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Abstract. Translators in the special linear group SL(2,R) are surfaces
whose mean curvature H and unit normal vector N satisfy H = 〈N,X〉,
where X is a fixed Killing vector field. In this paper we study and classify
those translators that are invariant by a one-parameter group of isome-
tries. By the Iwasawa decomposition, there are three types of such groups.
The dimension of the Killing vector fields is 4 and an exhaustive discus-
sion is done for each one of the Killing vector fields and each of the
invariant surfaces. In some cases, explicit parametrizations of translators
are obtained.
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1. Introduction and Preliminaries

In the theory of mean curvature flow (MCF for short) in Euclidean space R
3,

translators of the MCF are surfaces that evolve purely by translations of R3.
A translator Σ ⊂ R

3 is characterized by

H = 〈N, v〉, (1)

where H and N are the mean curvature and unit normal of Σ respectively and
v is the direction of translations of R

3. The role of translators is important
because they are, after rescaling, a type of singularities of the MCF according
to Huisken and Sinestrari [10]. The simplest example is any plane parallel
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to v. Other examples of translators are those that are invariant by a one-
parameter group of isometries of R3. In R

3 there are three types of such groups:
translations, rotations about an axis and helicoidal motions about an axis. If
the translator is invariant by translations, then it is a plane parallel to v, the
grim reaper or a tilted grim reaper. On the other hand, if the translator is
a surface of revolution, then the rotation axis is parallel to v. In such a case
there are two types of translators depending whether the surface intersects the
rotation axis (bowl soliton) or not (wing-like rotational translators) [1,7]. If
the translator is invariant by helicoidal motions, existence and properties have
been obtained in [9,13]. Recently, there is a great interest in extending the
notion of translators and solitons in general of the MCF in other homogenous
spaces. Without to be complete, we refer: hyperbolic space [4,5,17,19]; the
product H2 ×R [2,3,6,16]; the product S2 ×R [18]; the Sol space [21]; and the
Heisenberg group [22].

In this paper we study translators of the MCF in the special linear group
SL(2,R) motivated by the Euclidean setting. For this, we first need to give the
definition of translator replacing v in (1) by a Killing vector field of SL(2,R).
In a second step, we need to consider surfaces invariant by some one-parameter
subgroups of SL(2,R). For this, we need to recall the NAK decomposition in
SL(2,R) that generates some symmetries for surfaces in SL(2,R). Once we
have the definition of translators and the surfaces invariant by one-parameter
subgroups of SL(2,R), we will describe each type of translator invariant by
each such a one-parameter subgroups of symmetries.

The space SL(2,R) is viewed as a homogeneous space equipped with
a canonical left-invariant Riemannian metric whose group of isometries is of
dimension 4. For the definition of translator in SL(2,R), we extend the notion
in (1) replacing v by a Killing vector field of SL(2,R).

Definition 1.1. Let X ∈ X(SL(2,R)) be a Killing vector field. A surface Σ in
SL(2,R) is said to be a X-translator if its mean curvature H and unit normal
vector N satisfy

H = 〈N,X〉. (2)

Let

SL(2,R) =
{(

a b
c d

)
: a, b, c, d ∈ R, ad − bc = 1

}
.

For the definition of the Riemannian metric, we recall the so-called Iwasawa
decomposition [12]. There are three one-dimensional subgroups of SL(2,R)

N =
{(

1 x
0 1

)
: x ∈ R

}
,

A =
{(√

y 0
0 1/

√
y

)
: y ∈ R+

}
,
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K =
{(

cos θ sin θ
− sin θ cos θ

)
: θ ∈ R

}
,

that generate the whole group SL(2,R). More precisely, by the Iwasawa de-
composition, denoted by NAK, for every A ∈ SL(2,R) there is a unique repre-
sentation of A given by A = nak, where n ∈ N , a ∈ A and k ∈ K. This allows
to give global coordinates (x, y, θ) in SL(2,R) by means of

(x, y, θ) ∈ R
3 �−→

(
1 x
0 1

)(√
y 0

0 1/
√

y

)(
cos θ sin θ

− sin θ cos θ

)
∈ SL(2,R).

(3)
With respect to these coordinates, let {∂x, ∂y, ∂θ} be the canonical basis of
X(SL(2,R)). Notice the isomorphisms N = (R,+), A = (R+, ·) and K =
(S1, ·).
Remark 1.2. If A ∈ SL(2,R), then the characteristic polynomial of A is λ2 −
trace(A)λ+1. This distinguishes the matrices of SL(2,R) in three types depend-
ing on the number of roots of this polynomial. This classification is equivalent
to the NAK decomposition. Indeed, if |trace(A)| = 2, there is a unique dou-
ble eigenvalue; if |trace(A)| > 2, there are two distinct real eigenvalues and if
|trace(A)| < 2, there are no real eigenvalues. Examples of such matrices are,
respectively, that of N , A and K. In the literature, the elements of the sub-
groups N , A and K are also called parabolic, hyperbolic and elliptic matrices,
respectively [14].

Let H
2(−4) be the hyperbolic plane of constant curvature −4 and its

upper half plane model

H
2(−4) =

(
R

2
+,

dx2 + dy2

4y2

)
.

