the notion of hypergraphs. Lastly, we used linear
regression with the hand-crafted features proposed by [86], which comprise the values
of the goal-count hGC [69] and hFF [108] heuristics, along with the total and mean
number of effects ignored by the relaxed plan of the FastForward planner.

We analyze our learning & planning system from several orthogonal axes. Gaus-
sian vs. Truncated: Using µ(s) as the parameter of a Gaussian N (µ(s), σ(s)) or
Truncated Gaussian T N (µ(s), σ(s), l,∞) distribution. Learned vs. fixed sigma:

98 CHAPTER V. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS

Predicting σ(s) or using a constant value σ(s) = 1√
2
, as it is done for the MSE loss.

Lower bounds: Computing the lower bound l with the hLMcut heuristic. When we
use a Gaussian distribution, l is used to clip the heuristic prediction E[x] = µ(s)
to the interval [l,∞). Ablation studies with l = hmax(s) [25] and l = hblind(s)
are included in the Appendix. Residual learning: Either using the model to
directly predict µ(s) or to predict an offset ∆µ(s) over a heuristic h(s), so that
µ(s) = ∆µ(s) + h(s). We use h = hFF as our unbiased estimator of h∗, as proposed
in [252]. In the Appendix, we conduct experiments with hLMcut as the basis of the
residual.

Training. We trained each configuration with 5 different random seeds on a
training dataset that consists of 400 problem instances subsampled from the entire
training problem set (456-1536 instances, depending on the domain). Due to the
nature of the dataset, these 400 problem instances can result in a different number
of data points depending on the length of the optimal plan of each instance. We
performed 4 × 104 weight updates (training steps) using AdamW [147] with batch
size 256, weight decay 10−2 to avoid overfitting, gradient clip 0.1, learning rate of
10−2 for the linear regression and NLM, and 10−3 for HGN. All models use the NLL
loss for training, motivated by the theory, but note that the NLL of N (µ, σ = 1/

√
2)

matches the MSE up to a constant, as previously noted. For each model, we saved
the weights that resulted in the best validation MSE metric during training. On a
single NVIDIA Tesla V100, each NLM training took ≈ 0.5 hours except in visitall
(≈ 2 hours). HGN was much slower (≈ 3 hours except ≈ 15 hours in blocksworld).
Linear models trained much faster (12-20 minutes).

Evaluation Scheme. We first report two different metrics on the test set:
“MSE” and “MSE+clip”. Here, MSE is the mean squared error between the ground
truth h∗(si) and the predicted value h(si) = E[x], i.e., 1

N

∑N
i=1(h(si) − h∗(si))

2, for
the i-th state si of N states in the test dataset. E[x] of T N is given by Equation
V.10, while E[x] of N is simply µ. “+clip” variants are exclusive to N and they clip
µ to l, i.e., use max(µ, l) in place of µ to compute the MSE. We also obtained the
MSE for h = hFF and h = hLMcut.

We then evaluate the planning performance using the point estimate provided
by each model as a heuristic function to guide a search algorithm. Since the learned
heuristic is inadmissible, we evaluate our heuristics in an agile search setting, where
Greedy Best-First Search (GBFS) [24] is the standard algorithm. We do not use
A* because it does not guarantee finding the optimal (shortest) plan [199] with
inadmissible heuristics and it is slower than GBFS for agile search, since it needs to
explore all nodes below the current best f = g + h value, which is unnecessary for
finding a satisficing solution. In our experiments, we evaluate search performance
as the combination of the number of solved instances and the number of heuristic
evaluations required to solve each instance, with a limit of 10000 evaluations per
problem. We do not use runtime as our metric so that results are independent of
the hardware and software configuration. Additionally, we evaluated GBFS with
the off-the-shelf hFF heuristic as a baseline. The planning component is based on
Pyperplan [5].

CHAPTER V. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS 99

learn/hFF learn/none fixed/hFF fixed/none

domain metric hFF hLMcut N T N N T N N T N N T N

blocks MSE 22.8 25.06 .76±.1 .65±.1 3.26±.6 2.71±.4 .83±.1 .66±.1 2.97±.9 2.44±.3
+clip .76±.2 2.91±.4 .83±.2 2.74±.6

ferry MSE 9.77 11.10 3.73±.7 3.45±.8 141.05±29.4 8.63±2.7 2.98±1.4 3.85±.9 118.59±10.4 9.58±1.5
+clip 3.72±.6 10.44±28.4 2.98±1.1 10.50±9.6

gripper MSE 9.93 15.82 3.65±.9 3.70±.9 68.12±16.0 5.65±1.3 3.69±.9 3.72±.9 68.22±16.1 11.97±2.2
+clip 3.65±.7 13.37±15.2 3.69±.8 13.38±14.5

visitall MSE 13.9 36.4 7.67±.4 5.30±.6 25.31±7.9 9.70±1.6 6.49±.6 6.62±.9 21.71±2.6 14.11±1.0
+clip 7.60±.4 18.79±7.3 6.35±.6 16.38±2.3

Table 3: Test accuracy of NLM heuristics. Each number represents the mean±std of 5 random
seeds. For each configuration, we performed 104 training steps, saving the checkpoints with the
best validation MSE metric. We tested several orthogonal configurations: 1) Learning σ (learn) or
fixing it to 1√

2
(fixed) and 2) Using residual learning (hFF) or not (none). For each configuration,

we compare the test MSE metric (smaller is better) of the Gaussian (N) and Truncated Gaussian
(T N) models. Rows labeled as +clip denote a N model where µ is clipped above hLMcut. For
each configuration, the best average MSE among N , N+clip, and T N is highlighted in bold, if
the value gap to the second-best is larger than 0.1. Results for linear regression and STRIPS-HGN
models are provided in the Appendix.

0.3

0.4

0.5

0.6

0.7

0.8

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

Figure 28: Convergence speed of T N vs N models. The figure shows a comparison of the
training curves (x-axis: training step) for the validation MSE loss (y-axis, logarithmic) between
Gaussian N (orange) and Truncated Gaussian T N (blue) models on the logistics CP domain.
For each model, we recorded results from independent runs with five different random seeds. The
training loss converges faster for the T N models due to the additional information provided by
the admissible lower bound l = hLMcut.

V.4.2 Heuristic accuracy analysis

We focus on the results obtained by the NLM models, as our conclusions from
the Linear and HGN models were not substantially different (see Appendix). Table 3
shows the MSEmetric of the heuristics obtained by different configurations evaluated
on the test instances (which are significantly larger than the training instances).
Compared to the models trained with the NLL loss of N , those trained with our
proposed T N loss often result in significantly more accurate heuristics. For example,
in ferry and gripper, some N models completely fail to learn a useful heuristic, as
shown by the large heuristic errors (e.g., the base N /fixed/none model on ferry
obtains an MSE of 118.59). In these situations, the clipping trick often reduces
errors significantly (e.g., the N +clip/fixed/none model on the same domain obtains
an MSE of 10.50). However, this simply indicates that the N models are falling back

100 CHAPTER V. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS

to the hLMcut heuristic for those (many) predictions which are smaller than hLMcut.
This is why, even with clipping, N models fail to match the accuracy of T N models
in many cases. For example, the MSE of N+clip/learn/none on gripper is 7.7 points
larger than the one of T N /learn/none. This confirms our hypothesis that admissible
heuristics such as hLMcut should be used as the lower bound of T N , instead of simply
to perform post-hoc clipping of heuristic predictions.

Additional observations are detailed below. First, T N tends to converge faster
during training, as shown in Figure 28. Second, residual learning often improves
accuracy considerably, thus proving to be an effective way of utilizing inadmissible
heuristics. Third, we observe that trained heuristics, including those that use
residual learning from hFF, tend to be more accurate than hFF. This rejects the
hypothesis that residual learning is simply copying the values predicted by hFF.
Fourth, learning σ helps T N exclusively. For every N and T N model, Table 3
contains 2 comparisons related to σ (learn/none vs. fixed/none and learn/hFF vs.
fixed/hFF) across 4 domains, resulting in a total of 8 comparisons. Out of 8 cases,
learning σ degrades the MSE of N in 5 cases, while it improves the MSE of T N in
7 cases. This happens because σ affects the mean E[x] of T N used as the heuristic
prediction but it does not for N . In other words, T N models require both µ and σ
in order to achieve good heuristic accuracy. This explains why T N /fixed/hFF is not
as competitive as N /fixed/hFF: fixed/hFF is an ill-defined configuration for T N .

V.4.3 Planning performance analysis

learn/hFF (proposed) fixed/none (baseline)
domain hFF N N+clip T N N N+clip T N

Ratio of solved instances under 104 evaluations (higher is better)

blocks .13 .84±.19 .85±.19 .88±.14 .79±.29 .50±.35 .55±.33
ferry .82 .91±.19 .91±.19 .98±.05 .01±.01 .57±.10 .58±.13
gripper .96 1 1 1 0 .92±.12 1
visitall .86 .97±.07 .98±.06 .98±.05 .82±.33 1 1

Average node evaluations (smaller is better)

blocks 9309 2690±2128 2681±2121 2060±1607 4118±2663 6268±2675 5903±2685
ferry 5152 3216±1964 3117±1967 2477±1093 9933±92 6675±582 6475±725
gripper 3918 1642±139 1643±141 1637±492 10000±0 2941±1513 1709±658
visitall 3321 2156±1451 2148±1511 1683±1290 3384±3448 591±216 612±363

Table 4: Planning performance of NLM heuristics. For each model, the table shows the
average±stdev of the ratio of solved instances under 104 node evaluations and number of evaluated
nodes. We use a value of 104 node evaluations for instances the planner failed to solve. Results are
obtained using the NLM weights that resulted in the best validation MSE during training. We also
show results for the off-the-shelf hFF heuristic. For each configuration (learn/hFF or fixed/none),
we highlight the best values in bold.

We compared the search performance of GBFS using heuristic functions obtained
by the different models as well as the off-the-shelf hFF heuristic. We included our
proposed learn/hFF configuration and the baseline fixed/none configuration. Results
for learn/none and fixed/hFF can be found in the Appendix. Table 4 shows the
average±stdev of the ratio of problem instances solved (i.e., coverage), where a value
of 1 means all instances are solved, and the average number of node evaluations per

CHAPTER V. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS 101

problem over 5 seeds. The second metric is introduced to differentiate between
methods that solve most or all of the instances.

We observed that, with our proposed learn/hFF configuration, the learned heuris-
tics significantly outperform the off-the-shelf hFF heuristic. Additionally, T N out-
performs N and N+clip in every domain when both the ratio of solved instances
and number of node evaluations are considered (the second metric is used to break
ties in the first one).

Conversely, with the traditional but less ideal fixed/none configuration, several
learned heuristics are surpassed by hFF and, also, T N is outperformed by N or
N+clip in some cases. These results align with those shown in Table 3. Firstly, N
models which do not use clipping sometimes learn dismal heuristics (e.g., in gripper,
N /fixed/none fails to solve any instance). Secondly, T N models need to predict σ
(in addition to µ) in order to learn heuristics of good quality.

V.5 Conclusion

In this chapter, we studied the problem of supervised heuristic learning under
a statistical lens, focusing on how to effectively utilize the information provided by
admissible heuristics. Firstly, we provided some statistical background on heuris-
tic learning which was later leveraged to analyze the decisions made (sometimes
unknowingly) in the literature. We explained how the commonly used MSE loss
implicitly models the heuristic to be learned as a Gaussian distribution. Then, we
argued that this heuristic should instead be modeled as a Truncated Gaussian, where
admissible heuristics are used as the lower bound of the distribution. We conducted
extensive experimentation, comparing the heuristics learned with our truncated-
based statistical model versus those learned by minimizing squared errors. Results
show that our proposed method improves convergence speed during training and
yields more accurate heuristics that result in better planning performance, thus
confirming that it is the correct approach for utilizing admissible bounds in heuris-
tic learning.

Our findings serve to answer three important questions within heuristic learning:
What should the ML model learn? To achieve super-symbolic benefits, we
should use expensive targets such as h∗, not poly-time heuristics or sub-optimal plan
costs; how should we train the model? We should maximize the likelihood of
the observed targets h∗ assuming a Truncated Gaussian distribution lower-bounded
by an admissible heuristic. Why so? Due to the Principle of Maximum Entropy.
In this setting, the Truncated Gaussian is the distribution that encodes our prior
knowledge about h∗ being lower-bounded by an admissible heuristic, without any
extra assumptions that could result in harmful bias.

Chapter VI

Problem Generation with
Neuro-Symbolic AI

VI.1 Introduction

This chapter presents a neuro-symbolic method for the automated gen-
eration of planning problems for any CP domain1, so that they are valid,
diverse and difficult to solve. Therefore, the method described in this chapter
fulfills the fourth subgoal (G4) of this dissertation. To the best of our knowledge,
no other method in the scientific literature manages to achieve this.

The proposed approach, named NeSIG (Neuro-Symbolic Instance Generator),
receives as inputs a PDDL domain description, a set of consistency constraints
generated problems must satisfy, the maximum allowed problem size and a list with
the predicates and object types that can appear in problem goals. Then, it leverages
this information to learn to generate valid, diverse and difficult problems for the
planning domain provided as input. Problem generation is formulated as an MDP, in
which problems are created step-by-step. First, the problem initial state is obtained
by sequentially adding atoms and objects to some starting state, often the empty
state. Next, a sequence of actions are executed at the generated initial state to arrive
at another (goal) state, from where the problem goal will be obtained according to
the goal types and predicates provided by the user. To guide this generation process,
two generative policies, which are encoded by NLMs, are trained with DRL to
generate valid, diverse and difficult problems. Problem diversity is measured as the
distance/dissimilarity between generated problems, whereas difficulty is calculated
as the planning effort required to solve them. In order to assess whether a problem
is valid or not, we utilize the consistency constraints provided by the user, which
may encode rules such as “an object cannot be at two different places at the same
time”. We provide a novel, semi-declarative language [175] that combines Python
and FOL for encoding such rules with ease. Therefore, NeSIG reduces human effort
when compared to handcrafted domain-specific generators.

We test our method on five CP domains, comparing the problems generated
by NeSIG with those obtained by domain-specific generators and several ablations.
Results show NeSIG is able to automatically generate valid and diverse problems of
much greater difficulty (6.8 times more on geometric average) than domain-specific

1Due to the limitations of the parser [174] employed, we have restricted our scope to typed-
STRIPS domains with existential and negative preconditions.

102

CHAPTER VI. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI 103

generators. Additionally, NeSIG exhibits remarkable generalization capabilities, be-
ing able to generalize to problems more than twice the size of those encountered
during training.

VI.2 Related works

Several works have proposed domain-independent methods for planning problem
generation but, to the best of our knowledge, none of them have been able to generate
problems that are simultaneously valid, of good quality and diverse. [65] proposes
a random-walk approach to generate planning problems. It randomly creates an
initial state si and executes n actions at random to arrive at state sg. Then, it
selects a subset of the atoms of sg, which constitutes the goal g, and returns the
planning problem (si, g). Although the problems obtained are always solvable, they
may not exhibit the other properties (consistency, quality and diversity), as they
are generated at random. [75] also employs a random-walk approach but, unlike
the previous work, it uses semantics-related information provided by the user to
guarantee the consistency of the problems obtained. Thus, this method always
generates valid problems but provides no guarantees about their diversity or quality,
since they are also generated at random. [154] follows a different approach. It starts
from a predefined goal state and performs a backward search for the initial state.
The problems obtained are used to learn a planning heuristic. The proposed method
estimates its uncertainty and uses this value to search for problems with the right
difficulty for training the heuristic. Hence, this method is able to obtain valid
problems of good quality. However, it only works for domains where all problems
share the same single, predefined goal and for which there exists an inverse transition
model, i.e., for every action a that transitions from state s to s′ an inverse action a′

that goes from s′ to s must exist, which needs to be provided to the method.

Finally, it is worth to mention several works that address a similar problem to
the one tackled in this chapter. [126] proposes a method for obtaining diverse and
difficult planning tasks with different causal graphs. This work generates complete
tasks (i.e., domain-problem pairs) whereas NeSIG generates planning problems for
the particular domain provided by the user. [232] proposes Autoscale, a method for
obtaining valid and diverse problems with graded difficulty for their use in planning
competitions. However, unlike our proposed method, Autoscale does not gener-
ate problems on its own. Instead, it relies on domain-specific instance generators,
selecting a set of problems with graded difficulty among the ones they generate.
Therefore, Autoscale can be considered complementary to our approach, as it could
be used to select problems among those NeSIG generates.

VI.3 Methods

In this section we describe our method, shown in Figure 29. NeSIG takes as
inputs a PDDL planning domain, a set of consistency rules generated problems
must satisfy and some extra information, corresponding to the maximum size of
the problems to generate, and a list with the predicates and object types which

104 CHAPTER VI. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI

Figure 29: NeSIG. a) Architecture overview. NeSIG receives as inputs a PDDL domain,
several consistency rules and some extra information (maximum problem size and goal types and
predicates). It then trains two generative policies with Deep RL (see subfigure b) so that they
learn to generate valid, diverse and difficult problems for the domain provided as input. b) Pol-
icy training with Deep RL. Dashed lines represent the application of several MDP actions,
corresponding to adding an atom to the initial state in the case of the initial state policy (see
subfigure c), or executing a domain action in the goal state in the case of the goal policy (see
subfigure d). Dotted lines indicate the reward signal, accounting for the consistency rc, diversity
rv and difficulty rf of the problems generated. c) Initial state policy. It receives an MDP state
(sic,) corresponding to a partially-generated initial state and selects the next atom to add to sic.
d) Goal policy. It receives an MDP state (si, sgc) representing a complete initial state but a
partially-generated goal state and selects the next domain action to execute in sgc.

can appear in the problem goals.2 It then learns to generate problems for that
particular domain so that they are valid, diverse and difficult to solve (see Figure
29a). Problems are created via an iterative process that first generates the problem
initial state by sequentially adding objects and atoms to some predefined (often
empty) state and, then, executes domain actions from the initial state generated to
arrive at the goal state, where the problem goal is obtained according to the goal
predicates and types specified by the user. We now discuss how validity, diversity and
difficulty are defined and measured, present our novel MDP formulation of problem
generation and explain how we leverage Deep RL to learn to generate problems with
the desired properties.

VI.3.1 Problem properties

VI.3.1.1 Validity

This property can be decomposed into two sub-properties: solvability and con-
sistency. A problem is considered solvable if there exists at least one valid plan
that achieves the problem goal starting from its initial state, i.e., which solves the
problem. By design, every problem generated by NeSIG is solvable, since the goal
of a problem is generated by executing applicable domain actions from its initial
state. In other words, the trajectory followed to generate the problem goal from
its initial state is a valid plan that solves the problem. A problem is considered
consistent if its initial state represents a possible initial situation (state) within the
system modeled by the planning domain, in other words, if it makes sense. An
example consistency rule would be “an object cannot be at two places at the same
time.” Consistency constraints arise from the semantics of the domain and, since

2Additionally, NeSIG may also take as input the list of object types that can be added to the
problem initial state during generation. Nonetheless, this is completely optional and is only used
for improving NLM efficiency.

CHAPTER VI. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI 105

they are not encoded in its PDDL description, they need to be provided separately.
Additionally, they depend on human interpretation and preferences. Going back
to our previous example, some user could consider a state where one object is at
two different places (at(o, p1), at(o, p2)) at the same time to be consistent, and that
choice would be completely valid as there is nothing in the PDDL domain that for-
bids it. Since NeSIG learns to avoid inconsistent problems, consistency rules can
then be used to control the distribution of problems generated (e.g., forbid problems
with more than N objects of type t in their initial state). Thus, consistency rules
act as hard constraints imposed on the initial state of problems.

Due to the sequential nature of our proposed method, in which problem ini-
tial states are generated by incrementally adding objects and atoms to an initially
empty state or some other state provided by the user, we distinguish between con-
tinuous and eventual consistency. A continuous consistency rule is one which
must be continuously satisfied throughout the entire initial state generation pro-
cess. In order to make a continuous-inconsistent state consistent again we would
need to remove some atom(s) and/or object(s) from the state, which is forbidden
in our method. For this reason, NeSIG never adds objects or atoms which result
in continuous-inconsistent states. An example continuous consistency rule would be
“an object o cannot be at two places p1, p2 at the same time”, i.e., at(o, p1), at(o, p2)
is forbidden. If this constraint is not met, we would need to remove either at(o, p1)
or at(o, p2) from the initial state which, as previously stated, is forbidden. On the
other hand, eventual consistency rules are those which must be eventually satisfied
once the initial state has been completely generated, but do not need to be met
at each step of the generation process. An eventual-inconsistent state can be made
consistent if some particular combination of object(s) and/or atom(s) are added to
it. Therefore, eventual consistency is only checked at the end of the initial state gen-
eration process. An example eventual consistency rule would be “the initial state
must contain at least one object of type t”. If this constraint is not met, we can
simply add an object of type t to the state to make it eventual-consistent. We note
that, whenever some constraint can be encoded with both continuous and even-
tual consistency rules, we should always choose the former. The reason for this is
that continuous consistency rules serve to prune partially-generated initial states
from which no eventual-consistent state can be generated, thus facilitating learning
by removing dead-end states. Intuitively, the distinction between continuous and
eventual consistency is analogous to that of dense versus sparse rewards in RL.

