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Simple Summary: Sarcopenia, a condition characterized by the loss of skeletal muscle
mass, is increasingly recognized as a predictor of poor outcomes in pancreatic cancer
(PC). This meta-analysis investigates the impact of sarcopenia, as assessed by computed
tomography (CT), on survival outcomes in PC patients. We analyzed data from multiple
studies to determine how sarcopenia affects cancer-related outcomes, particularly overall
survival (OS) and progression-free survival (PFS). Our findings show that sarcopenia
significantly worsens both OS and PFS. This negative impact is more pronounced in
patients undergoing curative treatments and when stricter CT-based cutoff values are
applied. These results highlight the importance of routinely evaluating sarcopenia in
clinical settings, as early identification may guide treatment decisions and improve patient
outcomes. Future research should explore strategies to manage sarcopenia and further
standardize its measurement.

Abstract: Background: Sarcopenia has been associated with poor outcomes in pancreatic
cancer (PC). However, published results are heterogeneous in terms of study design, on-
cological outcomes, and sarcopenia measurements. This meta-analysis aims to evaluate
the impact of computed tomography (CT)-based sarcopenia on overall survival (OS) and
progression-free survival (PFS) in patients with PC, considering potential confounders such
as the CT-based method and thresholds used to define sarcopenia, as well as treatment
intention. Methods: We systematically searched databases for observational studies report-
ing hazard ratios (HRs) for OS and PFS in PC patients stratified by CT-based sarcopenia
status. Random-effects models were used to calculate pooled crude and adjusted HRs
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(cHRs and aHRs, respectively), with subgroup analyses based on sarcopenia measurement
methods, cutoff values, sarcopenia prevalence, and treatment intention. Heterogeneity was
assessed using the I2 and τ2 statistics, and publication bias was evaluated using funnel
plots and Egger’s test. Results: Data from 48 studies were included. Sarcopenia was
significantly associated with worse OS (pooled cHR = 1.58, 95% CI: 1.38–1.82; pooled
aHR = 1.39, 95% CI: 1.16–1.66) and worse PFS (pooled cHR = 1.55, 95% CI: 1.29–1.86; pooled
aHR = 1.31, 95% CI: 1.11–1.55). Subgroup analyses revealed significantly different, stronger
associations in studies using stricter sarcopenia cutoffs (<50 cm2/m2 for males) and in
patients undergoing curative treatments. Heterogeneity was substantial across analyses
(I2 > 67%), but with generally low τ2 values (0.01–0.25). Egger’s test indicated potential
publication bias for OS (p < 0.001), but no significant bias was observed for PFS (p = 0.576).
Conclusions: Sarcopenia determined by CT is an independent predictor of poor OS and
PFS in PC, but this association varies depending on the cutoff used for its definition as well
as on the treatment intention. Therefore, its routine assessment in clinical practice could
provide valuable prognostic information, but future research should focus on standardizing
sarcopenia assessment methods.

Keywords: sarcopenia; pancreatic cancer; overall survival; progression-free survival; meta-
analysis

1. Introduction
Pancreatic cancer (PC) represents one of the most lethal malignancies, with a 5-year

survival rate of less than 5–10%, despite advances in surgical techniques and systemic
therapies [1,2]. Its poor prognosis can be attributed to a variety of factors, including late-
stage diagnosis, aggressive tumor biology, and limited efficacy of available treatments [3].
Consequently, identifying prognostic factors that can inform clinical decision-making is
essential to improve the management and outcomes of PC. In this context, sarcopenia has
recently emerged as a key determinant of patient prognosis, particularly in the context of
cancer cachexia [4].

Sarcopenia, defined as the progressive and generalized loss of skeletal muscle mass
and strength [5], was initially recognized as an age-related condition. However, it is
now increasingly conceived as a pathological state that can affect individuals of all ages,
especially those with chronic diseases, including cancer [6]. The association between
sarcopenia and poor outcomes in PC patients has gained substantial attention in recent
years, with numerous studies suggesting that sarcopenia may be an independent predictor
of worse overall survival (OS) and progression-free survival (PFS) [7]. The mechanisms
linking sarcopenia to adverse oncological outcomes are likely related to the systemic effects
of chronic inflammation, metabolic dysregulation, and reduced tolerance to anticancer
therapies [8]. However, the exact pathophysiology is still poorly understood, which has
motivated increasing research interest on the topic.

In PC, the systemic inflammatory response associated with the disease contributes
to the early development of sarcopenia [9]. Tumor-induced alterations in metabolism,
including increased energy expenditure and altered protein synthesis, exacerbate the loss
of muscle mass [10]. Sarcopenia may also reflect underlying frailty in these patients,
reducing their response to the physiological stress of both PC and its treatments. This
frailty may manifest clinically as increased susceptibility to postoperative complications,
reduced physical performance, and diminished ability to recover from surgery or systemic
therapy [11,12].
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A critical challenge in studying sarcopenia in cancer patients is the accurate assessment
of muscle mass. Traditional methods such as bioelectrical impedance analysis and dual-
energy X-ray absorptiometry have been employed in the past, but their accessibility and
precision are limited in the oncology setting [13]. In contrast, computed tomography (CT)
scans, which are routinely performed in cancer patients for diagnostic and staging purposes,
have emerged as a valuable tool for the objective measurement of skeletal muscle mass [14].
This imaging modality allows for the simultaneous evaluation of sarcopenia and tumor
burden, facilitating the incorporation of muscle mass measurements into routine clinical
practice without the need for additional testing [15].

CT-based assessment of sarcopenia typically involves the quantification of muscle
cross-sectional area at the level of the third lumbar vertebra (L3), which has been shown
to correlate with total body skeletal muscle mass [16]. However, a number of methods
and quantitative thresholds to define sarcopenia have been proposed in the literature,
including but not limited to skeletal muscle index (SMI) and total psoas area (TPA) and
volume (TPV). Unfortunately, no consensus on the most suitable one exists to date [17].
Such measurements have been used to investigate the impact of sarcopenia on PC outcomes
(e.g., postoperative morbidity, chemotherapy toxicity, survival) [18].

To date, several studies have demonstrated that sarcopenia is associated with worse OS
and PFS in PC patients [19], and it has also been linked to increased rates of postoperative
complications in patients undergoing pancreaticoduodenectomy, which is the standard
surgical treatment for resectable PC [20]. Moreover, in patients with locally advanced or
metastatic disease, sarcopenia has been associated with reduced chemotherapy tolerance,
leading to dose reductions or treatment delays that negatively impact survival [21]. These
findings suggest that sarcopenia could serve as a biomarker for treatment stratification,
guiding decisions on dose adjustments or the use of supportive therapies to mitigate
treatment-related toxicities [22].

However, despite the accumulating evidence supporting the association between
sarcopenia and poor outcomes in PC, there is significant variability in the reported out-
comes across studies due to differences in the methods used to assess sarcopenia, the
inclusion criteria of the studied populations, and the use of different CT-based thresholds
for defining sarcopenia, among other factors [23]. Given the growing interest in the role of
sarcopenia as a prognostic factor in PC, there is a need for a comprehensive synthesis of the
available evidence.

The objective of this study is to conduct a meta-analysis of observational studies to
evaluate the influence of CT-defined sarcopenia on OS and PFS in patients with PC. We
previously reported meta-analytic data on the variability of sarcopenia prevalence based on
the CT-based method and thresholds used in its definition [24]. In the present article, we aim
to provide a comprehensive assessment of the prognostic value of sarcopenia in this patient
population, examining the role of potential confounders such as the imaging methods and
cutoff values used to define sarcopenia, which may have important implications for clinical
practice and future research.

