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Abstract: Drug discovery and development remains a complex and time-consuming pro-
cess, often hindered by high costs and low success rates. In the big data era, artificial
intelligence (AI) has emerged as a promising tool to accelerate and optimize these pro-
cesses, particularly in the field of oncology. This review explores the application of AI-based
methods for drug repurposing and natural product-inspired drug design in cancer, focusing
on their potential to address the challenges and limitations of traditional drug discovery
approaches. We delve into various AI-based approaches (machine learning, deep learning,
and others) that are currently being employed for these purposes, and the role of experimen-
tal techniques in these approaches. By systematically reviewing the literature, we aim to
provide a comprehensive overview of the current state of AI-assisted cancer drug discovery
workflows, highlighting AI’s contributions to accelerating drug development, reducing
costs, and improving therapeutic outcomes. This review also discusses the challenges and
opportunities associated with the integration of AI into the drug discovery pipeline, such
as data quality, interpretability, and ethical considerations.

Keywords: drug repurposing; artificial intelligence; machine learning; cancer

1. Introduction
The drug discovery and development pipeline remains a complex and resource-

intensive process that requires significant time and financial investment. Typically, the
journey from the identification of a lead compound to obtaining market authorization spans
a lengthy period of 10 to 15 years. This extensive timeline underscores the considerable
technical, regulatory, and economic obstacles that must be navigated throughout the
process. Financial investments in this pipeline often exceed USD 1 billion, reflecting the
high costs associated with research, development, and regulatory compliance [1]. These
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challenges are not only financial, but also involve overcoming numerous scientific and
logistical hurdles, which can delay progress and increase costs.

Despite notable advances in technology and methodology, the drug development
process continues to face significant impediments, particularly in the form of high clinical
trial failure rates. These failures are primarily attributed to ongoing concerns regarding
the safety and efficacy of compounds. While efforts to optimize the physicochemical
properties of compounds have yielded some benefits, ensuring the safety and efficacy of
novel therapeutics remains a critical challenge that the industry must address [2]. This
challenge is further exacerbated in the context of complex diseases such as cancer. Cancer
is characterized by diverse genetic and molecular heterogeneity, which complicates the
development of effective treatments. The variability in genetic profiles and molecular
pathways among different cancer types and even among patients with the same type of
cancer adds layers of complexity to the drug development process [3].

Consequently, given the severity and high global incidence of cancer, there is an urgent
need to prioritize the search for new strategies to optimize drug discovery. This priority is
driven by the necessity to develop more effective and targeted therapies that can address
the unique challenges posed by cancer’s heterogeneity. The integration of innovative tech-
nologies and approaches, such as artificial intelligence and machine learning, into the drug
discovery process holds promise for overcoming some of these challenges by enabling more
precise targeting of therapies and improving the efficiency of the development pipeline.

In this context, artificial intelligence (AI) has emerged as a transformative tool with
great potential to significantly impact drug discovery. Through techniques such as machine
learning (including convolutional neural networks [CNNs] and recurrent neural networks
[RNNs]), deep learning, and evolutionary algorithms, AI makes it possible to analyze
extensive biomedical data, predict molecular interactions, and optimize drug development
with unparalleled accuracy, leading to significant reductions in time and costs [4]. These
technologies also facilitate the identification of potential drug candidates, the prediction of
their effects, and the tailoring of treatments to individual patients, enabling personalized
medicine [5] (Figure 1).

For example, by using dynamic computational models of the pathophysiological
processes derived from drugs, it has been possible to achieve personalized immunotherapy
in cancer patients.

