
Statistics and Computing (2025) 35:52
https://doi.org/10.1007/s11222-025-10562-5

ORIG INAL PAPER

Inference on diffusion processes related to a general growth model

Giuseppina Albano1 · Antonio Barrera2,5 · Virginia Giorno3 · Francisco Torres-Ruiz4,5

Received: 12 July 2024 / Accepted: 3 January 2025 / Published online: 20 February 2025
© The Author(s) 2025

Abstract
This paper considers two stochastic diffusion processes associated with a general growth curve that includes a wide family
of growth phenomena. The resulting processes are lognormal and Gaussian, and for them inference is addressed by means
of the maximum likelihood method. The complexity of the resulting system of equations requires the use of metaheuristic
techniques. The limitation of the parameter space, typically required by all metaheuristic techniques, is also provided by
means of a suitable strategy. Several simulation studies are performed to evaluate to goodness of the proposed methodology,
and an application to real data is described.
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1 Introduction

The construction and development of mathematical mod-
els to describe dynamic phenomena associated with growth
curves are topics that have caught the eyes of many
researchers for a long time. As a result, the literature on this
type of model has become so extensive that we can stated
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that the development of growth theory is, in itself, a growth
phenomenon.

It is well known that the origins of such models can be
found in the studies on human population growth conducted
by Malthus. However, the Malthusian model does not con-
sider restrictions on the evolution of growth, which makes it
unsuitable for many practical situations. The introduction of
regulatory effects in the model gave rise to alternative for-
mulations, among which are particularly salient the logistic
and Gompertz curves. There is no doubt that these models
owe their success to their usefulness in a wide variety of
fields of application (see, for example, Banks (1994) where
many traditional growth curves are presented together with
real examples of application).

Despite their applicability, classical models tend to be
slightly rigid in their behavior, which has led researchers to
study generalizations able to describe growth curves with
greater flexibility. Various techniques have been used to
provide such generalizations. One of them is based on the
inclusion of parameters in classical curves. In this regard,
we may cite Von Bertalanffy’s curve, in turn generalized
by the Richards curve, which is an extension of the logis-
tic one. The introduction of these models made it possible
to expand the range of fields of application. For example,
the Bertalanffy curve has been applied in ecology to model
the growth of fish species (Flinn and Midway 2021), or in
paleontology tomodel the sclerochronological parameters of
shell growth (Moss et al. 2021). As for the Richards curve,
it has been widely used to study the evolution of pandemics
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(Hsieh et al. 2010) or to describe the growth and development
of forest ecosystems (Protazio et al. 2022). Themethodology
of including new parameters in the classical growth models
led Turner et al. (1976) to propose a general theory of growth
based on general postulates. Subsequent studies have been
carried out by other authors, such as Tsoularis and Wallace
(2002), Koya and Goshu (2013) or, more recently, Albano
et al. (2022).

It must be acknowledged that the resulting models, while
offering greater flexibility, easily become overly complex.
For this reason, generalization can otherwise be carried out
through the introduction of functions with flexible behav-
iors. Such is the case of hyperbolastic curves (Tabatatai et al.
2005), oscilobolastic curves (Eby andTabatabai 2014) or var-
ious multisigmoidal type models (Di Crescenzo et al. 2021;
Román-Román et al. 2019).Aparticularly interesting version
of this methodology appears when the constant growth rate
is replaced by a function of time in the Malthusian equation,
which governs the exponential curve. This leads to curves
such as the Gompertz (Gutiérrez et al. 2007), the Korf-type
curve (Di Crescenzo and Spina 2016) or a mixed version
of both of them (Bhowmick and Bhattacharya 2014). On
the other hand, convenient reformulations and reparametriza-
tions have allowed this idea to be applied to other models, as
in the case of hyperbolastic curves (Barrera et al. 2021).

The fact that deterministic models cannot control the
intrinsic variability of phenomena led to the introduction
of the randomization into the ordinary differential equations
(ODE) that govern such models. This in turn led to consider-
ing stochastic differential equations (SDE) whose solutions
are, under certain conditions, diffusion processes. Undoubt-
edly, the extensions of the logistic and Gompertz cases have
caught the most attention, being today the base models for
the study of current phenomena. In this line we can men-
tion, within the logistic case, the works of Rajasekar and
Pitchaimani (2020), Rajasekar et al. (2020) in which the
authors analyzed a stochastic version of the SIR models for
the spread of the COVID-19 pandemic. Regarding the Gom-
pertz case, the evolution of tumors has been the main object
of study. The work of Lo (2010) is a good example, from
which severalmodifications have been proposedwith the aim
of describing the evolution of tumor growth in the presence
of therapeutic treatments (see Albano et al. 2013, 2020 and
references therein). Sadly though, the literature on diffusion
processes associatedwith other growth curves is not as exten-
sive. Perhaps the reason why is to be found in the fact that
the associated SDEs do not generally have an explicit solu-
tion or they give rise to processes that are difficult to handle.
However, reformulations of some curves have led to SDEs
having solutions that are suitable non-homogeneous lognor-
mal diffusion processes, whose distributions are known (as,
for instance, Di Crescenzo et al. (2021), Román-Román and
Torres-Ruiz (2015), Albano et al. (2023)).