2. Materials and Methods
2.1. Eligibility Criteria

The selection criteria included observational studies of patients with histologically
confirmed PC, regardless of treatment intention, reporting the prevalence of pre-treatment
sarcopenia determined by CT as well as survival outcomes, particularly OS or PFS. The
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [25]
guidelines were followed in the design and writing of the study (see Supplementary File S1
for the PRISMA checklist). This review was not registered in publicly available registers,
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but an internal protocol in agreement with the PRISMA guidelines (Supplementary File S2)
was followed. The exclusion criteria, as in our previous meta-analysis, included studies
reporting no mortality-related outcomes, articles published in languages other than English,
studies with incomplete data on sarcopenia prevalence, or studies and publications different
from original research articles reporting data from observational studies (e.g., reviews, case
reports and series, conference proceedings, letters to the editor).

2.2. Information Sources and Search Strategy

The information sources and search strategy used are analogous to those described in
our previous work [24]. In brief, two authors searched the PubMed, Web of Science, and
EMBASE databases to identify original studies published from database inception until
26 April 2024. Different search strategies were carried out, and a final consistent equation
was constructed (Supplementary Files S3–S5). To increase the sensitivity of the search,
references of all fully read articles were also examined. No date or language restrictions
were established.

All titles and abstracts of interest were screened, and those which did not meet the
eligibility criteria were excluded. Subsequently, the screened studies were fully read to
assess whether they met all eligibility criteria. Figure 1 shows the flow diagram of the study.
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Figure 1. Flow diagram of the study according to the PRISMA guidelines.

2.3. Measured Variables and Subgroup Analyses

Data were collected regarding study characteristics, patient population, sarcopenia
measurement, and cancer-related characteristics, including treatment intention (i.e., cu-
rative vs. palliative). The primary outcomes were OS and PFS, which were analyzed
separately based on whether original studies reported univariate (i.e., crude HRs—cHRs)
or multivariate (i.e., adjusted HRs—aHRs) analysis results. In addition, we performed
subgroup analyses based on the following variables:

1. Method used to calculate sarcopenia (SMI or analogous measurement vs. other
measurement such as TPA or TPV).

2. For studies measuring sarcopenia using SMI, we analyzed between-group differences
to compare studies defining sarcopenia below or over the threshold of 50 cm2/m2.
As in our previous meta-analysis [24], when a study reported the prevalence of
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sarcopenia using different cutoffs, the sample was split or duplicated accordingly and
independently analyzed.

3. Oncological context in terms of patient management, namely palliative (non-
resectable or metastatic cancer) or curative (managed with surgery with or without
chemo/radiotherapy).

Studies not reporting any of these variables were excluded from the corresponding
subgroup analysis.

2.4. Data Extraction and Quality Assessment

Two authors (D.LG. and F.V.L.) independently extracted the data from the selected
articles, and a senior author (J.P.) reviewed the data and solved any discrepancies. If there
were several definitions for sarcopenia, we included the one which appeared significant
for survival analyses in the study. All data were stored using a spreadsheet designed for
such purpose. The quality assessment of the included studies was performed using the
Newcastle–Ottawa scale (NOS) [26], which can be consulted in our previous work [24].

2.5. Statistical Analysis

We applied the inverse-variance weighting method with a random-effects model,
using the Hartung–Knapp (HK) adjustment to calculate the confidence intervals for the
combined effect. This adjustment provides more conservative estimates of the standard
error and confidence intervals, especially in situations with high heterogeneity among
studies. Heterogeneity among studies was assessed using the I2 statistic, with cutoff values
set at I2 < 40% as non-relevant, 40% < I2 < 75% as moderate, and I2 > 75% as high, as
in previous meta-analyses [24,27,28]. We also assessed the τ2 statistic, which provides a
quantitative estimate of the between-study variance [29].

Additionally, we calculated the prediction interval (PI) for the combined effect, which
estimates the range within which the true effect of a new, similar study is expected to fall.
Unlike the confidence interval for the average effect, the prediction interval accounts for
both the uncertainty of the average effect and the variability among studies [30].

To explore the robustness of our results, we conducted leave-one-out sensitivity
analyses. Finally, publication bias was assessed using funnel plots and Egger’s test for
funnel plot asymmetry.

p-values < 0.05 were considered statistically significant. All statistical analyses were
carried out with software R (version 4.3.2 for Windows) [31] using the ‘meta’ package [32].

3. Results
3.1. Characteristics of the Included Studies

A total of 48 studies were included in the meta-analysis [7,23,33–78]. As in our
previous work, two studies provided separated measures for their patient cohorts and
were thus split into two different studies for analyses [73,74]. Therefore, 50 studies were
considered in data analysis, encompassing data from 9063 patients in the original cohorts
(45% women, sample sizes ranging from 41 to 763 patients).

Most studies (43/50, 86%) applied SMI or an analogous measurement to estimate
sarcopenia, while seven (14%) studies applied other measurements. Details regarding the
characteristics of the included studies and sarcopenia-related measurements are shown in
Table 1 (further details can be consulted in our previous work [24]). Notably, sarcopenia
was defined with a cutoff value < 50 cm2/m2 for males in 26 out of 38 (68.4%) studies
reporting aHR, in 21 out of 29 studies (72.4%) reporting cHR values for OS, in 12 out of
15 (80%) reporting aHR values for PFS, and in 9 out of 11 (81.8%) studies reporting cHR
values for PFS.
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Table 1. Main characteristics of the studies included in this meta-analysis. ASM, appendicular skeletal
muscle. F, female. M, male. m (IQR), median (interquartile range). NOS, Newcastle–Ottawa scale.
PC, pancreatic cancer. PDAC, pancreatic ductal adenocarcinoma. PMI, psoas muscle mass index.
SMI, skeletal muscle mass index. TPV, total psoas volume. TSM, total skeletal muscle index. X + SD,
mean + standard deviation. * From data calculation provided in the methodology of the article, the
corresponding values for class I sarcopenia are 57.5 cm2/m2 and 38.3 cm2/m2 for men and women,
respectively. Further details can be consulted in [24].

Author (Year) N
Age

m (IQR)
X ± SD

Women
(%)

Sarcopenia
(%) Imaging Index Definition of

Cutoff Value
Sex-Specific Cutoff

Values
Tumor

Information Management

Amini et al.
(2016) [68] 763 67 (58–74) 45.2 19.9 TPV Lowest quartile M < 17.2 cm2/m2

F < 12.0 cm2/m2 PDAC Curative

Basile et al.
(2019) [69] 94 45

(48% < 70 years) 44.6 73.4 SMI Prado et al. [16]

M < 43 cm2/m2

(BMI < 25); 53 cm2/m2

(BMI > 25)
F < 41 cm2/m2

Advanced
PC Palliative

Beetz et al.
(2022) [33] 103 62 + 11 (37–84) 39.8 63.1 SMI Prado et al. [16] M < 52.3 cm2/m2

F < 38.5 cm2/m2 PDAC Not specified

Cai et al.
(2022) [34] 115 65.1 + 9 38.2 33 SMI

AUC (best
accuracy,
outcome:

‘mortality’)

M < 45.16 cm2/m2

F < 34.65 cm2/m2 PDAC Curative

Cho et al.
(2021) [75] 299 62 (35–83) 40.4 9.6 SMI Fujiwara

et al. [79]
M < 36.2 cm2/m2

F < 29.6 cm2/m2
Locally

advanced PC Palliative

Choi et al.
(2015) [35] 484 60.4 (20–85) 39 33.2 SMI AUC (not

specified)
M < 42.2 cm2/m2

F < 33.9 cm2/m2
Advanced

PC Palliative

Choi et al.
(2018) [36] 180 64.4 + 9.3 45.5 33.3 SMI Lowest tertile M < 45.3 cm2/m2

F < 39.3 cm2/m2 PC Curative

Clement et al.
(2023) [37] 44 62 (52–68) 52 59 SMI Prado et al. [16]

M < 43 cm2/m2

(BMI < 25); <53
(BMI > 25)

F < 41 cm2/m2

Metastatic
PC Palliative

Cloyd et al.
(2018) [38] 127 64.6 + 8.9 59 62.9 SKM (=SMI) Mourtzakis

et al. [80]
M < 38.9 cm2/m2

F < 55.4 cm2/m2 PDAC Curative

Dalal et al.
(2012) [39] 41 59 (42–81) 56 63.4 SKM (=SMI) Prado et al. [16] M < 52.4 cm2/m2

F < 38.5 cm2/m2
Locally

advanced PC Palliative

d’Engremont
et al.