AI also plays a fundamental role in the analysis of omics data mining, particularly
in the context of integrating genomic information from next-generation sequencing of
thousands of individuals with clinical data and predictive computational models. This inte-
gration has been demonstrated to represent a significant advancement in the automation of
the research and identification of novel therapeutic targets. Omics technologies also facili-
tate drug repositioning by identifying new therapeutic uses for existing drugs, accelerating
the process and reducing attrition rates in development and clinical trials. This is primarily
based on analyzing large datasets to identify patterns and relationships between drugs and
diseases through computational modeling [6]. Consequently, multi-omics technologies, in
conjunction with machine learning (ML) and deep learning (DL), have facilitated substantial
progress in data integration. This is attributable to their substantial processing capacity for
both linear and non-linear data, thereby establishing a linkage between genomic alterations
and specific therapeutic options for patients. However, integration tools have not demon-
strated significant performance since they use data generated from multiple databases,
which has not allowed for standardized databases, but it is estimated that these challenges
can be solved with AI approaches and standardization [7,8]. Furthermore, advances in
AI are not only helping to develop more effective targeted therapies but also to predict
patient response. For example, AI-based algorithms can identify subgroups of patients
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likely to respond to specific immunotherapies or combination treatments [4]. AI also plays
an increasingly significant role in optimizing polypharmacology strategies and predicting
drug side effects. Machine learning models can predict potential side effects even for new
substances by analyzing databases of adverse events and drug–protein interactions [9,10].
AI-driven methods pave the way for designing multi-target medications, maximizing treat-
ment effectiveness and reducing side effects [11]. Both strategies contribute to efficient drug
development and reduce late-stage clinical trial failures by integrating diverse datasets
(Figure 1).
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from NIAID BIOART Source (https://bioart.niaid.nih.gov/).

In the domain of cancer research, AI plays a critical role in identifying biomarkers
and therapeutic targets. Deep learning and machine learning models facilitate the analysis
of thousands of data points, such as genomic and transcriptomic data, to identify key
mutations and molecular alterations driving tumor growth [6]. Integrating these data
with clinical information (patient history) can provide insights into the efficacy of different
treatments for specific genetic profiles. The field has been revolutionized by tools such
as AlphaFold, which can predict protein structures with a high degree of accuracy, thus
providing essential information for the design of targeted drugs [12].

The integration of AI with multi-omics technologies signifies a paradigm shift in
precision oncology. Integrative multi-omics data methods utilize genomic, transcriptomic,
epigenomic, and proteomic information to identify crucial interactions between genes,
proteins, and molecular pathways [13]. This integration facilitates the design of combined
therapies specific to tumor subtypes and accelerates the identification of optimal drug
combinations using neural networks and generative approaches, thereby optimizing thera-
peutic efficacy and minimizing side effects [13,14]. In addition, advances in deep learning
have proven effective in predicting the binding affinity between drugs and proteins, a
crucial step in the drug discovery and development process for cancer [15].

https://bioart.niaid.nih.gov/
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Complementing these technologies, reinforcement learning in oncology has made it
possible to optimize treatment pathways by dynamically adjusting therapies according
to the patient’s individual response. This approach holds particular promise in complex
treatments such as immunotherapies and target therapies, where the management of
multiple clinical variables poses a significant challenge [16].

On the other hand, the increasing interest in the discovery of drugs derived from
natural products is also driving the use of computational approaches. AI-based algorithms
have improved the identification and optimization of bioactive compounds from natural
product databases, enabling the development of innovative strategies in oncology [17].

In summary, the confluence of drug development challenges, advances in AI, and
the urgent need for effective cancer treatments underscores the importance of integrating
advanced technologies in this field. This review examines the current state and potential
impact of AI in cancer drug repurposing and design, highlighting the opportunities and
challenges of this technology in modern medicine (Figure 2).
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2. AI Techniques for Drug Repurposing and De Novo Drug Design
The use of artificial intelligence techniques has recently become a fundamental part of

the process of both drug repurposing and de novo drug design. These techniques have a
wide range of applications in drug development and discovery such as virtual screening,
toxicity monitoring of the drug, drug efficacy, or dosage prediction, drug repurposing,