Based on the fact that the model studied in Tsoularis and
Wallace (2002) andAlbano et al. (2022) includes a great vari-
ety of growth curves, in Albano et al. (2023) two diffusion
processes were provided with the goal of having common
stochastic models for the study of a wide variety of growth
phenomena. Specifically, in this last paper the authors focus
on first-passage-time problems through one or two bound-
aries which are, generally, time dependent.

The main objective of the present paper is to make infer-
ence for the two diffusion processes introduced in Albano
et al. (2023). Parameter inference for diffusion processes has
been solved successfully by using a variety of approaches
in several fields of application such as finance, economics
and biology. We would like to point out that, even though
diffusion processes are continuous-time stochastic models,
their observations are only made at discrete time points, for
example at n equally spaced time instants (see, for instance,
Lo (1988), Aït-Sahalia (2003), Fan (2005) for a discussion
and overview of the estimation of diffusion processes based
on discrete observations). Parameter inference for diffusion
processes is generally based on the method of moments or
maximum likelihood approach. The methodology based on
the method of moments presents a more flexible framework
than maximum likelihood methods, since it does not assume
knowledge of the transition density of the process. However,
approximations must be derived from discrete schemes such
asEuler-Maruyama,which can compromise the quality of the
final results. Moreover, the problem of parameter identifica-
tion based on sample moments is not always satisfactorily
resolved. As discussed in López-Pérez et al. (2021), these
procedures have poor finite sample properties. In certain
cases, estimates are subject to large finite sample biases. This
can happenwhen the functions thatmatch the true parameters
with the data provide weak parameter identification. This is
usually the case for highly persistent time series, in which the
value of the variable at a given date is closely related to the
previous value. Concerning the method of maximum likeli-
hood estimation, it provides parameter estimators that have
good properties such as consistency, efficiency and asymp-
totic unbiasedness and normality. (cf. Dacunha-Castelle and
Florens-Zmirou 1986).

Starting with a discrete sampling of the process trajecto-
ries, the likelihood function is formulated from the initial
distribution of the process and the transition probability
distributions.When the transition distributions are not explic-
itly known, approximations of them must be used Pedersen
(1995). In any case, determining the maximum of the like-
lihood function requires solving a system of n equations,
where n is the dimension of the parametric space. Such a sys-
tem can be solved analytically only in a few particular cases,
so that it becomes necessary to use numerical methods, for
instance Newton–Raphson’s. One cannot guarantee conver-
gence of this method, especially when the Hessian matrix is
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ill-conditioned, which can lead to unstable solutions (cf., also
Román-Román and Torres-Ruiz 2015). Additionally, these
methods require initial solutions that are not always easy to
obtain. Another way to solve the maximum-likelihood esti-
mation is based on the use ofmetaheuristic algorithms.Many
such algorithms employ heuristic strategies based on evolv-
ing random procedures to find the local and global minima
(or maxima) of a function within a bounded region of the
parametric space.

In this paper, and in order to make inference for our
processes, we use a procedure based on the Moth Flame
Optimizer (MFO) method. Such procedure is the result of
combining theMFOalgorithmwith theBox-Cox transforma-
tion for linear models with the goal of finding the maximum
of the loglikelihood function in relation to the parameters
that will be estimated.

The present paper is structured as follows: Sect. 2 presents
a review of the general growth model treated in Albano et al.
(2022); Sect. 3 presents the two diffusion processes asso-
ciated with the general growth curve. They are essentially
obtained by introducing in the ODE a multiplicative and an
additive noises; Sect. 4 focuses on the inference of the mod-
els under maximum likelihood from discrete sampling. The
complexity of the likelihood equations discourages the use of
numerical methods for their resolution, therefore the use of
metaheuristic optimization methods is proposed. In Sect. 5,
several simulation studies for both processes are analyzed in
order to evaluate the goodness of the proposed procedure.
Finally, an application to real data is provided in Sect. 6.

2 A review of the deterministic general
growthmodel

Turner et al. (1976), established a general theory of growth,
based on three rather general postulates, that led to an ODE
which solution includes well-known growth curves as expo-
nential, logistic, Gompertz, Richards-Bertalanffy, among
others. Later, Tsoularis andWallace (2002) reconsidered this
expression, interpreting it as a generalization of the classical
logistic model and analyzing the great variety of curves that
this general version includes.

For such a model, the positive real function x(t), describ-
ing the population size at time t , is defined as the solution of
the ODE

d

dt
x(t) = γ kn(p−1)x(t)1+n(1−p)

(
1 −

(
x(t)

k

)n)p

,

t ≥ t0 ≥ 0, (1)

with initial condition x(t0) = x0. Here, k = lim
t→∞ x(t) > 0

represents the carrying capacity, while γ, n and p are real
and positive shape parameters verifying 0 < p < 1 + 1/n.

For different values of p and n, Eq. (1) becomes the equa-
tion associated to classical growth curves. For instance, for
p = 1 the Bertalanffy-Richards model is obtained, from
which the logistic model follows when n = 1. Moreover, if
k → ∞, the general growth model goes to the exponential
(or Malthusian) one. Generalized versions of Gompertz and
logistic models can also be derived from (1); such is the case
of the hyper-Gompertz model which is obtained by taking
n → 0 and assuming limn→0 γ n p = γ ′. In this case it holds

d

dt
x(t) = γ ′ x(t)

(
log

k

x(t)

)p

, x(t0) = x0. (2)

On the other hand, hyper-logistic model is derived by tak-
ing n = 1 in (1), resulting in

d

dt
x(t) = γ k p−1x(t)2−p

(
1 − x(t)

k

)p

, x(t0) = x0.

