Article

A Novel Approach for Evaluating Web Page Performance Based
on Machine Learning Algorithms and Optimization Algorithms

Mohammad Ghattas 1, Antonio M. Mora 1-*

check for

updates
Academic Editor: Luis Javier Garcia
Villalba

Received: 2 November 2024
Revised: 15 December 2024
Accepted: 18 December 2024
Published: 21 January 2025

Citation: Ghattas, M.; Mora, A.M.;
Odeh, S. A Novel Approach for
Evaluating Web Page Performance
Based on Machine Learning
Algorithms and Optimization
Algorithms. A 2025, 6,19. https://
doi.org/10.3390/ai6020019

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

and Suhail Odeh 2

Department of Signal Theory, Telematics and Communications, School of Computer Sciences and
Telecommunications (ETSIIT) and Research Center on Information and Communication

Technologies (CITIC-UGR), University of Granada, 18071 Granada, Spain; mohamadghattas@correo.ugr.es
Department of Software Engineering, Faculty of Science, Bethlehem University, Bethlehem P1520468,
Palestine; sodeh@bethlehem.edu

Correspondence: amorag@ugr.es

Abstract: This study introduces a novel evaluation framework for predicting web page
performance, utilizing state-of-the-art machine learning algorithms to enhance the accu-
racy and efficiency of web quality assessment. We systematically identify and analyze
59 key attributes that influence website performance, derived from an extensive literature
review spanning from 2010 to 2024. By integrating a comprehensive set of performance
metrics—encompassing usability, accessibility, content relevance, visual appeal, and techni-
cal performance—our framework transcends traditional methods that often rely on limited
indicators. Employing various classification algorithms, including Support Vector Ma-
chines (SVMs), Logistic Regression, and Random Forest, we compare their effectiveness on
both original and feature-selected datasets. Our findings reveal that SVMs achieved the
highest predictive accuracy of 89% with feature selection, compared to 87% without feature
selection. Similarly, Random Forest models showed a slight improvement, reaching 81%
with feature selection versus 80% without. The application of feature selection techniques
significantly enhances model performance, demonstrating the importance of focusing on
impactful predictors. This research addresses critical gaps in the existing literature by
proposing a methodology that utilizes newly extracted features, making it adaptable for
evaluating the performance of various website types. The integration of automated tools
for evaluation and predictive capabilities allows for proactive identification of potential
performance issues, facilitating informed decision-making during the design and devel-
opment phases. By bridging the gap between predictive modeling and optimization, this
study contributes valuable insights to practitioners and researchers alike, establishing new
benchmarks for future investigations in web page performance evaluation.

Keywords: machine learning; web page; statistic model; page load time; performance;
prediction models; early stage; classification

1. Introduction

The digital revolution has spurred the adoption of web-based service delivery across
various sectors, including government, retail, travel, finance, and banking. These web
interfaces, accessible on a multitude of devices from desktops to mobiles, serve as the
primary point of interaction for users availing of digital services. Consequently, web page
performance emerges as a critical research area due to its well-established influence on
user experience (UX). Prior studies have consistently demonstrated a positive correla-

Al 2025, 6,19

https://doi.org/10.3390/ai6020019


https://doi.org/10.3390/ai6020019
https://doi.org/10.3390/ai6020019
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0000-0003-1603-9105
https://orcid.org/0000-0003-4186-8327
https://doi.org/10.3390/ai6020019
https://www.mdpi.com/article/10.3390/ai6020019?type=check_update&version=1

Al 2025, 6,19

2 of 35

tion between UX and factors such as productivity, profitability, and brand equity within
organizations [1-4].

However, despite extensive research, a gap remains in the holistic evaluation of web
page performance, particularly in accounting for dynamic user interactions, scalability,
and real-world usage scenarios. In this study, ‘quality’ is defined as a set of measurable
characteristics that determine the overall performance and user experience of a webpage.
These characteristics include factors such as page load time, responsiveness, accessibility,
and user interaction. Since page load time has been shown to strongly correlate with user
satisfaction and bounce rates [5], it is considered a key component of webpage quality.
Other factors, such as how responsive the webpage is to user actions and its overall stability,
are also critical for ensuring a seamless user experience. Given that ‘quality” can be a
subjective term, our definition is grounded in both literature and practical industry insights
and is operationalized through a set of specific, measurable metrics that are relevant to
web developers and users alike. These findings underscore the importance of minimizing
response times as a key driver of web page performance.

Studies investigating the impact of web page response time on user behavior reveal a
significant negative correlation. For example, an investigation by Aberdeen [6] involving
160 organizations indicated a 16% decrease in customer satisfaction and a 7% decline in
conversion rates when response time increased by one second. Similarly, Gomez et al. [7]
analyzed over 150 million page views across 150 websites and observed a 33% surge in
page abandonment rate as response time rose from 2 to 8 s.

To ensure optimal user experience (UX), organizations have adopted a multifaceted
approach to monitoring the performance of critical user journeys. This approach often
integrates synthetic and real user monitoring (RUM) techniques [8-12]. Synthetic monitor-
ing leverages pre-recorded scripts to emulate user journeys, while Real User Monitoring
(RUM) captures actual user interaction data through JavaScript code embedded in web
pages. Together, these methods provide a comprehensive performance analysis. However,
their focus on runtime evaluation limits their ability to address performance issues during
the early design phases.

A key performance metric, page load time, predicts user experience during develop-
ment by encompassing events like downloading and rendering HTML, JavaScript, CSS,
and images [6,13]. This metric is influenced by extrinsic factors (e.g., network latency,
bandwidth, server capacity) and intrinsic factors (e.g., page size, resource usage, third-
party content). Industry practices and a Google study highlight the strong correlation
between page load time and user bounce rates, emphasizing its importance as a Service
Level Objective (SLO) [4].

While traditional runtime metrics such as SLO are valuable for operational monitoring,
they fall short in addressing the early prediction of performance bottlenecks. Integrating
performance prediction models during the Software Development Life Cycle (SDLC, such
as Agile) has shown promise in mitigating such issues. Early architectural decisions greatly
influence software performance [14,15]. Integrating performance considerations and pre-
diction models into the early stages of the SDLC is essential [15-17]. Traditional approaches
often rely on intuition and limited data, while agile methodologies address these limitations
by promoting iterative development, automation, and CI/CD practices [18].

Although performance prediction has been widely studied in system architectures, its
application to web page performance remains underexplored. For instance, agile testing
environments often fail to replicate real-world conditions, as scaled-down production-like
environments introduce inaccuracies in page load time measurements [15,18-20]. This
creates a need for predictive models capable of estimating performance during the early
development phases, enabling proactive risk mitigation and reducing rework costs.



Al 2025, 6,19

3 0f 35

In recent years, traditional methods for evaluating web page performance, such as
analyzing load time, first contentful paint, and other surface-level metrics, have proven
insufficient in capturing the complex factors influencing modern web applications. These
conventional techniques do not fully account for the intricacies of user engagement, multi-
platform performance, and the growing diversity in web technologies. Recent approaches
have sought to incorporate machine learning (ML) to predict web performance, but these
models often suffer from limitations in accuracy or fail to optimize critical performance
variables effectively [21,22].

The novelty of our work lies in its ability to bridge the gap between machine learning’s
predictive power and optimization algorithms’ fine-tuning capabilities. Unlike previous
studies that primarily focus on load time or singular metrics, our methodology evaluates a
broader range of performance indicators, including user experience, page responsiveness,
and scalability across various devices and network conditions, by systematically applying
existing machine learning techniques and feature selection methods. This novel contribu-
tion ensures that web applications are not only faster but also optimized for real-world
usage scenarios, providing measurable improvements over existing state-of-the-art mod-
els. Specifically, our contributions include the proposal of a methodology that integrates
machine learning with optimization techniques to enhance web performance evaluation,
the identification and application of an expanded set of performance metrics tailored for
a comprehensive evaluation, and extensive benchmarking to validate the effectiveness of
the methodology using existing machine learning models. Moreover, our extensive bench-
marking and empirical testing have demonstrated the effectiveness of this methodology in
achieving high prediction accuracy and significant performance improvement, highlighting
the value of integrating machine learning with optimization techniques in this domain.

1.1. Motivating Example

Consider a real-world scenario involving a critical government web application. The
home page size is 471,931 bytes, comprising six JavaScript files (59,139 bytes), two CSS
files (4634 bytes), and 43 images (382,989 bytes). This single-domain page lacks a content
delivery network (CDN). The service-level objective (SLO) mandates 90% of page loads
to occur within 5 s using a web browser. A synthetic monitoring tool will simulate user
behavior by replaying a script that opens the homepage four times per hour on a 5 Mbps
connection with a cleared browser cache.

To assess performance headroom for real-world network and backend variations, the
architect requires a model capable of predicting page load time with the available data
(page size, file types, network speed, etc.). The conventional approach necessitates waiting
until the testing phase to evaluate load time. However, a readily available, efficient model
would enable prediction without waiting for testing. Ideally, such a model should require
minimal effort and time investment for both data collection and usage.

This scenario exemplifies the limitations of traditional methods and underscores the
need for a more efficient approach. We propose a model-based prediction technique that
addresses these challenges, as detailed in the following sections.

Our motivating example highlights the critical need for early-stage performance
prediction models. Machine learning (ML) has become increasingly prominent within the
software industry, driven by two key trends: the growing capability to collect vast amounts
of data and the declining cost of processing it. Unlike human experts, ML can uncover
hidden relationships within data, presenting an opportunity to develop accurate prediction
models for web page load time.

Existing research explores various ML approaches for this purpose. Butkiewicz et al.
leverage regression techniques, while Zhou et al. employ classification models to categorize



Al 2025, 6,19

4 of 35

web page performance into different tiers (excellent, good, fair, unacceptable) [13,23].
Additionally, Calvano investigates the correlation between performance metrics and page
characteristics [24]. However, a gap exists in comprehensively evaluating the suitability
of ML techniques for load time prediction using website-specific metrics like page size,
number of requests, content types, and server distribution [24].

This research aims to address this gap by proposing a systematic methodology that
utilizes extracted features to predict web page performance during the design phase,
leveraging readily available website attributes.

1.2. Research Objectives

The research objectives of our work are as follows.

e  ROI1: What are the features that affect web page performance?

e RO2: Which ML technique shows the highest accuracy in predicting web page perfor-
mance?

e  RQ3: Which ML techniques show a statistically significant difference in predictive
accuracy?

1.3. Organization of This Paper

The remainder of the paper is organized as follows. We describe the necessary back-
ground for this study in Section 2. Section 3 elaborates on the research on the existing
literature. In Sections 4 and 5, we outline our overall methodology and report the results.
Section 6 lists the possible threats to the validity of our findings. Finally, Section 7 gives the
conclusions and directions for future work.

2. Research on Existing Literature

Throughout the software development process, evaluating website performance plays
a crucial role. Traditionally, this has involved either building models or employing measure-
ment tools. Models, often based on machine learning techniques, create an approximate
representation of the system to predict future behavior. Measurement, on the other hand,
involves directly observing the actual website.

This paper focuses on leveraging machine learning models to predict website perfor-
mance early in the development lifecycle. By doing so, potential performance issues can be
identified and addressed proactively, leading to a more optimized final product.

2.1. Models for Web Page Performance Prediction

Web page performance modeling can be broadly categorized into reference models,
analytical models, and simulation models.

Reference Models: These provide a conceptual framework for understanding web
page load times by breaking down different components and suggesting improvements.
For example, Loosely et al. [25] created a model to optimize various factors such as reducing
images and using closer servers. PeterSevcik et al. [26] developed a formula considering
data transfer amount, internet speed, and processing times. Chiew [27] studied how web
page elements like code size and number of images affect load times.

Analytical Models: These use mathematical equations to predict web page download
times. Early models by Menasce et al. [16] and Zhi [28] considered factors like page size
and bandwidth. More complex models included server and client processing times and
payload size (Peter Sevcik et al. [26], Nagarajan et al. [29], Butkiewicz et al. [13], Krzysztof
etal. [30]). Machine learning techniques have also been explored for performance prediction
(Zhou et al. [23]). These models are valuable in the early development stages for quick
performance predictions.



Al 2025, 6,19

5 of 35

Simulation Models: These replicate the actual loading process to predict web page
load times. For instance, WebProphet simulates how different elements on a webpage
interact to predict load time changes due to factors like server processing time or network
delays, offering more nuanced predictions compared to analytical models [31].

In evaluating website quality, various methodologies and frameworks have been
employed (presented in Table 1). For example, Elsater et al. (2022) [32] evaluated hotel web-
sites using user surveys, while Adepoju et al. [33] (2019) introduced a usability framework
for university websites. Allison et al. [34] (2019) developed a comprehensive framework
through a literature review. Comparatively, our study distinguishes itself by focusing on
the identification of critical attributes that influence website performance and proposing a
systematic methodology that can be adapted for evaluating diverse website types. Unlike
prior research, which often lacks flexibility and broad applicability, our approach integrates
automated tools for real-time evaluation and predictive analytics, equipping it to address
future performance improvements and potential issues proactively. This framework not
only builds upon but also surpasses previous studies by incorporating a wider range of
performance metrics, capturing user experience, load distribution, and scalability factors.
By addressing these aspects, our research offers a holistic solution that effectively com-
bines prediction accuracy, flexibility, and comprehensive evaluation, making a significant
contribution to advancing methodologies in website quality assessment.