(2021) [40]
98 67.7 (61.8–73.8) 47.8 56.1 SMI Prado et al. [16] M < 52.4 cm2/m2

F < 38.5 cm2/m2
Localized

PDAC Curative

Emori et al.
(2022) [41] 84 <65:30 (36%)

>65:54 (64%) 36.9 50 SMI Nishikawa
et al. [81]

M < 42 cm2/m2

F < 38 cm2/m2
Unresectable

PDAC Palliative

Gruber et al.
(2019) [42] 133 68 (34–87) 48.8 58.6 SMI Prado et al. [16] M < 52.4 cm2/m2

F < 38.5 cm2/m2 PDAC Curative

Hiroyuki
Asama et al.
(2022) [43]

124 69 (40–84) 45.9 50.8 SMI Nishikawa
et al. [81]

M < 42 cm2/m2

F < 38 cm2/m2
Unresectable

PDAC Palliative

Hou et al.
(2022) [72] 232 <65:139 (59.9)

>65 = 93 (40.1) 35.7 49.1 TPA Prado et al. [16] M < 545 mm2/m2

F < 385 mm2/m2
Advanced

PC Palliative

Ishizaki et al.
(2023) [44] 180 <65:90 (50%)

>65:90 (50%) 43.8 50 SMI Nishikawa
et al. [81]

M < 42 cm2/m2

F < 38 cm2/m2
Unresectable

PC Palliative

Jin et al.
(2022) [45] 119 60.2 + 8.4 50.4 47.8 SMI Nishikawa

et al. [81]
M < 41 cm2/m2

F < 38.5 cm2/m2

Potentially
resectable

PDAC
Curative

Kays et al.
(2018) [46] 53 59.5 + 9.9 37.7 49 SKMI (=SMI) Prado et al. [16] M < 52.4 cm2/m2

F < 38.5 cm2/m2
Advanced

PC Palliative

Kim et al.
(2022) [47] 347 63.6 + 9.6 41.7 54.1 SMI Prado et al. [16] M < 42.2 cm2/m2

F < 33.9 cm2/m2 PDAC Curative

Kim In-Ho et al.
(2021) [48] 251 63.4 + 9.4 35.8 40.6 SMI

Outcome-
based Contal

and O’Quigley
method

M < 43 cm2/m2

(BMI < 25); <53
(BMI > 25)

F < 41 cm2/m2

Metastatic
PC Palliative

Kurita et al.
(2019) [49] 82 64 (40–80) 26.8 51.2 SMI

Optimum
stratification

(log-rank,
outcome:

‘mortality’)

M < 45.3 cm2/m2

F < 37.1 cm2/m2 PC Palliative
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Table 1. Cont.

Author (Year) N
Age

m (IQR)
X ± SD

Women
(%)

Sarcopenia
(%) Imaging Index Definition of

Cutoff Value
Sex-Specific Cutoff

Values
Tumor

Information Management

Masuda et al.
(2023) [23] 162 69 (40–85) 44.4 50 SMI Median value M < 41.9 cm2/m2

F < 36.6 cm2/m2
Localized

PDAC Curative

Mortier et al.
(2022) [50] 70

Sarcopenic: 65
(43–85)

Non-sarcopenic:
73 (54–80)

52.8 21.4 SMI Prado et al. [16]

M < 43 cm2/m2

(BMI < 25); <53
(BMI > 25)

F < 41 cm2/m2

Localized
PDAC Curative

Nakajima et al.
(2023)-1 [73] 44 72 (65–76) 61.3 34 TPA Lowest tertile M < 7.79 cm2/m2

F < 5.70 cm2/m2
Resectable

PC Curative

Najakima et al.
(2023)-2 [73] 71 67 (60–72) 59.1 32.3 TPA Lowest tertile M < 7.16 cm2/m2

F < 6.44 cm2/m2
Borderline

resectable PC Curative

Nakano et al.
(2021) [51] 55 67 (35–85) 23.6 49 SMI Choi et al. [35] M < 42.2 cm2/m2

F < 33.9 cm2/m2
Advanced

PC Palliative

Ninomiya et al.
(2017) [52] 265 65.4 + 10.1 38.1 64.1 SMI Prado et al. [16] M < 43.75 cm2/m2

F < 38.5 cm2/m2 PDAC Curative

Nowak et al.
(2024) [77] 142 64.1 + 10.5 51.4 50.7 SMI Median value M < 13.5 cm2/m2

F < 11.7 cm2/m2
Advanced

PC Palliative

Okumura et al.
(2015) [53] 230 67 (32–87) 46 27.8 PMI

AUC (best
accuracy, out-
come: ‘death’)

M < 5.9 cm2/m2

F < 4.1 cm2/m2 PDAC Curative

Okumura et al.
(2017) [54] 301 68 (61–74) 44.1 39.8 SMI

AUC (best
accuracy, out-
come: ‘death’)

M < 47.1 cm2/m2

F < 36.6 cm2/m2 PC Curative

Özkul et al.
(2022) [55] 115 65.5 + 10.3 29.5 29.5 SMI

AUC (best
accuracy,

outcome: ‘mor-
tality’)

M < 56.44 cm2/m2

F < 43.56 cm2/m2
Unresectable

PC Palliative

Park et al.
(2016) [76] 88 65 (34–83) 32.9 86.3 ASM (=SMI)

Conversion
from SMI to

ASM; <1 SD for
young adults

M < 7.50 kg/m2

F < 5.38 kg/m2

(sarcopenia class I *)
PC Palliative

Peng et al.
(2012) [71] 557 65.7 + 10.6 46.8 24.9 TPA Lowest quartile M < 4.92 cm2/m2

F < 3.62 cm2/m2 PC Curative

Peng et al.
(2021) [78] 116 66.2 + 11.9 41.3 17.2 SMI Choi et al. [35] M < 42.2 cm2/m2

F < 33.9 cm2/m2 PC Curative

Rom et al.
(2022) [7] 111 67 (61–75) 46.8 27 SMI Lowest quartile M < 44.35 cm2/m2

F < 34.82 cm2/m2 PDAC Curative

Ryu et al.
(2020) [56] 548 62.51 (24–88) 40.5 45.9 SMI Moon et al. [82] M < 50.18 cm2/m2

F < 38.63 cm2/m2
PC (head of
pancreas) Curative

Sato et al.
(2021) [57] 112 67.7 (59.2–72.3) 51.7 48.2 SMI Nishikawa

et al. [81]
M < 42 cm2/m2

F < 38 cm2/m2
Advanced

PDAC Palliative

Shen et al.
(2023) [58] 614 59.9 + 10.3 40 61.5 SMI Prado et al. [16] M < 52.4 cm2/m2

F < 38.5 cm2/m2 PDAC Curative

Shimura et al.
(2023) [59] 75 67 + 7.8 46.6 60 SMI AUC M < 48.4 cm2/m2

F < 35.5 cm2/m2 PC Curative

Sohal et al.
(2024) [60] 90 63.2 + 8.5 54.4 35.5 SMI

(SMA/BMI)

Not specified
(=Prado

et al. [16])

M < 52 cm2/m2

F < 39 cm2/m2
Resectable

PDAC Curative

Sugimoto et al.
(2018) [61] 323 65 (38–88) 45.5 61.9 SMI

Fearon et al.
[83] (=Prado

et al. [16])

M < 55.4 cm2/m2

F < 38.9 cm2/m2 PDAC Curative

Suzuki et al.
(2023) [62] 138 67.5 (59.7–74) 42 44.2 SMI Nishikawa

et al. [81]
M < 42 cm2/m2

F < 38 cm2/m2
Unresectable

PC Palliative

Tan et al.
(2009) [63] 111 64.4 + 9.3 53.1 55.8 SMI Prado et al. [16] M < 59.1 cm2/m2

F < 48.4 cm2/m2 PC Palliative

Tazeoglu et al.
(2023) [64] 179 60.45 + 13.08 41.3 46.3 PMI Bahat et al. [84] M < 5.3 cm2/m2

F < 3.6 cm2/m2 PC Curative

Uemura et al.
(2020) [65] 69 63 (38–74) 44.9 47.8 SMI Nishikawa

et al. [81]
M < 42 cm2/m2

F < 38 cm2/m2
Advanced

PC Palliative

Van Dijk et al.
(2017) [66] 186 66.5 45.1 33.3

L3-muscle
attenuation

index (=SMI)
Lowest tertile M < 45.1 cm2/m2

F < 36.9 cm2/m2
PC (head of
pancreas) Curative
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Table 1. Cont.