(3)

This last expression is a particular case of that introduced
originally by Blumberg (1968) (see Tsoularis and Wallace
2002 for details). Note that, by choosing p = 1, Eqs. (2)
and (3) become the classical Gompertz and logistic curves,
respectively.

By considering the initial condition x(t0) = x0, the solu-
tion of (1) is

x(t) = k

(
1 +

(
γ n(p − 1)(t − t0) + A1−p

n

) 1
1−p

)− 1
n

,

(4)

where An = (k/x0)n − 1 is a term depending on the shape
parameter n, and the ratio of the carrying capacity and the
initial population size.

The stochastic extension of the general growth model is
usually established by introducing randomness in (1), thus
giving rise to an SDE. Unfortunately, in several cases the
explicit solution of this SDE is not available. In other cases,
even if the solution exists in closed-form, the probability dis-
tribution of the associated stochastic process is not obtainable
in terms of finite-dimensional distributions or transition prob-
ability distributions. These problems can be solved making
use of an adequate reparametrization of (4). Precisely, it can
be rewritten as

xθ (t) ≡ x(t) = x0
gθ (t0)

gθ (t)
, (5)

for t ≥ t0 ≥ 0 and where

gθ (t) =
(

η +
(
1 + η1−p logα(1 − p)t

) 1
1−p

) 1
n

, (6)
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defined for a vector of parameters θ = (η, α, p, n)T , with
η, n > 0, 0 < α < 1 and 0 < p < 1 + 1/n. Equations
(5) and (6) are obtained from (4) by setting α = e−γ n and

η =
(
A1−p
n + n γ (1 − p) t0

)−1/(1−p)
.

By deriving (5) with respect to t , we obtain

dxθ (t)

dt
= −x0gθ (t0)

g′
θ (t)

g2θ (t)
= hθ (t)xθ (t), (7)

where

hθ (t) = − d

dt
log gθ (t)

= −η1−p logα
(
1 + (1 − p) t η1−p logα

)p/(1−p)

× (
n gθ (t)

n)−1
. (8)

We should point out that Eq. (7) represents a Malthusian
growth with time dependent fertility. By introducing ran-
domization we are able to present, in the next section, two
diffusion processes with means equal to (5) and with man-
ageable probability distribution functions (cf. Albano et al.
2023).

In Albano et al. (2022), an extensive study was carried
out to show the behavior of the curve taking into account the
values of n and p. This study leads to the consideration of
three cases:

1. the case when 1 < p < 1 + 1/n;
2. the case when p = 1;
3. the case when 0 < p < 1.

The study of monotonicity and inflection points of the
curve is important in the context of growth phenomena.
Indeed, it is of interest to find the time instants at which the
model reaches some proportion of the carrying capacity, or
when themodel dramatically changes its tendency. InAlbano
et al. (2022), it is shown that cases 1 and 2 are characterized
by a monotonically strictly increasing behavior, exhibiting
one inflection point at positions that are proportional to the
parameter p. In contrast, case 3 shows different and interest-
ing growth patterns.

In the present paper we will focus the attention on case
1, which is related to a large number of growth phenomena
obeying a bounded sigmoidal pattern. For this case, the upper
limit of the curve is

kθ = x0
gθ (t0)

η1/n
,

whereas the time instant in which the inflection is reached is
given by

tinf =

(
np

1 + n(1 − p)

)1−p

− ηp−1

(1 − p) logα
, (9)

verifying

xθ (tinf) = kθ

(
1 − np

n + 1

)1/n

.

The previous expressions, in particular that of the inflec-
tion time, allow to establish -under certain conditions-
limitations for some parameters of the models, as we will
show later in this paper.

3 Stochastic models derived from the
growth curve

The use of deterministic models seems to be appropriate in
some practical cases due to their technical simplicity. Never-
theless, they cannot capture all the information provided by
the observations. Uncertainties must be considered in order
to get a more realistic model. The reasons of such uncer-
tainties are multiple: they could appear, among others, in the
form of hidden endogenous of exogenous factors, tiny dis-
crepancies in the measurements or the observations, or even
in the pure nature of a random behavior.

The theory of stochastic processes has been developed to a
great extent in the last decades, allowing to use sophisticated
tools to describe random behavior in a more accurate way.
In addition to this, the rapid growth of computational power
and network capabilities has broken the barriers between the
theory and the practice.

Numerous stochastic models have been introduced as a
random extension of well-known deterministic ones, among
them diffusion processes. Some of these diffusion models
emerge as solutions to a SDE after modifying a deterministic
one by introducing in it a term of white noise. Other diffu-
sion processes are constructed in such a way that their mean
function is a certain sigmoidal growth curve.

Based on the reparametrization given by (5) and (6), in
this section we introduce two diffusion processes with mean
functions equal to the general growth curve and with known
probability distributions. Said processes are the solution of
the SDE resulting from including in the ODE (7) a multi-
plicative and an additive noise, respectively.