Consistency rules are encapsulated in a consistency evaluator that provides two
methods. The first one returns whether the state resulting from adding some atom
(and optionally some objects) to the current state is continuous-consistent or not.
The second method receives a completely-generated initial state and checks whether
it is eventual-consistent or not. Although consistency rules must be provided by a
human designer on a per-domain basis, doing so is often much simpler than devising
a procedure for generating a diverse set of consistent problems, i.e., programming
an instance generator. To reduce human effort even further, we have designed a
novel, semi-declarative language for describing consistency rules. It allows the con-
struction of first-order logic (FOL) formulas (with counting quantifiers) expressing
conditions about state objects and atoms. For example, the consistency rule “the
initial state must contain at least 3 objects of type city” can be concisely expressed
as TE(x, type(x, city)) >= 3, where TE stands for There Exists and x is a FOL

106 CHAPTER VI. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI

variable. These formulas are then automatically evaluated, and their truth value
is stored in a Python boolean variable. Therefore, we can encode consistency rules
using either standard Python, FOL or a combination of them. This choice is trans-
parent to NeSIG and does not impact training. We detail the consistency rules for
each domain in the Appendix, showing how our semi-declarative language makes
possible to represent consistency constraints in an interpretable manner with just
a few lines of code. Finally, we have released our semi-declarative language as a
standalone Python package on GitHub [175], making it available for use in other
projects.

VI.3.1.2 Diversity

This property measures how different generated problems are from each other.
In order to measure diversity, we automatically extract a set of features for each
problem. We say that two objects are connected if they are instantiated on the
same atom, regardless of position. Based on this idea, we define the sets of connec-
tion features cµ and cσ. cµ[ti][p][tj] encodes how many objects of type tj, on average,
each object of type ti is connected to through atoms of predicate type p. Analo-
gously, cσ[ti][p][tj] contains the standard deviation instead of the mean number of
connections. For example, a value cµ[city][in][location] = 3 means that each city
contains (atom in) an average of three locations, whereas cσ[city][in][location] = 2
means that the standard deviation between the number of locations in each city is
2 (i.e., not every city contains the same number of locations). In total, we extract
7 groups of features, corresponding to the number of objects of each type in the
problem and, separately for the initial state and goal, the number of atoms of each
predicate type, cµ and cσ. They are divided by their sum so that, for each problem,
features in each group add up to one. Then, we calculate the pairwise problem dis-
tance as the absolute difference between their feature vectors, dividing distances by
7 ∗ 2 = 14 to normalize them to the [0, 1] range. Finally, the diversity of a problem
is equal to its average distance to all the problems in the set (excluding itself). We
have chosen this group of features for measuring problem diversity because they are
easily interpretable, can be efficiently extracted by a domain-independent method,
and consider all the constituents of a problem (objects and atoms) and how they
relate among them (cµ and cσ).

VI.3.1.3 Difficulty

In this work, we measure the quality of a problem by its difficulty. In other
words, our goal is to generate problems which are as hard to solve by a planner as
possible (in addition to being consistent and diverse). We have chosen difficulty as
our quality measure because it plays a central role in AP, where great effort has
been devoted to studying problem difficulty [42] and developing efficient algorithms
for solving difficult problems [25]. We measure difficulty as either the planning time
or number of expanded nodes of a particular planner in order to solve the problem.
Since this measure depends on the planner employed, during training we calculate
problem difficulty with a satisficing planner and then, at test time, we utilize a
different set of satisficing and optimal planners in order to assess whether NeSIG is
capable of generating problems that are challenging for different planners.

CHAPTER VI. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI 107

VI.3.2 Formulation of problem generation as an MDP

We propose to generate problems of the form (si, g), where si is the problem
initial state and g is the goal, via an iterative process which first generates si and
then g. The initial state generation phase starts either from an empty state (with
no objects or atoms) or from some predefined state provided by the user. Then, at
each step, a new atom is added to the initial state and, optionally, one or more new
objects. Once si has been completely generated, the goal generation phase begins
if the state meets the eventual consistency constraints. Otherwise, the problem is
discarded. Starting from si, the goal generation phase successively executes the
actions available in the domain to arrive at another state, known as the goal state
sg. Finally, the goal g is obtained by selecting a subset of the atoms in sg, according
to the goal predicates and object types specified by the user. For instance, in the
blocksworld domain, problem goals only contain atoms of the form on(block,block) by
design. This entire process is depicted in Figure 29b and a handcrafted example is
provided in the Appendix. It can be formulated as an undiscounted, reward-based,
finite-horizon MDP (S,A, app, t, r):

• S is the state space of the MDP. In our case, states correspond to (incomplete
or fully-generated) planning problems, represented by a two-element tuple
s = (sic, sgc), where the first element is the initial state and the second element
is the goal state. We use the subindex c (current) to denote when the initial
state sic and goal state sgc may not be completely generated yet. During the
initial state generation phase, we assume sgc is the empty state, represented
by the “ ” symbol.

• A is the action space, while App : S ×A→ {0, 1} is the applicability function
that determines if an action can be executed at a state or not. The set of
applicable actions App(s) of a state s is different for the initial state and goal
generation phases. In the initial state generation phase, App(s) corresponds
to adding a new atom to the initial state sic which preserves the continuous
consistency constraints (see Section VI.3.1.1). The objects this new atom is
instantiated on can already be present in sic or not. If they are not, we refer
to them as virtual objects, and are added to sic alongside their corresponding
atom. For example, if the applicable action add ontable(b1) is selected and
the object b1 does not exist in sic, then both the atom ontable(b1) and the
object b1 will be added to sic. Thus, instantiating atoms on virtual objects
is the mechanism we use to add new objects to the problem. In the goal
generation phase, App(s) is the subset of actions in the planning domain for
which their preconditions are met at the current goal state sgc. Additionally,
we add a termination action end to App(s). When end is applied during the
initial state generation phase, si = sic is fixed and, if si is eventual-consistent,
the goal generation phase starts from sgc = si. Otherwise, the MDP episode
concludes. When end is applied during the goal generation phase, sg = sgc is
fixed and the goal g is obtained from sg, so the problem (si, g) is returned and
the episode concludes. In order to control problem size, we set a maximum
number of actions for each generation phase so, if this number is reached, end
is executed and the corresponding phase concludes.

• t : S × A → S is the transition function. In our setting, t is deterministic

108 CHAPTER VI. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI

and returns the next MDP state (i.e., problem) resulting from executing an
applicable action at the current state. At the initial state generation phase,
executing an action a ∈ App(s) (different to end) at the current MDP state
s = (sic,) results in the state s′ = (s′ic,), where s′ic contains all the objects
and atoms of sic in addition to the atom associated with a and the virtual
objects instantiated on it (if any). At the goal generation phase, applying an
action a ∈ App(s) (different to end) at the current MDP state s = (si, sgc)
results in the state s′ = (si, s

′
gc), where s

′
gc is obtained by applying the (positive

and negative) effects of a to sgc.

• r : S ×A→ R is the reward function. In our setting, there are three different
reward sub-types accounting for problem consistency, difficulty and diversity.
At the end of the initial state generation phase, a consistency reward rc = −1
is given if si is eventual-inconsistent

3, as a form of penalization. At the end of
the goal generation phase, problems receive a difficulty reward rf equal to the
logarithm of their difficulty, and a diversity reward rv equal to their diversity.
In every other situation, rc, rf and rv are all 0. Finally, the (aggregate) reward
r is calculated as follows:

r = rc +min
(rv
θ
, 1
)
· rf (VI.1)

where θ ∈ [0, 1] is a hyperparameter known as the diversity threshold. We
now explain the rationale behind Equation VI.1. MDP trajectories resulting
in eventual-inconsistent problems will receive a reward r = −1 in their last
sample, since rv and rf will both be 0. For trajectories resulting in consistent
problems, the reward (for the last sample) will be equal to rf scaled down
by a factor min(rv/θ, 1), which depends on diversity: if rv ≥ θ, then r = rf
whereas, if rv < θ, rf will be scaled down up to a minimum of r = 0, in
case rv = 0. This reward function balances problem consistency, diversity and
difficulty. By maximizing it, we hope NeSIG will learn to generate consistent
problems with a diversity close to θ (since diversity values rv larger than θ do
not increase r and values lower than θ reduce r considerably) and as difficult
to solve as possible.

VI.3.3 Learning to generate problems with RL

We use two different policies for guiding problem generation. One policy gen-
erates the initial state si of each problem, whereas the other generates its goal g.
Each policy is encoded by a separate NLM.

At each step, the corresponding NLM receives information about the current
MDP state. In the case of the initial state policy, it receives a tensor representation
of the atoms and objects in the current initial state sic. This set of objects contains
both the actual objects in sic and the new, virtual objects that can be added to the
state alongside the next atom. The set of virtual objects is automatically inferred
from the predicate information encoded in the PDDL domain. In the case of the goal
policy, the NLM receives as input a concatenation of the tensor representations of the
initial state si and current goal state sgc. Since no new objects can be added during

3The reward function does not need to consider continuous consistency since actions resulting
in continuous-inconsistent states are never executed.

CHAPTER VI. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI 109

the goal generation phase, no virtual objects are used. Additionally, both NLMs
receive as extra information the percentage of actions executed in the corresponding
phase (relative to the maximum number of actions allowed), for each object its type
and whether it is virtual or not, the total number of objects of each type, and the
total number of atoms of each predicate type in the initial state and, for the goal
policy NLM, also in the goal state.

The output of the NLM is represented as a new set of atoms, where each atom is
associated with a different MDP action a ∈ A, corresponding to either a new atom
to add to sic (for the initial state policy) or a domain action to apply to sgc (for the
goal policy), in addition to the termination action end. The NLM outputs a real
value for each atom (action) in this set. Then, we mask out inapplicable actions
a /∈ App(s), corresponding to either atoms that violate the continuous consistency
constraints (for the initial state policy) or domain actions whose preconditions are
not met at sgc (for the goal policy). Finally, we apply the softmax function to obtain
a probability distribution over applicable actions a ∈ App(s), from which we sample
the action to execute at the current MDP state s.

In order to train the initial state and goal policies, we resort to the DRL algorithm
Proximal Policy Optimization (PPO) [209], which is described in Section II.4.2.
Since PPO is an actor-critic algorithm, we need to employ an additional critic NLM
for each policy, whose sole purpose is to evaluate the current MDP state s, i.e.,
predict V (s). The two policies are trained simultaneously in an end-to-end fashion.
The initial state policy receives rewards accounting for problem consistency, diversity
and difficulty. On the other hand, the reward signal the goal policy receives accounts
for diversity and difficulty but not consistency, since the consistency of a problem
is independent of its goal g and, thus, of the goal policy. In order to calculate
the PPO advantages, we use the Generalized Advantage Estimation (GAE) [208]
method. However, we found the best λ value to be equal to 1, which is equivalent
to simply calculating advantages using the return R obtained in the trajectory (i.e.,
not using GAE). Moreover, we use a policy entropy bonus as proposed in [209] to
encourage sufficient exploration, in addition to the diversity reward.

VI.4 Experiments and analysis of results

In this section, we detail our experimental setup and analyze the results of our
experiments, which compare the problems generated by NeSIG with those obtained
by handcrafted, domain-specific generators and several ablations. We compare the
consistency, diversity, difficulty and generation times of the different approaches, and
evaluate whether NeSIG can generalize to larger problems than those encountered
during training.

VI.4.1 Experimental setup

We perform experiments on a set of diverse and well-known CP domains:
blocksworld, logistics, sokoban, miconic and satellite. In blocksworld, a set of stack-
able blocks needs to be re-assembled with a gripper. Logistics represents a trans-
portation task where a set of packages needs to be delivered across locations and
cities using airplanes and trucks. Sokoban is a puzzle where boxes must be pushed
to designated goal locations. This game is known for its great difficulty, being

110 CHAPTER VI. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI

PSPACE-complete to solve [46]. In miconic, an elevator is used to move passengers
between the different floors of a building. Lastly, satellite is inspired from NASA’s
real observatory missions. In this domain, a series of instrument-equipped satellites
must be controlled in order to collect various measurements of space phenomena. In
sokoban, the initial state generation phase starts from a state si encoding an empty
NxM map with no robots, walls or boxes, which will be added during the generation
process. For the rest of domains, the initial state generation state starts from an
empty state si with no objects or atoms. The PDDL description for each domain
can be found in the Appendix.

We train NeSIG separately on each domain, performing 5000 training steps on
blocksworld, logistics and sokoban and 10000 steps on miconic and satellite, as these
two domains require longer training. We utilize Adam [131] as our optimizer, with
a learning rate of 10−3. Each experiment is run on 25 threads of an AMD EPYC
7742 CPU and one Nvidia A100 GPU, although our method can be trained on
consumer-grade GPUs since only a maximum of 8 GBs of VRAM are required.
In each training step, we generate a set of problems by executing up to 15 initial
state actions (i.e., adding a maximum of 15 atoms to si) and up to 60 goal actions
in blocksworld and logistics. For sokoban, miconic and satellite, we execute up
to 75 goal actions, as these domains are more challenging than the previous two.
Additionally, a map of size 5x5 is used by sokoban during training. Every 250
training steps, we perform one validation epoch, where 100 problems are generated
and the reward r of each problem is obtained using Equation VI.1. We calculate
the validation score of the model as the average problem reward and, once training
concludes, we load the model checkpoint with the best validation score for testing.
The remaining hyperparameter values are provided in the Appendix. We use very
similar values for each domain so as to show our method needs little hyperparameter
tuning.

Problem difficulty is calculated as the planning effort (i.e., time or number of
expanded nodes) of a particular planner to solve the problem, thus being a planner-
dependent measure. We employ the planners provided by the FastDownward (FD)
suite [100]. During training, problem difficulty is calculated as the number of nodes
LAMA-first [195], a fast satisficing planner, needed to expand in order to solve the
problem. For each problem, it can use up to 500 MB of memory and 5 minutes
of planning time. We assign a difficulty value of 106 for problems that could not
be solved under those limits, which we will refer to as the terminated difficulty.
At test time, we use a different set of (satisficing and optimal) planners to assess
whether problems generated by NeSIG are challenging for several planners. The set
of test planners considered are: LAMA-first, the same planner used during training;
the satisficing algorithm lazy greedy-best-first-search (GBFS) with the FF heuristic
[108]; A* search with the LM-cut heuristic [102], resulting in an optimal algorithm;
and the planning portfolio FastDownward Stone Soup (FDSS) [103], in its optimal
version. For every planner except FDSS, we measure difficulty as the number of
expanded nodes, as this is a hardware-independent measure. However, as a port-
folio, FDSS utilizes several planners internally, assigning a different computational
budget to each of them. Therefore, we decided to measure difficulty for FDSS as
the total planning time (in seconds) required to find an optimal solution. Every test
planner except FDSS uses a time limit of 30 minutes, a memory limit of 8 GB and
a terminated difficulty of 108. FDSS uses the same memory limit, a time limit of

CHAPTER VI. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI 111

10 minutes (due to its higher efficiency when compared to A*) and a terminated
difficulty that is always equal to its time limit plus one second. Nonetheless, solving
blocksworld problems in an optimal manner proved to be very difficult. For this
reason, in this domain only, we increase the time limit of A* to one hour and of
FDSS to 30 minutes, keeping the other parameters unchanged. Finally, for efficiency
purposes, we generate small problems during training and then evaluate the gener-
alization abilities of NeSIG by generating larger problems at test time (see Figure
30).

Several methods are compared to NeSIG in our experiments. First, we employ
ablations where either si (random-init models), sg (random-goal models) or both
(random-both models) are generated by executing random actions a ∈ App(s). We
note our random-both model is equivalent to the method proposed in [75], which also
generates si and sg at random. We do not compare with Autoscale [232] since it
leverages domain-specific generators to obtain problems of graded difficulty, often by
gradually incrementing their size, whereas our goal is instead to maximize problem
difficulty given a limit on their size. For this reason, we directly utilize the ad
hoc, domain-specific generators (ad hoc models) used in the International Planning
Competitions (IPCs) [236], choosing their parameter values to maximize problem
diversity (the exact values can be found in the Appendix). Nonetheless, the sokoban
generator allowed for little flexibility (e.g., problems of size 5x5 could not have more
than two boxes), so we have implemented our own based on a trial and error strategy
which obtains si by placing objects at random on the grid, randomly moves boxes to
obtain g, makes sure g can be achieved from si and, otherwise, discards the problem
and starts again. We note that the previous, IPC sokoban generator also followed
a random procedure for placing objects on the grid. Our sokoban generator simply
attains more flexibility at the expense of greater generation times (due to its trial
and error strategy). Finally, in order to perform a fair comparison with NeSIG, we
discard blocksworld, logistics, miconic and satellite problems with a size smaller than
D − 2, where D is the maximum problem size, measured as the maximum number
of atoms allowed in the initial state of the problems generated by NeSIG. We do so
because small problems tend to be easier to solve. In sokoban, we instead discard
problems where less than 25% of cells are empty (i.e., without walls or boxes) since,
otherwise, the problem is very likely to be unsolvable. We note that the time spent
discarding problems of incorrect size (or incorrect number of empty cells in sokoban)
is not considered when measuring generation times.

VI.4.2 Results and discussion

Table 5 compares the problems generated by NeSIG, its ablations and the
domain-specific generators (ad hoc models) using the same problem size for training
and testing. Results show that NeSIG is able to generate consistent, diverse and
difficult problems for all the domains considered. Firstly, NeSIG successfully learns
to generate problems according to the user-defined consistency rules, thus achieving
almost perfect consistency in every domain: 98.6% in blocksworld, 99.8% in logistics,
100% in sokoban, 99.6% in miconic and 99% in satellite. Regarding difficulty, NeSIG
is the model with the highest difficulty value for each domain and planner combina-
tion. It generates problems that are significantly more difficult, on geometric average
across the four planners, than those from domain-specific generators: 9.28 times in

112 CHAPTER VI. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI

Property
Blocksworld

NeSIG random-init random-goal random-both ad hoc

Consistency .986±.015 .14±.022 .986±.012 .14±.022 1.0±0
Diversity .025±.002 .026±.014 .033±.006 .026±.014 .024±0
Time 26±4 11±2 22±1 9±0 4±0
LAMA 394±46 101±33 35±4 30±2 80±0
GBFS 301±49 87±24 34±5 27±3 81±0
A* 5.5e6±3.4e6 7634±7583 328±94 114±111 8.2e4±0
FDSS 127±80 .528±.242 .299±.017 .277±.015 21±0

Property
Logistics

NeSIG random-init random-goal random-both ad hoc

Consistency .998±.004 .254±.047 .994±.008 .254±.047 1.0±0
Diversity .196±.011 .222±.009 .167±.003 .25±.007 .264±0
Time 28±3 14±1 26±1 13±1 4±0
LAMA 81±4 15±3 12±1 5±1 17±0
GBFS 70±5 13±2 12±1 5±1 16±0
A* 317±121 53±26 11±2 5±1 104±0
FDSS 1±.121 .218±.022 .212±.004 .164±.013 .232±0

Property
Sokoban

NeSIG random-init random-goal random-both ad hoc

Consistency 1.0±.0 .994±.005 .998±.004 .994±.005 1.0±0
Diversity .016±.001 .007±.0 .013±.001 .007±.0 .016±0
Time 221±17 327±8 255±36 333±4 1019±0
LAMA 3.2e5±1.2e5 5±1 2.5e4±2.9e4 6±1 1483±0
GBFS 2.7e5±9.1e4 5±0 2.1e4±1.9e4 6±1 1305±0
A* 1105±900 6±1 787±460 6±1 683±0
FDSS .303±.013 .239±.006 .292±.026 .245±.006 .296±0

Table 5: Same test-size experiment results. The table compares the problems generated by
NeSIG, several ablations (random-init, random-goal and random-both models) and the domain-
specific generator (ad hoc model) in the blocksworld, logistics, sokoban, miconic and satellite do-
mains. For each domain and model, we generate 100 test problems with the same maximum
number of initial state and goal actions used for training, i.e., we generate problems of the same
size as during training. In sokoban, we also use a map size of 5x5. We evaluate the consistency,
difficulty, diversity and generation time of the test problems generated, showing for each property
its mean value and standard deviation (±) across 5 random seeds. Since the ad hoc models do
not require training, we use a single initial random seed (which will be used to deterministically
obtain the seed to generate each problem), which is why their std values are always 0. Consistency
is measured as the percentage of problems that meet the eventual consistency rules. Diversity is
measured as the average pairwise distance among problems, according to the method detailed in
Section VI.3.1.2. We break down the difficulty values for several planners. For the LAMA-first
(LAMA), lazy greedy-best-first-search with the FF heuristic (GBFS) and A* with the LM-cut
heuristic (A*), difficulty is measured as the number of expanded nodes. For the FastDownward
Stone Soup (FDSS) planner, it is measured as the total planning time in seconds. Time refers
to the total generation time (in seconds) needed to generate the whole set of 100 test problems.
Finally, when calculating the mean diversity and difficulty for each planner, we do not consider
inconsistent problems.

blocksworld, 4.07 times in logistics, 16.49 times in sokoban, 4.01 times in miconic,
and 5.68 times in satellite, for an overall (geometric) average of 6.8 times more diffi-
culty across all domains and planners. These are remarkable results, considering the
fact that two of the planners tested (A* and FDSS) are optimal, whereas NeSIG has
only been trained to maximize the difficulty of a satisficing planner (LAMA-first).
Therefore, NeSIG is able to generate problems that are challenging not only for the
planner utilized during training, but for a range of different planners, thus success-

CHAPTER VI. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI 113

Property
Miconic

NeSIG random-init random-goal random-both ad hoc

Consistency .996±.009 .028±.015 .995±.007 .022±.018 1.0±0
Diversity .211±.014 .13±.03 .186±.009 .051±.044 .202±0
Time 26±3 6±0 25±1 7±0 6±0
LAMA 124±20 19±6 29±1 28±17 66±0
GBFS 184±78 19±8 28±2 27±16 64±0
A* 4.4e5±3.3e5 51±64 222±120 886±1845 4.6e4±0
FDSS 5±5 .194±.008 .211±.002 .239±.2 1±0

Property
Satellite

NeSIG random-init random-goal random-both ad hoc

Consistency .99±.01 .003±.005 1.0±.0 .008±.008 1.0±0
Diversity .11±.007 .0±.0 .112±.005 .041±.093 .179±0
Time 29±3 6±0 29±0 7±0 8±0
LAMA 120±12 .25±.5 22±2 5±4 38±0
GBFS 95±8 .25±.5 20±2 4±4 37±0
A* 4687±1891 .25±.5 32±13 5±4 303±0
FDSS 5±9 0±0 .177±.001 .107±.098 .604±0

Table 5: Continuation of Table 5.

fully achieving planner-wise generalization. At the same time, NeSIG attains almost
the same diversity as the domain-specific generators, with only 13% less diversity
on geometric average across domains. This means that NeSIG does not need to
sacrifice (much) diversity in order to generate hard problems, e.g., by learning to
only generate a particular type of problem, thus effectively balancing difficulty and
diversity, which is an essential requirement of our method. Moreover, by leveraging
parallel GPU computation, we can obtain 100 problems with NeSIG in under half a
minute in blocksworld, logistics, miconic and satellite, and in less than four minutes
in sokoban.