Author (Year) N
Age

m (IQR)
X ± SD

Women
(%)

Sarcopenia
(%) Imaging Index Definition of

Cutoff Value
Sex-Specific Cutoff

Values
Tumor

Information Management

Williet et al.
(2021) [70] 79 66 (58.5–74) 45.5 69.6 SMI

Optimum
stratification

(log rank,
outcome: ‘mor-

tality’)

M < 55 cm2/m2

F < 39 cm2/m2
Metastatic

PDAC Palliative

Wu et al.
(2019E) [74] 146 65.5 (36.7–92.2) 63 10.9 TSM (=SMI) Fujiwara

et al. [79]
M < 36.2 cm2/m2;
F < 29.6 cm2/m2 PC Not specified

Wu et al.
(2019W) [74] 146 65.5 (36.7–92.2) 63 66.4 TSM (=SMI) Prado et al. [16] M < 52.4 cm2/m2

F < 38.5 cm2/m2 PC Not specified

Zhang et al.
(2023) [67] 113 59 (33–84) 41.5 43.3 SMI Zeng et al. [85] M < 44.77 cm2/m2

F < 32.50 cm2/m2 PC Curative

3.2. Sarcopenia as a Risk Factor for Overall Survival
3.2.1. Meta-Analysis of Overall Survival Based on Univariate Regression Analyses

A total of 45 studies encompassing 8389 patients reported cHR values for OS. The
pooled HR for OS was 1.58 (95% CI, 1.38–1.82), indicating that sarcopenia was signifi-
cantly associated with worse OS. Significant heterogeneity was observed across the studies
(I2 = 85%, τ2 = 0.15, p < 0.01). The cHR values reported by individual studies ranged from
0.81 (95% CI, 0.52–1.25) to 6.90 (95% CI, 1.68–28.40). The PI ranged from 0.71 to 3.54, sug-
gesting that while sarcopenia is generally associated with worse OS, the magnitude of this
effect may vary across different settings. Figure 2 shows the forest plot of the meta-analysis
of OS based on univariate regression analyses.

Cancers 2025, 17, x FOR PEER REVIEW 9 of 24 
 

 

this effect may vary across different settings. Figure 2 shows the forest plot of the meta-
analysis of OS based on univariate regression analyses. 

 

Figure 2. Forest plot of the studies reporting univariate analysis results (i.e., crude hazard ratios -
HR-) for the prediction of overall survival in PC patients with sarcopenia. The blue diamond repre-
sents the pooled HR and its 95% confidence interval (CI). The red line represents the prediction 
interval, which provides an estimate of the potential range of HRs in future studies. Amini et al. 
(2016) [68]; Basile et al. (2019) [69]; Cai et al. (2022) [34]; Choi et al. (2015) [35]; Choi et al. (2017) [36]; 
Clement et al. (2023) [37]; Cloyd et al. (2018) [38]; Dalal et al. (2012) [39]; Emori et al. (2022) [41]; 
Gruber et al. (2019) [42]; Hiroyuki Asama et al. (2022) [43]; Hou et al. (2022) [72]; Ishizaki et al. (2023) 
[44]; Jin et al. (2022) [45]; Kays et al. (2018) [46]; Kim et al. (2022) [47]; Kurita et al. (2019) [49]; Masuda 
et al. (2023) [23]; Mortier et al. (2022) [50]; Nakajima et al. (2023a) [73]; Najakima et al. (2023b) [73]; 
Nakano et al. (2021) [51]; Ninomiya et al. (2017) [52]; Nowak et al. (2024) [77]; Okumura et al. (2015) 
[53]; Okumura et al. (2017) [54]; Özkul et al. (2022) [55]; Park et al. (2016) [76]; Peng et al. (2012) [71]; 
Peng et al. (2020) [78]; Rom et al. (2022) [7]; Ryu et al. (2020) [56]; Sato et al. (2021) [57]; Shen et al. 
(2023) [58]; Shimura et al. (2023) [59]; Sohal et al. (2024) [60]; Sugimoto et al. (2018) [61]; Suzuki et al. 
(2023) [62]; Tan et al. (2009) [63]; Tazeoglu et al. (2023) [64]; Van Dijk et al. (2017) [66]; Williet et al. 
(2021) [70]; Wu et al. (2019a) [74]; Wu et al. (2019b) [74]; Zhang et al. (2023) [67]. 

3.2.2. Meta-Analysis of Overall Survival Based on Multivariate Regression Analyses 

Figure 2. Forest plot of the studies reporting univariate analysis results (i.e., crude hazard ratios -HR-)
for the prediction of overall survival in PC patients with sarcopenia. The blue diamond represents the
pooled HR and its 95% confidence interval (CI). The red line represents the prediction interval, which
provides an estimate of the potential range of HRs in future studies. Amini et al. (2016) [68]; Basile et al.
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(2019) [69]; Cai et al. (2022) [34]; Choi et al. (2015) [35]; Choi et al. (2017) [36]; Clement et al. (2023) [37];
Cloyd et al. (2018) [38]; Dalal et al. (2012) [39]; Emori et al. (2022) [41]; Gruber et al. (2019) [42];
Hiroyuki Asama et al. (2022) [43]; Hou et al. (2022) [72]; Ishizaki et al. (2023) [44]; Jin et al. (2022) [45];
Kays et al. (2018) [46]; Kim et al. (2022) [47]; Kurita et al. (2019) [49]; Masuda et al. (2023) [23]; Mortier
et al. (2022) [50]; Nakajima et al. (2023a) [73]; Najakima et al. (2023b) [73]; Nakano et al. (2021) [51];
Ninomiya et al. (2017) [52]; Nowak et al. (2024) [77]; Okumura et al. (2015) [53]; Okumura et al.
(2017) [54]; Özkul et al. (2022) [55]; Park et al. (2016) [76]; Peng et al. (2012) [71]; Peng et al. (2020) [78];
Rom et al. (2022) [7]; Ryu et al. (2020) [56]; Sato et al. (2021) [57]; Shen et al. (2023) [58]; Shimura
et al. (2023) [59]; Sohal et al. (2024) [60]; Sugimoto et al. (2018) [61]; Suzuki et al. (2023) [62]; Tan et al.
(2009) [63]; Tazeoglu et al. (2023) [64]; Van Dijk et al. (2017) [66]; Williet et al. (2021) [70]; Wu et al.
(2019a) [74]; Wu et al. (2019b) [74]; Zhang et al. (2023) [67].