Table 1. This table provides an overview of different methodologies and frameworks used for web
performance evaluation. It lists the advantages and disadvantages of each approach, along with the
specific methods employed in each case, offering a clear comparison to assist in understanding the
strengths and limitations of the various approaches.

Reference

Advantages Disadvantages Methods Used

Elsater et al. (2022) [32]

Detailed quality evaluation
specific to hotel websites;
comprehensive criteria

Evaluation of website
quality, user surveys

Limited to five and
four-star hotels in Egypt

Adepoju et al. (2019) [33]

Integrated usability
framework; covers

Specific to university Usability evaluation

multiple aspects

websites; may not be
generalizable

framework, user testing

Allison et al. (2019) [34]

Comprehensive
framework; extensive
literature review

Complex implementation;
requires significant
resources

Literature review,
framework development

Alsulami et al. (2021) [35]

Effective for measuring
website performance

Limited to sustainability
perspective

Performance measurement,
sustainability analysis

Amjad et al. (2021) [36]

Empirical study of
e-commerce sites;
performance-focused

Specific to e-commerce in
Bangladesh

Performance analysis,
empirical study

Armaini et al. (2022) [37]

Focused on government
websites; performance
variables

Specific to Labuhanbatu
Regency

Performance evaluation,
government websites

Aziz et al. (2019) [38]

Quality measurement
using AHP; structured
approach

Requires expertise in AHP

Analytical hierarchy
process (AHP)

Barus et al. (2022) [39]

Performance testing and
optimization; actionable
insights

Limited to DiTenun
website

Performance testing,
optimization




Al 2025, 6,19

6 of 35
Table 1. Cont.
Reference Advantages Disadvantages Methods Used
Kulkarni & Dixit Em};ﬁ;‘ialsisr}d f;;?gf ted May require technical skills Empirical analysis,
(2012) [40] ysis; p for automation automated tools
approach
Automatic assessment L
Cai et al. (2020) [41] system; objective Specific to government TFN-AHP methodology,
. websites automated assessment
evaluation
Devi & Sharma (2016) [42] Acadt.ermc website Limited to facademlc Framework- development,
evaluation framework websites academic websites
Dhiman & Anjali Eumcal va'hc.lahon; Requires statistical and ML Statistical methods,
combines statistical and . .
(2014) [43] . . knowledge machine learning
machine learning
Comparison of Asian Non-parametric test
Dominic & Jati (2011) [44] airline websites; Specific to airline industry p .
. website comparison
non-parametric test
E-government websites o . .
Dominic et al. (2011) [45] quality comparison; Limited to Asian Non—pe.lrametrl.c test,
e-government quality ranking
structured approach
. Mathematical simulation Requires mathematical Mathematical simulation,
Erokhin et al. (2019) [46] for website effectiveness modeling skills effectiveness evaluation
Faustina & Balaji lf;fr?rrzﬁlg?:gzgilodn Specific to university Analytical hierarchy
(2016) [47] & ! websites in Chennai process (AHP)
approach
Gangurde & Kumar Web page predmhon s Requires knowledge of GA  Genetic algorithm, logistic
GA and LR; innovative .
(2020) [48] and LR regression
methods
Gharibe Niazi et al. Proposed framework for Specific to university Framework development,
(2020) [49] university websites websites university websites
AHP-based model for o . . Analytical hierarchy
Harshan et al. (2016) [50] library websites Specific to library websites process (AHP)
Combines Webqual and Limited to government Webqual, Importance
Hidayah et al. (2019) [51] 9 . &¢ Performance Analysis
IPA; government websites websites (IPA)
Quality ranking using o : .
Jati (2011) [52] PROMETHEE 1I; Limited to e government PROMETHEE II, quality
websites ranking
structured approach
AHP for website Analytical hierarch
Kabassi (2018) [53] evaluation; structured Requires AHP expertise Y y
process (AHP)
approach
Web performance Performance improvement
Kinnunen (2020) [54] improvement using free Limited to free tools P !
free tools
tools
Feature selection for Requires feature selection Filter-wrapper, website
Kumar & Arora (2019) [5] website quality prediction knowledge quality prediction
Web§1te Performance Requires technical skills for Automated tools,
Kumar et al. (2021) [55] analysis using automated . .
tools automation performance analysis
Kwangsawad et al. Automated evaluation Limited to automated tools Automated tools,
(2019) [56] tools; website performance performance evaluation




Al 2025, 6,19

7 of 35

Table 1. Cont.

Reference

Advantages

Disadvantages

Methods Used

Najadat et al. (2021) [57]

Web diagnostic tools and
DEA; website evaluation

Requires DEA knowledge

Web diagnostic tools, Data
Envelopment Analysis
(DEA)

Olaleye et al. (2018) [58]

Comparative analysis of
Nigerian universities

Limited to Nigeria

Comparative analysis,
university websites

Saleh et al. (2022) [59]

Systematic literature
review on university
websites

Limited to university
websites

Systematic literature
review, university websites

Shayganmehr & Montazer
(2019) [60]

Quality of e-government
websites; identifying key

Specific to e-government

Index identification,
quality assessment

indexes
Shayganmehr & Montazer Hybrld fu?zy Reql-nres fuz.zy . 'Hybrld fuzzy .
decision-making for decision-making decision-making, quality
(2021) [61]
e-government knowledge assessment
Deloitte (2024) [62] Fl;)turg web tecl'mol.ogles; Predictive; not focuged on Web 3.9, bl.lSII’leSS
usiness applications current evaluation applications

Erokhin et al. (2019) [46]

Mathematical simulation
for website effectiveness

Requires mathematical
modeling skills

Mathematical simulation,
effectiveness evaluation

Building upon the limitations identified in Table 1, our research proposes a com-
prehensive methodology that integrates predictive and analytical capabilities to address
these challenges in a holistic manner. Unlike prior studies conducted between 2010 and
2024, which primarily focused on specific domains such as academic, government, or
commercial websites and often relied on standalone methodologies like AHP or Webqual,
our work applies existing machine learning algorithms alongside optimization techniques.
This approach enables a broader evaluation of performance indicators, extending beyond
traditional metrics to address complex datasets and diverse real-world scenarios. By
incorporating contemporary technologies and methodologies, our research not only ad-
dresses the shortcomings of earlier studies but also ensures higher accuracy, adaptability,
and relevance to current and emerging web application needs, demonstrating a practical
advancement in the field.

2.2. Techniques for Measuring Web Page Performance

Web page performance measurement comes into play after a website is up and running,
focusing on real-world user experience. There are several techniques used by these tools:

e Page Instrumentation: Scripts embedded directly in the web page track user-
experienced response times. Modern browsers offer built-in support for this
through Navigation Timing and Paint Timing APIs, providing detailed performance
data [63,64].

e Traffic Analysis: Techniques like those developed by Olshefski et al. [65] analyze
server-side traffic data to estimate how long it takes for users to see content.

e  Synthetic Transactions: Tools like sMonitor (v4.2) [66] simulate user actions to identify
performance issues that might arise under heavy traffic loads.

e  In-Browser Profiling: Wang et al.’s Wprof (v1.0) [62] is an example of this approach. It
gathers timing and task dependency information directly within the browser during a
real page load, helping pinpoint bottlenecks and areas for improvement.



Al 2025, 6,19

8 0f 35

Many popular tools exist to assess web page performance, including web page
testing services (WebPageTest (v22.01) [12], GTmetrix (v1.1.0) [67]), web analytics plat-
forms (Google Analytics [68]), and browser developer tools (like Chrome DevTools
with its network emulator [69]). There are also other options available such as Fid-
dler (v5.0.20238.1) [70], YSlow (v3.1.2) [71], PageSpeed Insights [72], and Lighthouse
(v10.0.0) [73]. By leveraging these tools, developers can gain valuable insights into user
experience and make data-driven decisions to optimize website performance.

Existing web page performance measurement tools, while useful, face significant
limitations that hinder their effectiveness in today’s dynamic web environment. These
tools typically rely on synthetic transactions or server-side monitoring, which may not
accurately reflect real-world user experiences, particularly as network conditions and
device configurations vary. Additionally, as websites grow more complex, with numerous
dependencies and interactions among various components, traditional tools often fall short
in capturing and analyzing these intricate relationships. Most importantly, traditional tools
tend to be retrospective, focusing on past performance metrics rather than proactively
identifying future issues. This reliance on historical data without predictive insights limits
their ability to foresee performance bottlenecks or optimization needs. Moreover, traditional
tools generally require substantial manual intervention for setup and configuration, making
them less scalable and adaptable as site requirements evolve.

Our research addresses these limitations by applying the predictive and analytical
strengths of existing machine learning and optimization algorithms to develop a compre-
hensive methodology for web performance evaluation. Unlike previous studies that focus
on isolated metrics, such as load time, our methodology integrates a broader range of per-
formance indicators, including user experience, page responsiveness, and scalability across
diverse network conditions and device types. The novelty of our methodology lies in its
capacity to utilize real-world performance data, capturing the complexities of modern web-
sites and anticipating potential issues before they impact users. Moreover, by incorporating
continuous learning from new performance data, our methodology remains adaptable to
emerging trends in web technologies and user behaviors, offering flexible solutions for
web performance management. By combining machine learning’s predictive power with
optimization techniques, we provide a fine-tuned, adaptable methodology that not only
improves prediction accuracy but also offers actionable insights for enhancing performance.
This integration of predictive and optimization models enables the system to recommend
specific actions for performance improvement based on the identified bottlenecks, making
it an invaluable tool for developers and decision-makers. This approach has demonstrated
strong results in benchmarking tests, highlighting its potential to complement existing
tools and contribute to data-driven, proactive web page performance optimization. As a
result, our work pushes the boundaries of traditional performance evaluation by moving
from reactive analysis to proactive, predictive insights, setting a new benchmark for future
research in the field.

3. Background

In this section, we describe the main steps in the loading of most web pages, the metrics
that affect the loading performance, and the metrics used to measure the performance. We
also provide a summary of the various predictive modeling techniques used in this work.

3.1. How Browsers Build Web Pages: A Metric-Driven Analysis

Modern web pages are composed of HTML, CSS, JavaScript, and images, requiring
several behind-the-scenes processes to render content on a user’s screen. Initially, the
browser establishes a TCP connection with the server, potentially performing a DNS



Al 2025, 6,19

9 of 35

lookup if the IP address is not cached. The server processes the request, generates the
content, and assembles the final HTML document, often involving database queries and API
interactions. The browser then parses the HTML to construct a Document Object Model
(DOM), initiating the Critical Rendering Path (CRP), which is essential for optimizing
webpage rendering performance [3].

During this process, the browser requests and parses the CSS file to build the CSS
Object Model (CSSOM). If it encounters JavaScript, the parser waits for the CSSOM to be
available and for the script to download and execute unless the script is marked with the
async attribute, allowing DOM construction to continue concurrently [4]. Rendering only
starts once both the DOM and CSSOM are fully built (presented in Figure 1).

HTML H DOM I—
Network I JavaScript |H| Render Tree H Layout H Paint |
CSS I%I CSSOM |7

Figure 1. These models are combined into the render tree, which the browser uses to lay out visible

' |

lt

elements and initiate rendering.

Key Metrics in Browser Performance

e  User Initiates Request: The user clicks a link or enters a URL.

e  DNS Lookup: The browser translates the URL into an IP address using the Domain
Name System (DNS).

e  Connection Establishment: The browser connects to the web server using the
IP address.

e Sending Request and Receiving Response (Response Time): The browser sends an
HTTP request to the server, which processes it and sends back an HTML file and other
resources. Response Time measures this round trip (lower is better).

e Parsing and Rendering (Load Time, First Byte Time, Start Render Time, Largest
Contentful Paint): The browser parses the HTML to build the DOM, fetches additional
resources, and begins rendering the page. First Byte Time measures the time to receive
the first byte of data (lower is better). Start Render Time indicates when the basic
content starts displaying (lower is better). Largest Contentful Paint marks when the
main content is displayed (lower is better).

e Downloading Resources (Page Size, Byte In): The browser downloads all requested
resources. Page Size indicates the total size of downloaded resources (smaller is better).
Byte In represents the total amount of downloaded data.

e  Processing Resources: The browser processes downloaded resources like images, and
executes JavaScript.

e Interactive Page (Time to Interactive, Document Complete Time): Once the page
is fully rendered and scripts executed, it becomes interactive. Time to Interactive
measures this duration (lower is better). Document Complete Time represents the
total time to load the entire page, including all resources (lower is better).