The special linear group SL(2,R) acts transitively and isometrically on
H

2(−4) by the linear fractional transformation(
A =

(
a b
c d

)
, (x, y) = x + iy = z

)
�→ A · z =

az + b

cz + d
.

The isotropy subgroup of SL(2,R) at i = (0, 1) is the subgroup K. In
terms of the NAK decomposition, the natural projection is

π : SL(2,R) → SL(2,R)/K = H
2(−4), π(x, y, θ) = (x, y). (4)

The mapping
ψ : H2(−4) × S

1 → SL(2,R),

ψ(x, y, θ) =
(

1 x
0 1

) (√
y 0

0 1/
√

y

) (
cos θ sin θ

− sin θ cos θ

)
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is a diffeomorphism. In particular, the space SL(2,R) is topologically the open
solid torus D× S

1. If we endow SL(2,R) by the metric 〈 , 〉 which makes ψ an
isometry, the expression of 〈, 〉 is

〈 , 〉 =
dx2 + dy2

4y2
+

(
dθ +

dx

2y

)2

.

With this metric, the projection π defined in (4) becomes a Riemannian sub-
mersion.

The space of Killing vector fields in SL(2,R) is of dimension 4 and it is
generated by {

∂x, ∂θ, x∂x + y∂y,
1
2
(x2 − y2)∂x + xy∂y

}
. (5)

In order to give examples of translators of SL(2,R), and following the moti-
vation from the Euclidean case, we will assume that the surface is invariant
by some one-parameter subgroup of symmetries. In SL(2,R) there are three
fundamental one-parameter subgroups of symmetries, as we have previously
seen, obtained from the NAK decomposition of SL(2,R). This allows to give
the following definitions.

Definition 1.3. Let Σ be an immersed surface in SL(2,R). We say that Σ is
N -invariant (resp. A-invariant, K-invariant) if Σ is invariant under the left
translations of the subgroup N (resp. A, K). Moreover, K-invariant surfaces
are also known as rotational surfaces, while A-invariant surfaces are often
called conoids.

Invariant surfaces in SL(2,R) with constant mean curvature or constant
Gauss curvature have been studied in [8,11,15,20,23].

Once we have established the definition of an invariant surface, the work
ahead is the classification of invariant X-translators depending of the Killing
vector field X of (5). The paper is organized in sections according to the Killing
vector field X. In each section, namely, Sects. 3, 4, 5 and 6, we will study and
classify the X-translators that are invariant by each of the three subgroups N ,
A and K. Previously, in Sect. 2, we compute the unit normal vector N and the
mean curvature H of the invariant surfaces. These computations are needed
to study the translator equation (2).

By the variety of vector fields and invariant surfaces, we summarize in
Table 1 the results of classification obtained in this paper. In the table, by
explicit parametrization, we mean that we obtain a parametrization of the
surface by known functions. Other surfaces that we obtain are those where
one of the coordinates x, y or θ in the Iwasawa decomposition are constant.
Let Σx0 , Σy0 and Σθ0 be the corresponding surfaces, respectively. Finally, in the
case of K-invariant translator, by ODE we mean that we obtain the differential
equation that describes the generating curve of the surface. In general, this
equation is difficult to be studied in all its generality.



Vol. 80 (2025) Translators of the Mean Curvature Flow in SL(2,R) Page 5 of 22 62

Table 1. Classification of the invariant X-translators

N -surfaces A-surfaces K-surfaces

∂x Explicit
parametrization

Σθ0 Description

∂θ Σθ0 , explicit
parametrization

Σx0 Minimal surface

x∂x + y∂y Explicit
parametrization

Σx0=0, Σθ0 ODE

1
2 (x2 − y2)∂x + xy∂y Σθ0 Σθ0 ODE

We obtain two direct consequences.

Corollary 1.4. All N -invariant translators have explicit parametrizations by
known functions.

Corollary 1.5. The only A-invariant translators are of type Σx0 or Σθ0 de-
pending on the case.

2. The Mean Curvature of Invariant Surfaces

In this section, we compute the unit normal vector N and the mean curvature
H of surfaces invariant by each one of the three subgroups N , A and K of
SL(2,R). Part of the computations of this section have appeared in [15,20]. By
completeness of the paper and for the subsequent study of the X-translators,
we recall them. Consider in SL(2,R) the orthonormal frame B = {e1, e2, e3}
defined by

e1 = 2y∂x − ∂θ, e2 = 2y∂y, e3 = ∂θ. (6)

The Levi-Civita connection ∇ of the metric 〈 , 〉 of SL(2,R) is given by
the relations

∇e1e1 = 2e2, ∇e1e2 = −2e1 − e3, ∇e1e3 = e2,
∇e2e1 = e3, ∇e2e2 = 0, ∇e2e3 = −e1,
∇e3e1 = e2, ∇e3e2 = −e1, ∇e3e3 = 0.

The expressions of Killing vector fields (5) in terms of the above basis are

∂x =
1
2y

(e1 + e3),

∂θ = e3,

x∂x + y∂y =
1
2y

(xe1 + ye2 + xe3),

1
2
(x2 − y2)∂x + xy∂y =

1
2y

(
1
2
(x2 − y2)e1 + xye2 +

1
2
(x2 − y2)e3

)
.
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We now give parametrizations of the invariant surfaces in order to com-
pute N and H. To have a consistent notation, if Ψ = Ψ(s, t) is the parametriza-
tion in local coordinates on the invariant surface, the parameter s will be
assigned for the generating curve of the surface, whereas t will denote the
parameter of the group.