https://bioart.niaid.nih.gov/
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and drug–target interaction predictions [18]. The selection of AI-based tools depends on
the specific application and can significantly impact the results. Machine learning, deep
learning, and knowledge graph-based tools are commonly used for drug repurposing, while
generative models and reinforcement learning are more suitable for de novo drug design.
Other machine learning techniques such as quantum computing have also been used for
the prediction of ADMET (absorption, distribution, metabolism, excretion, and toxicity)
properties [19], but these applications fall out of the scope of this review. In this sense,
although different AI approaches have been used in all stages of drug development, some
of them are more effective. Neural networks and classical machine learning are effective
for target identification due to their ability to analyze drug–target and protein–protein
interaction networks, identify novel binding sites, and predict protein structures. Natural
language processing (NLP) and large language models can be very useful in mining data
in order to develop clinical trials or monitor adverse effects. Furthermore, multimodal
AI models improve drug efficacy prediction by integrating diverse data sources, leading
to more comprehensive and accurate insights. Some of this information can be chemical
structure data, omics data, biomedical texts, histopathology data, medical imaging data, or
electronic health records. Recently, Qiu et al. provided a very thorough list of AI-based
methods for drug discovery [20].

2.1. Machine and Deep Learning Techniques

Some of the most common machine learning algorithms used for drug repurposing
include k-nearest neighbor (kNN), random forest (RF), or support vector machine (SVM).
Furthermore, with the development of deep learning, and thanks to its ability to automati-
cally extract features from raw data, the impact of AI-based approaches in drug repurposing
has increased significantly. The use of deep learning algorithms such as artificial neural
networks (ANNs), CNNs, and long short-term memory (LSTM) has revolutionized the
field. One of the best examples in this field is AlphaFold2, a commonly known, neural
network-based model technology that predicts the 3D conformation of proteins, even those
without known structures, and therefore offers emerging opportunities for structure-based
drug discovery [12].

General machine learning approaches in drug repurposing can be classified according
to the type of datasets used. As an example, structural information related to proteins or
small molecules has been used for the development of structure-based virtual screening
methods, such as molecular docking [21] or, together with binding activity data, ligand-
based chemometric modeling methods such as quantitative structure–activity relationship
(QSAR) modeling [22]. Other types of data commonly used in machine learning-based
drug repurposing approaches include cell phenotype, employed for example through the
CellProfiler software (v.4.2.8) [23]. Also, the use of transcriptomic data allows us to uncover
novel drug mechanisms. Among this, the use of the L1000 assay data, an improvement
over the old Connectivity Map (CMap), stands out, covering information on the variation
in gene expression in response to more than 42,000 perturbing agents (including drugs) [24].
Finally, data related to electronic health records, and even social media, are also very helpful
to develop deep learning approaches based on natural language processing (NLP) and
other algorithms [25].

2.2. Knowledge Graph-Based AI Techniques

The use of graph-based approaches relies on the knowledge of drug–target interactions
from databases. The generation and analysis of these networks has been crucial in many
recent drug repurposing discoveries [26]. For example, Zeng et al. developed a network-
based deep learning model (DeepDR) for the integration of networks, such as drug–disease
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and drug–target networks, that enabled them to learn high-level drug features through a
random walk approach [27].

Another useful strategy involves the integration of genome wide association studies
(GWASs) and multi-omics data within network-based AI approaches [20]. As an example,
the network topology-based deep learning framework (NETTAG) uses an interpretable
AI model to identify disease-associated genes based on multi-omics data and integrate
them within the human protein–protein interaction (PPI) network in order to predict
repurposable drugs [28].

2.3. Generative AI Models

Generative artificial intelligence models are progressing rapidly, and their use in
novel drug discovery presents advancements faster than anybody can recall. Although
these models are performing quite well in small-scale and controlled laboratory settings,
doubts remain about their performance in more complex conditions [29]. In this sense, the
implementation of large language models (LLMs), such as the commonly known ChatGPT,
a generative pre-trained transformer technology developed by OpenAI, has recently made
this type of tool more approachable and amenable to biomedical researchers [30]. Several
generative AI-based tools, such as ChemSpaceAL (v.2.0.1) [31], GraphGPT (v.0.3.1) [32],
PEtrans (v.1.0) [33], or DrugChat (v.5.1.4) [34], have been recently developed for different
aspects of de novo drug design, such as molecular generation, the selection of contextual
molecular features, or the determination of novel targetable sites in proteins.