3.2. Predictive Modeling Techniques

Prediction models are essentially functions that correlate a set of input variables (also
referred to as predictable, explanatory, or independent variables) with a variable response
(also known as the outcome or dependent variable). To construct a predictive model, a
foundational dataset must be prepared from historical data, which can be collected through



Al 2025, 6,19

10 of 35

experimentation or during system operations. This involves organizing a set of fields
representing the object of interest into a structured record, where these fields represent both
the input and response variables. This foundational dataset typically consists of numerous
such records, which are then divided into two partitions: the training dataset and the
test dataset.

Initially, the training dataset is utilized to train the prediction model. This training
process continues until the model effectively learns the relationship or mapping function
between the input variables and the response variable. Subsequently, the trained model
is employed to forecast the values of the response variable for the records within the
test dataset. The accuracy of the model’s predictions on the test dataset is then assessed
using various accuracy metrics. If these metrics indicate satisfactory performance, the
predictive model is deemed to have successfully generalized the knowledge extracted from
historical data.

In such instances, the model can be applied to predict the value of the response variable
for given input values. This learning process is commonly referred to as supervised learning.
Presently, there exists a plethora of machine learning techniques tailored for constructing
predictive models. In this section, we provide a succinct overview of nine cutting-edge
classification techniques. The selection of these methods was driven by their ability to
handle various complexities in the dataset, such as imbalanced data and high-dimensional
features, which are common in web performance prediction tasks.

3.2.1. Naive Bayes

NB [74] means that features (i.e., web page attributes) are conditionally independent
of a specified label (in this instance, a performance label). Based on this concept, for a web
page WP; = {t1, t,, ..., t IWP; |}, where t; is a metric of web page, and a label C;, we have

[Wp|
P(WP; | C)) =[] p(t: 1 C) 1)
=T

Applying Bayes’ theorem to Equation (1) yields

_ N p(Ci=c) x p(WP|Ci=c)
PG =cWP) = £~ oiCma) x p(WRIG=)
p(Ci=0) x TP ptIc) @
= WP]

T eqen PC=) x TINY! p(t]C:)

We apply Equation (2) to predict the label for a web page WP;. For example, if max
P(C; = c| WP;) is determined for a web page, we classify the web page as a performance level
c; else is similar. The key advantage of NB is the short training time for its computational
complexity since it assumes the conditional independence between features.

3.2.2. Naive Bayes Multinomial

Naive Bayes Multinomial (NBM) builds upon the original Naive Bayes (NB) [74].
NBM recognizes that the impact of a webpage characteristic (feature) on performance is not
solely dependent on its presence or absence. Instead, the time at which that feature appears
can also be significant. This consideration can be particularly advantageous when dealing
with datasets containing a large number of unique values for webpage characteristics. In
essence, NBM often outperforms NB in such scenarios.

3.2.3. K-Nearest Neighbours

k-Nearest Neighbors (kNN) [75] is a machine learning technique that relies on similar
instances. In the context of website performance prediction, kNN predicts the performance



Al 2025, 6,19

11 of 35

label of a new webpage by considering its k-Nearest Neighbors (kNN) in the training data.
The underlying assumption is that websites with similar characteristics will likely have
similar performance. The kNN algorithm works in two steps:

1. Find Nearest Neighbors: Given a new, unlabeled webpage, kNN searches the training
data to identify its k closest neighbors based on a chosen distance metric. Common
distance metrics include Euclidean distance, Minkowski distance, and Manhattan
distance. In this study, we utilize Euclidean distance.

2. Predict Performance Label: kNN assigns the most frequent performance label from the
k nearest neighbors to the new webpage. For example, if the majority of its neighbors
are labeled as “high performance”, the new webpage is also predicted to have “high
performance”.

3.2.4. Support Vector Machine

Support Vector Machine (SVM) [75] is a powerful machine learning technique rooted
in statistical learning theory. SVMs excel at classification tasks by creating hyperplanes
(decision boundaries) in a high-dimensional space. Each website in the training data is
transformed into a point within this space, with each feature acting as a dimension.

The SVM algorithm strategically identifies a small number of critical training instances,
called support vectors. These support vectors represent the boundaries between different
performance levels. The SVM then constructs a function, either linear or non-linear de-
pending on the data, to separate these performance levels while maximizing the margin
(distance) between them.

3.2.5. Bayesian Network

Bayesian Network (BN) [76] is a powerful tool that leverages probability theory to
understand the connections between website characteristics (features) and performance
levels (labels). Unlike traditional models, BN utilizes a directed acyclic graph (DAG) where
each node represents a feature or a label. Importantly, directed edges between nodes
indicate a causal relationship.

In our framework, during the model-building phase, BN would automatically con-
struct such a graph based on the training data containing web page characteristics. Once
built, this BN can be used in the prediction phase to estimate the unknown performance
level for a new webpage.

3.2.6. Decision Tree

Decision Tree algorithms [75] are popular machine learning techniques that use a
tree-like structure to make predictions. Each internal node in the tree asks a question about
a specific feature of the data (e.g., “Is the webpage performance good?”). The branches
represent the possible answers to that question, and the leaf nodes represent the final
prediction (e.g., “high performance” or “low performance”). The topmost node is called
the root node.

There are many different decision tree algorithms, but one of the most well-known
is ID3, developed by Ross Quinlan. ID3 focuses on creating a shallow tree (with minimal
depth) without necessarily considering the number of leaf nodes. In this study, we utilize
C4.5, an improved version of ID3. C4.5 builds upon ID3 by addressing areas like handling
default values, pruning unnecessary branches, and other refinements.

3.2.7. Logistic Regression

Logistic Regression [77] is a statistical method commonly used for classification tasks.
It analyzes the relationship between independent variables (like webpage features) and



Al 2025, 6,19

12 of 35

a dependent variable (performance label) to predict the probability of an outcome. In
this study, we leverage multinomial logistic regression, an extension of binary logistic
regression, to handle multiple performance levels (more than two categories).

Here, we assign one specific performance level (e.g., “unacceptable”) as the baseline
class, denoted as Y = hy. This allows us to model the probabilities of all other performance
levels relative to the baseline.

1
PY=hy| Xq,Xp,...,Xk) = 3
( 0 X1, Xz ) 1+ Z;]:/:ll e(an+by X1 +bpp Xo+...+ B Xx) ®)
For other classes (except for hy), we have
e +bi X1 +bio Xo+...+ B X )
P(Y=h|X,Xp,...,Xy) 4)

14+ Ethfll e(an+bp Xy +bgo Xo+..+ B Xx)

The link between the independent variables and the dependent variable must be
described by M — 1 equations if there are M classes. We can assign a new web page to a
certain performance level by comparing probabilities across various labels.

3.2.8. AdaBoost

The AdaBoost algorithm, introduced by Freund and Schapire in 1997 [78], operates by
iteratively calling a specified weak or base learner across multiple rounds, using a training
set (x;, y;). Here, each x; belongs to a specific domain or instance space X (such as web
page characteristics), and each label y; exists within a designated label set Y (representing
web page performance levels). The fundamental concept underlying AdaBoost involves
establishing a distribution or set of weights over the training set. These weights, denoted as
Dy (i) for training sample i at round ¢, are initially assigned equally. During each subsequent
round, the weights of misclassified samples are increased, encouraging the base learner to
focus on challenging examples within the training set.

3.2.9. Random Forests

The Random Forest algorithm [79] stands as another ensemble classification technique.
Random Forest combines tree predictors in such a way that each tree’s structure relies
on the values of a randomly sampled vector, drawn independently and from the same
distribution across all trees in the forest. The typical procedure of Random Forest entails
generating a random vector Vj for the k-th tree, which is independent of previous random
vectors but adheres to the same distribution. Using this vector and the training set, a tree is
constructed, resulting in a distinct classifier C(x, Vi), where x represents an input vector.
The composition and dimensions of vector V vary depending on its use in tree construction.
Upon generating a significant number of trees, each tree contributes a unit vote towards
determining the most prevalent class for a given input x.

4. Methodology

The research work (see Figure 2) consists of the following tasks: (i) dataset acquisition,
(if) preprocessing, (iii) feature selection, and (iv) deploying a machine learning model. Each
module is described as follows:



Al 2025, 6,19

13 of 35

Figure 2. Block diagram of the proposed approach.

4.1. Dataset

Initially, 223 quality factors were extracted based on a comprehensive review of
literature, standards, and practical considerations. These factors were subjected to a
process of eliminating duplicates and employing filtering techniques (memoing) the pool
to 59 relevant metrics. After refining the 59 quality factors, we conducted an online survey
(sample questionnaire in Figure 3) to gather feedback from a sample of 35 web developers,
performance experts, and industry professionals. The survey included the identified metrics
and asked respondents to rate them on a scale from 1 (poor) to 3 (excellent). The selection
of the final 16 metrics was driven by both statistical analysis and expert consensus.

A critical aspect of the feature selection process was the application of a threshold
approach, where metrics rated as “excellent” (score of 3) by more than 50% of the par-
ticipants were immediately included in the final set. In cases where metrics received a
rating of 40-50%, they were further evaluated using a weighted approach, considering their
practical importance and relevance to specific performance characteristics. For example,
metrics that showed high relevance to real-world performance issues, such as load times
and responsiveness, were prioritized.

Additionally, to ensure the robustness of the feature selection, metrics that showed
high correlation or overlap in terms of the information they provided were carefully
evaluated. Redundant metrics were excluded from the final set to ensure that each of the
16 metrics contributed unique and complementary information to the overall assessment of
website performance. The selected features were then used for machine learning modeling,
ensuring that the metrics chosen were not only statistically significant but also practically
impactful for developers and end-users, forming the basis of our dataset for analysis.



Al 2025, 6,19

14 of 35

What are the best attributes that affect the websites’ performance?

><

Section (1)

First CPU idle : First CPU Idle measures when a page is minimally interactive, or when the
window is quiet enough to handle user

Poor Excellent

Speed index : The Speed Index is expressed in milliseconds and obsessed with size of the
view port. It is the common time at which visible parts of the page are displayed

Poor Excellent

Figure 3. Sample of questionnaire online.

To ensure diversity and minimize dataset biases, data were gathered from a wide range
of sources and meticulously prepared for analysis. A total of 11,200 values were collected
from 800 websites, selected from the Alexa Top Sites, which ranks websites globally based
on popularity. This dataset includes domains such as .com, .net, .org, .edu, .gov, .info,
and .int, representing a broad spectrum of industries and levels of complexity, including
educational, governmental, informational, and commercial sectors.

While the selection of popular websites ensures robust and diverse representation, we
acknowledge the potential limitation of over-representing highly ranked websites, which
may not fully capture the characteristics of less popular or niche websites. Future research
could expand this dataset to include websites across a wider range of popularity rankings
to further enhance the generalizability of the findings.

However, during the data collection process, it was noted that one of the classes was
underrepresented compared to the others. To address this imbalance, several techniques
were applied to balance the dataset before further processing. These techniques included
oversampling the minority class by generating synthetic samples using methods such
as SMOTE (Synthetic Minority Over-sampling Technique) [80] and undersampling the
majority class by randomly removing samples from it [80]. These adjustments ensured a
more balanced and representative dataset for training and analysis, thereby improving
model performance and addressing the bias toward the majority class.

This dataset was based on the 16 selected attributes chosen from the initial pool of 59.
The acquisition of data for all metrics involved the utilization of website diagnostic tools.
The specifics of these tools are presented in Table 2, providing insight into the instruments
employed in the study. The dataset consists of the following 16 metrics:

Response time: Period of time for sending a request and receiving a response (seconds).
Load time: used to calculate the time required to load a page and its graphics (seconds).
Page size: the size of the web pages in the website (MB).

Broken link: broken links always reduce the quality of the website. Websites have internal
or external links. A visitor expects the links to be valid, loads successfully to the clicked
page (number).



Al 2025, 6,19

15 of 35

No of Request: the number of requests/responses between a client and a host (number).
First byte: measures the time elapsed between the moment an internet user makes
an HTTP request, like loading a webpage, to the time the first byte is received by the
client’s browser (seconds).

Start render time: the moment when a web page begins to display content in a user’s
browser (seconds).

Largest contentful paint: measuring perceived load speed as it marks the page load
timeline when the page’s main content has been loaded (seconds).

Total link: total links on page (number).

Markup validation: calculate the number of HTML errors that exist on the website, such
as orphan codes, coding errors, missing tags and etc. (number).

Time to interactive: the duration it takes for a web page to become fully interactive for
users (seconds).

Compression: JavaScript and CSS ensure proper compression; this makes the website
run much faster (KB)

Document complete time: the duration it takes for a web page to fully load, including
all its resources such as images, stylesheets, and scripts (seconds).

Byte in: the amount of information that the browser had to download to load the
page (MB).

Design optimization: The scripts, HTML or CSS codes optimized for faster loading.
The optimization also reduces the number of website elements such as images, scripts,
html, css codes or video (%).