3.1 Multiplicative noise: lognormal-type diffusion
model

Let us consider the ODE (7), where the fertility rate hθ (t)
is given by Eq. (8). By including a white noise ϕ(t) with
variance σ 2

L, and then replacing hθ (t) with hθ (t) + ϕ(t), the
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population size x(t) is generalized to the one-dimensional
stochastic process XL(t), satisfying the following SDE:

dXL(t) = hθ (t)X
L(t) dt + σL XL(t) dW (t), t ≥ t0.

Here, {W (t), t ≥ t0} is a Wiener process on the proba-
bility space (�, F, P), equipped with the natural filtration
(Ft )t≥t0 , where Ft = σ(W (s), t0 ≤ s ≤ t) is the sigma-
algebra generated by the variables W (s), t0 ≤ s ≤ t . We
assume that the initial condition XL(t0) = XL

0 is indepen-
dent of the Brownian motion W (t) for t ≥ t0.

The solution of this equation is a non-homogeneous log-
normal diffusion process, characterized by drift hθ (t)x and
diffusion coefficient σ 2

Lx
2 (see Román-Román et al. 2018

and references therein for details) and with explicit expres-
sion given by

XL(t) = XL
0 exp [Hθ (t0, t) + σL (W (t) − W (t0))],

where

HξL
(s, t) =

∫ t

s
hθ (u)du − σ 2

L

2
(t − s)

= log
gθ (s)

gθ (t)
− σ 2

L

2
(t − s),

ξL = (θT , σ 2
L)T and function gθ (t) is given in (6).

In addition, if the initial distribution is lognormal, i.e.
XL
0 ∼ �1

[
μ0, σ

2
0

]
for some parameters μ0 and σ 2

0 , or
degenerate at a point x0, that is P(XL(t0) = x0) = 1,
the finite-dimensional distributions of the process are log-
normal. Concretely, ∀n ∈ N and t1 < · · · < tn , vector
(XL(t1), . . . , XL(tn))T has a n-dimensional lognormal joint
distribution�n[ε,�], where the components of vector ε and
of matrix � are

εi = μ0 + HξL
(t0, ti ), i = 1, . . . , n

and

σi j = σ 2
0 + σ 2

L(min(ti , t j ) − t0), i, j = 1, . . . , n,

respectively. From the joint distribution of (XL(s), XL(t))T ,
s < t , the transition probability distribution, related to the
variable XL(t) | XL(s) = y, y > 0, can be obtained. Fur-
ther, from the properties of the multidimensional lognormal
distribution, it follows that XL(t) | XL(s) = y has a one-
dimensional lognormal distribution �1

[
log y + HξL

(s, t),
σ 2
L(t − s)

]
, so the transition probability density function,

denoted by fξL(x, t |y, s), is given by

fξL(x, t |y, s) = 1

x
√
2πσ 2

L(t − s)

× exp

(
−

[
log(x/y) − HξL

(s, t)
]2

2σ 2
L(t − s)

)
.

(10)

We point out that, from the one-dimensional marginal dis-
tributions and from the transition distributions, it is verified
that the mean function and the conditional mean function are

mL
θ (t) = E[XL(t)] = E[XL

0 ]gθ (t0)

gθ (t)
and

mθ (t |s) = E[XL(t)|XL(t0) = xs] = xs
gθ (t0)

gθ (t)
,

respectively, and they have the same shape of the determin-
istic curve given by (5).

3.2 Additive noise: Gaussian diffusionmodel

In this subsection we start again from the ODE (7) and obtain
a stochastic generalization of it by introducing a white noise
with variance σ 2

G in additive form, where σG > 0 represents
the amplitude of the random fluctuations. In this way, x(t)
becomes the stochastic process XG(t) satisfying the follow-
ing SDE:

dXG(t) = hθ (t)X
G(t) dt + σG dW (t), t ≥ t0,

with initial condition XG(t0) = XG
0 . This is a linear SDE

whose solution is assured by virtue of the continuity of the
function hθ (t), a property that also ensures that the solution
is a diffusion process with infinitesimal mean hθ (t)x and
infinitesimal variance σ 2

G. Specifically, the solution is (cf.
Albano et al. 2023)

XG(t) = �(t)

[
XG
0 + σG

∫ t

t0
�(s)−1 dW (s)

]

where

�(t) = exp

(∫ t

t0
hθ (s) ds

)
= gθ (t0)

gθ (t)
.

Hence, we have

XG(t) = gθ (t0)

gθ (t)

(
XG
0 + σG

∫ t

t0

gθ (s)

gθ (t0)
dW (s)

)
.

Regarding the distribution of the process, in the case in
which the initial distribution is normal or degenerate, XG(t)
is a Gaussian process with mean function given by
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mG
θ (t) = E[XG

0 ] gθ (t0)

gθ (t)
,

and covariance function

KξG
(s, t) = g2θ (t0)

gθ (s)gθ (t)

(
VarXG

0 + σ 2
G

∫ s∧t

t0

g2θ (u)

g2θ (t0)
du

)
,

ξ G = (θT , σ 2
G)T

where s∧ t = min(s, t). Finally, since the finite-dimensional
distributions are Gaussian, we have that XG(t)|XG(s) = xs
is normally distributed with mean and variance

mθ (t |s) = gθ (s)

gθ (t)
xs and σ 2

ξG
(t |s) = σ 2

G

g2θ (t)

∫ t

s
g2θ (u) du,

respectively. So, the transition probability density function is

fξG(x, t |xs, s)= 1√
2πσ 2

ξG
(t |s)

exp

(
− [x − mθ (t |s)]2

2σ 2
ξG

(t |s)

)
.