3.2.2. Meta-Analysis of Overall Survival Based on Multivariate Regression Analyses

A total of 36 studies encompassing 7619 patients reported aHR values for OS. The
pooled HR for OS was 1.68 (95% CI, 1.48–1.91), indicating that sarcopenia was signifi-
cantly associated with worse OS. Significant heterogeneity was observed across the studies
(I2 = 82%, τ2 = 0.09, p < 0.01). The cHR values reported by individual studies ranged from
0.94 (95% CI, 0.87–1.01) to 5.67 (95% CI, 3.58–8.98). The PI ranged from 0.90 to 3.13, sug-
gesting that the magnitude of the association may vary across different settings. Figure 3
shows the forest plot of the meta-analysis of OS based on multivariate regression analyses.
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3.3. Sarcopenia as a Risk Factor for Progression-Free Survival 

Figure 3. Forest plot of the studies reporting multivariate analysis results (i.e., adjusted hazard ratios)
for the prediction of overall survival in PC patients with sarcopenia. The blue diamond represents
the pooled HR and its 95% confidence interval (CI). The red line represents the prediction interval,
which provides an estimate of the potential range of HRs in future studies. Amini et al. (2016) [68];
Beetz et al. (2022a) [33]; Beetz et al. (2022b) [33]; Cai et al. (2022) [34]; Cho et al. (2021) [75]; Choi et al.



Cancers 2025, 17, 607 10 of 23

(2015) [35]; Choi et al. (2017) [36]; Clement et al. (2023) [37]; Emori et al. (2022) [41]; Gruber et al.
(2019) [42]; Hou et al. (2022) [72]; Jin et al. (2022) [45]; Kim et al. (2022) [47]; Kim et al. (2021) [48];
Kurita et al. (2019) [49]; Masuda et al. (2023) [23]; Nakajima et al. (2023a) [73]; Najakima et al.
(2023b) [73]; Ninomiya et al. (2017) [52]; Nowak et al. (2024) [77]; Okumura et al. (2015) [53];
Okumura et al. (2017) [54]; Özkul et al. (2022) [55]; Peng et al. (2012) [71]; Peng et al. (2020) [78]; Rom
et al. (2022) [7]; Ryu et al. (2020) [56]; Sato et al. (2021) [57]; Shen et al. (2023) [58]; Shimura et al.
(2023) [59]; Sohal et al. (2024) [60]; Sugimoto et al. (2018) [61]; Tazeoglu et al. (2023) [64]; Uemura
et al. (2020) [65]; Van Dijk et al. (2017) [66]; Williet et al. (2021) [70]; Wu et al. (2019b) [74]; Zhang et al.
(2023) [67].

3.3. Sarcopenia as a Risk Factor for Progression-Free Survival
3.3.1. Meta-Analysis of Progression-Free Survival Based on Univariate
Regression Analyses

A total of 19 studies, including 2973 patients, reported cHR values for PFS. The pooled
HR for PFS was 1.39 (95% CI, 1.16–1.66), indicating that sarcopenia was significantly
associated with worse PFS. Substantial heterogeneity was observed across the studies
(I2 = 78%, τ2 = 0.09, p < 0.01). The cHR values reported by individual studies ranged
from 0.38 (95% CI, 0.13–1.11) to 2.59 (95% CI, 1.79–3.74). The PI ranged from 0.73 to
2.65, suggesting that the extent of this effect may vary depending on the specific clinical
context. Figure 4 presents the forest plot of the meta-analysis of PFS based on univariate
regression analyses.

Cancers 2025, 17, x FOR PEER REVIEW 11 of 24 
 

 

3.3.1. Meta-Analysis of Progression-Free Survival Based on Univariate  
Regression Analyses 

A total of 19 studies, including 2973 patients, reported cHR values for PFS. The 
pooled HR for PFS was 1.39 (95% CI, 1.16–1.66), indicating that sarcopenia was signifi-
cantly associated with worse PFS. Substantial heterogeneity was observed across the stud-
ies (I2 = 78%, τ2 = 0.09, p < 0.01). The cHR values reported by individual studies ranged 
from 0.38 (95% CI, 0.13–1.11) to 2.59 (95% CI, 1.79–3.74). The PI ranged from 0.73 to 2.65, 
suggesting that the extent of this effect may vary depending on the specific clinical con-
text. Figure 4 presents the forest plot of the meta-analysis of PFS based on univariate re-
gression analyses. 

 

Figure 4. Forest plot of the studies reporting univariate analysis results (i.e., crude hazard ratios) for 
the prediction of progression-free survival in PC patients with sarcopenia. The blue diamond rep-
resents the pooled HR and its 95% confidence interval (CI). The red line represents the prediction 
interval, which provides an estimate of the potential range of HRs in future studies. Cai et al. (2022) 
[34]; d’Engremont et al. (2021) [40]; Emori et al. (2022) [41]; Hiroyuki Asama et al. (2022) [43]; Hou 
et al. (2022) [72]; Ishizaki et al. (2023) [44]; Jin et al. (2022) [45]; Kim et al. (2022) [47]; Kurita et al. 
(2019) [49]; Nakajima et al. (2023a) [73]; Najakima et al. (2023b) [73]; Okumura et al. (2015) [53]; 
Okumura et al. (2017) [54]; Özkul et al. (2022) [55]; Park et al. (2016) [76]; Peng et al. (2020) [78]; Rom 
et al. (2022) [7]; Sugimoto et al. (2018) [61]; Suzuki et al. (2023) [62]; Tazeoglu et al. (2023) [64]; Williet 
et al. (2021) [70]. 

3.3.2. Meta-Analysis of Progression-Free Survival Based on Multivariate  
Regression Analyses 

A total of 15 studies, including 2635 patients, reported aHR values for PFS. The 
pooled HR for PFS was 1.55 (95% CI, 1.29–1.86), indicating that sarcopenia was signifi-
cantly associated with worse PFS in multivariate analyses. There was moderate heteroge-
neity across the studies (I2 = 67%, τ2 = 0.04, p < 0.01). The reported aHR values ranged from 
0.37 (95% CI, 0.12–1.14) to 3.44 (95% CI, 1.57–7.54). The PI ranged from 0.97 to 2.46, sug-
gesting that the magnitude of this effect could vary in different clinical scenarios. Figure 
5 presents the forest plot of the meta-analysis of PFS based on multivariate regression 
analyses. 

Figure 4. Forest plot of the studies reporting univariate analysis results (i.e., crude hazard ratios)
for the prediction of progression-free survival in PC patients with sarcopenia. The blue diamond
represents the pooled HR and its 95% confidence interval (CI). The red line represents the prediction
interval, which provides an estimate of the potential range of HRs in future studies. Cai et al.
(2022) [34]; d’Engremont et al. (2021) [40]; Emori et al. (2022) [41]; Hiroyuki Asama et al. (2022) [43];
Hou et al. (2022) [72]; Ishizaki et al. (2023) [44]; Jin et al. (2022) [45]; Kim et al. (2022) [47]; Kurita
et al. (2019) [49]; Nakajima et al. (2023a) [73]; Najakima et al. (2023b) [73]; Okumura et al. (2015) [53];
Okumura et al. (2017) [54]; Özkul et al. (2022) [55]; Park et al. (2016) [76]; Peng et al. (2020) [78]; Rom
et al. (2022) [7]; Sugimoto et al. (2018) [61]; Suzuki et al. (2023) [62]; Tazeoglu et al. (2023) [64]; Williet
et al. (2021) [70].
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3.3.2. Meta-Analysis of Progression-Free Survival Based on Multivariate
Regression Analyses

A total of 15 studies, including 2635 patients, reported aHR values for PFS. The pooled
HR for PFS was 1.55 (95% CI, 1.29–1.86), indicating that sarcopenia was significantly associ-
ated with worse PFS in multivariate analyses. There was moderate heterogeneity across the
studies (I2 = 67%, τ2 = 0.04, p < 0.01). The reported aHR values ranged from 0.37 (95% CI,
0.12–1.14) to 3.44 (95% CI, 1.57–7.54). The PI ranged from 0.97 to 2.46, suggesting that the
magnitude of this effect could vary in different clinical scenarios. Figure 5 presents the
forest plot of the meta-analysis of PFS based on multivariate regression analyses.
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prediction interval, which provides an estimate of the potential range of HRs in future studies. Cai
et al. (2022) [34]; Cho et al. (2021) [75]; d’Engremont et al. (2021) [40]; Emori et al. (2022) [41]; Hou
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(2023a) [73]; Najakima et al. (2023b) [73]; Okumura et al. (2015) [53]; Okumura et al. (2017) [54]; Rom
et al. (2022) [7]; Sugimoto et al. (2018) [61]; Tazeoglu et al. (2023) [64].