Speed Index (Performance): A metric that measures how quickly content is visually
displayed during the loading of a web page. It quantifies the perceived load time of a
webpage, taking into account both the time to load and the visual completeness of the
page as it loads (%).

Table 2. Online web-diagnostic tools for data collection.

Web Metric

Web-Diagnostic Tools

Response Time

www.websitepulse.com (accessed on 9 January 2025)

Load Time

www.gtmetrix.com (accessed on 9 January 2025)

Broken Links

www.duplichecker.com/broken-link-checker.php (accessed on 9 January 2025)

No. of Requests

www.gtmetrix.com (accessed on 9 January 2025)

page size

www.gtmetrix.com (accessed on 9 January 2025)

page speed

www.gtmetrix.com (accessed on 9 January 2025)

mark-up validation

validator.w3.org/#validate_by_url (accessed on 9 January 2025)

design optimization

www.land1.com/website-checker (accessed on 9 January 2025)

First byte

www.websitepulse.com/ (accessed on 9 January 2025)

Start Time Render

www.webpagetest.org/ (accessed on 9 January 2025)

Largest contentful paint

www.websitepulse.com/ (accessed on 9 January 2025)

Total link

www.duplichecker.com/link-count-checker.php (accessed on 9 January 2025)

Time to interactive

gtmetrix.com/ (accessed on 9 January 2025)

Compression

www.giftofspeed.com/gzip-test/ (accessed on 9 January 2025)

Document complete time

wpt.fasterize.com/ (accessed on 9 January 2025)

Byte in

wpt.fasterize.com/%20(accessed on 9 January 2025)



www.websitepulse.com
www.gtmetrix.com
www.duplichecker.com/broken-link-checker.php
www.gtmetrix.com
www.gtmetrix.com
www.gtmetrix.com
validator.w3.org/#validate_by_url
www.1and1.com/website-checker
www.websitepulse.com/
www.webpagetest.org/
www.websitepulse.com/
www.duplichecker.com/link-count-checker.php
gtmetrix.com/
www.giftofspeed.com/gzip-test/
wpt.fasterize.com/
wpt.fasterize.com/%20

Al 2025, 6,19

16 of 35

4.2. Data Preprocessing

Preprocessing helps transform data so that a better machine learning model can be
built, providing higher accuracy. The preprocessing performs various functions: outlier
rejection, filling missing values, and feature selection to improve the quality of data.

4.2.1. Missing Value Identification

Using the Python libraries pandas, numpy, seaborn and matplotlib.pyplot, we obtained
the missing values in the datasets, shown in Figure 4. To handle these missing values, we
replaced the missing value with the corresponding mean value. This imputation technique
is commonly used for numerical features when the proportion of missing data is relatively
small, and when the data are assumed to be missing at random.

- 1.0

- 0.8

' ' ' ' '
Q Q0 QX & 0 Q0 ¥ X Cc 0 € OV c £ W
NE YYE EEE 020 FE =0V
EENE 0o 5 E 22 E T8 ¢
S5 "W 328 S5 8380 Q85 8% s
19 e T %5 383 oS8 E
YR oL ePesg=255S 8¢ E
cogolcv»..srou,_g £ o
o o ‘S c > € £ - < T
2 5 © 9 5 1= 8 B o8
0 8 e %oug Ol&
& £s ¥ 9 5
v} =
% ® £ r3 @
o &
7] = [} 8
. b4
A £
5 2
- <]
S

Figure 4. This figure is a missing value heatmap showing the distribution of missing data across the
dataset. The x-axis represents variables, the y-axis represents data points, and the color bar indicates
missing values (white for missing), with white lines highlighting rows where data is missing for
specific variables.

4.2.2. Outlier Identification and Handling

Using the Python libraries pandas and plotly.express, we filtered the dataset to detect
and handle outliers based on the interquartile range (IQR). We generated box plots for
numerical features to visualize their distribution and identify any data points significantly
outside the IQR, which could be potential outliers, as shown in Figure 5.

After that, to address the issue of outliers, we employed the interquartile range (IQR)
technique, also called the midspread or middle 50%, which is a measure of statistical
dispersion equal to the difference between the 75th and 25th percentiles (Q3 — Q1). This
method is used for handling outliers, as shown in Figure 6.



17 of 35

200 400 600 800 1000

Load_time

Figure 5. This figure illustrates a boxplot of the Load time variable, displaying its median, interquartile
range, and outliers. The dots beyond the whiskers represent outliers, indicating unusually high or
low load time values in the dataset.

Load_time

Figure 6. This boxplot illustrates the distribution of load time, with the median around 3 s and the
majority of values falling between 2 and 4 s. Outliers are present, indicating some Load time values
exceeding 8 s.

4.3. Dataset Analysis

The heatmap presented in Figure 7 shows the correlation matrix for various web
performance metrics. Here is an analysis based on the heatmap:

4.3.1. High Positive Correlations

e  Document Complete Time and Load Time: These metrics show a strong positive
correlation, indicating that as the load time increases, the document complete time
also increases. This is expected since longer load times usually result in longer overall
document completion times.

e Speed and Response Time: A high correlation exists between these two metrics,
suggesting that better performance is associated with faster response times.

4.3.2. High Negative Correlations

e Load Time and Compression: There is a noticeable negative correlation between
load time and compression. This indicates that better compression (lower values) is
associated with faster load times.



Al 2025, 6,19

18 of 35

Speed and Load Time: There is a strong negative correlation between performance
and load time, implying that higher performance is linked to lower load times.
‘ : 1.00
Load_time | |

Performance 0.75

Response_time . '

broken_link

- 0.50
byte_in
compression

: o - 0.25
design_optimization
document_complete_time “
. - 0.00
first_byte .
largest_contentful_paint
e - —0.25
markup_validation
no_of_request
. -0.50
page_size
start_render_time
; i ; -0.75
time_to_interactive
total_link
-1.00
Q O O X C C C 0 W EFE CH L OV OV X
ELEE IS S ESSSo9NEZE
= € = = o n B = © o W = 5 =
585 g 8®FOawg 150
g £ 0 g 3PN B oYsCe
8 5 2 X S EQB LE2TFT Sies 89
St g B EEaFEgE>saaceE”
g2 S8E gdg &7
] -1 o c 2 ¢ o2

Figure 7. This matrix shows the Pearson correlation coefficients between pairs of variables, with

values ranging from —1 to 1.

4.3.3. Moderate Positive Correlations

Start Render Time and Load Time: There is a moderate positive correlation, which
indicates that pages that take longer to load also take longer to start rendering.

Total Link and No of Request: The correlation here suggests that pages with more links
tend to have more requests, which is logical as each link often involves additional
HTTP requests.

4.3.4. Moderate Negative Correlations

Time to Interactive and Compression: This indicates that better compression is linked
to a faster time to interact, enhancing the user experience.

Markup Validation and Speed: A moderate negative correlation indicates that better
HTML markup validation (fewer errors) is associated with better speed.

4.3.5. Low or No Correlations

Byte In and Total Link: The correlation is relatively low, indicating that the amount of
data downloaded is not strongly related to the number of links on a page.

4.3.6. Implications

Performance Optimization: Focus on improving load time, compression, and response
time, as these metrics strongly influence overall performance.

Feature Selection: Metrics with low correlations with performance, such as broken
links and bytes in, might be less critical for prediction models focusing solely on
performance.

User Experience: Ensuring good compression and minimizing load times can signifi-
cantly enhance the user’s interactive experience.



Al 2025, 6,19

19 of 35

Speed K b -0.49 -0.27 -0.57 -0.; . -0.34 -0.26
Response_time - -0.43 . 0.09 0.06 O. 5 0.18 0.055
Load_time - -0.59 Hi¥ 0.38 [0.072| 0.44 5 0.32 0.18 3 0.35 | 0.1
page_size - -0.49 | . i A 0.17 0.14 5 0.23 0.087
broken_link - -0.27 ¢ 0.06 0.1
no_of_request - -0.57 [0} .44 i | 0.11 0.09 3 0.34 | 0.13
first_byte - -0.22 N : 0.12 0.28 0.28 0.25
start_render_time - -0.29 [} A 0.17 : : 1 [FO36 0.28 0.064
largest_contentful_paint - -0.15 . 0.14 0.06 O. ; 0.16 1 0.39 /0.045
total_link 0.03

markup_validation - -0.27 [e8 K 0.17 0.096 O. 0.037 0.066 0.076

design_optimization

This correlation matrix provides valuable insights into the relationships between differ-
ent web performance metrics. Understanding these correlations can help in identifying key
areas for optimization, improving the overall user experience, and building more accurate
predictive models for web page performance.

4.4. Feature Selection

In this study, we calculated Pearson’s R coefficient for each pair of features to determine
the strength and direction of the linear relationship between them. Pearson’s R, which
ranges from —1 to 1, measures the linear correlation between two variables, where values
closer to 1 indicate a strong positive correlation, values closer to —1 indicate a strong
negative correlation, and values around 0 indicate no linear correlation [81]. We visualized
the results using a heatmap, which allowed us to identify the most significant features. By
examining these correlations, we were able to select the features that have the strongest
relationships with each other, ensuring a more robust analysis and better optimization of
web performance metrics are shown in Figure 8.

time_to_interactive - -0.34 . 0.23 L 5 0.28 0.39 | 0.03 0.066

--0.2

compression - -0.26 .1 0.087 0.1 . L1:; 0.064 0.045 0.076

document_complete_time - -0.52 [ : 0.45 [0.065 O. . 0.47 | 0.14 0.15 0.27 0.076

--0.4

byte_in 0.039

N
=
w

' ' i ' i |
o [] [ [ £ = 9 i = < [ o c 1 c c
o £ £ N e ] =3 £ £ £ 2 s 2 € =y 2
& = 5 @& S oz &8 5 g o8 %@ 5 g 0B
vy o' <! L) g g o 5 - 8 = B o o' E’ g
2 b o L 2 4 2 = =} = o} a @ £
c 3 s el wl = L] = 4 = E i) =
o 5 5] & c | £ o |
2 SI E, g = o ] £ 5
1
& £ H £ 9 S c
] Iv) S o o 2
#® o g £ = @
0 B [ .3

o £

< 5

=
K o
8

Figure 8. The heatmap shows the correlation between variables: dark red (close to +1) indicates
strong positive correlation, light red /white (close to 0) indicates weak or no correlation, and dark
negative red (close to —1) indicates strong negative correlation. Strongly correlated features (positive
or negative) may indicate redundancy or inverse relationships. This helps in feature selection,
understanding dependencies, and optimizing performance.



Al 2025, 6,19

20 of 35

4.4.1. Correlation Analysis

In our study, we employed correlation analysis to understand the relationship be-
tween various input attributes and the target output, which in this context is web page
performance as it is shown in Table 3.

Table 3. The correlation coefficients between input attributes such as load time, number of requests,
document complete time, page size, response time, time to interactive, start render time, markup
validation, broken links, and compression, and the performance output.

Attributes Correlation Coefficient
Load_time —0.593609
no_of_request —0.571076
document_complete_time —0.519318
page_size —0.490623
Response_time —0.428263
time_to_interactive —0.342505
start_render_time —0.291571
markup_validation —0.266116
broken_link —0.265718
compression —0.255235

o Load Time (Correlation: —0.593609): Load time has a strong negative correlation with
performance, indicating that longer load times are associated with poorer performance.

e  Number of Requests (Correlation: —0.571076): Similarly, a higher number of requests
negatively impacts performance, likely due to increased server load and latency.

e  Document Complete Time (Correlation: —0.519318): This metric also shows a signif-
icant negative correlation, suggesting that pages taking longer to reach completion
negatively affect user experience.

e  DPage Size (Correlation: —0.490623): Larger page sizes are correlated with lower perfor-
mance, likely due to increased download times.

e  Response Time (Correlation: —0.428263): Faster response times improve performance,
as expected.

e Time to Interactive (Correlation: —0.342505): This metric measures the time taken
for the page to become fully interactive, and shorter times are associated with better
performance.

e  Start Render Time (Correlation: —0.291571): Pages that start rendering more quickly
tend to perform better.

e  Markup Validation (Correlation: —0.266116): Better HTML markup validation (fewer
errors) slightly improves performance.

e  Broken Links (Correlation: —0.265718): The presence of broken links slightly nega-
tively impacts performance, though less significantly than other factors.

o  Compression (Correlation: —0.255235): Effective compression techniques correlate
with improved performance by reducing load times and data transfer.

4.4.2. Feature Selection Strategy

Based on the correlation analysis, we prioritized features with the highest absolute
correlation coefficients for inclusion in our predictive models. Features like Load Time,
Number of Requests, Document Complete Time, and Page Size were identified as key
predictors due to their strong negative correlations with performance (see Figure 9).