2.4. Reinforcement Methods

Reinforcement learning methods are AI algorithms used to resolve decision problems
with a dynamic approach, combining ANNs with deep reinforcement learning architec-
tures. These methods are based on the analysis and estimation of the statistical relationship
between all the possible actions and their outcomes. Afterwards, the algorithm tries to
determine the most desirable outcome. The implementation of these approaches has been
used for the optimization of the design of chemical libraries for screening and de novo drug
design with the ReLEASE software (v.1.0) (Reinforcement Learning for Structural Evolu-
tion) [35]. In general, in reinforcement methods, a multilayer ANN serves as the generative
model, using inputs like SMILES (structural codification of molecules) or molecular graphs.
The model is then trained with data from known bioactive molecules by means of iterative
learning and decision-making steps, and finally constructs new outputs and tests their
response for optimization. In this sense, they act as a virtual agent that modifies molecules
to optimize their properties under the guidance of the neural network [36]. An example
of this approach is the development of reinforcement method models for the generation
of analogues to a query structure or the generation of compounds predicted to be active
against a biological target [37].

3. AI-Guided Applications in Cancer Drug Discovery
This section presents recent projects that use AI-guided approaches for cancer drug

development and design. Table 1 summarizes the key aspects of these studies, including
the computational methodology, AI model/algorithm, cancer type, and main findings. The
studies are categorized based on the AI techniques described in Section 2.
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Table 1. AI-guided studies in cancer drug discovery.

Case Study Computational Approach Model/
Algorithm Relevant Results

AI drug
repurposing

Chondrosarcoma
(CS) [38]

Knowledge +
network-based methods
1. Genetic data of disease:
pubmed2ensembl.
2. Drug–gene interaction:
Drug Gene Interaction
Database (DGIdb).
3. Drug–target information:
DeepPurpose.

Deep
learning-based
algorithm

A total of 25 candidate drugs
were identified.
Among the listed drugs, there
are drugs that have been
approved for various solid
tumors and have been
applied to patients with CS:
everolimus, paclitaxel,
sirolimus,
2-methoxyestradiol, and
sunitinib.

Familiar
Melanoma [39]

Knowledge +
network-based methods
1. Genetic data of disease:
databases + disease
knowledge.
2. Disease Mechanistic Map:
HiPathia + Genotype-Tissue
Expression Project.
3. Drug–target information:
Drexml.

Explainable
machine learning
model

A total of 78 candidate drugs
correspond to currently
approved chemotherapeutic
agents used to treat various
types of cancer.
Paclitaxel, docetaxel,
moxetumomab, and
ruxolitinib are drugs that
target specific melanogenesis
circuits.

Liver and lung
cancers [40]

Similarity-based, artificial
intelligence-based,
signature-based, and
network-based methods
1. Integrating
heterogeneous data (drugs,
targets, diseases, side
effects and pathways) from
databases and the literature.
2. Drug–target information:
DrugRepoBank.

Artificial
intelligence
model

AI-predicted a CYP3A4
target for sildenafil
repositioning in the treatment
of liver cancer.
The drug candidate
verteporfin may influence
lung cancer by modulating
the Hippo signaling pathway
and insulin secretion.

Breast cancer [41]

Network-based method
1. Genetic data of disease:
breast cancer gene
expression profiles from
GEO database.
2. Drug–disease interaction:
DRviaSPCN.

Random walk
with restart
algorithm

Four of ten candidate drugs
have been demonstrated to
be associated with breast
cancer: azacitidine, valproic
acid, doxorubicin, and
exemestane.

Breast and lung
cancers [42]

Network-based method
1. Genetic data of disease:
breast cancer and lung
cancer gene expression
profiles from GEO database.
2. Drug–disease interaction:
DrugSim2DR.