Proposition 2.1. An N -invariant surface of SL(2,R) can be parametrized by

Ψ(s, t) =
(

1 t
0 1

)(√
y(s) 0
0 1/

√
y(s)

) (
cos θ(s) sin θ(s)

− sin θ(s) cos θ(s)

)
, (7)

where t ∈ R, s ∈ I ⊂ R. The generating curve is α(s) = (y(s), θ(s)). The unit
normal N and the mean curvature H are

N =
y′

√
2Φ

(e1 − e3) +
√

2yθ′

Φ
e2,

H =
√

2y2

Φ3

(
θ′y′′ − y′θ′′ + 2yθ′3) ,

(8)

where Φ =
√

y′2 + 2y2θ′2. If we take α(s) such that

y′(s) =
√

2y(s) cos ϕ(s),

θ′(s) = sin ϕ(s),
(9)

then

N =
1√
2

cos ϕ(e1 − e3) + sinϕe2,

H = − ϕ′
√

2
+ sin ϕ.

(10)

Proposition 2.2. An A-invariant surface of SL(2,R) can be parametrized by

Ψ(s, t) =
(

1 x(s)
0 1

)(√
t 0

0 1/
√

t

)(
cos θ(s) sin θ(s)

− sin θ(s) cos θ(s)

)
, (11)

where t ∈ R
+, s ∈ R. The generating curve is α(s) = (x(s), θ(s)). The unit

normal N and the mean curvature H are

N =
1
Φ

(− (x′ + 2tθ′) e1 + x′e3)

H =
2t2

Φ3
(x′θ′′ − θ′x′′),

(12)

where

Φ =
√

(x′ + 2tθ′)2 + x′2.

Proposition 2.3. A rotational surface of SL(2,R) can be parametrized by

Ψ(s, t) =
(

1 x(s)
0 1

) (√
y(s) 0
0 1/

√
y(s)

) (
cos t sin t

− sin t cos t

)
, (13)
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where s ∈ I ⊂ R, t ∈ R. The generating curve is α(s) = (x(s), y(s)) ∈ H
2(−4).

The unit normal N and the mean curvature H are

N =
1
Φ

(−y′e1 + x′e2)

H =
1

Φ3
(y(x′y′′ − x′′y′) + x′Φ2),

(14)

where Φ =
√

x′2 + y′2. If α is parametrized by arclength, then there is ϕ = ϕ(s)
such that

x′(s) = 2y(s) cos ϕ(s),

y′(s) = 2y(s) sin ϕ(s),
(15)

which implies
N = − sin ϕ(s)e1 + cos ϕ(s)e2

H =
ϕ′(s)

2
+ cos ϕ(s).

(16)

We emphasize three particular examples of invariant surfaces which are
defined by fixing one of the three coordinates x, y or θ in SL(2,R).

Example 2.4. Let Σx0 be the surface in SL(2,R) defined by

Ψ(s, t) =
(

1 x0

0 1

) (√
t 0

0 1/
√

t

)(
cos s sin s

− sin s cos s

)
. (17)

The surface Σx0 is a Hopf cylinder over a geodesic in the hyperbolic plane
H

2(−4), hence it is both minimal and flat. The induced metric is gx0 = ds2 +
dt2

4t2 . The surface Σx0 is both A-invariant and K-invariant. As the unit normal
is N = −e1, the surface Σx0 is a translator with respect to ∂θ (for any x0) and
the surface Σx0=0 is a translator with respect to x∂x + y∂y, too.

Example 2.5. Let Σy0 be the surface in SL(2,R) defined by

Ψ(s, t) =
(

1 t
0 1

)(√
y0 0
0 1/

√
y0

) (
cos s sin s

− sin s cos s

)
. (18)

The surface Σy0 is a Hopf cylinder over a Riemannian circle in the hyperbolic
plane H

2(−4), hence it is flat and of constant mean curvature H = 1. The
induced metric is gy0 = dt2

4y2
0

+(ds+ dt
2y0

)2. The surface Σy0 is both N -invariant
and K-invariant. The unit normal is N = e2 and H = 1. The product of N by
the first two vector fields in (5) is 0, and by the last two ones is 1

2 . Thus Σy0

is not a translator.

Example 2.6. Let Σθ0 be the surface in SL(2,R) defined by

Ψ(s, t) =
(

1 s
0 1

)(√
t 0

0 1/
√

t

) (
cos θ0 sin θ0

− sin θ0 cos θ0

)
. (19)

The surface Σθ0 is both N -invariant and A-invariant surface. The induced
metric is gθ0 = 2ds2+dt2

4t2 and its curvature is constant −4, that is Σθ0 is the
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hyperbolic plane H
2(−4). Moreover, Σθ0 is a minimal surface in SL(2,R) by

(8). The unit normal is N = 1√
2
(e1 − e3). Therefore, Σθ0 is a translator with

respect to ∂x, x∂x + y∂y and 1
2 (x2 − y2)∂x + xy∂y, respectively.

We end this section with a particular example of rotational surface.

Example 2.7. Let Σ be a rotational surface whose generating curve α is a
straight-line. Then α is parametrized by (15) where the function ϕ is constant.