Al 2025, 6,19

21 of 35

1.0 1
0.8 1
0.6 1
0.4 4
0.2 1
0.0 4 I I m -
-0.2 1
-0.4 4
-0.6 -
T T T T T T T T T T T r T T T v
U ¥ 0 @9 @ 9 0 £ xXx £ @ % X c £ T
E § E N E 2 E 6 £ 6 ¥ £ & = o o
= 5 = () = & = o = w o T = v & LY
= - (I A U a ! o
- ¥ o 2 o & ' 3§ ¢ L ST BN
© - -~ o v o v = g a [ % =] ‘6‘ = E
Il 2 2 ¢ &«# B © F e & 8 c
3 % B s £ 5 > § E 2 g
gl g g g I S U < i
= c
o & (I = S c
o [ o = v =3
c £ w g aa? v
o s 2 ¥
: >
2 -
é i)

Figure 9. Feature importance for predicting website speed based on correlation analysis. Positive
values indicate features positively correlated with speed, while negative values indicate negative
correlations.

High-Correlation Features: Features such as load time, number of requests, and
document complete time were selected for their significant impact on performance.
These features are critical as they directly influence the user’s experience and are
highly predictive of performance issues.

Moderate-Correlation Features: Attributes like page size and response time, while
slightly less correlated, still provide valuable information and were included in the
model. These features often capture different aspects of the page-loading process that
are not fully represented by high-correlation features.

Low-Correlation Features: Features with lower correlation coefficients, such as markup
validation, broken links, and compression, were considered less critical but still poten-
tially useful. These features were included selectively based on their contribution to
the overall model accuracy during preliminary testing.

4.4.3. Impact of Feature Selection

The application of feature selection significantly enhanced the performance of our

classification models. By focusing on the most relevant features, we were able to

Improve Model Accuracy: Models trained on the selected features demonstrated
higher accuracy and better generalization to new data.

Reduce Overfitting: By eliminating irrelevant or redundant features, we reduced the
risk of overfitting, ensuring that the model performs well on unseen data.



Al 2025, 6,19

22 of 35

e  Enhance Interpretability: A reduced feature set simplifies the model, making it easier
to interpret and understand the relationships between input variables and performance
outcomes.

In conclusion, feature selection based on correlation analysis was pivotal in refining
our predictive framework. It allowed us to build more efficient and effective models,
ultimately will aid web developers and software engineers in predicting and optimizing
web page performance.

5. Experiments and Results
5.1. Experiment Setup

All experiments were conducted using Python 3.10 within the Google Colab envi-
ronment, ensuring an up-to-date and stable setup. The implementation relied on widely
used libraries, including Scikit-learn (1.3.0) for machine learning models and preprocessing,
NumPy (1.24) for numerical computations, Pandas (2.1.0) for data handling, XGBoost
(1.7) for gradient boosting, and SciPy (1.11) for statistical analysis and optimization tasks.
Data visualization was performed using Matplotlib (3.8) and Seaborn (0.13.0). These tools
were chosen for their robustness, extensive community support, and proven application in
similar research domains, ensuring the reliability, adaptability, and reproducibility of the
experiments.

This study explores the effectiveness of various ML classification algorithms for web
page performance evaluation. Two experiments are conducted, comparing model perfor-
mance on both the original dataset and a feature-selected version.

Prior to employing ML techniques, the performance level of each web page within
the dataset was manually assigned. This assignment was based solely on the web page
speed feature.

The following criteria were used for performance-level labeling:

performance level = if (Speed > 80 and Speed < 100) then “Excellent”
else if (Speed > 70 and Speed < 79) then “Good”
else “Unacceptable”

We utilize stratified ten-fold cross-validation [82] to assess the performance of our
proposed tool. The dataset is randomly partitioned into ten folds, with nine of these folds
used for training the classification model, and the remaining fold used for evaluating the
model’s performance. This process is repeated ten times, and the average performance
across all iterations is recorded. Stratified cross-validation is a widely adopted evaluation
method in software engineering research [83,84], ensuring a balanced and comprehensive
assessment of model performance.

This study explores the effectiveness of various machine learning (ML) classification
algorithms for web page performance evaluation. Two experiments are conducted, com-
paring model performance on both the original dataset and a feature-selected version. The
implementation includes nine models, such as Support Vector Machines (§VMs), Random
Forest (RF), k-Nearest Neighbors (KNN), Naive Bayes, Multinomial Naive Bayes, Bayesian
Network, Decision Tree, Logistic Regression, and AdaBoost Classifier, all of which are
implemented using the Sklearn library package available in Python. To optimize the per-
formance of these machine learning algorithms, several hyperparameters were carefully
selected after an exhaustive experimentation phase and fine-tuned for each model. For
the Random Forest classifier, 100 estimators were chosen with max_features = ‘sqrt’, a
commonly used configuration for improved performance. The SVM model utilized a
linear kernel with a regularization parameter C = 1.0, while the K-Nearest Neighbor (KNN)
algorithm was set with 5 neighbors, a setting shown to perform well for a variety of tasks.



Al 2025, 6,19

23 of 35

For Naive Bayes, both Gaussian and Multinomial variants were employed with default pa-
rameters, as they are effective for the given data type. The Decision Tree model was trained
using default settings, but further tuning could enhance its depth. Logistic Regression
and AdaBoost were applied with default configurations, though adjustments such as the
regularization strength C for Logistic Regression and the learning rate for AdaBoost could
optimize performance further. Table 4 provides a detailed summary of the hyperparameters
used for each algorithm.

Table 4. This table summarizes the hyperparameter configurations used for each machine
learning model applied in this study. It includes fine-tuned values (e.g., Random Forest with
n_estimators = 100 and max_features = ‘sqrt’) as well as default settings (e.g., Logistic Regression
with C = 1.0). The table also provides descriptions of each hyperparameter, helping to clarify their

roles in model optimization.

Algorithm Hyperparameter Value Description
Random Forest (RF) Numb.er of Estimators 100 Number of trees in the forest.
(n_estimators)
. The number of features
Maximum Features , , . .
sqrt considered when looking for the
(max_features) .
best split.
Support Vector Machine . Specifies the kernel type to be
(SVM) Kernel (kernel) Linear used in the algorithm.
Regularization parameter; the
Regularization (C) 1.0 strength of the penalty is
inversely proportional.
K-Nearest Neighbor Number of Neighbors 5 Number of neighbors to use for
(KNN) (n_neighbors) voting.
Weight Function (weights) ~ Uniform All points in each neighborhood
are weighted equally.

Naive Bayes (Gaussian)

Smoothing Parameter
(var_smoothing)

Default (1 x 1079)

Portion of the largest variance of
all features added to variances for
stability.

Naive Bayes (Multinomial) Alpha (alpha) Default (1.0) Additive smoothing parameter.
Bayesian Network Configuration Default Utﬂ.l zed with default parameter
settings.
Decision Tree Criterion (criterion) Default (‘gini’) The 'functlon to. measure the
quality of a split.
Maximum Depth Default (None) The maximum depth of the tree.

(max_depth)

Logistic Regression

Regularization (C)

Default (1.0)

Inverse of regularization strength.
Algorithm to use in the

Solver (solver) Default (‘Ibfgs’) optimization problem.
. Base Estimator If None, a Decision Tree with
AdaBoost Classifier (base_estimator) Default (None) max_depth = 1 is used.
Number of Estimators Default (50) The maximum number of

(n_estimators)
Learning Rate
(learning_rate)

Default (1.0)

estimators.
Weight applied to each classifier
at each boosting iteration.

The selection of hyperparameters was based on a combination of recommendations
from the literature and a systematic experimentation process. For example, the number of
estimators in Random Forest (n_estimators = 100) is commonly suggested in the literature
as a balance between performance and computational efficiency [80]. The max_features



Al 2025, 6,19

24 of 35

parameter (‘sqrt’) is widely used as it prevents overfitting by limiting the number of features
considered at each split [85]. Similarly, the parameters for other algorithms (such as the
kernel and regularization in SVM) were set after extensive trial and error, aiming to achieve
optimal performance across different classifiers. These values were chosen after evaluating
their impact on the model’s accuracy and generalization through cross-validation, ensuring
that the selected parameters provided the best trade-off between bias and variance for the
task at hand.

5.2. Evaluation Metrics

To assess the predictive performance of our proposed approach and framework, we
employ multi-label classification. A web page can either be correctly assigned to a specific
performance label (true positive, TP;) or misclassified as that label when it does not actually
belong to it (false positive, FP;). Alternatively, it may be incorrectly classified as not having
a specific label (false negative, FN;) or correctly classified as not having the label (true
negative, TN;). For each performance label, we calculate key metrics such as accuracy,
precision, recall, and F-measure scores to evaluate the performance of our framework. Each
label ¢; is treated as a binary classification problem, allowing us to calculate these metrics
to assess the model’s overall effectiveness in predicting performance labels.

Accuracy: The ratio of correctly classified web pages (for all three labels) to total web
pages is known as accuracy. We have one label, c;:

TP; + TN;

A = B(TP;,, FP;,FN;, TN;) =
ccuracy (TP;, FP; i i) TP, + FP;+ TN+ FN ©

The average accuracy of all the labels can be represented as:

14

AvgAcc = 62 B(TP;, FP;, FN;, TN;) (6)
i=1

Precision: the percentage of web pages with the proper label (c;) out of those with the

exact label (¢)), i.e.,
TP;
P(c:) = LA 7
() = 751 Fp, @

“u_

Recall: the percentage of pages with the label “c;” that are appropriately labeled,

that is,
TP;

P(c) = =——— 8
(ci) TP+ FN; ®
F-measure: is a composite metric that balances both precision and recall. It assesses
whether an improvement in one of these metrics (e.g., precision) compensates for a decline
in the other (e.g., recall). In the context of web page performance, the F-measure provides a
unified evaluation of a model’s ability to accurately classify performance labels, considering

both the precision and recall trade-offs:

_ 2% P(C) «R(C)

FO) = 51RO

©)

The metrics P(C) and R(C) represent the average precision and recall for all the labels,
with equal weight given to each. Both precision and recall are crucial for evaluating
web page performance prediction, as they provide insights into the effectiveness of our
tool from two different perspectives. Low precision implies that developers may avoid
using the tool due to a high rate of false positives [82]. On the other hand, low recall
would also discourage use, as the tool would fail to predict the performance of many
web pages accurately. There is an inherent tradeoff between precision and recall, where



Al 2025, 6,19

25 of 35

Score

improving one often leads to a decline in the other. To address this, the F-measure, which
is the harmonic mean of precision and recall, is used to determine whether enhancing one
metric compensates for the decrease in the other. F-measure is widely adopted in software
engineering literature as a comprehensive evaluation metric.

5.3. Experimental Results

To evaluate the practical applicability of our framework, we tested nine state-of-the-art
classification algorithms on both the original dataset and a version with feature selection.
The primary objectives of our experiments are twofold:

e  Evaluate the effectiveness of the proposed framework on both the original dataset and
a feature-selected version.
e  Validate which classification algorithm has the best performance for realistic usage.

To the best of our knowledge, we are pioneers in applying classification algorithms for
predicting web page performance in the accessible literature, and as such, we did not have
any existing methods with which to compare our prediction framework.

5.3.1. Scenario 1
In this experiment, the original collected dataset is used. Figure 10 shows a comparison

between state-of-the-art methods.

Comparison of Model Performance Metrics

0.8

0.7 |

0.6 1

0.5 1

0.4 1

0.3 |

0.2 1

0.1

0.0

Wl Accuracy
I Precision
m Recall

Bl Fl-score

Figure 10. Experimental results on dataset without feature selection and a comparison between
state-of-the-art methods.

Table 5 shows the accuracy, precision, recall and F-measure scores for nine classification
algorithms, respectively. We can find that some classification algorithms present obviously
better performance than others. In terms of accuracy, SVMs (0.87) presented the best
performance, followed by logistic regression (0.84).



Al 2025, 6,19

26 of 35

Score

0.8

0.6 |

0.4

0.2

0.0

Table 5. The prediction performance of selected classifier on dataset without feature selection,

measured using metrics such as accuracy, precision, recall, and F1-score.

Method Acc. (%) P (%) R (%) F1-Score
RF 80 81 80 80
SVMs 87 87 87 87
KNN 63 64 63 63
Naive Bayes 73 73 72 72
Naive Bayes multinomial 62 62 62 62
Bayesian network 73 73 73 72
DecisionTree 67 67 67 67
Logistic regression 84 84 84 84
AdaBoost 80 83 80 80

5.3.2. Scenario 2

In this experiment, a feature-selected dataset is used. Figure 11 shows a comparison

between state-of-the-art methods.

Comparison of Model Performance Metrics

| Accuracy
Precision
Recall
I I = Fl-score
&
«°& "}
& ) z &
O & .(\0
& g &
& N &

Figure 11. Experimental results on dataset with feature selection and a comparison between state-of-

the-art methods.

Table 6 shows the accuracy, precision, recall and F-measure scores for nine classification

algorithms on a feature-selected dataset, respectively. We can find that some classification

algorithms present obviously better performance than others. In terms of accuracy, SVMs

(0.89) presented the best performance, followed by Random Forest Classifier (0.81).