We now turn our attention to the ablation models. It can be observed that using
a random policy for initial state generation (random-init and random-both models)
severely degrades consistency in all domains but sokoban, due to the simplicity of
the eventual consistency rules of this domain. An extreme instance of this effect
can be observed in satellite, where NeSIG obtains a consistency percentage of 99%
but the random-init and random-both models obtain values of 0.3% and 0.8%, re-
spectively. These results show how unlikely it is for random generation to achieve
consistency, so it is necessary to train an initial state policy in order to reliably gen-
erate consistent problems. Additionally, ablations also significantly impair problem
difficulty, although the effect of each policy ablation depends on the particular do-
main considered. In blocksworld, it is more important to train the goal policy than
the initial state policy, since the random-init model achieves better difficulty than
the random-goal one. In sokoban, miconic and satellite, the opposite case happens,
as random-goal achieves better difficulty than random-init. Finally, in logistics the
two policies seem to be equally important, as both ablations attain similar difficulty.
Regardless of the relative importance of each policy, NeSIG obtains much higher dif-
ficulty than all ablations in every domain, showing that the two policies always play
a role in the generation of difficult problems.

The random-both model represents the full ablation where no policy is trained,
thus obtaining the worst results among all models. However, an important advan-
tage of this model over NeSIG and the other ablations is that it does not require

114 CHAPTER VI. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI

Figure 30: Problem size generalization results. The plots show the mean difficulty obtained
by NeSIG across five different seeds, when tested on larger (and smaller) problems than those seen
during training. We also plot the difficulty of the domain-specific generators (ad hoc models) for
comparison purposes. Each row in the figure is associated with a different domain, whereas each
column is associated with a different planner. The Y axis of each plot measures problem difficulty
(in log scale), corresponding to the number of expanded nodes for LAMA-first, GBFS and A*, and
to the total planning time (in seconds) for FDSS. The X axis of each plot measures problem size,
corresponding to the map size for sokoban and to the maximum number of initial state actions
(atoms) for the rest of domains. Due to their optimal nature, we could only test a subset of
problem sizes for A* and FDSS in blocksworld, logistics, miconic and satellite. For example, note
how mean difficulty for A* in blocksworld saturates to the maximum value of 108 for large sizes,
as most problems could not be solved under the allotted time and memory. The Appendix details
the maximum number of initial state and goal actions used by NeSIG for each problem size, along
with the parameters of the ad hoc models.

any type of training so, as long as consistency rules are provided (which can be
done easily using our proposed consistency language), it can be quickly applied to
generate problems for any (typed-STRIPS) planning domain. Although problems
generated with this approach are easier to solve than those from the ad hoc models,
problem difficulty can often be easily raised by incrementing problem size, just as
Autoscale and ad hoc models do. Therefore, for cases where increasing problem size
is acceptable or problem difficulty is not a concern, the random-both model offers
a general and low-effort alternative to domain-specific generators, serving as a side

CHAPTER VI. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI 115

contribution of our proposal.
Figure 30 shows the difficulty obtained by NeSIG when tested on problems of

different size than those used during training. We also plot the difficulty of domain-
specific generators for comparison purposes. Out of the 20 domain-planner pairs
(each one corresponding to a different plot in the figure), in 15 of them NeSIG exceeds
the difficulty of the domain-specific generator for every problem size tested. In
blocksworld, NeSIG considerably outperforms the ad hoc model in terms of difficulty
for all four planners and most problem sizes. We note that, due to the logarithmic
Y axis employed in the plots, difficulty gaps are actually much larger than they
appear in the figure. For the optimal planners (A* and FDSS), difficulty already
saturates (i.e., approximates its maximum value) for problems of size 20, as most
problems could not be solved under the resource limits. In logistics, NeSIG beats
the ad hoc model by a great margin for LAMA-first and FDSS, by a smaller margin
for A* and, for GBFS, it greatly outperforms the domain-specific generator for all
sizes except the largest one, corresponding to 40 atoms. In sokoban, NeSIG beats ad
hoc by a large gap for the satisficing planners (LAMA and GBFS) and by a smaller
gap for the optimal ones (A* and FDSS). In miconic, NeSIG outperforms ad hoc for
the optimal planners but it is only able to do so for problems up to size 20 and 30
for LAMA-first and GBFS, respectively. Finally, in satellite, NeSIG far exceeds the
difficulty of ad hoc for all planners and almost every size. In light of these impressive
results, we conclude that NeSIG successfully achieves size-wise generalization, being
able to generalize to problems more than twice the size of those used during training.

To summarize, NeSIG is able to reliably generate consistent problems that ex-
hibit great difficulty and diversity. Additionally, it can generalize to both problem
sizes and planners different from those used during training. These are remarkable
results, especially taking into consideration that our method is domain-independent,
whereas ad hoc models have been tailored to each particular domain and leverage
extensive domain knowledge. For example, the blocksworld generator uses an ad hoc
formula to make sure that every consistent state has the same probability of being
generated. As another example, the logistics generator obtains the goal by randomly
shuffling the packages in the initial state, knowing in advance that such a goal will
always be achievable. When compared to ad hoc generators, NeSIG requires little
prior knowledge, as it only receives as inputs the maximum problem size, the types
and predicates that can appear in goals, and the set of properties (consistency con-
straints) initial states must satisfy. Moreover, with our proposed semi-declarative
language, these consistency constraints can be easily and intuitively encoded (see
the Appendix for concrete examples), thus reducing human effort even further.

VI.5 Conclusion

In this chapter we introduced NeSIG, to the best of our knowledge the first
domain-independent method for the automated generation of planning problems
that are simultaneously valid, diverse and difficult to solve. We formulated problem
generation as an MDP, training two policies with Deep RL to generate problems
with the desired properties. Both policies were encoded by NLMs, a neuro-symbolic
deep neural network architecture capable of working with FOL data.

A remarkable feature of our method is that it does not require a training dataset
of example problems. Instead, it only receives as inputs the PDDL domain descrip-

116 CHAPTER VI. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI

tion and a set of consistency constraints generated problems must satisfy, along with
some extra information (maximum problem size and the types and predicates that
are allowed in goals). Therefore, NeSIG requires less prior knowledge than hand-
crafted, domain-specific generators such as those often used in the IPCs. Moreover,
we proposed a semi-declarative language for encoding consistency constraints in an
intuitive and interpretable manner, thus reducing human effort even further.

We tested NeSIG on five classical domains, comparing our approach against
domain-specific generators and several ablations. Results show NeSIG success-
fully generates valid problems which are almost as diverse as those from domain-
specific generators but considerably more difficult (6.8 times more on geometric av-
erage). Additionally, it showcases impressive generalization abilities both size-wise
and planner-wise since, out of the 20 domain-planner combinations tested, in 15 of
them NeSIG exceeds the difficulty of the domain-specific generator for all problem
sizes considered, including problems more than twice the size of those seen during
training. In light of the results obtained, we believe our method establishes a new
state of the art in planning problem generation and hope it will prove useful to the
Automated Planning community.

Part IV

Final Remarks

117

Chapter VII

Final Remarks

“Donde una puerta se cierra, otra se abre” —
Miguel de Cervantes, Don Quijote de la Mancha

VII.1 Conclusions

This PhD dissertation has presented four significant contributions to the field
of SDM via the study and implementation of neuro-symbolic AI methods. One of
these contributions is theoretical in nature, in the form of a comprehensive review
of SDM that serves to justify the need for neuro-symbolic approaches. The remain-
ing contributions are empirical, and cover the two main categories of the taxonomy
proposed in this review: methods for solving MDPs and methods for learning the
MDP structure. More specifically, the empirical contributions of this thesis com-
prise neuro-symbolic methods for improving the performance of SP algorithms (ei-
ther through goal selection or heuristic learning) and automatically generating SP
problems which, among many other applications, can be used as training data for
the two previous MDP-solving methods.

Firstly, as our theoretical contribution, we provided a broad review of SDM cov-
ering methods for both solving MDPs and learning their structure, emphasizing the
knowledge representation of each approach: symbolic, subsymbolic or hybrid. To
the best of our knowledge, no other work in the literature offers such a compre-
hensive overview of the field. Additionally, we also discussed what properties an
ideal method for SDM should exhibit, and used these properties to analyze the ad-
vantages and disadvantages of the different MDP-solving approaches covered in our
review. As a result of our analysis, we argued that an ideal method for SDM should
integrate the AP paradigm, in which an action model is used to synthesize a solution
of the MDP, with the RL paradigm, in which MDP solutions are learned from data.
Furthermore, such ideal method should utilize a hybrid knowledge representation,
combining the symbolic and subsymbolic paradigms. Since neuro-symbolic AI is the
current approach that most closely performs this integration, i.e., the integration of
the AP and RL paradigms with the symbolic and subsymbolic knowledge represen-
tations, we concluded that it poses a very promising line of work towards achieving
an ideal method for SDM. Therefore, our review serves to justify the relevance and
significance of this doctoral dissertation.

Secondly, as our first MDP-solving method, we proposed a neuro-symbolic ap-
proach for improving the efficiency of SP algorithms in real-time scenarios through

118

CHAPTER VII. FINAL REMARKS 119

goal selection. Our proposal, called Deep Q-Planning (DQP), integrates the DRL
algorithm Deep Q-Learning with the symbolic, classical planner FastForward. At
each step, Deep Q-Learning is used to select the next subgoal to achieve, whereas the
FastForward planner is in charge of finding a plan that attains the chosen subgoal
from the current state. By interleaving this high-level, DRL-based, goal selection
strategy with the low-level, SP-based, goal attainment procedure, DQP is able to
exploit the existing synergy between AP and RL in order to balance solution quality
and time efficiency. We tested our approach on the Boulder Dash game included in
the General Video Game AI (GVGAI) environment. When compared to standard
Deep Q-Learning, DQP is considerably more sample-efficient (by at least one order
of magnitude) and generalizes much better to new game levels. When compared
to the standalone FastForward algorithm, DQP drastically reduces problem-solving
times at the expense of obtaining plans with only 9% more actions on average.

Thirdly, as our second MDP-solving method, we proposed a neuro-symbolic ap-
proach for improving the performance of SP algorithms with heuristic learning. Our
proposal entails a statistically-motivated method for leveraging the prior knowledge
encoded in symbolic, admissible heuristics in order to learn better heuristics. Our
method models the heuristic to be learned as a Truncated Gaussian T N distribution
instead of an (untruncated) Gaussian N . The lower bound of this T N distribution
is set to some admissible heuristic, thus contraining heuristic predictions to be larger
than its value. This modelling choice (T N instead of N) results in a novel loss to
minimize during training, different from standard Mean Squared Error (MSE). We
compared our proposed loss function to the MSE loss for learning heuristics from
optimal costs in a variety of learning scenarios, including four different CP domains:
blocksworld, ferry, gripper and visitall. Experiment results show our T N -based
loss makes training converge faster and overall yields more accurate heuristics that
improve planning performance. Specifically, when using the NLM model with our
proposed learning configuration learn/hFF (where the model predicts σ alongside µ
and employs residual learning), our proposed loss beats MSE in terms of heuristic
accuracy in 3 out of 4 domains and improves planning performance in all of them.
These results confirm that our T N -based method entails an effective approach for
extracting the prior knowledge encoded in admissible heuristics in order to improve
heuristic learning.

Fourthly, as our method for learning the MDP structure, we proposed a neuro-
symbolic approach for generating valid (i.e., solvable and consistent), diverse and
difficult problems for any CP domain. Our proposed method, called NeSIG (Neuro-
Symbolic Instance Generator), formulates problem generation as an MDP. The ini-
tial state of the problem is generated by sequentially adding atoms and objects to
some starting state and, then, the problem goal is obtained by executing a sequence
of actions at the generated initial state. Two generative policies, encoded as NLMs,
are trained with DRL in order to guide this generative process towards consistent,
diverse and difficult problems. Problem diversity is defined as the distance/dissim-
ilarity between problems, whereas difficulty is measured by solving generated prob-
lems with an SP algorithm. Conversely, consistency depends on the semantics of the
PDDL domain and human preferences, so consistency information must be provided
by humans. In order to reduce human effort as much as possible, we implemented
a semi-declarative language combining Python and FOL that allows the encoding
of consistency constraints in an easy and interpretable manner. We compared our

120 CHAPTER VII. FINAL REMARKS

proposed approach to handcrafted, domain-specific generators and several ablations
for generating problems in five different CP domains: blocksworld, logistics, sokoban,
miconic and satellite. Experiment results show NeSIG successfully learns to generate
valid and diverse problems of much greater difficulty (6.8 times more on geometric
average) than domain-specific generators, while reducing human effort when com-
pared to them. We also evaluated the generalization ability of NeSIG by performing
a comparison with domain-specific generators across all five domains, different plan-
ners (including satisficing and optimal ones) and different problem sizes (up to more
than twice the training size). Out of the 20 domain-planner combinations tested, in
15 of them NeSIG exceeds the difficulty of the domain-specific generator for every
problem size. Therefore, we conclude that NeSIG also exhibits remarkable gener-
alization capabilities, being able to generalize to both different problem sizes and
planners.

In conclusion, the four contributions presented in this thesis have helped advance
the field of SDM, both from a theoretical perspective, by providing a broad overview
of the different approaches in the field, and an empirical perspective, through the
development of neuro-symbolic methods for solving MDPs and learning aspects of
their structure. We hope this thesis also serves to highlight the great potential of
neuro-symbolic AI to enhance SDM, especially through the integration of AP and
RL, and the field of AI altogether.

VII.2 Future works

Neuro-symbolic AI is a fertile approach that has proven immensely useful for
solving a wide variety of tasks including SDM, as explained in this dissertation.
Therefore, there exist ample future work opportunities to explore the application
of neuro-symbolic AI to SDM. In this section, we focus on how the three empirical
contributions presented in this thesis could be extended in the future:

• Goal Selection with Deep Q-Learning. In future work, we propose to ex-
tend the applicability of our DQP architecture, so that it can be used to solve
a wider range of tasks. An important extension would be the management of
stochasticity, in order to solve non-deterministic tasks. In order to achieve this,
we would no longer assume that the abstract, high-level MDP M g is determin-
istic, which would need to be considered when estimating the Q-value Q(s, g)
associated with a subgoal g. For instance, it could now happen that, while ex-
ecuting the plan to achieve g, an obstacle appears and the plan fails. In such a
situation, replanning will be needed unless the Goal Selection module selects a
different subgoal to achieve. These situations could be anticipated and avoided
by periodically predicting the Q-value Q(s, g) of the subgoal g currently being
pursued so that, when Q(s, g) increases too much (e.g., the Goal Selection
module believes an obstacle will appear in the future), g can be substituted
for a different subgoal. In other words, we propose to use Deep Q-Learning
to monitor plan execution and react to discrepancies (i.e., unexpected situa-
tions), thus approaching Goal Driven Autonomy [162, 114, 186, 245]. Finally,
we could also experiment with alternative DNN architectures in addition to
CNNs. For instance, Graph Neural Networks should be well-suited for relation-
al/symbolic tasks, with message-passing computations enabling a high-level,

CHAPTER VII. FINAL REMARKS 121

abstract planning procedure for selecting subgoals.

• Heuristic Learning with Admissible Bounds. In future work, we propose
to extend our Truncated Gaussian T N approach to other learning settings.
An interesting scenario is given by iterative SP algorithms like LAMA, where
the cost of the best plan found so far acts as an upper bound of the optimal
cost-to-go. Therefore, in this case, we could leverage both lower bounds l
(as admissible heuristics) and upper bounds u (as satisficing plan costs) to
constrain the support (l, u) of the T N modelling the learned heuristic and,
hopefully, improve heuristic predictions even further. Additionally, we could
also apply our method to the RL setting, where state-value V (s) or Q-value
Q(s, a) functions are learned instead of heuristics. In order to do so, we would
require a method for obtaining a lower or upper bound on the value (V (s) or
Q(s, a)) being learned, which would be modelled as a T N distribution, in the
same way as a heuristic.

• Problem Generation with Neuro-Symbolic AI. Finally, there are many
possible avenues for future work on NeSIG, covering both enhancements or ex-
tensions to our approach and concrete applications. Regarding the first group,
we propose to adapt NeSIG to generate problems according to different user
preferences (e.g., maximizing plan length instead of planning difficulty), encod-
ing these preferences in either the reward function or consistency constraints;
enhance its expressivity, e.g., by generating PDDL2.1 [72] problems with nu-
meric information (i.e., fluents); and train NeSIG using Generative Flow Nets
[16] instead of PPO to better balance problem quality and diversity. Addition-
ally, we could leverage NeSIG for specific use cases. These include: automated
curriculum generation, i.e., generating tasks adapted to a particular agent in
order to streamline its learning process; adversarial problem generation, i.e.,
generating problems that are challenging for a particular algorithm, which can
provide insight into its weaknesses; and video game level generation.

VII.3 Acknowledgements

This doctoral thesis has been supported by the Andalusian Regional pre-
doctoral grant no. 21-111-PREDOC-0039. Additionally, the research con-
ducted in this dissertation has also received funding from the following sources:
Spanish MINECO R&D Project [RTI2018-098460-B-I00]; EU FEDER Funds;
Grant PID2022-142976OB-I00, funded by MICIU/AEI/ 10.13039/501100011033, by
“ERDF/EU” and by “ESF Investing in your future”.

I would like to express my deepest gratitude to Dr. Masataro Asai, for granting
me the opportunity of conducting a PhD stay at the MIT-IBM Watson AI Lab, and
for his invaluable guidance during the course of this thesis. Additionally, I want
to sincerely thank Vladislav Nikolov-Vasilev and Ignacio Vellido-Expósito, for their
help in the implementation of the DQP architecture.

Chapter VIII

Bibliography

[1] Abbeel, P. and Ng, A. Y. (2004). Learning first-order markov models for control.
In NeurIPS, pages 1–8.

[2] Abdel-Hamid, O., Mohamed, A., Jiang, H., Deng, L., Penn, G., and Yu, D.
(2014). Convolutional neural networks for speech recognition. IEEE ACM Trans.
Audio Speech Lang. Process., 22(10):1533–1545.

[3] Acharya, K., Raza, W., Dourado, C., Velasquez, A., and Song, H. H. (2023).
Neurosymbolic reinforcement learning and planning: A survey. IEEE Trans. Artif.
Intell., 5(5):1939–1953.

[4] Aha, D. W. (2018). Goal reasoning: Foundations, emerging applications, and
prospects. AI Mag., 39(2):3–24.

[5] Alkhazraji, Y., Frorath, M., Grützner, M., Helmert, M., Liebetraut, T.,
Mattmüller, R., Ortlieb, M., Seipp, J., Springenberg, T., Stahl, P., and Wülfing,
J. (2020). Pyperplan. Zenodo.

[6] Arora, A., Fiorino, H., Pellier, D., Métivier, M., and Pesty, S. (2018). A review
of learning planning action models. Knowl. Eng. Rev., 33:e20.

[7] Arora, S. and Doshi, P. (2021). A survey of inverse reinforcement learning:
Challenges, methods and progress. Artif. Intell., 297:103500.

[8] Asadi, K., Cater, E., Misra, D., and Littman, M. L. (2018). Towards a sim-
ple approach to multi-step model-based reinforcement learning. arXiv preprint
arXiv:1811.00128.