(1) Case sin ϕ = 0. Without loss of generality, we can suppose ϕ(s) = 0. An
integration of (15) gives α(s) = (2c2s + c1, c2), c1, c2 ∈ R, c2 > 0. Then
H = 1 and it is not difficult to check that Σ is not a X-translator for any
vector field X of (5).

(2) Case sin ϕ 
= 0. The solution of (15) is α(s) = c2e
2s sin ϕ(cot ϕ, 1) +

(c1, 0), c1, c2 ∈ R, c2 > 0. Now H = cos ϕ and Σ is not a X-translator
with the first and fourth vector fields of (5). For the vector fields ∂θ and
x∂x + y∂y, we have 〈N, ∂θ〉 = 〈N,x∂x + y∂y〉 = 0. Thus Σ is a ∂θ-
translator and a (x∂x + y∂y)-translator if and only if cos ϕ = 0, that is,
ϕ(s) = π/2.

3. Translators by the Vector Field ∂x

Consider the Killing vector field ∂x. We know that with respect to B, this
vector field is

∂x =
1
2y

(e1 + e3).

Theorem 3.1. (1) Let Σ be an N -invariant ∂x-translator. Then Σ is either a
surface of type Σθ0 given by (19), or a minimal surface parametrized by
(7) with θ(s) = s and y(s) = c1 cos(

√
2s) + c2 sin(

√
2s), where c1 and c2

are real constants. The interval for s is such that y(s) > 0.
(2) The only A-invariant ∂x-translators are the surfaces of type Σθ0 .
(3) Let Σ be a rotational surface whose generating curve is parametrized by

(15). If Σ is a ∂x-translator, then

ϕ′ = − sin ϕ + 2y cos ϕ

y
. (20)

The generating curve α is a bi-graph over the line y = 0 and converges
to it as s → ∞. See Fig. 1.

Proof. (1) From (8), we have 〈N, ∂x〉 = 0, hence the surface is minimal.
If θ = θ0 is a constant function θ0 then Σ = Σθ0 described in Ex. 2.6.
Otherwise, that is, if θ′ 
= 0 then we can take θ(s) = s. If this is the
case, the equation H = 0 implies y′′(s) + 2y(s) = 0. The solution is
y(s) = c1 cos(

√
2s) + c2 sin(

√
2s), c1, c2 ∈ R.
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(2) From (12), we have 〈N, ∂x〉 = −θ′

Φ
. Thus an A-invariant ∂x-translator

must satisfy

2t2

Φ3
(x′θ′′ − θ′x′′) = −θ′

Φ
.

This equation is equivalent to

2t2(x′θ′′ − θ′x′′) + θ′x′2 + θ′(x′ + 2tθ′)2 = 0.

Writing this equation as a polynomial equation on the variable t, we
have

t2(x′θ′′ − θ′x′′ + 2θ′3) + 2x′θ′2t + x′2θ′ = 0.

Then all coefficients must vanish. First, x′2θ′ = 0. This implies that
θ′(s) = 0 for all s or x′(s) = 0 for all s. However, x′ cannot be iden-
tically 0, otherwise θ′(s) also vanishes for all s and this is not allowed
by regularity. Thus θ is a constant function, obtaining the surface Σθ0 of
Ex. 2.6.

(3) Using (16), we have 〈N, ∂x〉 = − sin ϕ
2y , obtaining Eq. (20). Then the gen-

erating curve α(s) = (x(s), y(s)) is given by the ordinary system formed
by the two equations (15) together with (20). Since the first equation of
(15) can be obtained if we solve the second equation and (20), then it is
enough to consider the autonomous system⎧⎨

⎩
y′ = 2y sin ϕ

ϕ′ = − sin ϕ

y
− 2 cos ϕ.

(21)

The phase portrait is shown in Fig. 1. The phase plane is A = {(y, ϕ) :
y > 0, ϕ ∈ (−π, π)}. Up to a factor, the ODE system (21) is the same
that appeared in [6, Th. 5.1] in the study of p-grim reapers in the space
H

2 × R. We refer there for details. The trajectories in the (y, ϕ)-plane
repeat along the ϕ-axis at distance π. Multiplying by y in (21), the equi-
librium points are (0, nπ), n ∈ Z. If n is even, the eigenvalues of the
linearized system are 0 and −1, while if n is odd, the eigenvalues are
0 and 1. Therefore the trajectories start at points of type (0, 2nπ) along
the unstable manifolds and ends at the points (0, 2(n ± 1)π) along the
stable manifold. See Fig. 1, left. Since in each trajectory the value of y
lies between 0 and a maximum, the corresponding solution α is not a
graph on the x-axis (because the value ϕ = 2n±1

2 π is always attained)
and the function y(s) goes from 0 to 0 in each branch of α. The function
x′(s) = 2y(s) cos ϕ(s) only vanishes at ϕ = 2n±1

2 π. Moreover, in that
points s, we have x′′(s) = −2y(s)ϕ′(s) sin ϕ(s) = 2(sin ϕ(s))2 = 2 > 0,
proving that x has a minimum. This proves the shape of α.