Al 2025, 6,19

27 of 35

Table 6. The prediction performance of selected classifier on a dataset with feature selection, measured
using metrics such as accuracy, precision, recall, and F1-score.

Method Acc. (%) P (%) R (%) F1-Score
RF 81 81 81 81
SVMs 89 89 89 89
KNN 68 69 68 68
Naive Bayes 74 75 74 74
Naive Bayes multinomial 49 48 49 48
Bayesian network 74 75 74 75
DecisionTree 69 69 69 69
Logistic regression 77 79 77 77
AdaBoost 77 80 77 77

5.3.3. Using Statistical Test

To assess if there are significant differences in predictive accuracy among the employed
Machine Learning (ML) techniques for web page load time prediction, we utilized the Fried-
man test [86]. The Friedman test is a non-parametric test suitable when the assumptions
for one-way ANOVA with repeated measures, like normality of residuals and constant
error variance across treatments, are not guaranteed. In our case, the treatments represent
different ML techniques, and individual web pages act as the subjects. The observations are
the absolute residual errors in web page load time predicted by each ML algorithm. The
test statistic of the Friedman test approximates a chi-square distribution with k-1 degrees
of freedom, where k represents the number of ML techniques employed. A statistically
significant result (p-value < ), where « is the chosen significance level (typically 0.05),
indicates a difference in performance exists across the models. If a significant difference is
found, post hoc pairwise comparisons can be conducted to pinpoint which specific pairs of
ML techniques differ significantly.

The Friedman test yielded a statistic of 18.2295 (x? (7)) with a p-value of 0.0196, which
is statistically significant (p-value < 0.05). This suggests that at least one ML technique
exhibits a statistically different predictive accuracy compared to others for web page load
time prediction.

Following the significant Friedman test result, Wilcoxon signed-rank tests were con-
ducted for pairwise comparisons between the ML techniques. Due to space limitations,
only significant results (p-value < 0.05) are reported here.

e  SVM outperformed Naive Bayes (p-value = 0.014).
e Random Forest outperformed Naive Bayes (p-value = 0.013) and Gaussian NB
(p-value = 0.013).

Multinomial NB exhibited lower accuracy compared to both KNN (p-value = 0.026)
and Naive Bayes (p-value = 0.026)

The results of the Friedman test revealed a statistically significant difference in the
predictive performance of the employed ML techniques for web page load time prediction.
Subsequent post hoc analysis using Wilcoxon signed-rank tests identified SVM as the
model with the highest accuracy, statistically outperforming Naive Bayes. Additionally,
Random Forest demonstrated a significant advantage over Naive Bayes and Gaussian
NB. Conversely, Multinomial NB displayed the lowest accuracy among the techniques,
performing significantly worse than both KNN and Naive Bayes (Table 7).



Al 2025, 6,19

28 of 35

Table 7. Pairwise statistical comparisons of machine learning techniques for web page load time

prediction.

Comparison p-Value

Random Forest vs. SVM 0.639

Random Forest vs. KNN 0.06

Random Forest vs. Naive Bayes 0.013

Random Forest vs. Multinomial NB 0.453

Random Forest vs. Gaussian NB 0.013

Random Forest vs. Decision Tree 0.986

Random Forest vs. Logistic Regression 0.793

Random Forest vs. AdaBoost 0.17

SVM vs. KNN 0.087

SVM vs. Naive Bayes 0.014

SVM vs. Multinomial NB 0.296

SVM vs. Gaussian NB 0.014

SVM vs. Decision Tree 0.773

SVM vs. Logistic Regression 0.879

SVM vs. AdaBoost 0.366

KNN vs. Naive Bayes 0.819

KNN vs. Multinomial NB 0.026

KNN vs. Gaussian NB 0.819

KNN vs. Decision Tree 0.117

KNN vs. Logistic Regression 0.123

KNN vs. AdaBoost 0.335

Naive Bayes vs. Multinomial NB 0.026

Naive Bayes vs. Decision Tree 0.049

Naive Bayes vs. Logistic Regression 0.027

Naive Bayes vs. AdaBoost 0.166

Multinomial NB vs. Gaussian NB 0.026

Multinomial NB vs. Decision Tree 0.44

Multinomial NB vs. Logistic Regression 0.368

Multinomial NB vs. AdaBoost 0.156

Gaussian NB vs. Decision Tree 0.049

Gaussian NB vs. Logistic Regression 0.027

Gaussian NB vs. AdaBoost 0.166

Decision Tree vs. Logistic Regression 0.859

Decision Tree vs. AdaBoost 0.268

Logistic Regression vs. AdaBoost 0.349

This study investigated the effectiveness of various Machine Learning techniques in
predicting web page load time. The findings indicate that the chosen ML techniques exhibit
statistically significant differences in their predictive accuracy. SVM emerged as the best
performing model, followed by Random Forest. These results provide valuable insights for
selecting appropriate ML techniques for web page load time prediction tasks.

6. Discussion

This section analyzes the performance of the classification algorithms used in this study,
highlights the implications for practical usage, emphasizes the benefits of feature selection,
and outlines the contributions of this research compared to previously published studies.

The comparative analysis of the algorithms revealed that Support Vector Machines
(SVMs) consistently achieved superior performance across all metrics in both the original
and feature-selected datasets. For the original dataset, SVM achieved an accuracy of 0.87,



Al 2025, 6,19

29 of 35

with equivalent precision, recall, and F1-score, demonstrating its robustness in handling
the complexity of the data. Logistic Regression also performed well, with slightly lower
but competitive metrics of 0.84 across all evaluation criteria. Random Forest and the
AdaBoost classifier followed closely, each achieving an accuracy of 0.80. In contrast, k-
Nearest Neighbors and Naive Bayes Multinomial were the least effective, with accuracies
of 0.63 and 0.62, respectively.

The application of feature selection techniques further enhanced the performance
of most algorithms, particularly SVMs and Random Forest. SVM achieved an improved
accuracy of 0.89 with feature selection, alongside similar gains in precision, recall, and
F1-score, underscoring the importance of preprocessing and feature engineering. Random
Forest also demonstrated a slight improvement, achieving an accuracy of 0.81, while
Bayesian Network and Naive Bayes exhibited competitive precision and recall, suggesting
their utility in specific contexts. Although the k-Nearest Neighbor classifier showed some
improvement with feature selection, it remained one of the least effective models.

These results underscore the superior capability of SVMs for predicting web page
performance, especially when combined with an effective feature selection process. SVMs’
ability to handle complex datasets and focus on significant predictors makes them the most
reliable choice for this task. Logistic Regression and Random Forest also emerged as viable
alternatives, offering balanced accuracy and interpretability, which can be advantageous for
general applications. The Bayesian Network demonstrated high recall, making it suitable
for identifying web pages with potential performance issues.

Feature selection played a critical role in improving the performance of the models. By
reducing the dimensionality of the dataset and eliminating irrelevant or redundant features,
feature selection allowed the algorithms to focus on the most informative predictors. This
process not only enhanced the accuracy of the models but also demonstrated the value of
preprocessing in improving the overall effectiveness of machine learning applications.

To evaluate the computational efficiency of the algorithms, both training and prediction
times were measured using Python’s timeit module. Random Forest showed a reasonable
balance with a training time of 220 ms and a prediction time of 8.99 ms. While SVM
required 489 ms for training, it achieved the highest accuracy of 89%, making it the most
suitable choice despite being computationally intensive. KNN and Gaussian Naive Bayes
exhibited minimal training times (2.14 ms and 2.2 ms, respectively), but with lower accuracy.
Decision Tree and Multinomial Naive Bayes offered moderate efficiencies, with training
times ranging from 3.17 ms to 5.86 ms. Logistic Regression faced convergence issues during
training. Despite its higher computational cost, SVM’s superior accuracy aligns with the
study’s focus on predictive performance.

The findings of this study have several practical implications. For general web page
performance prediction, SVMs are recommended due to their consistent top performance
across both datasets. Logistic Regression and Random Forest provide robust alternatives
for achieving balanced performance across multiple metrics, making them suitable for a
variety of real-world scenarios. For tasks requiring high recall, the Bayesian Network is
particularly effective in identifying web pages with potential issues.

Compared to previous studies, this research offers several unique contributions. Un-
like traditional methods that often rely on heuristic or rule-based approaches, this study
demonstrates the efficacy of state-of-the-art classification algorithms in web page perfor-
mance prediction, achieving significantly higher accuracy and reliability. The use of an
effective feature selection process further distinguishes this work, as it highlights the impact
of feature engineering in enhancing model performance—a factor often overlooked in prior
research. Additionally, the comprehensive dataset and rigorous methodology employed in
this study ensure the generalizability of the results, addressing limitations in earlier studies



Al 2025, 6,19

30 of 35

that relied on smaller or less diverse datasets. Finally, this paper introduces a practical, real-
world application framework capable of handling diverse data and providing actionable
insights for web developers.

7. Conclusions and Future Work
7.1. Recommendations and Future Work

This study highlights several key recommendations to guide the application and
further development of web page performance prediction frameworks. First, the findings
strongly advocate for prioritizing Support Vector Machines (SVMs) as the primary algo-
rithm, given its superior performance across all evaluated datasets. Organizations and
developers are encouraged to implement SVM as a reliable tool for predicting web page
load times.

Additionally, the study underscores the importance of robust feature selection. Thor-
ough analysis and selection of relevant features can significantly enhance model accuracy,
efficiency, and interpretability. Expanding the range of performance metrics beyond load
time, such as metrics that measure user interaction and engagement, would provide a more
holistic understanding of web page performance.

To ensure the framework remains effective over time, continuous monitoring and
adaptation are recommended. Regular updates reflecting advancements in web tech-
nologies and user behavior patterns will maintain the framework’s relevance and utility.
By following these recommendations, businesses and developers can achieve significant
improvements in web page performance, leading to enhanced user satisfaction and mea-
surable business outcomes.

Future advancements in web page performance prediction could benefit from expand-
ing the diversity of datasets to include a broader range of web pages from different domains,
industries, and regions. This would enhance the generalizability of models, making them
applicable across various contexts. Additionally, exploring advanced algorithms such as
ensemble methods, deep learning architectures, and hybrid models may uncover new
pathways to achieving greater predictive accuracy and robustness.

Addressing cross-browser compatibility represents another essential avenue, ensuring
that the proposed framework remains effective when applied to data from different web
browsers. Real-world validation through deployment in live settings would provide
valuable insights into the framework’s impact on user experience and its operational
performance. Furthermore, feature engineering processes must be refined and updated
continuously to adapt to the evolving landscape of web technologies and ensure that the
most relevant predictors are included.

Finally, incorporating user-centric metrics, such as perceived load time and other
aspects of user experience, could further expand the framework’s scope, bridging the gap
between technical performance metrics and end-user satisfaction. By pursuing these direc-
tions, future research can contribute to a more comprehensive, adaptable, and impactful
tool for optimizing web page performance.

7.2. Conclusions

This study proposed a comprehensive evaluation methodology for predicting web
page performance through the application of state-of-the-art classification algorithms. Our
comparative analysis identified Support Vector Machines (SVMs) as the most reliable model,
achieving the highest performance metrics in both original and feature-selected datasets.
This finding highlights the robustness and suitability of SVMs for web page performance
prediction, alongside Logistic Regression and Random Forest, which also demonstrated
significant potential as practical alternatives.



Al 2025, 6,19

310f35

Moreover, our findings emphasize the critical importance of feature selection in en-
hancing model performance. By applying feature selection techniques, we were able to
significantly improve the accuracy of most algorithms, particularly SVMs and Random
Forest, by eliminating irrelevant or redundant features. This pre-processing step proved
essential in directing the models toward the most impactful predictors, thereby enhancing
their overall effectiveness.

In contrast to existing studies, our research provides a more nuanced understanding
of machine learning techniques in the context of web performance evaluation. While
prior works have primarily focused on individual performance metrics, our holistic
approach integrates a broader range of performance indicators, including user experi-
ence, page responsiveness, and scalability across various devices and network conditions.
This comprehensive framework not only bridges the gap between predictive modeling
and optimization algorithms but also offers actionable insights for web developers and
performance engineers.

The statistical analysis using the Friedman test and subsequent Wilcoxon signed-
rank tests further corroborated our findings, revealing significant differences in predictive
accuracy among various machine learning techniques. The superior performance of SVM
and Random Forest underscores the necessity of integrating advanced machine learning
approaches for effective web page performance assessment, setting a new benchmark in
the field and paving the way for future research.

In summary, this study contributes to the literature by demonstrating the efficacy
of machine learning models for web page performance prediction and highlighting the
significance of feature selection, thereby providing a valuable resource for practitioners
aiming to enhance user experience through informed design and development strategies.