Random walk
with restart
algorithm

Five potential anti-breast
cancer drugs were identified:
fluoxymesterone, gestrinone,
pyrazole, fomepizole, and
medroxyprogesterone acetate.
Fluoxymesterone has
received approval for breast
cancer treatment.
Of nine candidate drugs,
methotrexate and
pemetrexed have been
approved for the treatment of
lung cancer.
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Table 1. Cont.

Case Study Computational Approach Model/
Algorithm Relevant Results

AI de novo
drug design

Hepatocellular
carcinoma [43]

Structure-based drug
design of novel targets
1. Target selection:
PandaOmics.
2. Determination of
putative binding sites:
Chemistry42.
3. Generation of novel hits
targeting CDK20 inhibitor:
AlphaFold.

Deep
learning-based
algorithm

A novel therapeutic target
was identified from a pool of
dark targets (without
experimental structure) that
were predicted using
AlphaFold (v.2.3.0).
ISM042-2-048 generated a
compound that showed good
CDK20 inhibitory activity.

Carcinoma and
neuroblastoma
[44]

Reinforcement learning
approach
1.Genetic data of disease:
carcinoma and
neuroblastoma gene
expression profiles.
2. Generation of anticancer
hit molecules: PaccMannRL.

Deep
learning-based
algorithm

The generated compounds
exhibited similar
physicochemical properties
to real cancer drugs.

Breast and lung
cancers [45]

Counter-propagation
artificial neural networks
(CPANNs)
1. Two peptide datasets
targeting breast and lung
cancer cells were assembled
and curated manually from
CancerPPD.
2. Training CPANN model
to classify peptides
according to their activity.
3. Library class generation
with 1000 presumed
alpha-helical peptides
sequences with the amino
acid distribution of
alpha-helical anticancer
peptides (ACPs): modlAMP.
4. Evaluation and ranking
of the activity of de novo
designed peptides from the
library: CPANNs.
5. Selection of candidate
peptides with anticancer
activity to in vitro assays.

Deep
learning-based
algorithm

From a total of 1000 de novo
designs, 6 peptides showed
anticancer activity in vitro,
including 5 against both
MCF7 and A549 cell lines.

AI in computational biology has significantly advanced cancer therapies by providing
innovative tools to address the challenges of traditional drug development. Researchers
have developed bioinformatics tools using various AI algorithms, such as DeepPurpose,
to tackle drug repositioning in chondrosarcoma [38,40,42]. Most of these approaches
require the use of huge amounts of diverse data (specifically, information about disease
pathway, proteomic metabolism, drug–disease interaction, gene expression, etc.). The
case study of familial melanoma conducted by Esteban-Medina et al. [39] exemplifies the
importance of integrating diverse data sources and methodologies. The implementation
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of a machine learning model allowed for the contextualization of protein drug targets in
terms of the functional landscape of the disease and for the identification of candidate
drugs for the treatment of melanoma. Similarly, pathway-level analysis and disease-specific
modeling further enhance AI-driven drug discovery efforts [41,42]. DRviaSPCN introduces
a novel approach by analyzing subpathway (SP) crosstalk networks, capturing the intricate
interactions between tumor pathways critical for cancer progression and therapy resistance.
Validated through breast cancer datasets, DRviaSPCN demonstrated very good predictive
performance, identifying FDA-approved drugs and novel candidates [41].

AI-driven insights into molecular mechanisms reveal new potential therapeutic targets.
Different AI approaches are used throughout drug development, but some are more effec-
tive than others. For example, neural networks and classical machine learning are effective
for target identification due to their ability to analyze drug–target and protein–protein in-
teraction networks, identify novel binding sites, and predict protein structures. In the field
of neuroscience, these methods are used to identify new therapeutic targets for neurode-
generative diseases such as Alzheimer’s and Parkinson’s. For example, machine learning
models can analyze large gene expression and neuroimaging datasets to identify genes
and pathways involved in these diseases. Many of these targets lack known ligands or
structural data. Advances in deep generative modeling and machine learning in de novo
oncology drug design are providing solutions to this challenge [44,45]. For instance, in a
recent paper by Ren et al., they designed and synthesized molecules based on AlphaFold-
predicted structures for cyclin-dependent kinase 20 (CDK20). This enzyme had previously
been identified in silico as a novel target against hepatocellular carcinoma (HCC). This
workflow resulted in a potent molecule with selective anti-proliferative activity against
HCC cell lines overexpressing CDK20. Surprisingly, the development process of the de novo
compound required only 30 days and involved the synthesis of only seven compounds [43].
These results highlight the efficiency and precision of AI-powered platforms in accelerating
early-stage drug discovery, particularly for targets lacking experimental structural data.