�
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Figure 1. Left: the phase portrait of the nonlinear au-
tonomous system (21). Here we have indicated two trajec-
tories going from (0, π) to (0, 0) and (0, 2π). Right: a solution
of (20) for initial conditions α(0) = (0, 1)

4. Translators by the Vector Field ∂θ

Consider the Killing vector field ∂θ. This vector field coincides with e3.

Theorem 4.1. (1) Let Σ be an N -invariant surface whose generating curve is
parametrized by (9). If Σ is a ∂θ-translator, then either α(s) = (c1e

2s/
√

3,
− s√

3
+ c2), where c1 > 0, c2 ∈ R, or α(s) = (y(s), θ(s)), with

y(s) = c1 exp

(
2
√

2
3

Λ(s) +
2
3
ψ(s)

)

θ(s) =
2
√

2
3

Λ(s) − 1
3
ψ(s) + c2,

(22)

and Λ(s) = arctan
(
tanh s

√
3

2

)
, ψ(s) = log cosh(s

√
3), where c1 > 0,

c2 ∈ R.
(2) The only A-invariant ∂θ-translators are the surfaces of type Σx0 .
(3) The only rotational ∂θ-translators are minimal surfaces.

Proof. (1) From (10), Eq. (2) is

ϕ′ = cos ϕ +
√

2 sin ϕ.

A first solution appears when ϕ is a constant function. This occurs when
tan ϕ = −1/

√
2. If we consider ϕ ∈ [−π

2 , π
2 ] it is immediate from (9) that

y(s) = c1e
2s/

√
3 and θ(s) = − s√

3
+ c2, where the constants c1 and c2 are

obtained from the initial condition. By (10) the surface Σ is of constant
mean curvature H = −1/

√
3.

In case that ϕ is not constant let us fix the initial conditions for
ϕ (equivalently to a translation in the parameter s that does not affect
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the assumption for the parametrization of α) ϕ(0) = ϕ0 = arctan
√

2 ∈
(0, π

2 ). By separation of variables, after integrating, we obtain

1 + sin(ϕ − ϕ0)
cos(ϕ − ϕ0)

= es
√

3.

We obtain

ϕ(s) = arctan
√

2 + 2 arctan

(
tanh

s
√

3
2

)
.

With this value of ϕ, it is possible to integrate (9) obtaining (22). See
Fig. 2, with the generating curve α(s) in the yθ-plane.

(2) From (12), we have 〈N, ∂θ〉 = x′
Φ . Then Eq. (2) becomes

t2(x′θ′′ − θ′x′′) = x′((x′ + tθ′)2 + t2θ′2).

This is equivalent to

t2(x′θ′′ − θ′x′′ − 2x′θ′2) − 2x′2θ′t − x′3 = 0.

Because the arbitrariness of t, we must have x′ = 0 identically, which
implies that Σ = Σx0 for a certain constant x0.

(3) From (14), we have 〈N, e3〉 = 0. Thus (2) implies that the surface is min-
imal. For a detailed study of constant mean curvature rotational surfaces
in SL(2,R) see [15, §4]. �

5. Translators by the Vector Field x∂x + y∂y

Consider the Killing vector field

V = x∂x + y∂y.

In terms of the basis B, we have V = 1
2y (xe1 + ye2 + xe3).

Theorem 5.1. (1) The only N -invariant V -translators are the surfaces of
type Σθ0 or they are parametrized by (7), where θ(s) = s and α(s) =(
c(1 + cos(

√
2(s − s0)), s

)
, with c > 0 and s0 ∈ R.

(2) The only A-invariant V -translators are the surfaces of type Σθ0 or of type
Σx0 with x0 = 0.

(3) Let Σ be a rotational surface whose generating curve is parametrized by
(15). If Σ is a V -translator, then

ϕ′ = −y cos ϕ + x sin ϕ

y
. (23)

Proof. (1) Obviously, Σθ0 is a solution of the problem. Indeed, the normal to
Σθ0 is N = 1√

2
(e1 − e3) which is orthogonal to V . On the other hand,

Σθ0 is minimal.
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Figure 2. The generating curve α: ϕ is constant (left) and
for the initial conditions α(0) = (1, 0) and α′(0) = (0, 1)
(right)

Suppose that θ′ 
= 0, hence we can choose θ(s) = s. The equation
(2) becomes

y′2 = 2y(y′′ + y).

With the change of variable f(s) = y′(s)
y(s) , this equation writes then as

2f ′ + f2 + 2 = 0.

The solution of this equation is f(s) = −√
2 tan

(
s−s0√

2

)
, for a certain

constant s0 obtained from the initial conditions. Then we have proved

y′

y
= −

√
2 tan

(
s − s0√

2

)
.

Consequently, we find

y(s) = c
(
1 + cos(

√
2(s − s0))

)
, c > 0.

The domain of s is such that s−s0√
2

∈ (−π
2 , π

2 ).

(2) By using the parametrization (11), we obtain 〈N,V 〉 = −xθ′
Φ . Equation

(2) becomes

2t2(x′θ′′ − θ′x′′) = −xθ′((x′ + 2tθ′)2 + x′2).



Vol. 80 (2025) Translators of the Mean Curvature Flow in SL(2,R) Page 13 of 22 62

This equation writes as

t2(x′θ′′ − θ′x′′ + 2xθ′3) + 2txx′θ′2 + xθ′x′2 = 0.