Author Contributions: Conceptualization, M.G. and S.O.; methodology, M.G. and A.M.M.; software,
M.G,; validation, AM.M., M.G. and S.0O.; formal analysis, A.M.M. and S5.0.; investigation, M.G.;
resources, M.G.; data curation, M.G.; writing—original draft preparation, M.G.; writ-ing—review and
editing, A.M.M. and S.O.; visualization, M.G.; supervision, A.M.M. and S.O.; project administration,
5.0. and A.M.M,; funding acquisition, A.M.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This work has been developed under the grant PID2023-147409NB-C21, funded by the
Spanish Ministerio de Ciencia Innovaciéon y Universidades (Agencia Estatal de Investigacion) MI-
CIU/AEI/10.13039/501100011033, as well as by ERDF (European Union). The research has also
been funded by projects TED2021-131699B-100 and TED2021-129938B-100 (MICU and AEI), as well
as projects PID2020-113462RB-100 and PID2020-115570GB-C22 of the Spanish Ministry of Economy
and Competitiveness; project C-ING-179-UGR23 financed by the “Consejeria de Universidades,
Investigacién e Inno-vacién” (Andalusian Government, FEDER Program 2021-2027); and project
PPJIA2023-031 (Plan Propio de Investigacién y Transferencia UGR).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: https://github.com/ghattas1984/ Approach-for-Evaluating-Web-Page-
Performance-by-ML (accessed 9 January 2025).

Conflicts of Interest: The authors declare no conflicts of interest.


https://github.com/ghattas1984/Approach-for-Evaluating-Web-Page-Performance-by-ML
https://github.com/ghattas1984/Approach-for-Evaluating-Web-Page-Performance-by-ML

Al 2025, 6,19 32 0f35

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

Retail Web Site Performance: Consumer Reaction to a Poor Online Shopping Experience. JupiterResearch and Akamai Report.
2006. Available online: https:/ /blogs.constantcontact.com/wp-content/uploads/2011/12/site_abandonment_final_report.pdf
(accessed on 2 May 2024).

Dixon, P. Shopzilla’s site redo-you get what you measure. In Proceedings of the 2009 Web Performance and Operations Conference
(Velocity), San Jose, CA, USA, 22-24 June 2009.

Forrest, B. Bing and google agree: Slow pages lose users. Retrieved 2009, 5, 2014.

Why Marketers Should Care About Mobile Page Speed. Available online: https://www.thinkwithgoogle.com/marketing-
strategies/app-and-mobile/mobile-page-speed-load-time/ (accessed on 2 May 2024).

Kumar, A.; Arora, A. A Filter-Wrapper based Feature Selection for Optimized Website Quality Prediction. In Proceedings of
the 2019 Amity International Conference on Artificial Intelligence (AICAI), Dubai, United Arab Emirates, 4-6 February 2019;
pp. 284-291. [CrossRef]

Grigorik, 1. High Performance Browser Networking: What Every Web Developer Should Know About Networking and Web Performance;
O'Reilly Media, Inc.: Sebastopol, CA, USA, 2013.

Why Web Performance Matters: Is Your Site Driving Customers Away?—PDF Free Download. Available online: https://
docplayer.net/1736871-Why-web-performance-matters-is-your-site-driving-customers-away.html (accessed on 2 May 2024).
Willnecker, E; Brunnert, A.; Gottesheim, W.; Kremar, H. Using Dynatrace Monitoring Data for Generating Performance Models of
Java EE Applications. In Proceedings of the 6th ACM/SPEC International Conference on Performance Engineering, Austin, TX,
USA, 31 January—4 February 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 103-104. [CrossRef]
Chrome User Experience Report. Available online: https://developer.chrome.com/docs/crux?hl=ar (accessed on 2 May 2024).
End User Monitoring (EUM) | End-to-End User Insights. Available online: https:/ /www.appdynamics.com/product/end-user-
monitoring/index.html (accessed on 2 May 2024).

Application Monitoring | New Relic. Available online: https://newrelic.com/platform/application-monitoring (accessed on
2 May 2024).

WebPageTest. Available online: https:/ /www.webpagetest.org/ (accessed on 2 May 2024).

Butkiewicz, M.; Madhyastha, H.V.; Sekar, V. Understanding website complexity: Measurements, metrics, and implications. In
Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, Berlin, Germany, 2-4 November
2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 313-328. [CrossRef]

Denaro, G.; Polini, A.; Emmerich, W. Early performance testing of distributed software applications. In Proceedings of the
4th International Workshop on Software and Performance, Redwood Shores, CA, USA, 14-16 January 2004; Association for
Computing Machinery: New York, NY, USA, 2004; pp. 94-103. [CrossRef]

Bondi, A.B. Incorporating Software Performance Engineering Methods and Practices into the Software Development Life Cycle.
In Proceedings of the 7th ACM/SPEC on International Conference on Performance Engineering, Delft, The Netherlands, 12-16
March 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 327-330. [CrossRef]

Menascé, D.A.; Almeida, V.A.F.,; Dowdy, L.W.; Dowdy, L. Performance by Design: Computer Capacity Planning by Example; Prentice
Hall Professional: Saddle River, NJ, USA, 2004.

Smith, C.U.; Woodside, M. Performance validation at early stages of software development. In System Performance Evaluation:
Methodologies and Applications; Taylor & Francis: Santa Fe, NM, USA, 1999; pp. 383-396.

Smith, C.U.; Williams, L.G. Performance Solutions: A Practical Guide to Creating Responsive, Scalable Software; Addison-Wesley
Reading: Redwood City, CA, USA, 2002.

Aggarwal, K.K. Software Engineering; New Age International: Delhi, India, 2005.

Balsamo, S.; Di Marco, A.; Inverardi, P.; Simeoni, M. Model-based performance prediction in software development: A survey.
IEEE Trans. Softw. Eng. 2004, 30, 295-310. [CrossRef]

Nunnagoppula, H.; Katragadda, K.; Ramesh, M. Website Traffic Forecasting Using Deep Learning Techniques. In Proceedings
of the 2023 International Conference on Artificial Intelligence and Smart Communication (AISC), Greater Noida, India, 27-29
January 2023. Available online: https:/ /ieeexplore.ieee.org/document/10085005 (accessed on 23 October 2024).

Pasieka, N.; Sheketa, V.; Romanyshyn, Y.; Pasieka, M.; Domska, U.; Struk, A. Models, Methods and Algorithms of Web
System Architecture Optimization. In Proceedings of the 2019 IEEE International Scientific-Practical Conference Problems of
Infocommunications, Science and Technology (PIC S&T), Kyiv, Ukraine, 8-11 October 2019. Available online: https://ieeexplore.
ieee.org/abstract/document/9061539 (accessed on 24 October 2024).

Zhou, J.; Zhang, Y.; Zhou, B.; Li, S. Predicting web page performance level based on web page characteristics. [JWET 2015, 10, 152.
[CrossRef]

Correlating Performance Metrics to Page Characteristics—Analysis. Available online: https://discuss.httparchive.org/t/
correlating-performance-metrics-to-page-characteristics /1548 (accessed on 2 May 2024).


https://blogs.constantcontact.com/wp-content/uploads/2011/12/site_abandonment_final_report.pdf
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-load-time/
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-load-time/
https://doi.org/10.1109/AICAI.2019.8701362
https://docplayer.net/1736871-Why-web-performance-matters-is-your-site-driving-customers-away.html
https://docplayer.net/1736871-Why-web-performance-matters-is-your-site-driving-customers-away.html
https://doi.org/10.1145/2668930.2688061
https://developer.chrome.com/docs/crux?hl=ar
https://www.appdynamics.com/product/end-user-monitoring/index.html
https://www.appdynamics.com/product/end-user-monitoring/index.html
https://newrelic.com/platform/application-monitoring
https://www.webpagetest.org/
https://doi.org/10.1145/2068816.2068846
https://doi.org/10.1145/974044.974059
https://doi.org/10.1145/2851553.2858668
https://doi.org/10.1109/TSE.2004.9
https://ieeexplore.ieee.org/document/10085005
https://ieeexplore.ieee.org/abstract/document/9061539
https://ieeexplore.ieee.org/abstract/document/9061539
https://doi.org/10.1504/IJWET.2015.072338
https://discuss.httparchive.org/t/correlating-performance-metrics-to-page-characteristics/1548
https://discuss.httparchive.org/t/correlating-performance-metrics-to-page-characteristics/1548

Al 2025, 6,19 33 0f 35

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.
43.

44.

45.

46.

47.

48.

49.

50.

Loosley: E-Commerce Response Time: A Reference Model—Google Scholar. Available online: https://scholar.google.com/
scholar_lookup?title=E-commerce%?20response%20time:%20a%?20reference%20model&author=C.%20Loosley&publication_
year=2000 (accessed on 2 May 2024).

Sevcik, P.; Wetzel, R. Pocket guide to application delivery systems. Bus. Commun. Rev. 2006, 36, 28.

Chiew, T.K. Web Page Performance Analysis. 2009. Available online: https://eleanor.lib.gla.ac.uk/record=b2660750 (accessed on
20 October 2024).

Zhi, J. Web page design and download time. In Proceedings of the Int. CMG Conference, Anaheim, CA, USA, 2-7 December
2001; Citeseer: San Mateo, CA, USA, 2001; pp. 689-704.

Nagarajan, S.N.; Ravikumar, S. Model for Predicting End User Web Page Response Time. arXiv 2012, arXiv:1204.6304. [CrossRef]
Zatwarnicki, K.; Zatwarnicka, A. Estimation of Web Page Download Time. In Computer Networks; Kwiecien, A., Gaj, P., Stera, P,
Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 144-152. [CrossRef]

Li, Z.; Zhang, M.; Zhu, Z.; Chen, Y.; Greenberg, A.G.; Wang, Y.-M. WebProphet: Automating Performance Prediction for Web
Services. In Proceedings of the 7th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2010, San
Jose, CA, USA, 28-30 April 2010; pp. 143-158.

A Elsater, S.A.E.; Dawood, A.E.A.A.; Mohamed Hussein, M.M.; Ali, M.A. Evaluating the Websites” Quality of Five and Four Star
Hotels in Egypt. Minia |. Tour. Hosp. Res. MJTHR 2022, 13, 183-193. [CrossRef]

Adepoju, S.A.; Oyefolahan, 1.O.; Abdullahi, M.B.; Mohammed, A.A. Integrated usability evaluation framework for university
websites. I-Manag. |. Inf. Technol. 2019, 8, 40—48. [CrossRef]

Allison, R.; Hayes, C.; McNulty, C.A.M.; Young, V. A Comprehensive Framework to Evaluate Websites: Literature Review and
Development of GoodWeb. JMIR Form. Res. 2019, 3, e14372. [CrossRef] [PubMed]

Alsulami, M.H.; Khayyat, M.M.; Aboulola, O.1; Alsager, M.S. Development of an Approach to Evaluate Website Effectiveness.
Sustainability 2021, 13, 13304. [CrossRef]

Amjad, M.; Tutul Hossain, M.; Hassan, R.; Rahman, M.A. Web Application Performance Analysis of ECommerce Sites in
Bangladesh: An Empirical Study. IJIEEB 2021, 13, 47-54. [CrossRef]

Armaini, I.; Dar, M.H.; Bangun, B. Evaluation of Labuhanbatu Regency Government Website based on Performance Variables.
Sink. J. Dan Penelit. Tek. Inform. 2022, 7, 760-766. [CrossRef]

Aziz, U.A.; Wibisono, A.; Nisafani, A.S. Measuring the quality of e-commerce websites using analytical hierarchy process.
TELKOMNIKA (Telecommun. Comput. Electron. Control) 2019, 17, 1202-1208. [CrossRef]

Barus, A.C.; Sinambela, E.S.; Purba, I.; Simatupang, J.; Marpaung, M.; Pandjaitan, N. Performance Testing and Optimization of
DiTenun Website. J. Appl. Sci. Eng. Technol. Educ. 2022, 4, 45-54. [CrossRef]

Kulkarni, R.B.; Dixit, S.K. Empirical and Automated Analysis of Web Applications. IJCA 2012, 38, 1-8. [CrossRef]

Cai, X,; Li, S.; Feng, G. Evaluating the performance of government websites: An automatic assessment system based on the
TFN-AHP methodology. J. Inf. Sci. 2020, 46, 760-775. [CrossRef]

Devi, K.; Sharma, A K. Framework for Evaluation of Academic Website. Int. ]. Comput. Tech. 2016, 3, 234-239.