4. Integration of AI with Experimental Techniques
AI has become an indispensable tool in the field of drug discovery, offering ad-

vanced methods to enhance experimental workflows by increasing efficiency, precision,
and data integration.

4.1. AI-Guided High-Throughput Screening (HTS)

Traditionally, HTS involves testing thousands of compounds to identify potential
therapeutic candidates, a resource-intensive endeavor. AI-powered models, such as CNNs,
optimize this process by analyzing chemical libraries and predicting compound activity,
thereby prioritizing candidates with the highest therapeutic potential. For example, the
already mentioned AlphaFold algorithm has significantly advanced protein structure
prediction, allowing researchers to identify molecular interactions that were previously
elusive [12]. This has enabled the development of more targeted and cost-effective screening
strategies, revolutionizing the early stages of drug development.

4.2. AI-Assisted Drug Synthesis and Optimization

In addition to screening, AI also plays a critical role in drug synthesis and optimization.
Traditional methods of synthesizing complex molecules often rely on iterative and time-
consuming experimental approaches. AI-driven retrosynthesis tools, such as Chemprop
and MoleculeNet, leverage reaction databases to predict chemical pathways and propose
efficient synthesis routes [46,47]. These tools not only streamline the development of new
compounds but also minimize costs and reduce the time needed to bring potential drugs to
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preclinical testing. By automating the prediction of reaction outcomes and toxicity, these
models ensure a higher success rate for synthesized molecules, accelerating the transition
from lab to clinic.

4.3. AI-Driven In Vitro and In Vivo Testing

AI’s contributions extend to in vitro and in vivo testing, where predictive models
guide experimental designs and reduce reliance on labor-intensive methods. Generative
adversarial networks (GANs), for instance, simulate cellular responses to novel compounds,
offering preliminary insights into efficacy and safety before traditional testing begins [48].
Furthermore, multi-omics AI models integrate genomic, transcriptomic, and proteomic
data to predict how specific drug candidates might interact with patient-specific biological
pathways. These integrative approaches not only enhance the precision of experimental
assays but also facilitate the development of personalized treatment strategies.

4.4. AI for Data Integration in Preclinical Studies

Lastly, AI has proven invaluable for integrating diverse datasets into preclinical studies.
By analyzing imaging data, omics datasets, and physiological measurements simultane-
ously, AI models can identify biomarkers and therapeutic targets that might otherwise
remain undetected. For example, deep learning algorithms have been employed to analyze
histological images in conjunction with gene expression profiles, uncovering novel insights
into tumor microenvironments and drug interactions [49]. This holistic approach en-
hances the translational potential of preclinical research, paving the way for more effective
clinical applications.

5. Challenges and Opportunities
While the integration of artificial intelligence (AI) in drug discovery offers trans-

formative potential, realizing its full benefits requires addressing several key challenges
(Figure 3).
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5.1. Data Quality and Quantity

A primary concern is the quality and quantity of available data for training AI mod-
els. Biomedical datasets often suffer from inconsistencies, noise, and biases, which can
compromise predictive accuracy. The proprietary nature of much pharmaceutical data

https://bioicons.com/
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further restricts access for researchers, hindering data sharing and standardization. To
overcome these issues, solutions include enhanced data curation, the establishment of
standardized dataset preparation protocols, and the use of synthetic data to augment
real-world datasets. Initiatives like the Therapeutics Data Commons (TDC) are pivotal
in establishing benchmarks for data quality and accessibility, effectively bridging the gap
between research institutions and industry [50]. By improving data quality, researchers
can enhance the reliability of AI models, leading to more accurate predictions and better
therapeutic outcomes [50].