(11)

Again, we can see how both the mean function and the
conditional mean function are of the type given in (5).

4 Inference

One of the main goals of introducing these diffusion pro-
cesses is to develop a tool able to fit growth patterns to real
cases, and to this end we address the estimation of the param-
eters of the model by means of the maximum likelihood
method.

Although the literature in the field of lognormal andGaus-
sian processes is very extensive (cf., e.g., Gutiérrez et al.
2003; Bibby et al. 2009; Tang and Chen 2009; Albano and
Giorno 2020), the classical methods are not applicable for

the proposed model because function hθ (t), given in (8),
presents a complex expression involving four non-linearly
related parameters. Furthermore, there are restrictions on the
parameters (e.g., 0 < p < 1+ 1/n). To these parameters we
must add the one associated with the volatility of the model,
which increases the complexity of the problem. However,
the fact that the functional form of the transitions is avail-
able allows for directly addressing the maximum likelihood
estimation of the parameters from the discrete sampling of
trajectories.

The starting point is the observation of d sample-paths at
discrete time instants. It is noticed that the length of each
sample-path may vary, and that the observation time instants
of each one may be different. Consequently, let us denote
by ti, j the j-th observation time instant for the i-th sample-
path, whose length is ki , (i = 1, . . . , d, j = 1, . . . , ki ).
However, since the first observation of each sample-path
must come from a common initial distribution, we will con-
sider that the first time of observation is common for all
sample-paths, that is, ti,1 = t0, i = 1, . . . , d. Let X(ti, j ) be
the random variable of the process associated with ti, j and
let xi, j be the observed sample value. For i = 1, . . . , d,
let Xi = (X(ti,1), . . . , X(ti,ki ))

T be the vector contain-
ing the random variables of the i-th sample-path, and let

X = (
XT
1 | · · · |XT

d

)T
.

For the two processes considered, we will assume that
the initial distribution is non-degenerate, being lognormal
�1

[
ηL, δ2L

]
for XL(t) and normal N1

[
ηG, δ2G

]
for XG(t).

Clearly, the degenerate initial distribution is a particular case
of both and can be obtained by choosing δ2L = δ2G = 0. Let’s
denote ςν = (ην, δ

2
ν )

T , ν = L,G, the parametric vectors of
the initial distributions.

For a fixed value x of X, from (10) and (11), and from the
initial distributions, we can write the expression of the log-
arithm of the likelihood function jointly for both processes,
resulting in

logL
ν
x
(
ςν, ξ ν

) =
⎧⎨
⎩
Jν
x(ξ ν) if P(Xν(t0) = x0) = 1

Hν
x(ςν) + Jν

x(ξ ν) otherwise ,

ν = L,G (12)
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being

Hν
x(ςν) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−k + d

2
log(2π) − d

2
log δ2L −

d∑
i=1

log xi,1 − 1

2δ2L

d∑
i=1

(
log xi,1 − ηL

)2 if ν = L,

−k + d

2
log(2π) − d

2
log δ2G − 1

2δ2G

d∑
i=1

(
xi,1 − ηG

)2 if ν = G,

(13)

and

Jν
x(ξ ν) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−k

2
log σ 2

L − 1

2

d∑
i=1

ki∑
j=2

log�i j − Z + �ξL
− 2�ξL

2σ 2
L

if ν = L,

−k

2
log σ 2

G − 1

2

d∑
i=1

ki∑
j=2

log g̃i jθ − Z̃θ + �̃θ − 2�̃θ

2σ 2
G

if ν = G.

(14)

Here k = ∑d
i=1(ki − 1) and

Z =
d∑

i=1

ki∑
j=2

log2
(
xi, j/xi, j−1

)
�i j

,

�ξL
=

d∑
i=1

ki∑
j=2

(
mi j

ξL

)2
�i j

,

�ξL
=

d∑
i=1

ki∑
j=2

log
(
xi, j/xi, j−1

)
mi j

ξL

�i j
,

Z̃θ =
d∑

i=1

ki∑
j=2

x2i, j

g̃i jθ
,

�̃θ =
d∑

i=1

ki∑
j=2

x2i, j−1

(
gi jθ

)2
g̃i jθ

,

�̃θ =
d∑

i=1

ki∑
j=2

xi, j xi, j−1g
i j
θ

g̃i jθ
,

being �i j = ti, j − ti, j−1, m
i j
ξ L

= HξL
(ti, j−1, ti, j ), g

i j
θ =

gθ (ti, j−1)/gθ (ti, j ) and

g̃i jθ = 1

g2θ (ti, j )

∫ ti, j

ti, j−1

g2θ (u) du.

The maximum likelihood estimation requires determin-
ing the maximum of the objective function logL

ν
x
(
ςν, ξ ν

)
.