[9] Asai, M., Kajino, H., Fukunaga, A., and Muise, C. (2022). Classical planning in
deep latent space. J. Artif. Intell. Res., 74:1599–1686.

[10] Balduccini, M. (2011). Learning and using domain-specific heuristics in asp
solvers. AI Commun., 24(2):147–164.

[11] Barceló, P., Kostylev, E. V., Monet, M., Pérez, J., Reutter, J. L., and Silva,
J. P. (2020). The logical expressiveness of graph neural networks. In ICLR.

[12] Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi,
V. F., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R.,

122

CHAPTER VIII. BIBLIOGRAPHY 123

Gülçehre, Ç., Song, H. F., Ballard, A. J., Gilmer, J., Dahl, G. E., Vaswani, A.,
Allen, K. R., Nash, C., Langston, V., Dyer, C., Heess, N., Wierstra, D., Kohli, P.,
Botvinick, M. M., Vinyals, O., Li, Y., and Pascanu, R. (2018). Relational induc-
tive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261.

[13] Battaglia, P. W., Pascanu, R., Lai, M., Rezende, D. J., and Kavukcuoglu, K.
(2016). Interaction networks for learning about objects, relations and physics. In
NeurIPS, pages 4502–4510.

[14] Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade
learning environment: An evaluation platform for general agents. J. Artif. Intell.
Res., 47:253–279.

[15] Bellman, R. (1957). Dynamic Programming. Princeton Univ. Pr.

[16] Bengio, Y., Lahlou, S., Deleu, T., Hu, E. J., Tiwari, M., and Bengio, E. (2023).
Gflownet foundations. J. Mach. Learn. Res., 24(1):10006–10060.

[17] Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependen-
cies with gradient descent is difficult. IEEE Trans. Neural Netw., 5(2):157–166.

[18] Bertsekas, D. (2019). Reinforcement learning and optimal control. Athena
Scientific.

[19] Betz, C. and Helmert, M. (2009). Planning with h + in theory and practice.
In KI 2009: Advances in Artificial Intelligence, volume 5803, pages 9–16.

[20] Bishop, C. M. and Nasrabadi, N. M. (2006). Pattern recognition and machine
learning. Information science and statistics. Springer.

[21] Blum, A. L. and Furst, M. L. (1997). Fast planning through planning graph
analysis. Artif. Intell., 90:281–300.

[22] Bonanno, D., Roberts, M., Smith, L., and Aha, D. W. (2016). Selecting subgoals
using deep learning in minecraft: A preliminary report. In IJCAI Workshop on
Deep Learning for Artificial Intelligence.

[23] Bond-Taylor, S., Leach, A., Long, Y., and Willcocks, C. G. (2021). Deep
generative modelling: A comparative review of vaes, gans, normalizing flows,
energy-based and autoregressive models. IEEE Trans. Pattern Anal. Mach. In-
tell., 44(11):7327–7347.

[24] Bonet, B. and Geffner, H. (1999). Planning as heuristic search: New results.
In ECP, pages 360–372.

[25] Bonet, B. and Geffner, H. (2001). Planning as heuristic search. Artif. Intell.,
129(1-2):5–33.

[26] Bonet, B. and Geffner, H. (2003). Labeled rtdp: Improving the convergence of
real-time dynamic programming. In ICAPS, volume 3, pages 12–21.

[27] Botea, A., Enzenberger, M., Müller, M., and Schaeffer, J. (2005). Macro-
ff: Improving ai planning with automatically learned macro-operators. J. Artif.
Intell. Res., 24:581–621.

124 CHAPTER VIII. BIBLIOGRAPHY

[28] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss,
A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark,
J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020).
Language models are few-shot learners. In NeurIPS, volume 33, pages 1877–1901.

[29] Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlf-
shagen, P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S. (2012). A
survey of monte carlo tree search methods. IEEE Trans. Comput. Intell. AI
Games, 4(1):1–43.

[30] Bundy, A. and Wallen, L. (1984). Breadth-first search. Cat. Artif. Intell. Tools,
pages 13–13.

[31] Cappart, Q., Chételat, D., Khalil, E. B., Lodi, A., Morris, C., and Velickovic,
P. (2021). Combinatorial optimization and reasoning with graph neural networks.
In IJCAI, pages 4348–4355.

[32] Castillo, L. A., Fernández-Olivares, J., Garcia-Perez, O., and Palao, F. (2006).
Efficiently handling temporal knowledge in an htn planner. In ICAPS, pages
63–72.

[33] Cazenave, T. (2006). Optimizations of data structures, heuristics and algo-
rithms for path-finding on maps. In 2006 IEEE Symp. Comp. Intell. Games,
pages 27–33.

[34] Chakraborti, T., Sreedharan, S., and Kambhampati, S. (2020). The emerging
landscape of explainable automated planning & decision making. In IJCAI, pages
4803–4811.

[35] Chang, M., Ullman, T. D., Torralba, A., and Tenenbaum, J. B. (2017). A
compositional object-based approach to learning physical dynamics. In ICLR.

[36] Charpentier, A., Elie, R., and Remlinger, C. (2021). Reinforcement learning in
economics and finance. Comput. Econ., pages 1–38.

[37] Chen, K., Srikanth, N. S., Kent, D., Ravichandar, H., and Chernova, S. (2021).
Learning hierarchical task networks with preferences from unannotated demon-
strations. In CoRL, pages 1572–1581.

[38] Cheng, C., Kolobov, A., and Swaminathan, A. (2021). Heuristic-guided rein-
forcement learning. In NeurIPS, pages 13550–13563.

[39] Chiappa, S., Racanière, S., Wierstra, D., and Mohamed, S. (2017). Recurrent
environment simulators. In ICLR.

[40] Choi, J. and Kim, K. (2011). MAP inference for bayesian inverse reinforcement
learning. In NeurIPS, pages 1989–1997.

[41] Chrisman, L. (1992). Reinforcement learning with perceptual aliasing: The
perceptual distinctions approach. In AAAI, pages 183–188.

CHAPTER VIII. BIBLIOGRAPHY 125

[42] Cohen, E. and Beck, J. C. (2017). Problem difficulty and the phase transition
in heuristic search. In AAAI, pages 780–786.

[43] Coles, A. I. and Smith, A. J. (2007). Marvin: A heuristic search planner with
online macro-action learning. J. Artif. Intell. Res., 28:119–156.

[44] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Mach. Learn.,
20(3):273–297.

[45] Cox, D. R. (1958). The regression analysis of binary sequences. J. R. Stat. Soc.
Ser. B Methodol., 20(2):215–232.

[46] Culberson, J. C. (1997). Sokoban is PSPACE-complete. Technical Report TR
97-02, Department of Computing Science, University of Alberta.

[47] d’Avila Garcez, A. and Lamb, L. C. (2023). Neurosymbolic AI: the 3rd wave.
Artif. Intell. Rev., 56(11):12387–12406.

[48] Deisenroth, M. and Rasmussen, C. E. (2011). PILCO: A model-based and
data-efficient approach to policy search. In ICML, pages 465–472.

[49] Deng, J., Berg, A., Satheesh, S., Su, H., Khosla, A., and Li, F. (2012). Large
scale visual recognition challenge 2012. In ILSVRC 2012 workshop.

[50] Depeweg, S., Hernández-Lobato, J., Doshi-Velez, F., and Udluft, S. (2017).
Learning and policy search in stochastic dynamical systems with bayesian neural
networks. In ICLR.

[51] Dittadi, A., Bolander, T., and Winther, O. (2018). Learning to plan from raw
data in grid-based games. In GCAI, volume 55, pages 54–67.

[52] Diuk, C., Cohen, A., and Littman, M. L. (2008). An object-oriented represen-
tation for efficient reinforcement learning. In ICML, pages 240–247.

[53] Dong, H., Mao, J., Lin, T., Wang, C., Li, L., and Zhou, D. (2019). Neural logic
machines. In ICLR.

[54] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Un-
terthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J.,
and Houlsby, N. (2021). An image is worth 16x16 words: Transformers for image
recognition at scale. In ICLR.

[55] Dowson, D. and Wragg, A. (1973). Maximum-entropy distributions having
prescribed first and second moments (corresp.). IEEE Trans. Inform. Theory,
19(5):689–693.

[56] Draper, D., Hanks, S., and Weld, D. S. (1994). Probabilistic planning with
information gathering and contingent execution. In AIPS, pages 31–36.

[57] Džeroski, S., De Raedt, L., and Driessens, K. (2001). Relational reinforcement
learning. Mach. Learn., 43:7–52.

[58] Edelkamp, S. (2001). Planning with pattern databases. In Proc. ECP, volume 1,
pages 13–24.

126 CHAPTER VIII. BIBLIOGRAPHY

[59] Edelkamp, S. (2007). Automated creation of pattern database search heuristics.
Lect. Notes Comput. Sci., 4428:35.

[60] Eisen, M., Zhang, C., Chamon, L. F., Lee, D. D., and Ribeiro, A. (2019).
Learning optimal resource allocations in wireless systems. IEEE Trans. Signal
Process., 67(10):2775–2790.

[61] Ernandes, M. and Gori, M. (2004). Likely-admissible and sub-symbolic heuris-
tics. In ECAI, volume 16, pages 613–617.

[62] Farquhar, G., Rockt aschel, T., Igl, M., and Whiteson, S. (2018). Treeqn and
atreec: Differentiable tree planning for deep reinforcement learning. In ICLR.

[63] Fawcett, C., Helmert, M., Hoos, H., Karpas, E., Röger, G., and Seipp, J.
(2011). FD-Autotune: Domain-specific configuration using fast downward. In
ICAPS Workshop on Planning and Learning, pages 13–17.

[64] Feng, Z. and Hansen, E. A. (2002). Symbolic heuristic search for factored
Markov decision processes. In AAAI/IAAI, pages 455–460.

[65] Fern, A., Yoon, S. W., and Givan, R. (2004). Learning domain-specific control
knowledge from random walks. In ICAPS, pages 191–199.

[66] Fernandez-de Cossio-Diaz, J. (2018). Moments of the univariate truncated
normal distribution. https://github.com/cossio/TruncatedNormal.jl/blob/
23bfc7d0189ca6857e2e498006bbbed2a8b58be7/notes/normal.pdf.

[67] Feyzabadi, S. and Carpin, S. (2017). Planning using hierarchical constrained
Markov decision processes. Auton. Robots, 41:1589–1607.

[68] Fikes, R. E., Hart, P. E., and Nilsson, N. J. (1972a). Learning and executing
generalized robot plans. Artif. Intell., 3:251–288.

[69] Fikes, R. E., Hart, P. E., and Nilsson, N. J. (1972b). Learning and executing
generalized robot plans. Artif. Intell., 3:251–288.

[70] Forestier, S., Portelas, R., Mollard, Y., and Oudeyer, P.-Y. (2022). Intrinsically
motivated goal exploration processes with automatic curriculum learning. JMLR,
23(1):6818–6858.

[71] Fox, M. and Long, D. (1998). The automatic inference of state invariants in
TIM. J. Artif. Intell. Res., 9:367–421.

[72] Fox, M. and Long, D. (2003). Pddl2. 1: An extension to pddl for expressing
temporal planning domains. J. Artif. Intell. Res., 20:61–124.

[73] Frances, G., Ramı́rez Jávega, M., Lipovetzky, N., and Geffner, H. (2017). Purely
declarative action descriptions are overrated: Classical planning with simulators.
In IJCAI, pages 4294–4301.

[74] François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., and Pineau, J.
(2018). An introduction to deep reinforcement learning. Found. Trends Mach.
Learn., 11(3-4):219–354.

CHAPTER VIII. BIBLIOGRAPHY 127

[75] Fuentetaja, R. and De la Rosa, T. (2012). A planning-based approach for
generating planning problems. In Workshops at AAAI.

[76] Garcıa, J. and Fernández, F. (2015). A comprehensive survey on safe reinforce-
ment learning. J. Mach. Learn. Res., 16:1437–1480.

[77] Garnelo, M., Arulkumaran, K., and Shanahan, M. (2016). Towards deep sym-
bolic reinforcement learning. arXiv preprint arXiv:1609.05518.

[78] Garnelo, M. and Shanahan, M. (2019). Reconciling deep learning with symbolic
artificial intelligence: representing objects and relations. Curr. Opin. Behav. Sci.,
29:17–23.

[79] Gehring, C., Asai, M., Chitnis, R., Silver, T., Kaelbling, L., Sohrabi, S., and
Katz, M. (2022a). Reinforcement learning for classical planning: Viewing heuris-
tics as dense reward generators. In ICAPS, volume 32, pages 588–596.

[80] Gehring, C., Asai, M., Chitnis, R., Silver, T., Kaelbling, L., Sohrabi, S., and
Katz, M. (2022b). Reinforcement learning for classical planning: Viewing heuris-
tics as dense reward generators. In ICAPS, volume 32, pages 588–596.

[81] Georgievski, I. and Aiello, M. (2015). Htn planning: Overview, comparison,
and beyond. Artif. Intell., 222:124–156.

[82] Gerevini, A. and Schubert, L. (1998). Inferring state constraints for domain-
independent planning. In AAAI, pages 905–912.

[83] Getoor, L. and Taskar, B. (2007). Introduction to Statistical Relational Learn-
ing. MIT Press.

[84] Ghallab, M., Nau, D., and Traverso, P. (2016). Automated planning and acting.
Cambridge University Press.

[85] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In AISTATS, volume 9, pages 249–256.

[86] Gomoluch, P., Alrajeh, D., Russo, A., and Bucchiarone, A. (2017).
Towards learning domain-independent planning heuristics. arXiv preprint
arXiv:1707.06895.

[87] Grimm, C., Barreto, A., Singh, S., and Silver, D. (2020). The value equivalence
principle for model-based reinforcement learning. In NeurIPS, volume 33, pages
5541–5552.

[88] Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. (2016). Continuous deep
q-learning with model-based acceleration. In ICML, pages 2829–2838.

[89] Guez, A., Mirza, M., Gregor, K., Kabra, R., Racanière, S., Weber, T., Raposo,
D., Santoro, A., Orseau, L., Eccles, T., Wayne, G., Silver, D., and Lillicrap, T. P.
(2019). An investigation of model-free planning. In ICML, pages 2464–2473.

[90] Guez, A., Weber, T., Antonoglou, I., Simonyan, K., Vinyals, O., Wierstra, D.,
Munos, R., and Silver, D. (2018). Learning to search with MCTSnets. In ICML,
pages 1822–1831.

128 CHAPTER VIII. BIBLIOGRAPHY

[91] Gunning, D. and Aha, D. (2019). Darpa’s explainable artificial intelligence
(xai) program. AI Mag., 40:44–58.

[92] Guzmán, C., Alcázar, V., Prior, D., Onaindia, E., Borrajo, D., Fdez-Olivares,
J., and Quintero, E. (2012). PELEA: a domain-independent architecture for
planning, execution and learning. In ICAPS, volume 12, pages 38–45.

[93] Hans, A., Schneegaß, D., Schäfer, A. M., and Udluft, S. (2008). Safe exploration
for reinforcement learning. In ESANN, pages 143–148.

[94] Hansen, E. A. and Zilberstein, S. (2001). Lao*: A heuristic search algorithm
that finds solutions with loops. Artif. Intell., 129(1-2):35–62.

[95] Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the
heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern.,
4(2):100–107.

[96] Haslum, P., Lipovetzky, N., Magazzeni, D., and Muise, C. (2019). An introduc-
tion to the planning domain definition language. Synth. Lect. Artif. Intell. Mach.
Learn., 13:1–187.

[97] Hausknecht, M. and Stone, P. (2015). Deep recurrent q-learning for partially
observable mdps. In AAAI, pages 29–37.

[98] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In CVPR, pages 770–778.

[99] Heger, M. (1994). Consideration of risk in reinforcement learning. In Mach.
Learn., pages 105–111. Elsevier.

[100] Helmert, M. (2006). The fast downward planning system. J. Artif. Intell.
Res., 26:191–246.

[101] Helmert, M. (2009). Concise finite-domain representations for pddl planning
tasks. Artif. Intell., 173:503–535.

[102] Helmert, M. and Domshlak, C. (2009). Landmarks, critical paths and abstrac-
tions: what’s the difference anyway? In ICAPS, volume 19, pages 162–169.

[103] Helmert, M., Röger, G., and Karpas, E. (2011). Fast downward stone soup:
a baseline for building planner portfolios. In ICAPS Workshop on Planning and
Learning, volume 2835, page 8.

[104] Hester, T. and Stone, P. (2013). Texplore: real-time sample-efficient reinforce-
ment learning for robots. Mach. Learn., 90:385–429.

[105] Hickling, T., Zenati, A., Aouf, N., and Spencer, P. (2023). Explainability in
deep reinforcement learning: A review into current methods and applications.
ACM Comput. Surv., 56(5):1–35.

[106] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput., 9(8):1735–1780.

CHAPTER VIII. BIBLIOGRAPHY 129

[107] Hoey, J., St-Aubin, R., Hu, A., and Boutilier, C. (1999). SPUDD: stochastic
planning using decision diagrams. In UAI, pages 279–288.

[108] Hoffmann, J. and Nebel, B. (2001). The FF planning system: Fast plan
generation through heuristic search. J. Artif. Intell. Res., 14:253–302.

[109] Hoffmann, J., Porteous, J., and Sebastia, L. (2004). Ordered landmarks in
planning. J. Artif. Intell. Res., 22:215–278.

[110] Hogg, C., Munoz-Avila, H., and Kuter, U. (2008). Htn-maker: Learning htns
with minimal additional knowledge engineering required. In AAAI, pages 950–
956.

[111] Höller, D. and Bercher, P. (2021). Landmark generation in htn planning. In
AAAI, volume 35, pages 11826–11834.

[112] Howey, R., Long, D., and Fox, M. (2004). Val: Automatic plan validation,
continuous effects and mixed initiative planning using pddl. In IEEE Int. Conf.
Tools Artif. Intell., pages 294–301.

[113] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In ICML, volume 37, pages
448–456.

[114] Jaidee, U., Munoz-Avila, H., and Aha, D. W. (2012). Learning and reusing
goal-specific policies for goal-driven autonomy. In ICCBR, pages 182–195.

[115] Jaynes, E. T. (1957). Information theory and statistical mechanics. Phys.
Rev., 106(4):620–630.

[116] Jia, W., Sun, M., Lian, J., and Hou, S. (2022). Feature dimensionality reduc-
tion: a review. Complex Intell. Syst., 8(3):2663–2693.

[117] Jiménez, S., De La Rosa, T., Fernández, S., Fernández, F., and Borrajo, D.
(2012). A review of machine learning for automated planning. Knowl. Eng. Rev.,
27(4):433–467.

[118] Jiménez, S., Fernández, F., and Borrajo, D. (2008). The PELA architecture:
integrating planning and learning to improve execution. In AAAI. AAAI Press.

[119] Jiménez, S., Segovia-Aguas, J., and Jonsson, A. (2019). A review of generalized
planning. Knowl. Eng. Rev., 34:e5.

[120] Jin, M., Ma, Z., Jin, K., Zhuo, H. H., Chen, C., and Yu, C. (2022). Creativity
of ai: Automatic symbolic option discovery for facilitating deep reinforcement
learning. In AAAI, volume 36, pages 7042–7050.

[121] Kahneman, D. (2011). Thinking, fast and slow. Farrar, Straus and Giroux.

[122] Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R. H.,
Czechowski, K., Erhan, D., Finn, C., Kozakowski, P., Levine, S., Mohiuddin, A.,
Sepassi, R., Tucker, G., and Michalewski, H. (2020). Model based reinforcement
learning for atari. In ICLR.

130 CHAPTER VIII. BIBLIOGRAPHY

[123] Kamran, D., Engelgeh, T., Busch, M., Fischer, J., and Stiller, C. (2021).
Minimizing safety interference for safe and comfortable automated driving with
distributional reinforcement learning. In IROS, pages 1236–1243.

[124] Kansky, K., Silver, T., Mély, D. A., Eldawy, M., Lázaro-Gredilla, M., Lou, X.,
Dorfman, N., Sidor, S., Phoenix, S., and George, D. (2017). Schema networks:
Zero-shot transfer with a generative causal model of intuitive physics. In ICML,
pages 1809–1818.

[125] Karpas, E. and Domshlak, C. (2009). Cost-optimal planning with landmarks.
In IJCAI, pages 1728–1733.

[126] Katz, M. and Sohrabi, S. (2020). Generating data in planning: SAS planning
tasks of a given causal structure. ICAPS 2020 Workshop on Heuristics and Search
for Domain-independent Planning, page 41.

[127] Katz, M., Srinivas, K., Sohrabi, S., Feblowitz, M., Udrea, O., and Hassan-
zadeh, O. (2021). Scenario planning in the wild: A neuro-symbolic approach.
pages 15–23.

[128] Keyder, E., Hoffmann, J., and Haslum, P. (2014). Improving delete relax-
ation heuristics through explicitly represented conjunctions. J. Artif. Intell. Res.,
50:487–533.

[129] Khansari-Zadeh, S. M. and Billard, A. (2011). Learning stable nonlinear dy-
namical systems with gaussian mixture models. IEEE Trans. Robot., 27(5):943–
957.

[130] Kingma, D. and Welling, M. (2014). Auto-encoding variational bayes interna-
tional. In ICLR.