5.2. Interpretability of AI Models

The “black box” nature of many machine learning and deep learning models poses
another significant hurdle. The lack of transparency in how these models arrive at their
predictions creates challenges in regulatory and clinical settings where trust is paramount.
In order to ensure that the predictions of AI models are clinically reliable and understand-
able to clinicians, explainable AI (XAI) frameworks, such as SHAP (SHapley Additive
exPlanations) and LIME (Local Interpretable Model-Agnostic Explanations), are being
developed [51,52]. These tools provide insights into the features driving model predictions,
thereby building confidence among stakeholders and facilitating regulatory approval. By
enhancing model interpretability, researchers can ensure that AI-driven decisions are more
transparent and justifiable, which is crucial for gaining acceptance in clinical practice.
However, these XAI methods also have their own limitations, including uncertainty in
the calculation and distribution of the score estimates, which may lead to generalization
of results. Also, LIME struggles with nonlinear dependencies, while SHAP has problems
with feature dependencies, as permutation values assume independence. A quantitative
comparison between AI models and traditional methodologies in terms of diagnostic and
therapeutic efficacy is an active research area, as highlighted in recent studies [53].

Finally, neither method is capable of inferring causality, which limits their applications.
All of these limitations need to be overcome in the near future to improve the interpretability
of AI models [54].

5.3. Ethical Considerations

The use of AI in drug discovery raises ethical considerations regarding data privacy, al-
gorithmic biases, and equitable access to AI-driven therapies. Biases in training datasets can
lead to inequitable treatment predictions, disproportionately affecting under-represented
populations. For instance, in drug repurposing, sex-specific differences in genetics, hor-
mones, and metabolism often result in male- or female-biased drug responses and adverse
events. Computational approaches are being developed to identify sex-inclusive drug
candidates, improving therapeutic options and reducing adverse effects for all patients [55].
Addressing these concerns, an emerging number of members of the scientific community
are applying the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. This
approach reduces bias in biomedicine by promoting ethical, transparent, and interoperable
data management. Biomedical researchers can access diverse, FAIRified datasets, minimiz-
ing bias from localized data [56,57]. In 2021, the FDA received 132 regulatory submissions
for drugs that included the use of AI in their discovery and development, resulting in a
10-fold increase over the previous year. This federal agency recognizes the transforma-
tive potential of AI in drug development and emphasizes rigorous evaluation through
well-controlled clinical studies to ensure that the benefits outweigh the risks. Regulatory
oversight requires deep technical expertise to review AI-assisted applications, such as
target selection or intervention strategies. Maintaining a workforce with technical expertise
is vital to provide timely and effective guidance and support innovation in this evolving
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field [58]. The European Medicines Agency (EMA) has developed an artificial intelligence
(AI) workplan for the European medicines regulatory network to guide the use of AI in
medicine regulation in Europe up to 2028 [59]. Regulatory frameworks must evolve to
include guidelines for AI in healthcare, ensuring that ethical standards are maintained [60].
By prioritizing ethical considerations, the industry can foster trust and ensure that AI
technologies benefit all patients equitably.

5.4. Collaboration Across Sectors, Future Trends, and Emerging Opportunities

In addition to the aforementioned challenges, collaboration between academia, indus-
try, and regulatory bodies represents a significant opportunity for advancing AI-driven
drug discovery. Cross-sector partnerships can facilitate the sharing of data, tools, and
expertise, fostering innovation and reducing barriers to implementation. By working to-
gether, stakeholders can address challenges collaboratively and leverage AI’s capabilities
to achieve unprecedented levels of efficiency, accuracy, and impact in drug discovery. This
collaborative approach not only accelerates the pace of discovery but also ensures that the
resulting therapies are safe, effective, and accessible to patients worldwide.