Assuming that ςν and ξ ν are not functionally dependent,
from (13) it follows that their estimation can be obtained in

an independent form. In this way, we obtain

η̂L = 1

d

d∑
i=1

log xi,1, δ̂2L = 1

d

d∑
i=1

[log xi,1 − η̂L]2

and

η̂G = 1

d

d∑
i=1

xi,1, δ̂2G = 1

d

d∑
i=1

[xi,1 − η̂G]2.

With regard to ξ ν , the resulting system of equations
derived from (14) is quite complex, due to the number of
parameters and to the random nature of the observations, so
analytical and classical numericalmethods (such asNewton–
Raphson) are not always exploitable. Indeed, it is not possible
to carry out a general study of the systemof equations in order
to check the conditions of convergence of the chosen numeri-
cal method, since the system is dependent on sample data and
may lead to unforeseeable behavior. Adding to this problem,
we must also select an optimal initial solution, which can be
quite a complex task.

In this situation, the use of stochastic metaheuristic
optimization procedures is highly recommended. These
algorithms are designed to solve problems of the type
minθ∈� f (θ), and are often more appropriate than classical
numerical methods, since they impose fewer restrictions on
the space of solutions � and on the analytical properties of
the function to be optimized. In this paper, we propose to use
an ad hoc strategy that, starting from the likelihood function,
uses the MFO algorithm.
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4.1 Strategy to find bounds for a metaheuristic
approach

Metaheuristic models are used in many areas of applied
research, and have shown to be very useful in solving opti-
mization problems, such as those related with maximum
likelihood estimation. The common pattern in most meta-
heuristic algorithms involves the parallel use of many agents
moving across a region until certain stability conditions are
reached. The region could be the parametric space where a
function is defined, and themovements are usually guided by
random functions of the value of the function at every point
of the region. By taking advantage of modern computational
power, a high number of agents are able to “find” the points
on the region where the objective function reaches local o
global optima in a reasonable amount of time.

There are manymetaheuristic algorithms, based on a vari-
ety of concepts coming from biology, physics, etc. Indeed,
this is a very active area of research, where new and sophisti-
cated procedures are currently being developed in numerous
published papers.

One such procedure is the MFO algorithm. This is a
population-based metaheuristic algorithm inspired on the
navigation method of moths (see Mirjalili 2015). Indeed,
such insects fly following what is called transverse orien-
tation, a method based on a fixed angle flight with respect to
theMoon. The high rate of success of MFO and other related
algorithms based on this natural behavior is illustrated by
Kotary and Nanda (2020) and Korashy et al. (2020). The
algorithm takes two populations, one of moths and one of
flames, which act as flags and represent the matrix of best
solutions according to the fitness of the objective function.
The moths then search across a parametric space delimited
by the boundaries imposed by the researcher.

Mirjalili (2015) provides a wide-ranging presentation and
analysis of the method, and supports its use in optimiza-
tion problems. In particular, a comparative study is made
involving some of the most well-known and recent algo-
rithms (Simulated Annealing, Genetic Algorithms, Firefly
Algorithm, Particle swarm optimization,...) The results of
the study illustrate how MFO provides better results than a
wide variety of metaheuristic methods, with the results being

Fig. 1 Simulated paths for lognormal case with n = 1 known. Up (left to right): p = 1.01, σ = 0.025, p = 1.2, σ = 0.05. Down: p = 1.5, σ =
0.075
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Table 1 Lognormal case with
n = 1 known: estimations of the
parameters and RAE for
η = 0.03, α = 0.8 and for
different combinations of p, σ

p σ η̂ α̂ p̂ σ̂ RAE

1.01 0.025 0.0289 0.8034 1.0084 0.0252 0.0049

(< 10−4) (0.0002) (0.0005) (< 10−4)

0.050 0.0279 0.8043 1.0054 0.0503 (< 10−4) 0.0100

(< 10−4) (0.0002) (0.0004) (< 10−4)

0.075 0.0269 0.8047 1.0014 0.0755 (< 10−4) 0.0152

(< 10−4) (0.0002) (0.0005) (< 10−4)

1.20 0.025 0.0287 0.8114 1.2172 0.0251 0.0047

(< 10−4) (0.0002) (0.0004) (< 10−4)

0.050 0.0273 0.8223 1.2338 0.0503 0.0092

(< 10−4) (0.0002) (0.0004) (< 10−4)

0.075 0.0260 0.8325 1.2492 0.0755 0.0141

(< 10−4) (0.0003) (0.0006) (< 10−4)

1.50 0.025 0.0297 0.8071 1.5127 0.0252 0.0171

(0.0005) (0.0040) (0.0050) (< 10−4)

0.050 0.0291 0.8168 1.5287 0.0503 0.0302

(0.0005) (0.0035) (0.0045) (< 10−4)

0.075 0.0284 0.8265 1.5449 0.0755 0.0420

(0.0005) (0.0038) (0.0049) (< 10−4)

Standard errors in parentheses

Fig. 2 Lognormal case with n = 1 known: evolution of the sequence of the mean of the estimates across replications for p = 1.5 and for
σ = 0.025, 0.05, 0.075
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Fig. 3 Lognormal case with n = 1 known and p = 1.5: RAE across
replications for σ = 0.025, 0.05, 0.075

quite competitive with the rest of the procedures compared.
This has motivated us to choose this procedure for the opti-
mization of the objective function.