[131] Kingma, D. P. and Ba, J. (2015). Adam: a method for stochastic optimization.
In ICLR.

[132] Kipf, T. N., van der Pol, E., and Welling, M. (2020). Contrastive learning of
structured world models. In ICLR, pages 1–21.

[133] Kober, J., Bagnell, J. A., and Peters, J. (2013). Reinforcement learning in
robotics: A survey. Int. J. Rob. Res., 32(11):1238–1274.

[134] Konidaris, G. D. and Barto, A. G. (2007). Building portable options: Skill
transfer in reinforcement learning. In IJCAI, volume 7, pages 895–900.

[135] Koppejan, R. and Whiteson, S. (2011). Neuroevolutionary reinforcement
learning for generalized control of simulated helicopters. Evol. Intell., 4:219–241.

[136] Korf, R. E. (1985). Macro-operators: A weak method for learning. Artif.
Intell., 26:35–77.

[137] Kramer, S. (1996). Structural regression trees. In AAAI, pages 812–819.

[138] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In NeurIPS, pages 1106–1114.

CHAPTER VIII. BIBLIOGRAPHY 131

[139] Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2017).
Building machines that learn and think like people. Behav. Brain Sci., 40:e253.

[140] Landajuela, M., Petersen, B. K., Kim, S., Santiago, C. P., Glatt, R., Mund-
henk, N., Pettit, J. F., and Faissol, D. (2021). Discovering symbolic policies with
deep reinforcement learning. In ICML, pages 5979–5989.

[141] Laversanne-Finot, A., Pere, A., and Oudeyer, P.-Y. (2018). Curiosity driven
exploration of learned disentangled goal spaces. In CoRL, pages 487–504.

[142] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nat., 521:436–
444.

[143] Li, Y. (2018). Deep reinforcement learning. arXiv preprint arXiv:1810.06339.

[144] Liebana, D. P., Samothrakis, S., Togelius, J., Schaul, T., Lucas, S. M.,
Couëtoux, A., Lee, J., Lim, C., and Thompson, T. (2016). The 2014 general video
game playing competition. IEEE Trans. Comput. Intell. AI Games, 8(3):229–243.

[145] Littman, M. L. (1996). Algorithms for sequential decision-making. Brown
University.

[146] Long, D. and Fox, M. (1999). Efficient implementation of the plan graph in
stan. J. Artif. Intell. Res., 10:87–115.

[147] Loshchilov, I. and Hutter, F. (2017). Fixing weight decay regularization in
adam. arXiv preprint arXiv:1711.05101.

[148] Lovejoy, W. S. (1991). A survey of algorithmic methods for partially observed
Markov decision processes. Ann. Oper. Res., 28(1):47–65.

[149] Lyu, D., Yang, F., Liu, B., and Gustafson, S. (2019). SDRL: interpretable
and data-efficient deep reinforcement learning leveraging symbolic planning. In
AAAI, volume 33, pages 2970–2977.

[150] Machado, M. C., Bellemare, M. G., and Bowling, M. (2017). A laplacian
framework for option discovery in reinforcement learning. In ICML, pages 2295–
2304.

[151] Magnaguagno, M. C., Fraga Pereira, R., Móre, M. D., and Meneguzzi, F. R.
(2017). Web planner: A tool to develop classical planning domains and visualize
heuristic state-space search. In ICAPS UISP Workshop.

[152] Marcus, G. (2018). Deep learning: A critical appraisal. arXiv preprint
arXiv:1801.00631.

[153] Marcus, G. (2020). The next decade in AI: four steps towards robust artificial
intelligence. arXiv preprint arXiv:2002.06177.

[154] Marom, O. and Rosman, B. (2020). Utilising uncertainty for efficient learning
of likely-admissible heuristics. In ICAPS, volume 30, pages 560–568.

[155] McGann, C., Py, F., Rajan, K., Thomas, H., Henthorn, R., and McEwen, R. S.
(2008). A deliberative architecture for AUV control. In ICRA, pages 1049–1054.

132 CHAPTER VIII. BIBLIOGRAPHY

[156] McGovern, A. and Sutton, R. S. (1998). Macro-actions in reinforcement learn-
ing: An empirical analysis. Computer Science Department Faculty Publication
Series, page 15.

[157] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver,
D., and Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement
learning. In ICML, pages 1928–1937.

[158] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., and Riedmiller, M. (2013). Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602.

[159] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M. A., Fidjeland, A., Ostrovski, G., Petersen, S.,
Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg,
S., and Hassabis, D. (2015). Human-level control through deep reinforcement
learning. Nat., 518(7540):529–533.

[160] Moerland, T. M., Broekens, J., Plaat, A., and Jonker, C. M. (2023). Model-
based reinforcement learning: A survey. Found. Trends Mach. Learn., 16(1):1–
118.

[161] Molineaux, M., Floyd, M. W., Dannenhauer, D., and Aha, D. W. (2018).
Human-agent teaming as a common problem for goal reasoning. In AAAI Spring
Symposia.

[162] Molineaux, M., Klenk, M., and Aha, D. (2010). Goal-driven autonomy in a
navy strategy simulation. In AAAI, volume 24, pages 1548–1554.

[163] Mourao, K., Petrick, R. P., and Steedman, M. (2008). Using kernel perceptrons
to learn action effects for planning. In CogSys, pages 45–50.

[164] Mukadam, M., Cosgun, A., Nakhaei, A., and Fujimura, K. (2017). Tactical
decision making for lane changing with deep reinforcement learning. In NIPS
Workshop on Machine Learning for Intelligent Transportation Systems.

[165] Murray, A., Arulselvan, A., Cashmore, M., Roper, M., and Frank, J. (2023). A
column generation approach to correlated simple temporal networks. In ICAPS,
volume 33, pages 295–303.

[166] Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted
boltzmann machines. In ICML, pages 807–814.

[167] Natarajan, M. and Kolobov, A. (2022). Planning with Markov decision pro-
cesses: An AI perspective. Synth. Lect. Artif. Intell. Mach. Learn. Springer Na-
ture.

[168] Nau, D. S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D.,
and Yaman, F. (2003). Shop2: An htn planning system. J. Artif. Intell. Res.,
20:379–404.

[169] Nazari, M., Oroojlooy, A., Snyder, L. V., and Takác, M. (2018). Reinforcement
learning for solving the vehicle routing problem. In NeurIPS, pages 9861–9871.

CHAPTER VIII. BIBLIOGRAPHY 133

[170] Nejati, N., Langley, P., and Konik, T. (2006). Learning hierarchical task
networks by observation. In ICML, pages 665–672.

[171] Ng, A. Y., Harada, D., and Russell, S. (1999). Policy invariance under reward
transformations: Theory and application to reward shaping. In ICML, volume 99,
pages 278–287.

[172] Ng, A. Y. and Russell, S. (2000). Algorithms for inverse reinforcement learning.
In ICML, volume 1, pages 663–670.

[173] Núñez-Molina, C. (2022a). Application of neurosymbolic AI to sequential
decision making. In IJCAI 2022 Doctoral Consortium, pages 5863–5864.

[174] Núñez-Molina, C. (2022b). Lifted PDDL. GitHub. https://github.com/AI-
Planning/lifted-pddl.

[175] Núñez-Molina, C. (2023). PDDL Prover. GitHub.
https://github.com/TheAeryan/PDDL-Prover.

[176] Núñez-Molina, C. and Asai, M. (2023a). Simple NLM. GitHub.
https://github.com/TheAeryan/simple-NLM.

[177] Núñez-Molina, C. and Asai, M. (2023b). Stable Truncated Gaussian. GitHub.
https://github.com/TheAeryan/stable-truncated-gaussian.

[178] Núñez-Molina, C., Asai, M., Mesejo, P., and Fernandez-Olivares, J. (2024a).
On using admissible bounds for learning forward search heuristics. In IJCAI,
pages 6761–6769.

[179] Núñez-Molina, C., Fernández-Olivares, J., and Pérez, R. (2022). Learning
to select goals in automated planning with deep-q learning. Expert Syst. Appl.,
202:117265.

[Núñez-Molina et al.] Núñez-Molina, C., Mesejo, P., and Fernández-Olivares, J. Au-
tomated planning instance generation with neuro-symbolic AI. Artif. Intell. Sub-
mitted on October 3, 2024.

[181] Núñez-Molina, C., Mesejo, P., and Fernández-Olivares, J. (2024b). NeSIG:
A neuro-symbolic method for learning to generate planning problems. In ECAI,
volume 392, pages 4084–4091.

[182] Núñez-Molina, C., Mesejo, P., and Fernández-Olivares, J. (2024c). A review of
symbolic, subsymbolic and hybrid methods for sequential decision making. ACM
Comput. Surv., 56(11):1–36.

[183] Núñez-Molina, C., Vellido, I., Nikolov-Vasilev, V., Pérez, R., and Fdez-
Olivares, J. (2021). A proposal to integrate deep q-learning with automated
planning to improve the performance of a planning-based agent. In CAEPIA,
pages 23–32.

[184] Oates, T. and Cohen, P. R. (1996). Searching for planning operators with
context-dependent and probabilistic effects. In AAAI, pages 863–868.

134 CHAPTER VIII. BIBLIOGRAPHY

[185] Oh, J., Singh, S., and Lee, H. (2017). Value prediction network. In NeurIPS,
pages 6118–6128.

[186] Paisner, M., Cox, M., Maynord, M., and Perlis, D. (2014). Goal-driven au-
tonomy for cognitive systems. In CogSci, volume 36, pages 2085–2090.

[187] Pascanu, R., Li, Y., Vinyals, O., Heess, N., Buesing, L., Racanière, S., Re-
ichert, D., Weber, T., Wierstra, D., and Battaglia, P. (2017). Learning model-
based planning from scratch. arXiv preprint arXiv:1707.06170.

[188] Pasula, H. M., Zettlemoyer, L. S., and Kaelbling, L. P. (2007). Learning
symbolic models of stochastic domains. J. Artif. Intell. Res., 29:309–352.

[189] Pearl, J. (2014). Probabilistic reasoning in intelligent systems: networks of
plausible inference. Elsevier.

[190] Pereira, R. F., Oren, N., and Meneguzzi, F. (2020). Landmark-based ap-
proaches for goal recognition as planning. Artif. Intell., 279:103217.

[191] Plaat, A., Kosters, W., and Preuss, M. (2023). High-accuracy model-based
reinforcement learning, a survey. Artif. Intell. Rev., pages 1–33.

[192] Pozanco, A., Fernández, S., and Borrajo, D. (2018). Learning-driven goal
generation. AI Commun., 31(2):137–150.

[193] Quinlan, J. R. (1986). Induction of decision trees. Mach. Learn., 1(1):81–106.

[194] Ramırez, M. and Geffner, H. (2009). Plan recognition as planning. In IJCAI,
pages 1778–1783.

[195] Richter, S. and Westphal, M. (2010). The lama planner: Guiding cost-based
anytime planning with landmarks. J. Artif. Intell. Res., 39:127–177.

[196] Rintanen, J. (2008). Regression for classical and nondeterministic planning.
In ECAI, pages 568–572. IOS Press.

[197] Rovner, A., Sievers, S., and Helmert, M. (2019). Counterexample-guided ab-
straction refinement for pattern selection in optimal classical planning. In ICAPS,
volume 29, pages 362–367.

[198] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning repre-
sentations by back-propagating errors. Nat., 323(6088):533–536.

[199] Russell, S. J. and Norvig, P. (2020). Artificial Intelligence: a Modern Approach
(4th Edition). Pearson.

[200] Sacerdoti, E. D. (1975). The nonlinear nature of plans. Technical report,
Stanford Research Inst. Menlo Park CA.

[201] Safaei, J. and Ghassem-Sani, G. (2007). Incremental learning of planning
operators in stochastic domains. In SOFSEM, pages 644–655.

CHAPTER VIII. BIBLIOGRAPHY 135

[202] Sanner, S. (2010). Relational dynamic influence diagram language (rddl):
Language description. Technical Report 32, National ICT Australia Ltd (NICTA),
Machine Learning Group. Uncertainty Track, Seventh International Planning
Competition.

[203] Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., Er,
M. J., Ding, W., and Lin, C.-T. (2017). A review of clustering techniques and
developments. Neurocomputing, 267:664–681.

[204] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G.
(2009). The graph neural network model. IEEE Trans. Neural Networks, 20(1):61–
80.

[205] Schäpers, B., Niemueller, T., Lakemeyer, G., Gebser, M., and Schaub, T.
(2018). Asp-based time-bounded planning for logistics robots. In ICAPS, vol-
ume 28, pages 509–517.

[206] Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). Prioritized expe-
rience replay. In ICLR.

[207] Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt,
S., Guez, A., Lockhart, E., Hassabis, D., Graepel, T., Lillicrap, T. P., and Silver,
D. (2020). Mastering atari, go, chess and shogi by planning with a learned model.
Nat., 588(7839):604–609.

[208] Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and Abbeel, P. (2016).
High-dimensional continuous control using generalized advantage estimation. In
ICLR.

[209] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

[210] Segura-Muros, J. Á., Pérez, R., and Fernández-Olivares, J. (2021). Discovering
relational and numerical expressions from plan traces for learning action models.
Appl. Intell., 51:7973–7989.

[211] Shakya, A. K., Pillai, G., and Chakrabarty, S. (2023). Reinforcement learning
algorithms: A brief survey. Expert Syst. Appl., page 120495.

[212] Shen, W., Trevizan, F., and Thiébaux, S. (2020). Learning domain-
independent planning heuristics with hypergraph networks. In ICAPS, volume 30,
pages 574–584.

[213] Shen, W. M. and Simon, H. A. (1989). Rule creation and rule learning through
environmental exploration. In IJCAI, pages 675–680. Morgan Kaufmann.

[214] Shen, Y., Zhao, N., Xia, M., and Du, X. (2017). A deep q-learning network
for ship stowage planning problem. Pol. Marit. Res., 24(s3):102–109.

[215] Sheth, A. P. and Roy, K. (2024). Neurosymbolic value-inspired artificial intel-
ligence (why, what, and how). IEEE Intell. Syst., 39(1):5–11.

136 CHAPTER VIII. BIBLIOGRAPHY

[216] Shi, X., Chen, Z., Wang, H., Yeung, D., Wong, W., and Woo, W. (2015).
Convolutional LSTM network: A machine learning approach for precipitation
nowcasting. In NeurIPS, pages 802–810.

[217] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,
Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K.,
and Hassabis, D. (2018). A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 362(6419):1140–1144.

[218] Silver, D., van Hasselt, H., Hessel, M., Schaul, T., Guez, A., Harley, T., Dulac-
Arnold, G., Reichert, D. P., Rabinowitz, N. C., Barreto, A., and Degris, T. (2017).
The predictron: End-to-end learning and planning. In ICML, pages 3191–3199.

[219] Singh, S., Jaakkola, T. S., and Jordan, M. I. (1994). Reinforcement learning
with soft state aggregation. In NeurIPS, pages 361–368.

[220] Sohrabi, S., Riabov, A. V., and Udrea, O. (2016). Plan recognition as planning
revisited. In IJCAI, pages 3258–3264.

[221] Srinivas, A., Jabri, A., Abbeel, P., Levine, S., and Finn, C. (2018). Universal
planning networks: Learning generalizable representations for visuomotor control.
In ICML, pages 4732–4741.

[222] Stolle, M. and Precup, D. (2002). Learning options in reinforcement learning.
In SARA, pages 212–223.

[223] Sutton, R. S. (1991). Dyna, an integrated architecture for learning, planning,
and reacting. ACM Sigart Bull., 2(4):160–163.

[224] Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduc-
tion. MIT press.

[225] Sutton, R. S., Precup, D., and Singh, S. (1999). Between mdps and semi-
mdps: A framework for temporal abstraction in reinforcement learning. Artif.
Intell., 112(1-2):181–211.

[226] Sutton, R. S., Szepesvári, C., Geramifard, A., and Bowling, M. H. (2008).
Dyna-style planning with linear function approximation and prioritized sweeping.
In UAI, pages 528–536.

[227] Tadepalli, P., Givan, R., and Driessens, K. (2004). Relational reinforcement
learning: An overview. In ICML workshop on relational reinforcement learning,
pages 1–9.

[228] Tamar, A., Levine, S., Abbeel, P., Wu, Y., and Thomas, G. (2016). Value
iteration networks. In NeurIPS, pages 2146–2154.

[229] Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM J.
Comput., 1(2):146–160.

[230] Tate, A. (1977). Generating project networks. In IJCAI, pages 888–893.

CHAPTER VIII. BIBLIOGRAPHY 137

[231] Thomaz, A. L. and Breazeal, C. (2006). Reinforcement learning with hu-
man teachers: Evidence of feedback and guidance with implications for learning
performance. In AAAI, volume 6, pages 1000–1005.

[232] Torralba, A., Seipp, J., and Sievers, S. (2021). Automatic instance generation
for classical planning. In ICAPS, volume 31, pages 376–384.

[233] Toyer, S., Trevizan, F., Thiébaux, S., and Xie, L. (2018). Action schema
networks: Generalised policies with deep learning. In AAAI, volume 32, pages
6294–6301.

[234] Trevizan, F. W. and Veloso, M. M. (2014). Depth-based short-sighted stochas-
tic shortest path problems. Artif. Intell., 216:179–205.

[235] ús Virseda, J., Borrajo, D., and Alcázar, V. (2013). Learning heuristic func-
tions for cost-based planning. Plan. Learn., 4.

[236] Vallati, M., Chrpa, L., Grzes, M., McCluskey, T. L., Roberts, M., and Sanner,
S. (2015). The 2014 international planning competition: Progress and trends. Ai
Mag., 36(3):90–98.

[237] van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning
with double q-learning. In AAAI, pages 2094–2100.

[238] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. In NeurIPS,
pages 5998–6008.

[239] Vidal, T. and Ghallab, M. (1996). Dealing with uncertain durations in tem-
poral constraint networks dedicated to planning. In ECAI, pages 48–54.

[240] Wahlström, N., Schön, T. B., and Deisenroth, M. P. (2015). From pix-
els to torques: Policy learning with deep dynamical models. arXiv preprint
arXiv:1502.02251.

[241] Walsh, T. J. and Littman, M. L. (2008). Efficient learning of action schemas
and web-service descriptions. In AAAI, volume 8, pages 714–719.

[242] Wang, W. Y., Li, J., and He, X. (2018). Deep reinforcement learning for nlp.
In ACL: Tutorial Abstracts, pages 19–21.

[243] Wang, X. (1996). Learning planning operators by observation and practice.
PhD thesis, Carnegie Mellon University.

[244] Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis,
King’s College.

[245] Weber, B., Mateas, M., and Jhala, A. (2012). Learning from demonstration
for goal-driven autonomy. In AAAI, volume 26, pages 1176–1182.

[246] Williams, R. J. (1992). Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Mach. Learn., 8:229–256.

138 CHAPTER VIII. BIBLIOGRAPHY

[247] Xin, L., Song, W., Cao, Z., and Zhang, J. (2021). Neurolkh: Combining
deep learning model with lin-kernighan-helsgaun heuristic for solving the traveling
salesman problem. In NeurIPS, pages 7472–7483.

[248] Yang, Q., Wu, K., and Jiang, Y. (2007). Learning action models from plan
examples using weighted max-sat. Artif. Intell., 171(2-3):107–143.

[249] Yoon, S. and Kambhampati, S. (2007). Towards model-lite planning: A pro-
posal for learning & planning with incomplete domain models. In ICAPS Work-
shop on Artificial Intelligence Planning and Learning.

[250] Yoon, S. W., Fern, A., and Givan, R. (2006). Learning heuristic functions
from relaxed plans. In ICAPS, volume 2, pages 162–171.

[251] Yoon, S. W., Fern, A., and Givan, R. (2007). Ff-replan: A baseline for prob-
abilistic planning. In ICAPS, volume 7, pages 352–359.

[252] Yoon, S. W., Fern, A., and Givan, R. (2008). Learning control knowledge for
forward search planning. J. Mach. Learn. Res., 9:683–718.

[253] Younes, H. L. and Littman, M. L. (2004). Ppddl 1.0: An extension to pddl for
expressing planning domains with probabilistic effects. Technical Report CMU-
CS-04-167, Carnegie Mellon University.

[254] Yu, C., Zheng, X., Zhuo, H. H., Wan, H., and Luo, W. (2023). Reinforcement
learning with knowledge representation and reasoning: A brief survey. arXiv
preprint arXiv:2304.12090.

[255] Zambaldi, V. F., Raposo, D., Santoro, A., Bapst, V., Li, Y., Babuschkin, I.,
Tuyls, K., Reichert, D. P., Lillicrap, T. P., Lockhart, E., Shanahan, M., Langston,
V., Pascanu, R., Botvinick, M. M., Vinyals, O., and Battaglia, P. W. (2019). Deep
reinforcement learning with relational inductive biases. In ICLR.

[256] Zheng, Y., Liu, Q., Chen, E., Ge, Y., and Zhao, J. L. (2014). Time series
classification using multi-channels deep convolutional neural networks. In WAIM,
volume 8485, pages 298–310.

[257] Zhuo, H. H. and Yang, Q. (2014). Action-model acquisition for planning via
transfer learning. Artif. Intell., 212:80–103.