Cross-sector collaboration is a key driver for advancing AI-driven drug discovery.
Numerous initiatives exemplify the power of partnerships between academia, industry,
and regulatory agencies. For example, major pharmaceutical companies such as Pfizer,
Novartis, and AstraZeneca have formed strategic alliances with AI technology compa-
nies, leading to the development of innovative tools and platforms for drug discovery.
These collaborations have significantly accelerated target identification, drug design, and
clinical trial optimization. Additionally, renowned research centers such as the Broad
Institute and the National Cancer Institute have established AI research centers dedicated
to drug discovery. These centers foster interdisciplinary collaboration, bringing together
experts in biology, chemistry, and computer science to develop new AI methodologies
and applications. Additionally, public–private initiatives such as the Alliance for Drug
Discovery Innovation (ADDI) facilitate collaboration between academia, industry, and
regulatory agencies, providing funding, resources, and expertise to drive the development
of AI technologies.

Despite these challenges, the opportunities presented by artificial intelligence (AI) in
drug discovery are vast and transformative. Emerging technologies, such as multimodal
AI, are at the forefront of this revolution, integrating diverse data types—from clinical
records to genomic data—into cohesive analytical frameworks. This integration is crucial
as it allows for a more comprehensive understanding of the biological systems involved in
drug interactions and disease mechanisms. These advancements are driving significant
progress in precision medicine, enabling the development of highly targeted therapies
that are tailored to the unique genetic and molecular profiles of individual patients. This
personalized approach not only enhances treatment efficacy but also minimizes adverse
effects, thereby improving overall patient outcomes.

As AI-driven drug discovery advances, ensuring the reliability and clinical applica-
bility of AI models remains a key priority. Experimental validation plays a crucial role
in this process, incorporating preclinical testing, real patient data comparisons, and on-
going monitoring to assess model performance. Preclinical studies allow researchers to
evaluate AI-generated predictions in controlled settings before transitioning to real-world
clinical applications [61]. Furthermore, comparisons with patient data help confirm that
AI models provide meaningful and actionable insights [62]. To maintain long-term effec-
tiveness, continuous monitoring systems are being explored to oversee AI performance
post-deployment, ensuring adaptability to evolving clinical practices and patient demo-
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graphics [61–63]. These validation strategies are essential for bridging the gap between
theoretical AI models and practical, clinically relevant applications in drug discovery.

Furthermore, quantum computing, although still in its infancy, holds immense poten-
tial in addressing complex molecular problems that traditional computational methods
struggle to solve [64]. By accelerating simulations and optimizing chemical structures,
quantum computing could revolutionize de novo drug design, allowing researchers to
explore vast chemical spaces and identify promising drug candidates more efficiently. This
capability could significantly shorten the drug development timeline and reduce costs,
making it a game-changer in the pharmaceutical industry.

Collaboration between academia, industry, and regulatory bodies represents another
significant opportunity for advancing AI-driven drug discovery. High-performance com-
puting and cloud computing play a critical role in AI frameworks for drug discovery.
These technologies facilitate the processing of large genomic, proteomic, and chemical
datasets, as well as the execution of complex computational simulations. For example,
cloud computing enables researchers to access scalable and affordable computational re-
sources, which accelerates the development and deployment of AI models. Cross-sector
partnerships can facilitate the sharing of data, tools, and expertise, fostering innovation and
reducing the barriers to implementation. Such collaborations can lead to the establishment
of standardized protocols and best practices that enhance the reliability and reproducibility
of AI applications in drug discovery. By addressing challenges collaboratively and lever-
aging AI’s capabilities, the field of drug discovery can achieve unprecedented levels of
efficiency, accuracy, and impact. This collaborative approach not only accelerates the pace
of discovery but also ensures that the resulting therapies are safe, effective, and accessible
to patients worldwide.

In summary, the integration of AI into drug discovery processes, coupled with ad-
vancements in quantum computing and collaborative efforts across sectors, allows the
pharmaceutical industry to overcome existing challenges and unlock new therapeutic pos-
sibilities. As these technologies continue to evolve, they promise to reshape the landscape
of drug development, ultimately leading to more effective treatments and improved health
outcomes for patients globally.
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