Concretely, in the MFO algorithm, the configuration of
moths can be represented by a matrix Q = (qi j ), with

i = 1, . . . , n being the number of moths and j = 1, . . . , d
the number of variables. Essentially, the MFO algorithm is
determined by three key elements. The first one is a func-
tion that provides the random population of moths and the
corresponding fitness (a vector in R

n associated to each
configuration matrix Q). Such function generates the ran-
dom configuration by using any probability distribution and
associates fitness by calculating the values of the objective
function at the points set by the configuration. The second
element of the algorithm is the function in charge of moving
the moths around the space. Formally, this function updates
matrix Q at each step. Finally, a termination criterion func-
tion determines if the algorithm stops or not, according to the
state of the matrix Q.

The function for the movement of moths is defined by
considering a logarithmic spiral function. As a matter of fact,
for amoth i at positionqi and aflame f j , betweenwhich there
is a distance di , the new position q̃i is computed according to
the formula q̃i = di ebt cos (2π t)+ f j , where b is a constant
related with the shape of the spiral and t is taken uniformly
at random in [−1, 1].

Fig. 4 Simulated paths for the Gaussian case with n = 1 known. Up (left to right): p = 1.01, σ = 0.025, p = 1.2, σ = 0.05. Down:
p = 1.5, σ = 0.075
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Consequently, this approach results in a combination of
exploration and exploitation. A moth is exploring when it
moves outside the space between itself and the flame. On the
contrary, exploitation occurs when themothmoves inside the
space between itself and the flame.

In order to avoid local optima that might restrict move-
ment, the position of each moth must be updated (according
to the logarithmic spiral) taking only one fixed flame (the
list of flames is sorted, by means of the Quicksort algorithm,
from high to low fitness at each step).

By considering the sorting algorithm and the function of
movement, the computational complexity of the MFO algo-
rithm is O(rn2 + rnd), where n is the number of moths, r
the maximum number of iterations and d the number of vari-
ables, i.e. the dimension of the search space. This has been
computed by considering the worst case of the Quicksort
algorithm, that is O(n2).

In the following, bounds for the parameters of processes
XL(t) and XG(t) are obtained according to some character-
istics of the deterministic curve xθ (t) given by (5).

Regarding parameter σν , ν = L,G, it is known that when
it has high values it leads to sample paths with great variabil-
ity around themeanof theprocess.Thus, excessivevariability
in available paths would make a sigmoidal-type modeling
unadvisable. Some simulations performed for several values
of σν have led us to consider that 0 < σν < 0.1, so that we
may have paths compatible with a sigmoidal-type growth.

On the other hand, whereas 0 < α < 1, there does not
seem to be an upper bound for η and n. From (9), it follows
that the growth curve considered shows an inflection point
which is higher than t0, i.e. it is observable, if and only if
η ≤ b(n, p), where

b(n, p) = n(1 − p) + 1

np
, 1 < p < 1 + 1/n.

Function b is decreasing in p for fixed n. In this case, since
lim
p→1

b(n, p) = 1/n, it is deduced that 0 < η ≤ 1/n. Con-

sequently, when n is known (namely n0), it is verified that
1 < p < 1 + 1/n0 and 0 < η < 1/n0. On the contrary, we
suggest a procedure to find the bounds for parameter n. This
procedure is based on the one used tofind a range of values for
the parameter of the Box-Cox transformation in linear mod-
els. To this end, if we call L∗(n) = Sup

η,α,p,σ 2
ν

Jν
x(η, α, p, n, σ 2

ν )

and consider L∗(̂n) = Sup
n

L∗(n), then 2 (L∗(̂n) − L∗(n)) �

χ2
1 , from which

P

[
L∗(n) ≥ L∗(̂n) − 1

2
χ2
1,̃α

]
= 1 − α̃,

being χ2
1,̃α the (1 − α̃)-th percentile of a χ2 distribution

with one degree of freedom. Splitting L∗(n) with ordinate
L∗(̂n) − 1

2χ
2
1,̃α , we find two values for n which determine

the interval, namely (n1, n2). Once this interval is calculated,
the corresponding interval for η is (0, 1/n1) whereas for p is
(1, 1 + 1/n1).

5 Simulation study

In order to study the behavior of the proposed models and
the use of metaheuristic approaches for the estimation of
the parameters, simulation studies have been carried out for
both processes. Moreover, taking into account the arguments
provided at the end of the previous section, we consider the
cases for n known and unknown separately.

5.1 The case for n known

When the value of n is known, the general growth model
relies on four parameters, namely η, α, p and σ (throughout
this section we will denote the volatility coefficient by σ ,
without distinguishing the process being used). In this case,
upper bounds for η and p are then fixed, as it has been shown
in the previous section. In the following, we consider n = 1,
which is related to the case of the hyperlogistic curve.

The general setup for the simulations consists of 20 paths
of a process with initial distribution degenerate at x0 = 0.2.
Initial and final times are, respectively, t0 = 0 and 40. Each
sample path consists of N = 401 values obtained at instants
ti = 0.1× (i − 1). Parameters η and α are fixed, with values
0.03 and 0.8, respectively. The choice of such values guar-
antees the existence of one observed inflection point in the
curve for values of p between 1 and 2, according to function
b(n, p) given in Sect. 4.1.