Part V

Appendix

139

Appendix A

Heuristic Learning with
Admissible Bounds

A.1 Truncated Gaussian implementation

This Appendix explains several important implementation details of the Trun-
cated Gaussian T N distribution used in the experiments of this chapter. The code
for this implementation can be found in a GitHub repository [177].

A.1.1 Numerically stable formulas for Truncated Gaussian

In order to train and use a system that involves a Truncated Gaussian, we need to
compute several properties, such as its mean and the log-probability of some value
x under the distribution. However, the naive implementation of the formulas for
calculating these quantities is numerically unstable due to floating-point rounding
errors, especially when µ lies outside the interval (l, u). In this subsection, we
briefly explain the source of instability and provide numerically stable formulas for
calculating these values.

Given a Truncated Gaussian distribution T N (x | µ, σ, l, u), its mean E[x] is given
by the following formula:

E[x] = µ+
ϕ(α)− ϕ(β)

Φ(β)− Φ(α)
σ,

where α =
l − µ

σ
, β =

u− µ

σ
(β ≥ α)

The expression ϕ(α)−ϕ(β)
Φ(β)−Φ(α)

should not be evaluated directly because it involves sub-
tractions between values that could be potentially very close to each other, causing
floating-point rounding errors.

We now describe a stable implementation of this formula introduced in [66]. Let
us define the following function:

F1(x, y) =
e−x2 − e−y2

erf(y)− erf(x)

Then, we reformulate the mean as follows:

E[x] = µ+

√
2

π
F1

(
α√
2
,
β√
2

)
σ

140

APPENDIX A. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS 141

F1 can be evaluated in a numerically stable manner by using the formulas below:

F1(x, y)

= F1(y, x), if |x| > |y|
= P1(x, y − x), if |x− y| = |ϵ| < 10−7

=
1−∆

∆erfcx(−y)− erfcx(−x)
if x, y ≤ 0

=
1−∆

erfcx(x)−∆erfcx(y)
if x, y ≥ 0

=
(1−∆)e−x2

erf(y)− erf(x)
otherwise

where ∆ = ex
2−y2 , erfcx(x) = ex

2
erfc(x) = ex

2
(1 − erf(x)) is a function that

is commonly available in mathematical packages, and P1 is a Taylor expansion of
F1(x, x+ ϵ) = P1(x, ϵ) where y = x+ ϵ:

P1(x, ϵ) =
√
πx+

1

2

√
πϵ− 1

6

√
πxϵ2 − 1

12

√
πϵ3 +

1

90

√
πx(x2 + 1)ϵ4

Next, we provide a numerically stable method for computing the log-probability
log T N (x | µ, σ, l, u). Let us assume l ≤ x ≤ u, since otherwise the probability is 0
(whose logarithm is −∞). The value is given by the following expression:

log T N (x | µ, σ, l, u) = log

(
1

σ

ϕ(ξ)

Φ(β)− Φ(α)

)
=

− log σ − log
√
2π − ξ2

2
− log

(
Φ(β)− Φ(α)

)
,

where ξ =
x− µ

σ

Let Z = Φ(β)−Φ(α). We obtain log(Z) from the stable formula for E[x]. When
α, β ≥ 0,

log(Z) = − log
E[x]− µ

σ
− log

√
2π − α2

2
+ log

(
1− e

α2−β2

2

)
When α, β ≤ 0,

log(Z) = − log
µ− E[x]

σ
− log

√
2π − β2

2
+ log

(
1− e

β2−α2

2

)
Otherwise,

log(Z) = − log 2 + log

[
erf

(
β√
2

)
− erf

(
α√
2

)]

A.1.2 Truncated Gaussian with missing bounds

A Truncated Gaussian distribution can be defined with either the lower l or upper
bound u missing, as T N (µ, σ,−∞, u) or T N (µ, σ, l,∞), respectively. It can also be

142 APPENDIX A. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS

defined with no bounds at all as T N (µ, σ,−∞,∞), in which case it is equivalent to
an untruncated Gaussian N (µ, σ).

In our implementation, we use l = −1e5 and u = 1e5 as the parameters of
a Truncated Gaussian with no lower and/or upper bound, respectively. We have
observed that these values result indistinguishable from l→ −∞ and u→∞ when
calculating the mean E[x] and log-probability log p(x), as long as −1e5≪ µ≪ 1e5,
σ ≪ 1e5 and −1e5 < x < 1e5 (since p(x) = 0 for any x outside the interval (l, u)).

A.1.3 Truncated Gaussian with open bounds

When defining a Truncated Gaussian distribution T N (µ, σ, l, u), we need to
specify whether the bounds l, u are contained in the support of the distribution or
not, i.e., whether the support is equal to [l, u] (they are contained) or (l, u) (they
are not contained). When the support is [l, u] we say that the Truncated Gaussian
has closed bounds and that it has open bounds otherwise.

Our first Truncated Gaussian implementation used closed bounds, but we dis-
covered that this decision would sometimes lead to learning issues since the ML
model would tend to output µ≪ 0 (e.g., µ = −100). We believe the reason for that
behavior is that a highly accurate lower bound l (e.g., hLMcut) can be sometimes
equal to h∗ and the ML model is encouraged to maximize log p(l) = log p(h∗). In
order to do so, it can simply output µ ≪ 0, as the smaller (more negative) µ gets,
the higher log p(l) becomes. Therefore, using closed bounds would often result in a
learned heuristic equivalent to l = hLMcut, as the mean of T N (µ, σ, l, u) is almost
equal to l when µ≪ l.

For this reason, we switched to open bounds in our implementation. To do so,
we simply subtracted a small value ϵ = 0.1 from l, obtaining a new distribution
T N (µ, σ, l − ϵ, u). This made sure that x was never equal to l′ = l − ϵ when
calculating log p(x = h∗), which prevented the ML model from predicting µ ≪ 0.
Finally, in order to obtain a Truncated Gaussian where the upper bound u is also
open, we can add ϵ to u, which results in a new distribution T N (µ, σ, l − ϵ, u+ ϵ).

A.2 Parameter details

A.2.1 Model hyperparameters

In this Appendix, we detail the hyperparameter values used for the different
models: NLM, HGN, and linear regression. In general, we did not perform extensive
hyperparameter tuning for the different models.

For the NLM, we used a model with breadth 3 and depth 5, where every inner
layer outputs 8 predicates for each arity. The multi-layer perceptrons used in the
network employed sigmoid as their activation function and contained no hidden
layer. AdamW [147] with weight decay 0.01 helped suppress overfitting.

For the HGN, we employed a hidden size of 32 and 4 recursion steps. We note
that using more recursion steps did not improve the performance significantly while
being slower. As mentioned in the main paper, the learning rate for the HGN is
1e−3, which corresponds to the value used in [212].

Finally, we report that we initially tested an L2 weight decay penalty for the
linear regression model which was removed later as it did not help.

APPENDIX A. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS 143

blocksworld

train seed ∈ 1..38, blocks ∈ 5..16
val seed ∈ 1..11, blocks ∈ 5..16
test seed ∈ 1..11, blocks ∈ 11..22

ferry

train seed ∈ 1..16, locations ∈ 2..6, cars ∈ 2..6
val seed ∈ 1..4, locations ∈ 2..6, cars ∈ 2..6
test seed ∈ 1..16, locations ∈ {10, 15, 20, 25, 30},

cars ∈ {10, 15, 20, 25, 30}

gripper

train seed ∈ 1..80, balls ∈ {2, 4, 6, 8, 10}
val seed ∈ 1..20, balls ∈ {2, 4, 6, 8, 10}
test seed ∈ 1..20, balls ∈ {20, 40, 60, 80, 100}

visitall

train seed ∈ 1..70, x ∈ 3..5, x = y, ratio ∈ {0.5, 1.0}
val seed ∈ 1..17, x ∈ 3..5, x = y, ratio ∈ {0.5, 1.0}
test seed ∈ 1..17, x, y ∈ 5..7, ratio ∈ {0.5, 1.0}

Table 6: List of parameters for instance generators.

A.2.2 Parameters of instance generators

We generated the problems used in our experiments with parameterized genera-
tors [63]. Table 6 shows the range of parameter values used for each generator. We
note that the gripper generator was modified to select the initial states randomly
from the entire state space, unlike traditional instances whose initial state specifies
that all balls are in the left room.

A.3 Full experimental results for NLM models

In Table 4, we only showed the NLM planning results for our proposed config-
uration (learn/hFF) and the baseline configuration (fixed/none). Complete results
for NLM models are shown in Table 7, which includes the learn/none and fixed/hFF

configurations.
Regarding the fixed/hFF configuration, we observe that T N only obtains better

planning results (when both the number of solved instances and evaluated nodes
are considered) than N and N+clip on visitall and gripper, but not on ferry and
blocksworld. These results are not surprising. After all, as commented in Section
V.4.3, this configuration is problematic for T N since σ affects its heuristic prediction
E[x] and, therefore, needs to learn σ in order to achieve good performance. This is
also why it does not obtain better accuracy than the other approaches (see Table
3).

Regarding the learn/none configuration, T N is the best model overall: It obtains
better planning performance than the alternative approaches on visitall and gripper,
comparable performance with N+clip on ferry and is outperformed on blocksworld.

144 APPENDIX A. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS

learn/hFF learn/none
domain hFF N N+clip T N N N+clip T N

Ratio of solved instances under 104 evaluations (higher is better)

blocks .13 .84±.18 .85±.18 .88±.17 .85±.37 .57±.36 .51±.37
ferry .82 .91±.00 .91±.01 .98±.00 .01±.05 .60±.12 .59±.15
gripper .96 1 1 1 0 .75±.34 1
visitall .86 .97±.07 .98±.08 .98±.06 .79±.16 1 1

Average node evaluations (smaller is better)

blocks 9309 2690±2111 2681±2115 2060±1823 3225±3401 5754±2825 6492±2695
ferry 5152 3216±532 3117±557 2477±369 9952±299 6751±610 6780±952
gripper 3918 1642±198 1643±210 1637±244 10000±0 4313±1685 1480±1484
visitall 3321 2156±1458 2148±1491 1683±1269 3860±2393 818±353 385±616

fixed/hFF fixed/none
domain N N+clip T N N N+clip T N

Ratio of solved instances under 104 evaluations (higher is better)

blocks .90±.13 .89±.13 .87±.12 .79±.34 .50±.34 .55±.35
ferry .99±.00 .99±.00 .94±.01 .01±.06 .57±.16 .58±.08
gripper 1 1 1 .00±.00 .92±.26 1
visitall .98±.03 .99±.03 1 .82±.14 1 1

Average node evaluations (smaller is better)

blocks 1791±1678 1809±1674 2171±1489 4118±3005 6268±2649 5903±2835
ferry 2218±255 2197±255 3471±482 9933±340 6675±1019 6475±593
gripper 1631±65 1635±60 1301±48 10000±0 2941±1360 1709±428
visitall 1437±1114 1355±1119 1142±929 3384±2035 591±151 612±160

Table 7: Planning performance of NLM heuristics (complete results). For each model,
we use the weights that resulted in the best validation MSE loss during training. Table columns
and rows have the same meaning as in Table 4. For each configuration, the best metric among N ,
N+clip and T N is highlighted in bold.

Finally, we note that the best configuration is the one we proposed: learn/hFF.

A.4 Full experimental results for HGN models

In this Appendix, we provide the results of the experiments conducted on the
STRIPS-HGN models. The accuracy metrics are shown in Table 8, whereas Table
9 contains planning results.

The training of HGN models was highly unstable even with a reduced learning
rate 1e−3 (compared to 1e−2 in other models) and the results vary significantly across
domains. For example, in ferry, HGN models generally failed to learn effective
heuristics, as shown in Table 8 where the MSE exceeds 107. In contrast, in visitall,
it generally achieved better accuracy than NLMs.

One potential reason for the failure in ferry is the limited expressivity of HGN.
Unlike NLM, HGN is designed to only receive the delete-relaxed information about
the problem instance, which may harm its ability to learn a heuristic for the orig-
inal instance. Another potential reason for its weak performance is the training
length: due to the reduced learning rate, it may need more training steps in order

APPENDIX A. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS 145

to converge.
Focusing on the planning results, Table 9 shows improvements of HGN-based

heuristics over hFF in blocksworld and visitall. In the case of ferry, results are poor
due to the low accuracy of learned heuristics.

Finally, T N often achieves better accuracy and planning performance than N
and N+clip for equivalent configurations.

learn/hFF learn/none fixed/hFF fixed/none

domain metric hFF hLMcut N T N N T N N T N N T N

blocks MSE 22.8 25.06 2.3±2.6 1.5±.4 2.3±.8 3.9±2.4 2.6±2.3 6.5±10.8 5.2±2.6 1.8±.6
+clip 2.3±2.6 2.3±.8 2.6±2.3 3.7±1.8

ferry MSE 9.77 11.10 (8.9±2)e8 (2.3±5)e7 (4.9±7)e7 (5.2±9)e7 (3.0±4)e5 (1.7±2)e7 (4.2±6)e6 (2.7±5)e7
+clip (8.9±2)e8 (4.9±7)e7 (2.4±3)e5 (4.2±6)e6

gripper MSE 9.93 15.82 1.1±.4 1.5±.6 59.2±91.3 7.5±12.6 3.7±2.5 4.4±6.0 9.4±12.8 3.0±2.7
+clip 1.0±.4 58.5±90.4 3.5±2.6 2.5±.8

visitall MSE 13.9 36.4 4.0±.4 3.6±.5 .3±.0 .3±.0 4.3±.5 4.1±.4 .3±.0 .3±.1
+clip 3.8±.4 .3±.0 4.0±.5 .3±.0

Table 8: Test accuracy of HGN heuristics. Table columns and rows have the same meaning
as in Table 3. For each configuration, the best metric among N , N + clip, T N is highlighted in
bold.

learn/hFF learn/none
domain hFF N N+clip T N N N+clip T N

Ratio of solved instances under 104 evaluations (higher is better)

blocks .13 .70±.30 .72±.29 .48±.26 .39±.22 .42±.25 .57±.35
ferry .82 .01±.02 .01±.02 .02±.06 .00±.00 .00±.00 .00±.02
gripper .96 .36±.14 .37±.15 .39±.13 .24±.20 .24±.20 .27±.11
visitall .86 .99±.03 .97±.04 .97±.04 1 1 1

Average node evaluations (smaller is better)

blocks 9309 3984±2675 3906±2649 5844±2088 6636±1859 6456±1969 5186±2915
ferry 5152 9916±132 9915±134 9834±424 10000±0 10000±0 9968±105
gripper 3918 7078±971 7008±1058 6949±1020 8050±1490 8048±1492 7952±564
visitall 3321 1512±1192 1555±1149 1472±1182 204±144 155±24 146±12

fixed/hFF fixed/none
domain N N+clip T N N N+clip T N

Ratio of solved instances under 104 evaluations (higher is better)

blocks .57±.28 .62±.32 .66±.29 .38±.29 .39±.34 .62±.35
ferry .02±.04 .06±.12 .02±.04 .01±.02 .02±.03 .01±.03
gripper .25±.14 .27±.18 .35±.25 .19±.06 .38±.28 .63±.40
visitall .98±.03 .99±.03 1 1 1 1

Average node evaluations (smaller is better)

blocks 5235±2262 5007±2439 4335±2548 6649±2554 6576±2812 4581±3096
ferry 9897±248 9659±644 9834±258 9924±169 9856±250 9941±175
gripper 8074±801 7917±1138 7271±1852 8264±474 7300±1633 4997±3206
visitall 1158±955 1063±858 875±761 166±41 152±21 153±15

Table 9: Planning performance of HGN heuristics. Table columns and rows have the same
meaning as in Table 4. For each configuration, the best metric among N , N+clip and T N is
highlighted in bold.

146 APPENDIX A. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS

A.5 Full experimental results for linear regression

models

Table 10 shows both the MSE and the NLL metrics obtained by the linear
regression (LR) models on the test problems. To evaluate the NLL, we used the
best validation NLL loss checkpoints. We show the NLL in Table 10 since all the
models (including N) are trained by minimizing the NLL loss, and not the MSE.
For the previous experiments, we used the MSE to measure heuristic accuracy,
and not the NLL, for two main reasons. First, MSE is easier to understand and
interpret than NLL. For example, if a model obtains an MSE of 2 this means that
its learned heuristic deviates from h∗ by 2 units on average, whereas an NLL of 2
has no straightforward interpretation. Second, the MSE and NLL tend to correlate.
However, this latter condition is violated in the LR models, so we decided to show
both the NLL and MSE metrics. We observe that T N outperforms N according to
the NLL metric.

We now detail additional observations. The LR models are remarkably accurate
in gripper compared to the NLM models despite their simplicity. Residual learning
provided no benefit to LR models because they already receive the hFF heuristic as
one of their inputs, so using hFF again as the basis for the residual does not provide
any additional information. We also observe that learning σ tends to improve the
NLL.

Table 11 shows the planning performance of the LR models, using the checkpoints
with the best validation MSE. T N and N models showed comparable performance,
except in fixed σ configurations where T N models suffered. Due to the simple model
architecture (composed of a single linear layer), models with different random seeds
converged to the same search behavior, despite their different weight initializations.
Indeed, the standard deviations in Table 10 also tend to be significantly smaller
than those obtained by other models.

A.6 Experimental results with different lower

bounds

Tables 12 and 13 show the ablation study of the NLM models using hmax and
hblind instead of hLMcut as the lower bound l, with our proposed (and best) learn/hFF

configuration.

We observe that the N+clip models obtain almost identical MSE regardless
of the heuristic used for clipping, which makes sense. As previously commented,
N+clip is identical to N except for those cases where the model makes a really bad
prediction, i.e., when it predicts a cost-to-go that is very far off from the target h∗.
If the ML model has been trained correctly, this should seldom occur, meaning that
N+clip will be equivalent to N and, thus, no matter the heuristic (hLMcut, hmax or
hblind) used for clipping, the performance will be on average the same.

Regarding the T N models, we observe that they obtain comparable test MSE
on blocksworld, ferry and gripper. However, on visitall, the l = hLMcut configuration
clearly outperforms the other two: l = hLMcut obtains an MSE of 5.3, l = hmax a
value of 7.01 and l = hblind of 7.15. We believe this may be due to the difficulty of

APPENDIX A. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS 147

learn/hFF learn/none fixed/hFF fixed/none

domain metric hFF hLMcut N T N N T N N T N N T N

blocks MSE 22.8 25.06 6.5±.1 6.7±.4 6.3±.0 6.8±.4 7.0±.1 7.8±.2 6.9±.1 7.8±.1
+clip 6.5±.1 6.3±.0 6.9±.1 6.8±.1

ferry MSE 9.77 11.10 1.3±.1 3.1±.6 1.1±.3 3.0±.6 1.0±.3 8.5±.8 1.0±.2 8.5±.6
+clip 1.2±.1 1.1±.3 1.0±.3 1.0±.2

gripper MSE 9.93 15.82 .5±.2 .7±.3 .6±.2 .7±.3 .5±.2 1.2±.3 .5±.3 1.1±.4
+clip .5±.2 .6±.2 .5±.2 .5±.3

visitall MSE 13.9 36.4 6.6±.1 5.0±.2 2.0±.0 2.9±.0 6.5±.1 6.4±.1 2.0±.0 2.3±.1
+clip 6.6±.1 1.9±.0 6.4±.1 1.9±.0

blocks NLL 22.8 25.06 2.2±.0 1.6±.0 2.1±.0 1.6±.0 3.0±.0 2.8±.0 3.0±.0 2.8±.0
+clip 2.2±.0 2.1±.0 3.0±.0 3.0±.0

ferry NLL 9.77 11.10 1.6±.1 1.4±.1 1.5±.1 1.4±.1 1.5±.1 3.1±.2 1.5±.1 3.1±.2
+clip 1.6±.1 1.5±.1 1.5±.1 1.5±.1

gripper NLL 9.93 15.82 1.0±.1 .9±.2 1.4±.2 .9±.2 1.4±.1 1.2±.1 1.4±.1 1.1±.1
+clip 1.0±.1 1.4±.2 1.4±.1 1.4±.1

visitall NLL 13.9 36.4 2.1±.0 1.8±.0 1.5±.0 1.5±.1 2.9±.0 2.7±.0 1.8±.0 1.6±.0
+clip 2.1±.0 1.5±.0 2.9±.0 1.7±.0

Table 10: Test accuracy of LR heuristics. Table columns and rows have the same meaning
as in Table 3. For each configuration, the best metric among N , N + clip, T N is highlighted in
bold.

visitall, as this is the domain where the different models obtain highest MSE. Due
to its high difficulty, the use of a more informative bound l, i.e., hLMcut instead of
hmax or hblind, may make a difference for the T N models, resulting in more accurate
predictions.

A.7 Experimental results with different residuals

Tables 14 and 15 show the ablation study of the NLM models using hLMcut as
the residual base. While hLMcut is not theoretically ideal (compared to hFF) as it
is a biased estimator that is always smaller than the target h∗, in practice it also
worked well as the residual base for heuristic learning.

We observe that, for the T N model, the hFF residual results in better test MSE
than the hLMcut one in every domain except visitall. Conversely, we observe that
hLMcut residual works better for the N model, as it obtains better MSE in every
domain except gripper. Therefore, it seems that the best heuristic to use as a base
for the residual (hFF vs hLMcut) depends on the chosen model (T N or N).