As t is arbitrary, we must have either θ′(s) = 0 for all s, that is Σ = Σθ0 ,
or θ′ 
= 0 and this implies x = 0, that is Σ = Σx0 with x0 = 0.

(3) Since 〈N,V 〉 = 1
2y (−x sin ϕ + y cos ϕ), then (2) writes as in (23). Obvi-

ously, sin ϕ 
= 0 on a certain interval. From the relation above we deduce

x

y
= −ϕ′ + cos ϕ

sin ϕ
, for sin θ 
= 0.

�

Let us emphasize two particular situations of Eq. (23).

Corollary 5.2. Let Σ be a rotational V -translator whose generating curve is
parametrized by (15).
(1) If ϕ is constant, then Σ is the surface of Ex. 2.7 with ϕ(s) = π/2.
(2) If Σ has constant mean curvature H, then H = 0 and the surface is of

previous item (1).

Proof. The first part was proved in Ex. 2.7. Suppose now that the mean cur-
vature H is constant. We must have

ϕ′ = 2(H − cos ϕ) and ϕ′ = −y cos ϕ + x sin ϕ

y
.

It follows that 2H = cos ϕ − x
y sin ϕ. Taking the derivative and after some

manipulations we obtain(
sin ϕ +

x

y
cos ϕ

)
ϕ′ = −2 sin ϕ

(
cos ϕ − x

y
sin ϕ

)
.

Thus H sin ϕ = x
y (1 − H cos ϕ) . Multiply by sin ϕ and replace x

y sin ϕ = cos ϕ−
2H to obtain

3H = (1 + 2H2) cos ϕ.

It follows that H = 0 and ϕ is constant with ϕ(s) = π
2 . �

We obtain qualitative properties of some solutions of (15). See Fig. 3.

Proposition 5.3. Let Σ be a rotational surface whose generating curve α(s) =
(x(s), y(s)) is parametrized by (15). Suppose that Σ is a V -translator and α is
a maximal solution of (23).
(1) If α intersects the y-axis orthogonally, then α is the graph of a function

defined in the x-axis. This function is symmetric about the y-axis, it has
a unique maximum at x = 0 and α is asymptotic to the x-axis as s → ∞.

(2) If α does not intersect the y-axis, then α is a bi-graph on the x-half axis
and asymptotic to the x-axis.
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Figure 3. V -translators of rotational type, Proposition 5.3.
Cases 1 (left) and 2 (right)

Proof. If α is parametrized by (15), then we know that (x, y, ϕ) solves the
initial value problem on a certain interval I, 0 ∈ I,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x′(s) = 2y(s) cos ϕ(s),

y′(s) = 2y(s) sin ϕ(s),

ϕ′(s) = − cos ϕ(s) − x(s)
y(s)

sin ϕ(s),

x(0) = x0, y(0) = y0, ϕ(0) = ϕ0.

(24)

It is convenient to introduce the polar angle θ = θ(s) given by

tan θ =
y

x
.

A straightforward computation gives
dθ

dϕ
=

θ′(s)
ϕ′(s)

= −2(sin θ)2
sin(ϕ − θ)
sin(ϕ + θ)

.

By using (24), the functions (ϕ, θ) satisfy the planar ordinary system⎧⎪⎨
⎪⎩

dϕ

dt
= sin(ϕ + θ),

dθ

dt
= −2(sin θ)2 sin(ϕ − θ).

(25)

The equilibrium points (ϕ, θ) are

P1 = (0, 0), P2 =
(π

2
,
π

2

)
.

The other equilibrium points are obtained after translations of (k1π, k2π), k1,
k2 ∈ Z. The behaviour of the trajectories are studied after the analysis of the
linearized system near the equilibrium points. See Fig. 4. For this, the matrix
of the linearized system at the points P1 and P2 are, respectively(

1 1
0 0

)
,

(−1 −1
−2 2

)
.

The eigenvalues corresponding to P1 are 1 and 0 hence P1 is a degenerate
point. The eigenspace of the zero eigenvalue is ϕ = −θ. The eigenspace of
λ = 1 is θ = 0. See Fig. 4. For each point P2, the eigenvalues for the system
are real numbers being one positive and the other one is negative. Thus P2 is
an unstable saddle point. The point P2 corresponds with the surface (1) of Cor.
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Figure 4. The phase portrait of the nonlinear autonomous
system (25). Left: the black points indicate the equilibrium
points of the system. Right: we indicate two trajectories. A
(red) trajectory acrosses the value (0, π

2 and it goes from (0, 0)
to (0, π). A (black) trajectory acrosses the value (π

2 , π
4 ) going

from (0, 0) to (π, 0) (Color figure online)

5.2 because ϕ(s) ≡ π/2. The trajectories in the (ϕ, θ)-plane go from P1 = (0, 0)
to the point (π, 0) or (0, π).