3.4. Subgroup Analyses
3.4.1. Subgroup Analysis Based on the Method Used to Estimate Sarcopenia

- Overall survival (univariate analyses, cHR): The first subgroup analysis explored the
impact of the method used to define sarcopenia on OS based on univariate regression
analyses’ reported outcomes. The 38 studies that employed SMI as the method
to define sarcopenia showed a pooled cHR of 1.48 (95% CI, 1.28; 1.72), with high
heterogeneity (I2 = 82%, τ2 = 0.12, p < 0.01). On the other hand, the seven studies using
other methods to define sarcopenia reported a pooled cHR of 2.17 (1.35; 3.48), also
showing substantial heterogeneity (I2 = 83%, τ2 = 0.22, p < 0.01). The test for subgroup
differences showed a trend toward statistical significance (p = 0.07), thus no strong
evidence of differential effects based on the method used to define sarcopenia was
observed (Supplementary File S6).

- Overall survival (multivariate analyses, aHR): In the subgroup analysis for OS based
on multivariate regression analyses’ reported outcomes, the pooled aHR for the
29 studies defining sarcopenia using SMI was 1.59 (1.40; 1.80), with substantial hetero-
geneity (I2 = 79%, τ2 = 0.06, p < 0.01). Studies using other methods yielded a pooled
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HR of 1.98 (1.20; 3.26), also demonstrating significant heterogeneity (I2 = 83%, τ2 = 0.24,
p < 0.01). The test for subgroup differences did not reveal significant differences be-
tween the subgroups (p = 0.29), indicating no clear difference in the effect of sarcopenia
on survival based on the method used for its definition (Supplementary File S7).

- Progression-free survival (univariate analyses, cHR): For PFS based on univariate
regression analyses’ reported outcomes, the 14 studies using SMI to define sarcopenia
demonstrated a pooled cHR of 1.33 (1.11; 1.60), with moderate heterogeneity (I2 = 74%,
τ2 = 0.07, p < 0.01). Studies using other methods for defining sarcopenia showed a
pooled HR of 1.44 (0.65; 3.19), with high heterogeneity (I2 = 80%, τ2 = 0.25, p < 0.01).
The test for subgroup differences was not statistically significant (p = 0.80), indicating
no significant differences between the methods used to define sarcopenia in relation
to PFS (Supplementary File S8).

- Progression-free survival (multivariate analyses, aHR): In the final subgroup analysis
for PFS based on multivariate regression analyses, the pooled HR for the 10 studies
employing SMI was 1.53 (1.30; 1.81), with moderate heterogeneity (I2 = 62%, τ2 = 0.02,
p < 0.01). In contrast, studies utilizing other methods to define sarcopenia reported
a pooled HR of 1.40 (0.65; 3.03), showing high heterogeneity (I2 = 78%, τ2 = 0.23,
p < 0.01). The test for subgroup differences did not reveal significant differences
(p = 0.75), suggesting that the method used to define sarcopenia did not significantly
alter the association with PFS (Supplementary File S9).

3.4.2. Subgroup Analysis Based on the Cutoff Used in SMI

In this subgroup analysis, the studies were divided based on the cutoff value used for
the skeletal muscle index (SMI) to define sarcopenia. Studies were categorized as using a
cutoff of either <50 cm2/m2 or >50 cm2/m2.

- Overall survival (univariate analyses, cHR): For OS based on univariate analyses’ re-
ported outcomes, the pooled cHR for the 26 studies using an SMI cutoff of <50 cm2/m2

was 1.63 (95% CI: 1.34, 1.98), whereas for studies using an SMI cutoff of >50 cm2/m2,
the pooled HR was 1.23 (95% CI: 1.02, 1.48). The heterogeneity in the subgroup using
<50 cm2/m2 was high (I2 = 85%, τ2 = 0.16, p < 0.01), while heterogeneity for the
>50 cm2/m2 subgroup was lower (I2 = 65%, τ2 = 0.05, p < 0.01). The test for subgroup
differences reached statistical significance, indicating that the cutoff used to define
sarcopenia altered the association with OS (p = 0.03) (Supplementary File S10).

- Overall survival (multivariate analyses, aHR): For OS based on multivariate analysis reported
outcomes, the pooled aHR for the 21 studies with an SMI cutoff of <50 cm2/m2 was 1.70
(95% CI: 1.46, 1.98), whereas the HR for studies using >50 cm2/m2 was 1.32 (95% CI: 1.05,
1.66). Similar to the univariate analyses, the heterogeneity was higher for the <50 cm2/m2

subgroup (I2 = 83%, τ2 = 0.06, p < 0.01) compared to the >50 cm2/m2 subgroup (I2 = 49%,
τ2 = 0.03, p < 0.01). The difference between subgroups also showed statistical significance
(p = 0.04) (Supplementary File S11).

- Progression free survival (univariate analyses, cHR): Regarding PFS based on univari-
ate analysis reported outcomes, the pooled cHR for the <50 cm2/m2 subgroup (12 stud-
ies) was 1.38 (95% CI: 1.14, 1.67), with moderate heterogeneity (I2 = 55%, τ2 = 0.05,
p < 0.01). For the >50 cm2/m2 subgroup, the pooled cHR was 1.15 (95% CI: 0.51, 2.59),
although the heterogeneity was significantly higher (I2 = 85%, τ2 = 0.08, p < 0.01). The
test for subgroup differences showed no statistically significant differences (p = 0.38)
(Supplementary File S12).

- Progression-free survival (multivariate analyses, aHR): Finally, for PFS based on
multivariate analysis reported outcomes, the pooled HR for the <50 cm2/m2 subgroup
(nine studies) was 1.54 (95% CI: 1.30, 1.81), while the HR for the >50 cm2/m2 subgroup
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was 1.32 (95% CI: 0.14, 12.49). Heterogeneity for the <50 cm2/m2 group was low
(I2 = 36%, τ2 = 0.01, p < 0.01) compared to that of the >50 cm2/m2 subgroup, which
was moderate (I2 = 47%, τ2 = 0.04, p < 0.01). There were no significant subgroup
differences (p = 0.42) (Supplementary File S13).

3.4.3. Subgroup Analysis Based on the Prevalence of Sarcopenia Found in Each Study

The subgroup analysis aimed at comparing the impact of sarcopenia prevalence on OS
and PFS outcomes based on studies reporting sarcopenia prevalence below and above 50%.

- Overall survival (univariate analyses, cHR): The 20 studies reporting a prevalence of
sarcopenia ≥ 50% yielded a pooled cHR of 1.40 [95% CI, 1.17–1.67] with moderate
heterogeneity (I2 = 79%, τ2 = 0.09, p < 0.01). On the other hand, studies with a
prevalence < 50% demonstrated a pooled cHR of 1.72 (95% CI, 1.39–2.14) with similarly
high heterogeneity (I2 = 79%, τ2 = 0.20, p < 0.01). The test for subgroup differences
was not statistically significant (p = 0.12), indicating no significant differences between
the two groups (Supplementary File S14).