Dhiman, P.; Anjali. Empirical validation of website quality using statistical and machine learning methods. In Proceedings of
the 2014 5th International Conference—Confluence The Next Generation Information Technology Summit (Confluence), Noida,
India, 25-26 September 2014; pp. 286-291. [CrossRef]

Dominic, PD.D.; Jati, H. A comparison of Asian airlines websites quality: Using a non-parametric test. Int. J. Bus. Innov. Res. 2011,
5,599-623. [CrossRef]

Dominic, PD.D.; Jati, H.; Kannabiran, G. Performance evaluation on quality of Asian e-government websites—an AHP approach.
Int. J. Bus. Inf. Syst. 2010, 6, 219-239. [CrossRef]

Erokhin, A.G.; Vanina, M.F,; Frolova, E.A. Application of Mathematical Simulation Methods for Evaluating the Websites
Effectiveness. In Proceedings of the 2019 Systems of Signals Generating and Processing in the Field of on Board Communications,
Moscow, Russia, 20-21 March 2019; pp. 1-5. [CrossRef]

Faustina, F.; Balaji, T. Evaluation of universities websites in Chennai city, India using analytical hierarchy process. In Proceedings
of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 3-5 March
2016; IEEE: Piscataway, NJ, USA, 2016; pp. 112-116. [CrossRef]

Gangurde, R.; Kumar, B. Web Page Prediction Using Genetic Algorithm and Logistic Regression based on Weblog and Web
Content Features. In Proceedings of the 2020 International Conference on Electronics and Sustainable Communication Systems
(ICESC), Coimbatore, India, 24 July 2020; pp. 68-74. [CrossRef]

Gharibe Niazi, M.; Karbala Aghaei Kamran, M.; Ghaebi, A. Presenting a proposed framework for evaluating university websites.
Electron. Libr. 2020, 38, 881-904. [CrossRef]

Harshan, R K.; Chen, X.; Shi, B. Analytic Hierarchy Process (AHP) Based Model for Assessing Performance Quality of Library
Websites. Inf. Technol. |. 2016, 16, 35-43. [CrossRef]


https://scholar.google.com/scholar_lookup?title=E-commerce%20response%20time:%20a%20reference%20model&author=C.%20Loosley&publication_year=2000
https://scholar.google.com/scholar_lookup?title=E-commerce%20response%20time:%20a%20reference%20model&author=C.%20Loosley&publication_year=2000
https://scholar.google.com/scholar_lookup?title=E-commerce%20response%20time:%20a%20reference%20model&author=C.%20Loosley&publication_year=2000
https://eleanor.lib.gla.ac.uk/record=b2660750
https://doi.org/10.48550/arXiv.1204.6304
https://doi.org/10.1007/978-3-642-31217-5_16
https://doi.org/10.21608/mjthr.2022.135274.1034
https://doi.org/10.26634/jit.8.1.15713
https://doi.org/10.2196/14372
https://www.ncbi.nlm.nih.gov/pubmed/31651406
https://doi.org/10.3390/su132313304
https://doi.org/10.5815/ijieeb.2021.02.04
https://doi.org/10.33395/sinkron.v7i2.11404
https://doi.org/10.12928/telkomnika.v17i3.12228
https://doi.org/10.35877/454RI.asci841
https://doi.org/10.5120/4633-6865
https://doi.org/10.1177/0165551519866548
https://doi.org/10.1109/CONFLUENCE.2014.6949363
https://doi.org/10.1504/IJBIR.2011.042451
https://doi.org/10.1504/IJBIS.2010.034355
https://doi.org/10.1109/SOSG.2019.8706741
https://doi.org/10.1109/ICEEOT.2016.7754850
https://doi.org/10.1109/ICESC48915.2020.9155634
https://doi.org/10.1108/EL-06-2020-0141
https://doi.org/10.3923/itj.2017.35.43

Al 2025, 6,19 34 of 35

51.

52.

53.
54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.
68.

69.
70.

71.
72.

73.
74.

75.
76.
77.

78.

79.
80.

Hidayah, N.A.; Subiyakto, A.; Setyaningsih, F. Combining Webqual and Importance Performance Analysis for Assessing a
Government Website. In Proceedings of the 2019 7th International Conference on Cyber and IT Service Management (CITSM),
Jakarta, Indonesia, 6-8 November 2019; pp. 1-6. [CrossRef]

Jati, H. Quality Ranking of E-Government Websites—PROMETHEE II Approach. In Proceedings of the International Conference on
Informatics for Development 2011 (ICID 2011); Universitas Islam Indonesia: Yogyakarta, Indonesia, 2011; pp. 39-45.

Kabassi, K. Analytic Hierarchy Process for website evaluation. Intell. Decis. Technol. 2018, 12, 137-148. [CrossRef]

Kinnunen, M. Evaluating and Improving Web Performance Using Free-To-Use Tools. Available online: https://oulurepo.oulu.fi/
handle/10024 /15601 (accessed on 18 February 2024).

Kumar, N.; Kumar, S.; Rajak, R. Website Performance Analysis and Evaluation using Automated Tools. In Proceedings of the 2021
5th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques
(ICEECCOT), Mysuru, India, 10-11 December 2021; pp. 210-214. [CrossRef]

Kwangsawad, A.; Jattamart, A.; Nusawat, P. The Performance Evaluation of a Website using Automated Evaluation Tools. In
Proceedings of the 2019 4th Technology Innovation Management and Engineering Science International Conference (TIMES-
iCON), Bangkok, Thailand, 11-13 December 2019; pp. 1-5. [CrossRef]

Najadat, H.; Al-Badarneh, A.; Alodibat, S. A review of website evaluation using web diagnostic tools and data envelopment
analysis. Bull. Electr. Eng. Inform. 2021, 10, 258-265. [CrossRef]

Olaleye, S.A.; Sanusi, L.T.; Ukpabi, D.C.; Okunoye, A. Evaluation of Nigeria Universities Websites Quality: A Comparative
Analysis. Available online: https://oulurepo.oulu.fi/handle/10024 /23263 (accessed on 17 February 2024).

Saleh, A.H.; Yusoff, R.C.M.; Bakar, N.A.A ; Ibrahim, R. Systematic literature review on university website quality. IJEECS 2022, 25,
511-520. [CrossRef]

Shayganmehr, M.; Montazer, G.A. Identifying Indexes Affecting the Quality of E-Government Websites. In Proceedings of the
2019 5th International Conference on Web Research (ICWR), Tehran, Iran, 24-25 April 2019; pp. 167-171. [CrossRef]
Shayganmehr, M.; Montazer, G.A. A Novel Model for Assessing e-Government Websites Using Hybrid Fuzzy Decision-Making
Methods. Int. . Comput. Intell. Syst. 2021, 14, 1468-1488. [CrossRef]

Wang, X.S.; Balasubramanian, A.; Krishnamurthy, A.; Wetherall, D. Demystifying Page Load Performance with {WProf}. In
Proceedings of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13), Lombard, IL, USA,
2-5 April 2013.

Navigation Timing. Available online: https:/ /www.w3.org/TR/navigation-timing/ (accessed on 4 May 2024).

Paint Timing. Available online: https://www.w3.org/TR/paint-timing/ (accessed on 4 May 2024).

Olshefski, D.; Nieh, J.; Agrawal, D. Using certes to infer client response time at the web server. ACM Trans. Comput. Syst. 2004, 22,
49-93. [CrossRef]

Wei, J.; Xu, C.-Z. Measuring Client-Perceived Pageview Response Time of Internet Services. IEEE Trans. Parallel Distrib. Syst. 2011,
22,773-785. [CrossRef]

GTmetrix | Website Performance Testing and Monitoring. Available online: https://gtmetrix.com/ (accessed on 4 May 2024).
Analytics | Home. Available online: https://analytics.google.com/analytics/web/?pli=1#/p327966253 /reports /intelligenthome
(accessed on 4 May 2024).

web.dev. Available online: https://web.dev/ (accessed on 4 May 2024).

Web Debugging Proxy and Troubleshooting Tools | Fiddler. Available online: https://www.telerik.com/fiddler (accessed on
4 May 2024).

YSlow—Official Open Source Project Website. Available online: https://yslow.org/ (accessed on 4 May 2024).

PageSpeed Insights. Available online: https://pagespeed.web.dev/?utm_source=psi&utm_medium=redirect (accessed on
4 May 2024).

Overview | Lighthouse. Available online: https:/ /developer.chrome.com/docs/lighthouse/overview (accessed on 4 May 2024).
McCallum, A.; Nigam, K. A comparison of event models for naive bayes text classification. In Proceedings of the AAAI-98
Workshop on Learning for Text Categorization, Madison, WI, USA, 26-27 July 1998; pp. 41-48.

Wu, X.; Kumar, V.; Ross Quinlan, J.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S. Top 10 algorithms in
data mining. Knowl. Inf. Syst. 2008, 14, 1-37. [CrossRef]

Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; MIT Press: Cambridge, MA, USA, 2009.

Bishop, C.M. Pattern recognition and machine learning. Springer Google Sch. 2006, 2, 645-678.

Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput.
Syst. Sci. 1997, 55, 119-139. [CrossRef]

Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123-140. [CrossRef]

Wongvorachan, T.; He, S.; Bulut, O. A Comparison of Undersampling, Oversampling, and SMOTE Methods for Dealing with
Imbalanced Classification in Educational Data Mining. Information 2023, 14, 54. [CrossRef]


https://doi.org/10.1109/CITSM47753.2019.8965408
https://doi.org/10.3233/IDT-170316
https://oulurepo.oulu.fi/handle/10024/15601
https://oulurepo.oulu.fi/handle/10024/15601
https://doi.org/10.1109/ICEECCOT52851.2021.9707922
https://doi.org/10.1109/TIMES-iCON47539.2019.9024634
https://doi.org/10.11591/eei.v10i1.1755
https://oulurepo.oulu.fi/handle/10024/23263
https://doi.org/10.11591/ijeecs.v25.i1.pp511-520
https://doi.org/10.1109/ICWR.2019.8765293
https://doi.org/10.2991/ijcis.d.210423.002
https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/paint-timing/
https://doi.org/10.1145/966785.966787
https://doi.org/10.1109/TPDS.2010.131
https://gtmetrix.com/
https://analytics.google.com/analytics/web/?pli=1#/p327966253/reports/intelligenthome
https://web.dev/
https://www.telerik.com/fiddler
https://yslow.org/
https://pagespeed.web.dev/?utm_source=psi&utm_medium=redirect
https://developer.chrome.com/docs/lighthouse/overview
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1007/BF00058655
https://doi.org/10.3390/info14010054

Al 2025, 6,19 350f 35

81.

82.

83.

84.

85.

86.

Hamadouche, S.; Boudraa, O.; Gasmi, M. Combining Lexical, Host, and Content-based features for Phishing Websites detection
using Machine Learning Models. EAI Endorsed Trans. Scalable Inf. Syst. 2024, 11, 1-15. [CrossRef]

Han, J.; Pei, J.; Tong, H. Data Mining: Concepts and Techniques; Morgan Kaufmann: Burlington, MA, USA, 2022.

Xia, X.; Feng, Y.; Lo, D.; Chen, Z.; Wang, X. Towards more accurate multi-label software behavior learning. In Proceedings
of the 2014 Software Evolution Week—IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), Antwerp, Belgium, 3-6 February 2014; pp. 134-143. [CrossRef]

Xia, X.; Lo, D.; Wang, X.; Zhou, B. Tag recommendation in software information sites. In Proceedings of the 2013 10th Working
Conference on Mining Software Repositories (MSR), San Francisco, CA, USA, 18-19 May 2013; pp. 287-296. [CrossRef]
Joloudari, ].H.; Marefat, A.; Nematollahi, M.A.; Oyelere, S.S.; Hussain, S. Effective Class-Imbalance Learning Based on SMOTE
and Convolutional Neural Networks. Appl. Sci. 2023, 13, 4006. [CrossRef]

Friedman, M. A Comparison of Alternative Tests of Significance for the Problem of $m$ Rankings. Ann. Math. Stat. 1940, 11,
86-92. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.4108/eetsis.4421
https://doi.org/10.1109/CSMR-WCRE.2014.6747163
https://doi.org/10.1109/MSR.2013.6624040
https://doi.org/10.3390/app13064006
https://doi.org/10.1214/aoms/1177731944

	Introduction 
	Motivating Example 
	Research Objectives 
	Organization of This Paper 

	Research on Existing Literature 
	Models for Web Page Performance Prediction 
	Techniques for Measuring Web Page Performance 

	Background 
	How Browsers Build Web Pages: A Metric-Driven Analysis 
	Predictive Modeling Techniques 
	Naive Bayes 
	Naive Bayes Multinomial 
	K-Nearest Neighbours 
	Support Vector Machine 
	Bayesian Network 
	Decision Tree 
	Logistic Regression 
	AdaBoost 
	Random Forests 


	Methodology 
	Dataset 
	Data Preprocessing 
	Missing Value Identification 
	Outlier Identification and Handling 

	Dataset Analysis 
	High Positive Correlations 
	High Negative Correlations 
	Moderate Positive Correlations 
	Moderate Negative Correlations 
	Low or No Correlations 
	Implications 

	Feature Selection 
	Correlation Analysis 
	Feature Selection Strategy 
	Impact of Feature Selection 


	Experiments and Results 
	Experiment Setup 
	Evaluation Metrics 
	Experimental Results 
	Scenario 1 
	Scenario 2 
	Using Statistical Test 


	Discussion 
	Conclusions and Future Work 
	Recommendations and Future Work 
	Conclusions 

	References