(1) Suppose that α intersects orthogonally the y-axis. Without loss of gener-
ality, let x(0) = 0, y(0) = y0 > 0, ϕ(0) = 0. Then the triple (x̃, ỹ, ϕ̃) =
(−x(−s), y(−s),−ϕ(−s)) is another solution of (24). Using uniqueness
of ODEs, we have prove that α is symmetric about the y-axis. More-
over, from (24), we have y′(0) = 0 and ϕ′(0) = −1. Thus y′′(0) =
2y0 cos ϕ(0) = −2y0. This implies that y = y(s) attains a local max-
imum at s = 0. From now on, we only have to discuss the behaviour
of α(s) for s ≥ 0. The function ϕ is decreasing at s = 0. It is not
possible that ϕ attains the value −π/2 at finite time s = s1 because
in such a case, ϕ′(s1) ≤ 0. However, the third equation of (24) yields
ϕ′(s1) = x(s1)/y(s1) > 0. Also, it is not possible that α attains the x-
axis at finite time s2 during the function ϕ is decreasing because we know
that −1 < sin ϕ(s) < 0 and lims→s−

2
ϕ(s) = +∞. On the other hand,

from the second equation of (24), the function y is decreasing. In case
that y′ vanishes again and s3 is the first point where this occurs, then
y′(s3) = 0 gives ϕ(s3) = 0 with ϕ′(s3) ≥ 0. However, we have from the
third equation of (24) that ϕ′(s3) = −1, that is s = s3 is a local max-
imum, a contradiction. This proves that s = 0 is the only critical point
and, in consequence, a global maximum of the function y(s).
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We now prove that α cannot attain the x-axis at time finite. If
α attains the x-axis as s → s2, then necessarily ϕ′ vanished at least
once at (0, s2). Moreover, we know lims→s−

2
ϕ(s) = 0 because otherwise,

ϕ′(s) ↗ +∞ as s → s2 which it is not possible. The last equation of (24)
writes as

−yϕ′ =
x′

2
+

xy′

2y
=

1
2y

(xy)′.

This gives −2y2ϕ′ = (xy)′, or equivalently,

8ϕy2 sin ϕ = (xy + 2y2ϕ)′.

Integrating from s = 0 to s = s2, we obtain∫ s2

0

ϕ(s) sin ϕ(s)y(s)2 ds = 0,

which it is not possible since the sign of the integrand is positive. Defini-
tively, the solution of (24) is defined in R and ϕ(s) ∈ (−π/2, 0) if s > 0.
This proves that α is a graph on the x-axis. It remains to prove that
y(s) → 0 as s → ∞. The trajectory corresponding to the solution α at
s = 0 takes the value (ϕ, θ) = (0, π/2). This trajectory goes from the
point P1 = (0, 0) to the point (0, π) such as it shows Fig. 4, right. Thus
the polar angle goes from θ = 0 (the positive direction of the x-axis) until
the value θ = π (the negative direction of the x-axis). Moreover, from
the starting point ((0, 0)) until the end point ((0, π)) the function y(s) is
close to 0, proving that α has in the x-axis as a horizontal asymptote.

(2) Suppose that α does not intersect the y-axis. Suppose x(0) = x0 which
we can assume positive, x0 > 0, and let ϕ(0) = π/2. The first equation
of (24) says that s = 0 is a critical point of the function x(s). Since
ϕ′(0) = −x0/y0, then x′′(0) = −2y0ϕ

′(0) = 2x0 > 0. This implies that
x(s) attains a minimum at s = 0. Let us look the trajectory corresponding
to this solution α. Now at s = 0 we have (ϕ, θ) = (π

2 , θ0) for some
θ0 ∈ (0, π

2 ). Notice that P2 = (π
2 , π

2 ) is another equilibrium point but the
initial value θ at s = 0 is less than π/2. Since P2 is an unstable saddle
point, the trajectory does not end at P2. In fact, and such as it shows
Fig. 4, right, the trajectory passing through (π

2 , θ0) starts at (0, 0) and
ends at (π, 0). This proves that the polar angle varies from 0 to 0 passing
by the value θ0 ∈ (0, π

2 ) (at s = 0). On the other hand, the angle function
ϕ which indicates the angle of the tangent vector of α goes from 0 to
π passing by the value π

2 . In consequence, the solution curve α is not a
graph on the x-axis. Since s = 0 is a local minimum of the function x(s),
and as s → ±∞, we have θ → 0, then the curve α tends to the x-axis at
infinity. This shows the geometry of the curve α. �

The qualitative properties of the rest of solutions of (24) can be obtained
in a similar way from the (ϕ, θ)-portrait plane. Notice that the trajectories in
the (ϕ, θ)-plane are symmetric with respect to any equilibrium point: Fig. 4,
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left. Looking on the θ-axis, that is, when ϕ(0) = 0, we can restrict to {0} ×
[0, π). For example, the solutions corresponding to the trajectories intersecting
{0}×[0,−π) are symmetric about the origin of the (x, y)-plane: fixing ϕ(0) = 0,
a pair (x0, y0) determines θ0 and the value −θ0 corresponds with the initial
condition (−x0,−y0).

For example, we can consider in (24) initial conditions (x0, y0) = (0, 1),
hence θ(0) = π/2, but varying the initial angle ϕ(0), say ϕ(0) ∈ (0, π

2 ). We are
interesting in the trajectories intersecting the line θ = π

2 : see red trajectory in
Fig. 5. In Fig. 5 we have depicted the horizontal line θ = π

2 . For ϕ(0) > 0 but
close to 0, the trajectory is similar to the red one that appears in Fig. 4, right.
In that case, the solution α is a graph on the x-axis and the same occurs for
the solutions corresponding to ϕ(0). In this case, the solution is not symmetric
about a vertical axis as it happened with ϕ(0) = 0, but α follows being a graph
on the x-axis.