- Overall survival (multivariate analyses, aHR): The pooled aHR for the 14 studies with
sarcopenia prevalence ≥ 50% was 1.59 (95% CI, 1.29–1.96), with substantial heterogeneity
(I2 = 80%, τ2 = 0.08, p < 0.01). For studies with prevalence < 50%, the pooled aHR was
1.73 (95% CI, 1.45–2.06), and heterogeneity was moderate (I2 = 69%, τ2 = 0.10, p < 0.01).
There were no significant between-group differences (p = 0.51), suggesting that the
prevalence of sarcopenia did not significantly influence OS outcomes in multivariate
analyses (Supplementary File S15).

- Progression-free survival (univariate analyses, cHR): The 11 studies with sarcopenia
prevalence ≥ 50% showed a pooled cHR of 1.56 (95% CI, 1.18–2.06), with moderate
heterogeneity (I2 = 65%, τ2 = 0.08, p < 0.01). In contrast, studies reporting sarcopenia
prevalence < 50% had a pooled cHR of 1.19 (95% CI, 0.94–1.51), with slightly higher
heterogeneity (I2 = 71%, τ2 = 0.05, p < 0.01). The test for subgroup differences ap-
proached statistical significance (p = 0.09), suggesting but not confirming that the
prevalence of sarcopenia might have some influence on PFS outcomes in univariate
analyses (Supplementary File S16).

- Progression-free survival (multivariate analyses, aHR): The 10 studies with sarcopenia
prevalence ≥ 50% yielded a pooled aHR of 1.61 (95% CI, 1.22–2.14), with moderate
heterogeneity (I2 = 63%, τ2 = 0.06, p < 0.01). The pooled aHR for studies with preva-
lence < 50% was 1.41 (95% CI, 1.08–1.84), with lower heterogeneity (I2 = 38%, τ2 = 0.02,
p < 0.01). The test for subgroup differences was not statistically significant (p = 0.39),
suggesting no impact of sarcopenia prevalence on PFS outcomes in multivariate analyses
(Supplementary File S17).

3.4.4. Subgroup Analysis Based on Treatment Intention in Each Study

The subgroup analysis considering treatment intention (curative vs. palliative) re-
vealed differences in the HR values for OS and PFS.

- Overall survival (univariate analyses, cHR): The pooled cHR for the 25 studies in the
curative setting was 1.75 (95% CI, 1.44–2.12), with significant heterogeneity (I2 = 80%,
τ2 = 0.15, p < 0.01). In contrast, the palliative subgroup yielded a cHR of 1.40 (95% CI,
1.13–1.73) with similar heterogeneity (I2 = 81%, τ2 = 0.12, p < 0.01). Although the point
estimates between subgroups were different, the test for subgroup differences did not
reach statistical significance (p = 0.10) (Supplementary File S18).

- Overall survival (multivariate analyses, aHR): The curative setting subgroup (23 stud-
ies) showed a pooled aHR of 1.74 (95% CI, 1.46–2.08), with significant heterogeneity
(I2 = 72%, τ2 = 0.11, p < 0.01). In the palliative subgroup, the pooled aHR was 1.54 (95%
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CI, 1.25–1.90), also with notable heterogeneity (I2 = 86%, τ2 = 0.07, p < 0.01). The test
for subgroup differences was not significant (p = 0.33) (Supplementary File S19).

- Progression-free survival (univariate analyses, cHR): The curative setting subgroup
(eight studies) resulted in a pooled cHR of 1.53 (95% CI, 1.23–1.90), with moderate
heterogeneity (I2 = 60%, τ2 = 0.04, p < 0.01), while the palliative setting subgroup had a
pooled cHR of 1.09 (95% CI, 0.86–1.38) with similar heterogeneity (I2 = 58%, τ2 = 0.03,
p < 0.01). The difference between the two settings was statistically significant (p = 0.01)
(Supplementary File S20).

- Progression-free survival (multivariate analyses, aHR): The curative subgroup (11 stud-
ies) produced a pooled aHR of 1.63 (95% CI, 1.28–2.08) with low heterogeneity
(I2 = 73%, τ2 = 0.05, p < 0.01). The palliative subgroup, on the other hand, showed a
pooled aHR of 1.35 (95% CI, 0.94–1.94) with non-significant heterogeneity (I2 = 30%,
τ2 = 0.01, p = 0.23). The test for subgroup differences indicated no significant difference
between the two settings (p = 0.23) (Supplementary File S21).

3.5. Sensitivity Analysis and Publication Bias

The sensitivity analyses conducted across all models demonstrated a high level of con-
sistency, indicating that no single study disproportionately influenced the overall findings.

- For OS based on univariate HRs, the pooled cHR ranged from 1.52 to 1.61 when
individual studies were excluded. Despite these minor fluctuations, heterogeneity
remained substantial (I2 > 82%). No study was identified as having a strong influence
on the overall meta-analysis (Supplementary File S22).

- In the multivariate analysis of OS, the pooled aHR varied between 1.66 and 1.71 when
studies were omitted one by one, with heterogeneity consistently high (I2 > 80%). As
with the univariate analysis, no individual study significantly affected the results. Full
data can be found in Supplementary File S23.

- For PFS based on univariate HRs, excluding individual studies led to non-significant
changes in the pooled cHR estimate, which ranged from 1.37 to 1.44. Heterogeneity
remained considerable (I2 > 72%) throughout the analyses, and there was no evidence
that any single study dominated the overall results. Further details are available in
Supplementary File S24.

- In the multivariate analysis of PFS, the exclusion of individual studies caused only
minor variations in the pooled HR, ranging from 1.51 to 1.61. Heterogeneity was
moderate to high (I2 between 64% and 78%) across all iterations. The exclusion of
the study by Sugimoto et al. (2018) [61] led to a significant decrease in heterogeneity
(I2 decreased from 67% to 50%), indicating its substantial contribution to the vari-
ability observed in the reported outcome. More detailed results are provided in
Supplementary File S25.

Regarding publication bias, Egger’s test was used to assess potential funnel plot
asymmetry in all analyses.

- In the OS univariate analysis, the funnel plot revealed several studies outside the
expected triangular region, suggesting considerable heterogeneity. The Egger’s test
result was highly significant (t = 6.60, p < 0.0001), indicating potential asymmetry and
suggesting the likelihood of publication bias (Supplementary File S26).

- Similarly, in the OS multivariate analysis, the funnel plot showed some studies lying
outside the triangular area, consistent with significant heterogeneity. The Egger’s test
indicated strong evidence of asymmetry (t = 7.24, p < 0.0001), further supporting the
presence of publication bias in this group (Supplementary File S27).

- For the PFS univariate analysis, the funnel plot appeared more symmetrical, though a few
studies fell outside the expected region. The Egger’s test yielded a borderline result (t = 2.07,
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p = 0.0536), suggesting only a marginal possibility of asymmetry and, consequently, a low
likelihood of publication bias in this subgroup (Supplementary File S28).

- Finally, in the PFS multivariate analysis, the funnel plot displayed a relatively symmetrical
distribution, with studies clustering closely within the triangular region. The Egger’s test
was non-significant (t = 0.57, p = 0.5765), indicating no strong evidence of asymmetry, and
thus, publication bias in this analysis seems unlikely (Supplementary File S29).

4. Discussion
This meta-analysis of 48 observational studies aimed to explore the prognostic sig-

nificance of sarcopenia in patients with PC, focusing on its impact on OS and PFS. Our
findings support the growing body of evidence suggesting that sarcopenia is significantly
associated with worse clinical outcomes, regardless of the treatment setting or specific
sarcopenia measurement method, although some of these factors significantly influence
the strength of association.

We found a significant association between sarcopenia and worse OS, both in uni-
variate and multivariate analyses. The pooled cHR for OS based on univariate regres-
sion analyses was 1.58 (95% CI, 1.38–1.82), while in multivariate analyses, the aHR was
1.67 (95% CI, 1.47–1.90). These results are consistent with other large-scale studies. For
instance, Mintziras et al. (2018) found that sarcopenia was associated with a 49% increase in
mortality risk in PC patients, with a cHR of 1.49 (95% CI, 1.27–1.74), a value comparable to
our findings [86]. Similarly, Pierobon et al. (2021) identified sarcopenia as a key determinant
of worse survival in PC, with a 14% reduction in OS for sarcopenic patients [87].