Regardless of the heuristic employed, we observe that the residual-based con-
figurations (learn/hFF and learn/hLMcut) outperform learn/none, thus showing the
benefits of using residual learning.

A.8 Planning domain descriptions

In this Appendix, we provide detailed descriptions and PDDL encodings for the
four planning domains employed in our experiments: blocksworld, ferry, gripper and
visitall.

148 APPENDIX A. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS

learn/hFF learn/none
domain hFF N N+clip T N N N+clip T N

Ratio of solved instances under 104 evaluations (higher is better)

blocks .13 .20±.00 .18±.00 .17±.00 .21±.00 .20±.00 .19±.00
ferry .82 1 1 1 1 1 1
gripper .96 1 1 1 1 1 1
visitall .86 .91±.00 .91±.00 .96±.00 .92±.00 .91±.00 .92±.00

Average node evaluations (smaller is better)

blocks 9309 8770±0 8920±0 8989±0 8658±0 8795±0 8951±0
ferry 5152 1891±0 1886±0 1944±0 1894±0 1891±0 2025±0
gripper 3918 964±0 968±0 973±0 972±0 970±0 971±0
visitall 3321 2829±0 3048±0 2035±0 3040±0 2952±0 2783±0

fixed/hFF fixed/none
domain N N+clip T N N N+clip T N

Ratio of solved instances under 104 evaluations (higher is better)

blocks .20±.00 .19±.00 .19±.00 .21±.00 .17±.00 .19±.00
ferry 1 1 .45±.00 1 1 .45±.00
gripper 1 1 .76±.00 1 1 .70±.00
visitall .91±.00 .91±.00 .91±.00 .90±.00 .91±.00 .91±.00

Average node evaluations (smaller is better)

blocks 8844±0 8849±0 8984±0 8816±0 8992±0 8944±0
ferry 1862±0 1900±0 7652±0 1877±0 1860±0 7630±0
gripper 966±0 966±0 4587±0 969±0 964±0 4775±0
visitall 3132±0 2772±0 2859±0 3079±0 2947±0 2853±0

Table 11: Planning performance of LR heuristics. For each model, we use the weights that
resulted in the best validation MSE loss during training. Table columns and rows have the same
meaning as in Table 4. For each configuration, the best metric among N , N+clip and T N is
highlighted in bold.

learn/hFF (l = hLMcut) learn/hFF (l = hmax) learn/hFF (l = hblind)

domain metric hFF hLMcut N T N N T N N T N

blocks MSE 22.8 25.06 .76±.1 .65±.1 .76±.1 .76±.2 .76±.1 .66±.1
+clip .76±.2 .76±.1 .76±.1

ferry MSE 9.77 11.10 3.73±.7 3.45±.8 3.98±.9 3.13±.9 3.73±.8 3.21±.9
+clip 3.72±.6 3.98±.9 3.73±.8

gripper MSE 9.93 15.82 3.65±.9 3.70±.9 3.66±.9 3.75±1.0 3.65±.9 3.69±1.1
+clip 3.65±.7 3.66±.9 3.65±.9

visitall MSE 13.9 36.4 7.67±.4 5.30±.6 7.58±.5 7.01±.3 7.55±.4 7.15±.5
+clip 7.60±.4 7.55±.5 7.55±.4

Table 12: Test accuracy of heuristics with alternative lower bounds (hLMcut, hmax, hblind).
Results are obtained using NLMs and the learn/hFF configuration. Table columns and rows have
the same meaning as in Table 3. For each configuration, the best metric among N , N + clip, T N
is highlighted in bold. Results for N models without clipping may vary across different lower
bounds due to the use of different seeds.

A.8.1 Blocksworld

Blocksworld is one of the oldest domains in the planning literature. It represents
a table with a collection of blocks that can be stacked on top of each other. The

APPENDIX A. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS 149

learn/hFF (l = hLMcut) learn/hFF (l = hmax) learn/hFF (l = hblind)
domain hFF N N+clip T N N N+clip T N N N+clip T N

Ratio of solved instances under 104 evaluations (higher is better)

blocks .13 .84±.19 .85±.19 .88±.14 .82±.18 .82±.18 .85±.16 .83±.17 .83±.17 .89±.13
ferry .82 .91±.19 .91±.19 .98±.05 .97±.06 .97±.06 .98±.05 .90±.20 .90±.20 .98±.02
gripper .96 1 1 1 1 1 1 1 1 1
visitall .86 .97±.07 .98±.06 .98±.05 .98±.05 .99±.03 .98±.04 .97±.05 .98±.04 .99±.02

Average node evaluations (smaller is better)

blocks 9309 2690±2128 2681±2121 2060±1607 2871±2235 2863±2227 2480±1783 2816±2065 2805±2084 1987±1400
ferry 5152 3216±1964 3117±1967 2477±1093 2802±1115 2772±1080 2414±1051 3277±1989 3291±1998 1907±479
gripper 3918 1642±139 1643±141 1637±492 1891±553 1890±556 1763±361 1889±544 1896±560 1495±69
visitall 3321 2156±1451 2148±1511 1683±1290 2007±1301 1777±1154 1894±1313 1899±1292 1864±1330 1755±1132

Table 13: Planning performance of heuristics with alternative lower bounds (hLMcut,
hmax, hblind). Results are obtained using NLMs and the learn/hFF configuration. Table columns
and rows have the same meaning as in Table 4. For each configuration, the best metric among N ,
N+clip and T N is highlighted in bold. Results for N models without clipping may vary across
different lower bounds due to the use of different seeds.

learn/hFF learn/hLMcut learn/none

domain metric hFF hLMcut N T N N T N N T N

blocks MSE 22.8 25.06 .76±.1 .65±.1 .72±.1 .66±.1 3.26±.6 2.71±.4
+clip .76±.1 .72±.1 2.91±.4

ferry MSE 9.77 11.10 3.73±.8 3.45±.8 3.23±1.1 3.58±1.3 141.05±29.6 8.63±2.7
+clip 3.72±.8 3.23±1.1 10.44±1.8

gripper MSE 9.93 15.82 3.65±.9 3.70±1.1 3.94±1.0 3.88±1.1 68.12±15.3 5.65±1.1
+clip 3.65±.9 3.94±1.0 13.37±2.2

visitall MSE 13.9 36.4 7.67±.4 5.30±.6 4.40±.8 4.03±.5 25.31±7.9 9.70±1.6
+clip 7.60±.4 4.40±.8 18.79±4.2

Table 14: Test accuracy of heuristics with alternative residuals (hFF, hLMcut, none).
Results are obtained using the NLM models. Table columns and rows have the same meaning as
in Table 3. For each configuration, the best metric among N , N +clip, T N is highlighted in bold.

learn/hFF learn/hLMcut learn/none
domain hFF N N+clip T N N N+clip T N N N+clip T N

Ratio of solved instances under 104 evaluations (higher the better)

blocks .13 .84±.18 .85±.18 .88±.15 .88±.14 .88±.15 .85±.19 .85±.22 .57±.36 .51±.37
ferry .82 .91±.19 .91±.19 .98±.04 .64±.11 .66±.15 .68±.12 .01±.01 .60±.12 .59±.13
gripper .96 1 1 1 1 1 1 .00±.00 .75±.42 1
visitall .86 .97±.06 .98±.05 .98±.04 1 1 1 .79±.34 1 1

Average node evaluations (smaller the better)

blocks 9309 2690±2193 2681±2192 2060±1673 2461±1747 2390±1757 2735±2106 3225±2446 5754±2723 6492±2693
ferry 5152 3216±2033 3117±1991 2477±1209 6107±664 6088±739 5944±680 9952±70 6751±740 6780±863
gripper 3918 1642±212 1643±218 1637±390 1392±349 1390±341 1477±482 10000±0 4313±3475 1480±378
visitall 3321 2156±1431 2148±1550 1683±1245 508±205 531±232 483±162 3860±3249 818±562 385±112

Table 15: Planning performance of heuristics with alternative residuals (hFF, hLMcut,
none). Results are obtained using the NLM models. Table columns and rows have the same
meaning as in Table 4 of the main paper. For each configuration, the best metric among N ,
N+clip and T N is highlighted in bold.

goal in this domain is to rearrange the blocks to achieve a specific configuration,
starting from some initial block arrangement. The initial and goal configurations
are randomized. Blocks can be placed on top of another block or on the table, and
every block can never have more than a single block on top of it. The arm/crane
used to move the blocks around can only carry a single block at a time. Listing 1
contains the PDDL description of this domain.

150 APPENDIX A. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS

Listing 1: PDDL domain for blocksworld.

(define (domain blocksworld)

(: requirements :strips :typing)

(:types block)

(: predicates (on ?x - block ?y - block)

(ontable ?x - block)

(clear ?x - block)

(handempty)

(holding ?x - block))

(: action pick -up

:parameters (?x - block)

:precondition (and (clear ?x)

(ontable ?x)

(handempty))

:effect (and (not (ontable ?x))

(not (clear ?x))

(not (handempty))

(holding ?x)))

(: action put -down

:parameters (?x - block)

:precondition (holding ?x)

:effect (and (not (holding ?x))

(clear ?x)

(handempty)

(ontable ?x)))

(: action stack

:parameters (?x - block ?y - block)

:precondition (and (holding ?x)

(clear ?y))

:effect (and (not (holding ?x))

(not (clear ?y))

(clear ?x)

(handempty)

(on ?x ?y)))

(: action unstack

:parameters (?x - block ?y - block)

:precondition (and (on ?x ?y)

(clear ?x)

(handempty))

:effect (and (holding ?x)

(clear ?y)

(not (clear ?x))

(not (handempty))

(not (on ?x ?y)))))

A.8.2 Ferry

Ferry is another classical domain. The goal is to use a ferry to transport a series
of cars from their starting to their final locations, which are randomized. Each
location is connected to every other location and the ferry can only carry one car at
a time. Listing 2 contains the PDDL description of this domain.

APPENDIX A. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS 151

Listing 2: PDDL domain for ferry.

(define (domain ferry)

(: predicates (not -eq ?x ?y)

(car ?c)

(location ?l)

(at -ferry ?l)

(at ?c ?l)

(empty -ferry)

(on ?c))

(: action sail

:parameters (?from ?to)

:precondition (and (not -eq ?from ?to)

(location ?from) (location ?to) (at-ferry

?from))

:effect (and (at-ferry ?to)

(not (at-ferry ?from))))

(: action board

:parameters (?car ?loc)

:precondition (and (car ?car) (location ?loc)

(at ?car ?loc) (at-ferry ?loc) (empty -ferry))

:effect (and (on ?car)

(not (at ?car ?loc))

(not (empty -ferry))))

(: action debark

:parameters (?car ?loc)

:precondition (and (car ?car) (location ?loc)

(on ?car) (at-ferry ?loc))

:effect (and (at ?car ?loc)

(empty -ferry)

(not (on ?car)))))

A.8.3 Gripper

In the gripper domain, a robot with two gripper hands must transport a series of
balls from one room to another. Unlike in traditional gripper instances, the initial
and goal location of each ball is randomized. Each gripper hand can only carry one
ball at a time. Listing 3 contains the PDDL description of this domain.

A.8.4 Visitall

This deceptively simple domain describes a square NxN grid in which a robot
can move in the four directions (up, down, right or left). The goal is for the robot
to visit several cells of the grid. The initial robot location, the number of cells to
visit and their positions in the grid are all randomized. Listing 4 contains the PDDL
description of this domain.

152 APPENDIX A. HEURISTIC LEARNING WITH ADMISSIBLE BOUNDS

Listing 3: PDDL domain for gripper.

(define (domain gripper)

(: predicates (room ?r)

(ball ?b)

(gripper ?g)

(at -robby ?r)

(at ?b ?r)

(free ?g)

(carry ?o ?g))

(: action move

:parameters (?from ?to)

:precondition (and (room ?from) (room ?to) (at-robby ?from))

:effect (and (at-robby ?to)

(not (at-robby ?from))))

(: action pick

:parameters (?obj ?room ?gripper)

:precondition (and (ball ?obj) (room ?room) (gripper ?

gripper)

(at ?obj ?room) (at -robby ?room) (free ?gripper))

:effect (and (carry ?obj ?gripper)

(not (at ?obj ?room))

(not (free ?gripper))))

(: action drop

:parameters (?obj ?room ?gripper)

:precondition (and (ball ?obj) (room ?room) (gripper ?

gripper)

(carry ?obj ?gripper) (at-robby ?room))

:effect (and (at ?obj ?room)

(free ?gripper)

(not (carry ?obj ?gripper)))))

Listing 4: PDDL domain for visitall.

(define (domain visit -all)

(: requirements :typing)

(:types place - object)

(: predicates (connected ?x ?y - place)

(at -robot ?x - place)

(visited ?x - place)

)

(: action move

:parameters (? curpos ?nextpos - place)

:precondition (and (at -robot ?curpos) (connected ?curpos ?nextpos

))

:effect (and (at -robot ?nextpos) (not (at-robot ?curpos)) (

visited ?nextpos))

))

Appendix B

Problem Generation with
Neuro-Symbolic AI

B.1 Problem generation example

In this Appendix we provide a simple, handcrafted example of our problem gen-
eration method that illustrates how a single planning problem is created from start
to finish. For this example, we will use blocksworld as our domain and, at each
step (state), we will assume a random action is chosen from the set of applica-
ble actions App(s). In the initial state generation phase, an action a ∈ App(s)
corresponds to adding an atom to the (current) initial state sic, where this atom
is obtained by instantiating a domain predicate (on, ontable, handempty, holding
and clear in blocksworld) on objects of the correct type (block type in blocksworld,
as all predicates are only instantiated on objects of this type) so that sic remains
continuous-consistent. These objects can be in sic or not. In the latter case, we
call them virtual objects and they are added to sic along with their corresponding
atom. In the goal generation phase, an action a ∈ App(s) corresponds to executing
a domain action (stack, unstack, pick − up and put− down in blocksworld) in the
(current) goal state sgc, modifying the atoms in sgc according to the positive and
negative effects of a, which are encoded in the PDDL description of the domain.
The selected action a must be grounded, i.e., instantiated, on objects of the correct
type (block type in blocksworld, as all actions are applied to objects of this type)
present in sgc and, also, its preconditions must be true in sgc.

Additionally, we will assume we randomly choose when to stop generating the
states sic and sgc. In a real scenario, the generative policies would be in charge
of both selecting the next action to execute and when to stop generating sic and
sgc (i.e., sampling the termination action end). We represent the states of the
MDP, corresponding to (incomplete or fully-generated) planning problems, as a
tuple (sic, sgc). We represent sic and sgc as another tuple (O,P), where O is a set
containing the objects present in the state (with their respective types), and P is a
set containing the atoms of the state. We now detail the process followed to generate
the example problem:

1. At the start of the generation process, the goal state sgc is empty and the initial
state sic can be either empty or equal to another state predefined by the user.
In blocksworld, sic also begins empty. Therefore, the generation process starts

153

154 APPENDIX B. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI

from an empty MDP state (,), where the first element of the tuple represents
sic and the second one represents sgc. We assume the action add ontable(o1)
is sampled, where o1 is an object of type block. Since o1 corresponds to a
virtual object, we also need to add it to sic. Thus, the resulting state is
(({block o1}, {ontable(o1)}),), which corresponds to a continuous-consistent
state.

2. The action addon(o2, o1) is selected, where o2 is a virtual object of type block.
The resulting state is (({block o1, block o2}, {ontable(o1), on(o2, o1)}),),
which corresponds to a continuous-consistent state.

3. The action add clear(o2) is selected and the resulting state is (({block o1,
block o2}, {ontable(o1), on(o2, o1), clear(o2)}),), which corresponds to a
continuous-consistent state.

4. The action add handempty() is selected and the resulting state is (({block
o1, block o2}, {ontable(o1), on(o2, o1), clear(o2), handempty()}),), which cor-
responds to a continuous-consistent state.

5. The termination action end is sampled, so the initial state generation phase
concludes, i.e., si = sic. Then, the consistency evaluator checks if si meets
the eventual consistency rules, which it does (otherwise, si would be dis-
carded and no goal would be generated). Therefore, the goal generation
phase can start. The goal state is initialized to the initial state, i.e., sgc =
si, so the resulting state is (({block o1, block o2}, {ontable(o1), on(o2, o1),
clear(o2), handempty()}), ({block o1, block o2}, {ontable(o1), on(o2, o1),
clear(o2), handempty()})).

6. As we are now in the goal generation phase, the set of applicable actions
App(s) corresponds to the domain actions whose preconditions are met in
sgc. Assume the action unstack(o2, o1) is selected. Then, the current
goal state sgc is modified with the effects of the selected action. Thus,
the next state is (({block o1, block o2}, {ontable(o1), on(o2, o1), clear(o2),
handempty()}), ({block o1, block o2}, {ontable(o1), holding(o2),
clear(o1)})).

7. The action put − down(o2) is selected and the resulting state is (({block o1,
block o2}, {ontable(o1), on(o2, o1), clear(o2), handempty()}), ({block o1,
block o2}, {ontable(o1), clear(o1), clear(o2), handempty(), ontable(o2)})).

8. The termination action end is sampled, so the goal generation phase con-
cludes, i.e., sg = sgc. Then, the problem goal g is obtained by select-
ing a subset of the atoms in sg according to the goal types and predicates
specified by the user. Let us assume the goal types and predicates list is
{ontable(block), on(block, block)}, i.e., g must only contain atoms of predicate
type on or ontable instantiated on objects of type block. If that is the case, the
goal is g = {ontable(o1), ontable(o2)} and NeSIG outputs the problem (si, g),
which is shown in Listing 1.

APPENDIX B. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI 155

Listing 1: Example problem generated with NeSIG.

(define (problem example_blocksworld_problem)

(: domain blocksworld)

(: objects o1 o2 - block)

(:init (ontable o1) (on o2 o1)

(clear o2) (handempty))

(:goal (ontable o1) (ontable o2))

)

B.2 PDDL domains

In this Appendix we provide the PDDL descriptions for the planning domains
employed in our experiments: logistics, sokoban, miconic and satellite. The PDDL
description of blocksworld is provided in Listing 1.

Listing 2: PDDL description for logistics.

(define (domain logistics)

(: requirements :strips :typing :existential -preconditions)

(:types city location thing - object

package vehicle - thing

truck airplane - vehicle

airport - location)

(: predicates (in -city ?l - location ?c - city)

(at ?obj - thing ?l - location)

(in ?p - package ?veh - vehicle))

(: action drive

:parameters (?t - truck ?from ?to - location)

:precondition (and (at ?t ?from)

(exists (?c - city)

(and (in-city ?from ?c)

(in -city ?to ?c))))

:effect (and (not (at ?t ?from))

(at ?t ?to)))

(: action fly

:parameters (?a - airplane ?from ?to - airport)

:precondition (at ?a ?from)

:effect (and (not (at ?a ?from))

(at ?a ?to)))

(: action load

:parameters (?v - vehicle ?p - package ?l - location)

:precondition (and (at ?v ?l)

(at ?p ?l))

:effect (and (not (at ?p ?l))

(in ?p ?v)))

(: action unload

:parameters (?v - vehicle ?p - package ?l - location)

:precondition (and (at ?v ?l)

(in ?p ?v))

156 APPENDIX B. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI

:effect (and (not (in ?p ?v))

(at ?p ?l))))

Listing 3: PDDL description for sokoban.

(define (domain sokoban)

(: requirements :typing :negative -preconditions)

(:types loc)

(: predicates (at -robot ?l - loc)

(at-box ?l - loc)

(at-wall ?l - loc)

(connected -up ?l1 - loc ?l2 - loc)

(connected -right ?l1 - loc ?l2 - loc))

(: action move -up

:parameters (?from - loc ?to - loc)

:precondition (and (at-robot ?from)

(not (at -box ?to))

(not (at -wall ?to))

(connected -up ?from ?to))

:effect (and (not (at-robot ?from))

(at-robot ?to)))

(: action move -down

:parameters (?from - loc ?to - loc)

:precondition (and (at-robot ?from)

(not (at -box ?to))

(not (at -wall ?to))

(connected -up ?to ?from))

:effect (and (not (at-robot ?from))

(at-robot ?to)))

(: action move -right

:parameters (?from - loc ?to - loc)

:precondition (and (at-robot ?from)

(not (at -box ?to))

(not (at -wall ?to))

(connected -right ?from ?to))

:effect (and (not (at-robot ?from))

(at-robot ?to)))

(: action move -left

:parameters (?from - loc ?to - loc)

:precondition (and (at-robot ?from)

(not (at -box ?to))

(not (at -wall ?to))

(connected -right ?to ?from))

:effect (and (not (at-robot ?from))

(at-robot ?to)))

(: action push -up

:parameters (?l1 - loc ?l2 - loc ?l3 - loc)

:precondition (and (at-robot ?l1)

(at -box ?l2)

(not (at -box ?l3))

(not (at -wall ?l3))

(connected -up ?l1 ?l2)

(connected -up ?l2 ?l3))

:effect (and (not (at-robot ?l1))

APPENDIX B. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI 157

(at -robot ?l2)

(not (at -box ?l2))

(at -box ?l3)))

(: action push -down

:parameters (?l1 - loc ?l2 - loc ?l3 - loc)

:precondition (and (at-robot ?l1)

(at-box ?l2)

(not (at-box ?l3))

(not (at-wall ?l3))

(connected -up ?l2 ?l1)

(connected -up ?l3 ?l2))

:effect (and (not (at-robot ?l1))

(at -robot ?l2)

(not (at -box ?l2))

(at -box ?l3)))

(: action push -right

:parameters (?l1 - loc ?l2 - loc ?l3 - loc)

:precondition (and (at-robot ?l1)

(at-box ?l2)

(not (at-box ?l3))

(not (at-wall ?l3))

(connected -right ?l1 ?l2)

(connected -right ?l2 ?l3))

:effect (and (not (at-robot ?l1))

(at -robot ?l2)

(not (at -box ?l2))

(at -box ?l3)))

(: action push -left

:parameters (?l1 - loc ?l2 - loc ?l3 - loc)

:precondition (and (at-robot ?l1)

(at-box ?l2)

(not (at-box ?l3))

(not (at-wall ?l3))

(connected -right ?l2 ?l1)

(connected -right ?l3 ?l2))

:effect (and (not (at-robot ?l1))

(at -robot ?l2)

(not (at -box ?l2))

(at -box ?l3))))

Listing 4: PDDL description for miconic.