We can also vary the polar angle θ in the initial point. This implies that
we are changing the initial conditions (x0, y0). Fix ϕ(0) > 0 and close to 0. Let,
for instance, x0 = 1 and y0 > 0 close to 0. Then y0 determines the value θ0

which is now close to 0. In Fig. 5 we show the corresponding trajectory (black)
which goes from (0, 0) to (π, 0). An argument as in the proof of Prop. 5.3
proves that the solution α has similar properties as (2) of Prop. 5.3. However,
if we increase y0 ↗ ∞ (but fixing x0 = 1), then we have θ0 ↗ π

2 . Then there
exists a value θ0 where the trajectory changes and, instead to end at (π, 0), the
trajectory ends at (0, π): blue trajectory in Fig. 5. The corresponding solution
is similar as solutions of (1) of Prop. 5.3, being now α a graph on the x-axis.

6. Translators by the Vector Field 1
2
(x2 − y2)∂x + xy∂y

Consider the Killing vector field

W =
1
2
(x2 − y2)∂x + xy∂y =

1
2y

(
1
2
(x2 − y2)e1 + xye2 +

1
2
(x2 − y2)e3

)
.

Theorem 6.1. (1) The only N -invariant W -translators are the surfaces of
type Σθ0 .

(2) The only A-invariant W -translators are surfaces of type Σθ0 .
(3) Let Σ be a rotational surface whose generating curve is parametrized by

(15). If Σ is a W -translator, then

ϕ′ = (x − 2) cos ϕ − 1
2y

(x2 − y2) sin ϕ. (26)

Proof. (1) From (8) we have 〈N,W 〉 = − tθ′
2yΦ , while H depends only on s.

This implies θ′ = 0 identically and thus θ(s) = θ0 is a constant function.
This proves that the surface is of type Σθ0 .
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Figure 5. The phase portrait of the nonlinear autonomous
system (25). Different trajectories for initial values (ϕ, θ):
(0.2, π

2 ) (red), (0.2, 0.2) (black), (0.2, 0, 8) (blue) (Color fig-
ure online)

(2) We have

〈N,W 〉 = −x2 − t2

2Φ
θ′.

Consequently, equation (2) writes as

4t2(x′θ′′ − x′′θ′) + (x2 − t2)θ′ ((x′)2(x′ + 2tθ′)2
)

= 0.

The arbitrariness of t implies that all coefficients appearing above vanish.
Since the coefficient of t4 is zero, we must have θ′ = 0. Hence Σ = Σθ0 .

(3) We have

〈N,W 〉 =
1
2y

(
1
2
(y2 − x2) sin ϕ + xy cos ϕ

)
, (27)

then (2) becomes

ϕ′

2
+ cos ϕ =

y2 − x2

4y
sin ϕ +

x

2
cos ϕ. (28)

�
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Equation (26), together with equations (15) are difficult to solve. A par-
ticular case to consider is when the surface has constant mean curvature and
it is natural to ask if there exist rotational W -translators with constant mean
curvature. The answer is no as we will prove in the next result. This is a
consequence that it is possible to find explicit parametrizations of rotational
surfaces with constant mean curvature.

Corollary 6.2. There are no rotational W -translators with constant mean cur-
vature.

Proof. Suppose that H is constant which, without loss of generality, we can
assume to be non-negative. Then (16) implies ϕ′(s) = 2H − 2 cos ϕ(s). The
solution of this ODE is, up to translations in the s-parameter:

ϕ(s) = −2 tan−1

(
(1 − H) tanh

(√
1 − H2s

)
√

1 − H2

)
, (0 ≤ H < 1),

ϕ(s) = −2 cot−1(2s), or ϕ(s) = 0, (H = 1),

ϕ(s) = 2 tan−1

(
(H − 1) tan

(√
H2 − 1s

)
√

H2 − 1

)
, (H > 1).

Once we have ϕ, we can explicitly integrate (15). In the following expressions,
c is a constant of integration.

(1) Case 0 ≤ H < 1.

x(s) = −c

√
1 − H2 sinh(2

√
1 − H2s)

cosh(2
√

1 − H2s) + H
,

y(s) = c

(
H − cos

(
2 tan−1

(
(1 − H) tanh(

√
1 − H2s)√

1 − H2

)))
.

(2) Case H = 1. If ϕ(s) = 0 we obtain the surface Σy0 which is not a
translator. For the other value of ϕ we get

x(s) = −1
2
c sin(2 cot−1(2s)),

y(s) =
c

4s2 + 1
.

(3) Case H > 1.

x(s) = c

√
H2 − 1 sin(2

√
H2 − 1s)

cos(2
√

H2 − 1s) + H
,

y(s) = c

(
H − cos

(
2 tan−1

(
(H − 1) tan(

√
H2 − 1s)√

H2 − 1

)))
.
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Finally, we compute 〈N,W 〉 using (27) and we check that, indeed, H 
= 〈N,W 〉:

〈N,W 〉 = −1
4
c
√

1 − H2 sinh(2
√

1 − H2s), (0 ≤ H < 1),

〈N,W 〉 = 0, (H = 1),

〈N,W 〉 =
1
4
c
√

H2 − 1 sin(2
√

H2 − 1s), (H > 1).

�
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