PC is characterized by a high systemic inflammatory response and cachexia, con-
ditions that promote muscle wasting [88]. In fact, cachexia and sarcopenia are often
closely intertwined in this population. Pancreatic tumors secrete pro-inflammatory cy-
tokines such as IL-6 and TNF-α, which promote muscle protein degradation through the
ubiquitin–proteasome pathway [86,87,89,90]. Additionally, chemotherapy in PC frequently
exacerbates muscle loss due to its toxicity and the accompanying inflammatory response,
leading to sarcopenia-induced metabolic stress that worsens patient outcomes [10,91]. Thus,
sarcopenia may directly impair the body’s ability to tolerate aggressive treatments like
surgery and chemotherapy, increasing mortality risk.

Regarding PFS, our findings also confirm that sarcopenia is associated with worse out-
comes. The pooled cHR for PFS based on univariate analyses was 1.39 (95% CI, 1.16–1.67),
and it was 1.55 (95% CI, 1.29–1.86) in multivariate analyses. This aligns with the results
from Zhong et al. (2024), who also found that sarcopenia is a key predictor of disease pro-
gression in various cancers [17]. The consistent association between sarcopenia and worse
PFS across studies underscores the importance of early identification and management of
sarcopenia to potentially improve cancer treatment outcomes. A biologically plausible hy-
pothesis for this lies in the fact that sarcopenia reduces patients’ resilience in withstanding
the cumulative physical stress of cancer therapies. In fact, lower muscle mass and function
reduces their physical capacity to recover between chemotherapy cycles, delays treatment
schedules, and forces dose reductions—all of which can lead to earlier disease progression.
This is the rationale for some oncological strategies aimed at improving body composition
parameters to reduce the toxic effects of cancer [92]. Notably, authors like Bundred et al.
(2019) suggested that sarcopenic patients with pancreatic (and colorectal) cancer are partic-
ularly vulnerable to early disease progression due to their tumors’ aggressive metabolic
demands, which are compounded by the already catabolic state induced by sarcopenia [93].

Moreover, the high heterogeneity observed in our analyses is in line with previous
research that highlights variability in sarcopenia measurement methods, particularly in
how SMI is used to define sarcopenia. Ratnayake et al. (2018) and Thormann et al. (2023)
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also highlighted this variability, pointing to the need for standardized diagnostic criteria to
reduce heterogeneity and improve comparability across studies [94,95]. This is consistent
with previous findings from our group [24] and could reflect how the diverse tumor profiles,
patient demographics, and treatment approaches across studies influence the prognostic
value of sarcopenia. However, it should be noted that the absolute magnitude of the
variance denoted by the observed τ2 values was low or moderate, suggesting that the
practical influence of heterogeneity on the overall effect size is not excessively large.

On the other hand, our subgroup analyses showed interesting results which have not
been sufficiently addressed in the currently available literature. We examined the impact of
different methods used to define sarcopenia and the SMI cutoff values on survival outcomes.
Studies using SMI to define sarcopenia consistently reported stronger associations with both
OS and PFS compared to those using other methods. The HR for OS in studies using SMI
was 1.71 (95% CI, 1.49–1.97), compared to 1.52 (95% CI, 1.30–1.78) for studies using other
methods. This is consistent with the findings of Thormann et al. (2023), who found that SMI-
based definitions of sarcopenia provided more consistent prognostic information compared
to alternative definitions based on functional assessments [95]. Similarly, Pierobon et al.
(2021) explored functional and alternative definitions of sarcopenia, suggesting that these
may not consistently capture the prognostic impact as effectively as structural measures
like SMI [87].

The choice of SMI cutoff values also influenced the reported associations between
sarcopenia and survival. Studies using an SMI cutoff of <50 cm2/m2 reported stronger
associations with OS and PFS than those using a higher cutoff. Pierobon et al. (2021)
and Mintziras et al. (2018) argued that lower SMI cutoffs may better capture the severity
of muscle wasting and its impact on survival [86,87]. Standardizing SMI cutoff values
may therefore improve the consistency of sarcopenia-related survival predictions across
studies [24,72].

Another key finding from our subgroup analyses was the differential impact of sar-
copenia on survival outcomes depending on the treatment intent (curative vs. palliative).
Studies conducted in curative settings reported stronger associations between sarcopenia
and OS (HR 1.75, 95% CI, 1.49–2.06) compared to those conducted in palliative settings
(HR 1.41, 95% CI, 1.22–1.62). This is consistent with findings from Bundred et al. (2019),
who observed that sarcopenia’s impact on survival is more pronounced in patients un-
dergoing potentially curative treatments [93]. In curative settings, patients must endure
aggressive treatment regimens, and those with sarcopenia are less likely to tolerate these
therapies, leading to higher mortality. Preoperative interventions to address sarcopenia,
such as nutrition and resistance exercise, may mitigate these risks and improve outcomes
in patients undergoing curative surgery.

The results of this meta-analysis provide further evidence that sarcopenia is a robust
predictor of worse survival outcomes in cancer patients, regardless of the variability in the
imaging criteria used to define it across studies, or of prevalence or treatment intention.
Given the consistent association between sarcopenia and poorer outcomes across studies,
incorporating sarcopenia assessments into routine cancer care could help clinicians identify
high-risk patients and tailor treatment accordingly [96]. Identifying sarcopenic patients
may allow care providers to implement supportive measures or adjust treatment regimens
to improve outcomes [97], and strategies to mitigate sarcopenia, such as nutritional inter-
ventions, physical therapy, and rehabilitation, should be prioritized, particularly in patients
undergoing curative treatments [98].

Despite the robust findings of this meta-analysis, several limitations should be ac-
knowledged. First, the high level of heterogeneity across studies limits the generalizability
of our results. Although we employed random-effects models and conducted subgroup



Cancers 2025, 17, 607 17 of 23

analyses to explore potential sources of heterogeneity, residual variability remains. Notably,
although the I2 values were generally high, the τ2 values were mostly low and occasionally
moderate (0.01–0.25). Additionally, the use of different sarcopenia measurement methods
and cutoff values complicates comparisons between studies, even after stratifying data
based on different CT-based indices and thresholds. In fact, our results suggest the presence
of misclassification bias among individuals in the included studies due to variability in the
cutoffs used to define sarcopenia. However, until a universal consensus is established on
CT-based measurements of sarcopenia, it remains challenging to determine the direction
and magnitude of this bias. This limitation highlights the urgent need for researchers
and international societies to agree on standardized methods and optimal cutoff values
for CT-based sarcopenia assessment. Additionally, outcomes derived from multivariate
analyses should be interpreted with caution, as the number and type of variables included
in each model varied across studies, hindering direct comparisons. However, it is worth
noting that most of the evaluated outcomes showed similar crude and adjusted HR values.
Finally, publication bias may have influenced our results, particularly in the OS analyses,
as suggested by the significant Egger’s test findings. This bias may reflect the tendency
for studies reporting significant associations between sarcopenia and survival outcomes to
be more likely to be published. Future studies with larger sample sizes and more consis-
tent methodologies are needed to confirm our findings and further elucidate the role of
sarcopenia in PC prognosis.

5. Conclusions
This meta-analysis provides strong evidence that sarcopenia determined by CT is

an independent predictor of worse overall and progression-free survival in pancreatic
cancer patients. Our findings highlight the importance of routine sarcopenia assessment
and suggest that interventions aimed at mitigating muscle loss could play a key role
in improving outcomes in this high-risk population. Future research should focus on
standardizing sarcopenia assessment methods and exploring the potential benefits of
targeted therapeutic strategies in sarcopenic patients.
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