(define (domain miconic)

(: requirements :strips)

(:types passenger floor)

;; (above ?f1 - floor ?f2 - floor) -> f1 is on top of f2

(: predicates

(at ?p - passenger ?f - floor)

(above ?f1 - floor ?f2 - floor)

(boarded ?p - passenger)

(lift_at ?f - floor)

(lift_empty))

(: action board

:parameters (?p - passenger ?f - floor)

158 APPENDIX B. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI

:precondition (and (lift_at ?f)

(at ?p ?f)

(lift_empty))

:effect (and (not (lift_empty))

(not (at ?p ?f))

(boarded ?p)))

(: action depart

:parameters (?p - passenger ?f - floor)

:precondition (and (lift_at ?f)

(boarded ?p))

:effect (and (not (boarded ?p))

(at ?p ?f)

(lift_empty)))

(: action up

:parameters (?f1 - floor ?f2 - floor)

:precondition (and (lift_at ?f1)

(above ?f2 ?f1))

:effect (and (lift_at ?f2)

(not (lift_at ?f1))))

(: action down

:parameters (?f1 - floor ?f2 - floor)

:precondition (and (lift_at ?f1)

(above ?f1 ?f2))

:effect (and (lift_at ?f2)

(not (lift_at ?f1)))))

Listing 5: PDDL description for satellite.

(define (domain satellite)

(: requirements :strips :typing)

(:types satellite direction instrument mode)

;; We introduce a ‘dummy ’ predicate that is only used for adding

;; directions which are not instantiated in any atom of the init

;; state. This makes possible to have directions which only

;; appear in "have_image" atoms in the goal (but no atom in the

;; init state).

(: predicates

(on_board ?i - instrument ?s - satellite)

(supports ?i - instrument ?m - mode)

(pointing ?s - satellite ?d - direction)

(power_avail ?s - satellite)

(power_on ?i - instrument)

(calibrated ?i - instrument)

(have_image ?d - direction ?m - mode)

(calibration_target ?i - instrument ?d - direction)

(dummy ?d - direction))

(: action turn_to

:parameters (?s - satellite ?d_new - direction ?d_prev -

direction)

:precondition (and (pointing ?s ?d_prev))

:effect (and (pointing ?s ?d_new)

(not (pointing ?s ?d_prev))))

(: action switch_on

APPENDIX B. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI 159

:parameters (?i - instrument ?s - satellite)

:precondition (and (on_board ?i ?s)

(power_avail ?s))

:effect (and (power_on ?i)

(not (calibrated ?i))

(not (power_avail ?s))))

(: action switch_off

:parameters (?i - instrument ?s - satellite)

:precondition (and (on_board ?i ?s)

(power_on ?i))

:effect (and (not (power_on ?i))

(power_avail ?s)))

(: action calibrate

:parameters (?s - satellite ?i - instrument ?d - direction)

:precondition (and (on_board ?i ?s)

(calibration_target ?i ?d)

(pointing ?s ?d)

(power_on ?i))

:effect (calibrated ?i))

(: action take_image

:parameters (?d - direction ?i - instrument ?m - mode)

:precondition (and (calibrated ?i)

(supports ?i ?m)

(power_on ?i)

(exists (?s - satellite)

(and (on_board ?i ?s) (pointing ?s ?d))

))

:effect (have_image ?d ?m)))

B.3 Consistency rules

In this Appendix we detail the consistency rules (i.e., constraints) used for
the blocksworld, logistics, sokoban, miconic and satellite domains. As explained
in Section VI.3.1.1, consistency rules are encoded using a novel, semi-declarative
language that makes possible to combine standard Python code with a FOL-like
syntax. For each domain, we need to provide a consistency evaluator contain-
ing the consistency rules, which simply corresponds to a Python class with two
methods: check continuous consistency(self, curr state, atom pred, atom obj consts,
atom obj inds, atom obj types) and check eventual consistency(self, curr state).
The first method receives as inputs the current initial state sic (curr state) along
with some atom a to add to sic, whose information is encoded in the atom pred,
atom obj consts, atom obj inds and atom obj types parameters, and returns whether
the state resulting from adding a to sic is continuous-consistent or not. Both
atom obj consts and atom obj inds contain the objects instantiated on the atom
a but represent this information in a different manner: the former is used by rules
encoded as FOL formulas, whereas the latter is employed by rules encoded using
standard Python code. Therefore, the user can encode consistency rules in their
preferred manner: declarative (i.e., FOL) or imperative (i.e., Python). This choice
is completely transparent to NeSIG and does not impact training. The second

160 APPENDIX B. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI

method receives as its sole input the completely-generated initial state si and re-
turns whether it is eventual-consistent or not. We now provide the code for the
consistency evaluators of the five domains used in our experimentation. For brevity
reasons, we have omitted lines corresponding to aliases (e.g., ontable = self.ontable)
and declaration of FOL variables (e.g., x = Variable(‘x’)). As previously mentioned,
consistency rules are chosen so that NeSIG can generate the same set of problems as
the domain-specific generators. For instance, problems obtained by the blocksworld
generator never contain atoms of type holding in their initial state, so this constraint
is also encoded in the consistency rules for blocksworld employed by NeSIG. Finally,
it can be observed that, thanks to our proposed language, consistency rules can be
encoded in an easy and interpretable manner with just a few lines of code.

Listing 6: Consistency evaluator for blocksworld.

class ConsistencyEvaluatorBlocksworld(ConsistencyEvaluator):

def check_continuous_consistency(self , curr_state , atom_pred ,

atom_obj_consts , atom_obj_inds , atom_obj_types):

"""

(ontable x)

- x is new

"""

if atom_pred == ’ontable ’:

a = atom_obj_consts [0]

formula = virtual(a)

return self._evaluate(formula)

"""

(on a b)

- a is new

- b is NOT new

- b does not appear in an atom of type

clear

- b does not have a block on top of

it (on(*,b) does not exist)

"""

if atom_pred == ’on’:

a, b = atom_obj_consts

formula = virtual(a) & ~virtual(b) & ~clear(b) & ~TE(x,

on(x,b))

return self._evaluate(formula)

"""

(clear x)

- x is NOT new

- x does not appear in holding(x)

- x does not have a block on top of

it (on(*,x) does not exist)

"""

if atom_pred == ’clear ’:

a = atom_obj_consts [0]

formula = ~virtual(a) & ~TE(x, on(x,a))

return self._evaluate(formula)

"""

(holding x)

APPENDIX B. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI 161

- The initial state cannot contain

atoms of type "holding"

"""

if atom_pred == ’holding ’:

return False

"""

(handempty)

No consistency rules to check

Note that we don’t need to check

whether (handempty) already exists ,

since repeated atoms are implicitly

discarded

"""

if atom_pred == ’handempty ’:

return True

def check_eventual_consistency(self , curr_state):

The problem must contain at least

two blocks (otherwise , they can’t be

stacked)

formula_1 = (TE(x, _type(x, block)) >= 2)

The initial state must contain

(handempty)

formula_2 = handempty ()

For all objects x there must exist

clear(x), unless they have another

block y on top

formula_3 = FA(x,clear(x) | TE(y, on(y,x)))

return self._evaluate(formula_1 & formula_2

& formula_3)

Listing 7: Consistency evaluator for logistics.

class ConsistencyEvaluatorLogistics(ConsistencyEvaluator):

def check_continuous_consistency(self , curr_state , atom_pred ,

atom_obj_consts , atom_obj_inds , atom_obj_types):

"""

(in -city ?loc - location ?city - city)

- loc is new

- if city is new , then loc must be of

type airport (the first location of

every city is always an airport)

- if city is NOT new , then loc must

be of type location (since each

city contains one and only one

airport)

"""

if atom_pred == ’in -city’:

loc , city = atom_obj_consts

formula = virtual(loc) &

(_type(loc ,airport) ** virtual(city))

return self._evaluate(formula)

"""

162 APPENDIX B. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI

(at ?obj - thing ?loc - location)

- obj is new

- loc must not be new

- obj must be of type package , truck or

airplane

- if obj is of type airplane , then loc

must be of type airport

"""

if atom_pred == ’at’:

obj , loc = atom_obj_consts

formula = virtual(obj) & ~virtual(loc)

& (_type(obj , package) |

_type(obj , truck) |

_type(obj , airplane)) &

(_type(obj , airplane) >>

_type(loc , airport))

return self._evaluate(formula)

"""

(in ?p - package ?veh - vehicle)

The initial state can have no atoms of

type "in"

"""

if atom_pred == ’in’:

return False

def check_eventual_consistency(self , curr_state):

The problem must contain at least one

airplane

formula_1 = TE(x, _type(x, airplane))

The problem must contain at least two

cities

formula_2 = TE(x, _type(x, city)) >= 2

Every city must contain at least one

truck

x -> city , y -> location/airport in

the city , z -> truck at the

location/airport

Meaning of the formula: "For every

city x, there must exist a

location/airport y in the city x,

so that there exists a truck z at

the location/airport y"

formula_3 = FA(x, _type(x, city) >>

TE(y, in_city(y, x) &

TE(z, _type(z, truck) & at(z, y))))

return self._evaluate(formula_1 & formula_2

& formula_3)

Listing 8: Consistency evaluator for sokoban.

class ConsistencyEvaluatorSokoban(ConsistencyEvaluator):

def check_continuous_consistency(self , curr_state , atom_pred ,

atom_obj_consts , atom_obj_inds , atom_obj_types):

"""

APPENDIX B. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI 163

(connected -up l1 l2)

- Cannot be added , as the we start

generation from an empty NxM map

"""

if atom_pred == ’connected -up’:

return False

"""

(connected -right l1 l2)

- Cannot be added , as the we start

generation from an empty NxM map

"""

if atom_pred == ’connected -right’:

return False

"""

(at -robot loc)

- loc must already exist in the state

- Only one robot can exist at the same

time

- (at -box loc) does not exist

- (at -wall loc) does not exist

"""

if atom_pred == ’at -robot’:

loc = atom_obj_consts [0]

formula = ~virtual(loc) &

~TE(x, at_robot(x)) & ~at_box(loc)

& ~at_wall(loc)

return self._evaluate(formula)

"""

(at -box loc)

- loc must already exist in the state

- (at -robot loc) does not exist

- (at -wall loc) does not exist

"""

if atom_pred == ’at -box’:

loc = atom_obj_consts [0]

formula = ~virtual(loc) &

~at_robot(loc) & ~at_wall(loc)

return self._evaluate(formula)

"""

(at -wall loc)

- loc must already exist in the state

- (at -robot loc) does not exist

- (at -box loc) does not exist

"""

if atom_pred == ’at -wall’:

loc = atom_obj_consts [0]

formula = ~virtual(loc) &

~at_robot(loc) & ~at_box(loc)

return self._evaluate(formula)

def check_eventual_consistency(self , curr_state):

The initial state must contain one robot

formula = (TE(x, at_robot(x)) == 1)

164 APPENDIX B. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI

return self._evaluate(formula)

Listing 9: Consistency evaluator for miconic.

class ConsistencyEvaluatorMiconic(ConsistencyEvaluator):

def check_continuous_consistency(self , curr_state , atom_pred ,

atom_obj_consts , atom_obj_inds , atom_obj_types):

"""

(above ?f1 - floor ?f2 - floor)

- If both floors are new , no need to check consistency

- If there already exist floors in the init state

- f1 must be new

- f2 must NOT be new

- There must be no floor above f1

"""

if atom_pred == ’above ’:

f1, f2 = atom_obj_consts

~virtual(x) is needed so that virtual objects are not

considered when testing if the init state already

contains an object of type floor

formula = TE(x, _type(x, floor) & ~virtual(x)) >>

(virtual(f1) & ~virtual(f2) & ~TE(y, above(y,f2)))

return self._evaluate(formula)

"""

(at ?p - passenger ?f - floor)

- p is new

- f is NOT new

"""

if atom_pred == ’at’:

p, f = atom_obj_consts

formula = virtual(p) & ~virtual(f)

return self._evaluate(formula)

"""

(boarded ?p - passenger)

- Cannot be added

"""

if atom_pred == ’boarded ’:

return False

"""

(lift_at ?f - floor)

- f is NOT new

"""

if atom_pred == ’lift_at ’:

f = atom_obj_consts [0]

formula = ~virtual(f)

return self._evaluate(formula)

"""

(lift_empty)

- No need to check whether it has already been added ,

since repeated atoms are implicitly discard

"""

if atom_pred == ’lift_empty ’:

return True

APPENDIX B. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI 165

def check_eventual_consistency(self , curr_state):

The init state must contain (lift_empty)

formula_1 = lift_empty ()

The lift must be at one and only one floor

formula_2 = TE(x, lift_at(x)) == 1

return self._evaluate(formula_1 & formula_2)

Listing 10: Consistency evaluator for satellite.

class ConsistencyEvaluatorSatellite(ConsistencyEvaluator):

def check_continuous_consistency(self , curr_state , atom_pred ,

atom_obj_consts , atom_obj_inds , atom_obj_types):

"""

(dummy ?d - direction)

- d is new

"""

if atom_pred == ’dummy’:

d = atom_obj_consts [0]

formula = virtual(d)

return self._evaluate(formula)

"""

(pointing ?s - satellite ?d - direction)

- s is new

- d is NOT new

"""

if atom_pred == ’pointing ’:

s, d = atom_obj_consts

formula = virtual(s) & ~virtual(d)

return self._evaluate(formula)

"""

(on_board ?i - instrument ?s - satellite)

- i is new

- s is NOT new

"""

if atom_pred == ’on_board ’:

i, s = atom_obj_consts

formula = virtual(i) & ~virtual(s)

return self._evaluate(formula)

"""

(supports ?i - instrument ?m - mode)

- i is NOT new

"""

if atom_pred == ’supports ’:

i, m = atom_obj_consts

formula = ~virtual(i)

return self._evaluate(formula)

"""

(calibration_target ?i - instrument ?d - direction)

- i is NOT new

- d is NOT new

"""

if atom_pred == ’calibration_target ’:

166 APPENDIX B. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI

i, d = atom_obj_consts

formula = ~virtual(i) & ~virtual(d)

return self._evaluate(formula)

"""

(power_avail ?s - satellite)

- s is NOT new

"""

if atom_pred == ’power_avail ’:

s = atom_obj_consts [0]

formula = ~virtual(s)

return self._evaluate(formula)

"""

(power_on ?i - instrument)

- Cannot be added

"""

if atom_pred == ’power_on ’:

return False

"""

(calibrated ?i - instrument)

- Cannot be added

"""

if atom_pred == ’calibrated ’:

return False

"""

(have_image ?d - direction ?m - mode)

- Cannot be added

"""

if atom_pred == ’have_image ’:

return False

def check_eventual_consistency(self , curr_state):

There exists at least one satellite

formula_1 = TE(x, _type(x, satellite))

Each satellite needs to have power available

formula_2 = FA(x, _type(x, satellite) >> power_avail(x))

Each satellite needs to have at least one instrument on

board

formula_3 = FA(x, _type(x, satellite) >> TE(y, on_board(y,

x)))

Each instrument needs to support at least one mode

formula_4 = FA(x, _type(x, instrument) >> TE(y, supports(x,

y)))

Each instrument needs to have at least one calibration

target

formula_5 = FA(x, _type(x, instrument) >> TE(y,

calibration_target(x, y)))

return self._evaluate(formula_1 & formula_2 & formula_3 &

formula_4 & formula_5)

APPENDIX B. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI 167

B.4 Parameters for domain-specific generators

In this Appendix we detail the range of parameters employed for the domain-
specific generator of each domain: blocksworld, logistics, sokoban, miconic and satel-
lite. For each generator parameter, we set a possible range of values and uniformly
sample from it to generate each problem. Finally, the number of problems gen-
erated per experiment, time and memory limits for the planners, and difficulty of
terminated problems is equal to that used for NeSIG (see Table 21). The remaining
configuration parameters are detailed in Tables 16, 17, 18, 19 and 20. These values
have been selected in order to maximize problem diversity and avoid generation bias
towards any particular type of problem.

Name Value

seed for each experiment 1
blocks range [ceil(D/3), D]

Table 16: Generator parameters for blocksworld. D denotes maximum problem size and ceil
is the ceiling function that approximates a real number to the next integer.

Name Value

seed for each experiment 1
airplanes range [1, D]
cities range [2, D]
city size range [1, D]
packages range [1, D]
extra trucks range [0, D]

Table 17: Generator parameters for logistics. D denotes maximum problem size.

Name Value

seed for each experiment 1
boxes range [1, f loor(C ∗ 0.6)]
walls range [0, f loor(C ∗ 0.6)]

Table 18: Generator parameters for sokoban. C denotes the number of cells (e.g., 25 for a
map size of 5x5) and floor is the floor function that approximates a real number to the preceding
integer.

B.5 NeSIG hyperparameters

In this Appendix we provide the hyperparameters not detailed in Section VI.4.1.
We have utilized the same hyperparameter values for all five domains: blocksworld,

168 APPENDIX B. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI

Name Value

seed for each experiment 1
floors range [2, D]
passengers range [1, D]

Table 19: Generator parameters for miconic. D denotes maximum problem size.

Name Value

seed for each experiment 1
satellites range [1, ceil(D/2)]
max instruments per satellite [1, ceil(D/2)]
modes [1, ceil(D/2)]
targets [1, ceil(D/2)]
observations [1, ceil(D/2)]

Table 20: Generator parameters for satellite. D denotes maximum problem size and ceil is
the ceiling function that approximates a real number to the next integer.

logistics, sokoban, miconic and satellite. The exceptions to this rule are the fol-
lowing: goal types and predicates1, since this information is domain-dependent;
the maximum number of actions in the goal generation phase, as we use more for
sokoban, miconic and satellite since these domains are more challenging than the
rest; diversity threshold θ (see Equation VI.1), chosen by testing a few values and
selecting the one resulting in the best balance between problem difficulty and di-
versity; number of training steps and problems generated at each step, as miconic
and satellite require larger values to ensure training stability and convergence. The
complete list of hyperparameters is detailed in Table 21.

1We take into consideration type inheritance. Therefore, the set {at(package, location)}
is equivalent to {at(package, location), at(package, airport)}, since type airport inherits from
location.

APPENDIX B. PROBLEM GENERATION WITH NEURO-SYMBOLIC AI 169

Name Value

num problems generated at each train step
— blocksworld 25
— logistics 25
— sokoban 25
— miconic 50
— satellite 50
seed for each experiment 1-5
goal types and predicates
— blocksworld {on(block, block)}
— logistics {at(package, location)}
— sokoban {at-box(loc)}
— miconic {at(passenger, floor)}
— satellite {have image(direction,mode)}
max actions init state generation phase (training/validation) 15
max actions goal generation phase (training/validation)
— blocksworld 60
— logistics 60
— sokoban 75
— miconic 75
— satellite 75
max actions init state generation phase (size generalization experiments)
— blocksworld [10,15,20,25,30,35,40]
— logistics [10,15,20,25,30,35,40]
— sokoban [10,15,21,30]
— miconic [10,15,20,25,30,35,40]
— satellite [10,15,20,25,30,35,40]
max actions goal generation phase (size generalization experiments)
— blocksworld [40,60,80,100,120,140,160]
— logistics [40,60,80,100,120,140,160]
— sokoban [50,75,105,150]
— miconic [50,75,100,125,150,175,200]
— satellite [50,75,100,125,150,175,200]
diversity threshold θ in Equation VI.1
— blocksworld 0.02
— logistics 0.2
— sokoban 0.02
— miconic 0.2
— satellite 0.1
minibatch size 64
L2 weight decay 0.0
reward discount factor γ 1.0
GAE factor λ 1.0
min num samples for performing a training step 32
critic loss weight 0.1
gradient clipping value 5.0
PPO epochs per train step 3
PPO ϵ value 0.2
Policy entropy bonus Linearly annealed from 0.2

to 0 over 2500 training steps
NLM
— breadth 3
— depth 5
— output predicates for inner layers 8 (for each arity from 0 to 3)
— MLP hidden features 0
— residual type all (concatenate to the input of each

layer the outputs of all previous layers)
— exclude-self True (reduce operations ignore

repeated tensor positions)
— batch normalization False
— activation function sigmoid

Table 21: NeSIG hyperparameters.