The bounded parametric space for parametric vector θ1 =
(η, α, p)T (the vector θ for n = 1) is [0, 1] × [0, 1] × [1, 2].
Once paths were simulated, the estimation of the parame-
ters was performed by means of the metaheuristic algorithm
MFOwith 30 agentsworking across 100 generations,making
several replications and taking mean values. The computer
implementation was made in Python using the MEALPY
package (Van Thieu and Mirjalili 2023).

For the evaluation of the results, the relative absolute error
(RAE) of the mean is computed according to the expression

RAE = 1

N

N∑
i=1

|mi − xθ̂1
(ti )|

mi
,

where mi is the value of the observed mean at time ti and
xθ̂1

(ti ) is the value of the estimated mean function of the
process at the same time instant.
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Table 2 Gaussian case with
n = 1 known: estimations of the
parameters and RAE for
η = 0.03, α = 0.8 and for
different combinations of p, σ

p σ η̂ α̂ p̂ σ̂ RAE

1.01 0.025 0.0284 0.8013 1.0157 0.0251 0.0152

(0.0007) (0.0006) (0.0050) (< 10−4)

0.050 0.0276 0.8013 1.0212 0.0501 0.0382

(0.0007) (0.0006) (0.0054) (< 10−4)

0.075 0.0272 0.8012 1.0248 0.0755 0.0528

(0.0009) (0.0008) (0.0067) (0.0028)

1.20 0.025 0.0295 0.7988 1.2001 0.0251 0.0306

(0.0001) (0.0001) (0.0003) (< 10−4)

0.050 0.0289 0.7975 1.2007 0.0501 0.0604

(0.0026) (0.0024) (0.0164) (0.0001)

0.075 0.0279 0.7969 1.2050 0.0752 0.1058

(< 10−4) (0.0001) (0.0003) (< 10−4)

1.50 0.025 0.0308 0.7966 1.4894 0.0251 0.0053

(< 10−4) (< 10−4) (0.0001) (< 10−4)

0.050 0.0309 0.7929 1.4795 0.0501 0.0186

(< 10−4) (< 10−4) (0.0001) (< 10−4)

0.075 0.0307 0.7890 1.4706 0.0752 0.0419

(< 10−4) (< 10−4) (< 10−4) (< 10−4)

Standard errors in parentheses

Fig. 5 Gaussian case with n = 1 known: evolution of the sequence of the mean of the estimates across replications for p = 1.5 and for
σ = 0.025, 0.05, 0.075
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Fig. 6 Gaussian case with n = 1 known and p = 1.5: RAE across
replications for σ = 0.025, 0.05, 0.075

Fig. 7 Lognormal case with n = 1 unknown: bounds for n in the
general growth process in Table 3 for p = 1.5. Blue dots represent
values of L(n∗

i ) for every n∗
i . The red horizontal line is the threshold

that cuts the interpolated function. The vertical lines are the real value
of n (grey) and the bounds n0 and n1 (green) for n

Under these settings, 150 replications are performed
for combination of values p = 1.01, 1.2, 1.5 and σ =
0.025, 0.05, 0.075. The bounds of σ are chosen to be 0.001
and 0.1, a natural choice according to experience, as previ-
ously noted.

For the lognormal process described in Sect. 3.1, in Fig. 1
the plots of some simulated paths are shown for several values

of p and σ . Precisely, we have chosen p = 1.01, σ = 0.025,
p = 1.2, σ = 0.05 and p = 1.5, σ = 0.075 (from left
to right). The trajectories grow around the mean function
(black curve) and the variability around it increases as σ

grows, as expected. Furthermore, we can also observe that
the inflection time decreases as the parameter p increases, as
it is analytically deduced by Eq. (9).

In Table 1 we list the means and the standard deviation (in
parentheses) of the estimates obtained in each replication.
The procedure seems to work properly and is able to find
estimates that are very close to the true parameters, keep-
ing errors small even as the variability linked to parameter σ

increases. This is further made clear by looking at the indi-
vidual errors given by the standard errors aswell as the global
errors described by the RAEs in the last column.

For parameters η, α, p and σ , Fig. 2 shows the plots of
the evolution of the estimated values found by the algorithm
across 150 replications. Precisely, for each of the plots, each
line represents the sequence of the mean of the estimates. For
example, for parameter η, the green line is obtained at step
i as the mean of estimates η̂ j for j = 1, . . . , i , being η̂ j the
estimate at the j-th replication for σ = 0.075.

Finally, in Fig. 3, evolution of RAE across replications
can be seen for p = 1.5 and for σ = 0.025, 0.05, 0.075. The
error tends to stabilize after just a few replications. Clearly,
increasing σ increases the value of the RAE in each replica-
tion.

For the Gaussian process described in Sect. 3.2, in Fig. 4
the plots of some simulated paths are shown for several values
of p and σ . Also in this case, the trajectories grow around
the mean function (black curve) and the variability around it
increases as σ grows and the inflection time decreases as the
parameter p increases, as it is analytically deduced byEq. (9).
Clearly, since in this case the process is homoscedastic, the
oscillations in each trajectory are less sharp.

In Table 2 we list the means and the standard deviation (in
parentheses) of the obtained estimates in each replication.
Also in this case, estimates very closed to the parameters are
found keeping the errors small even as σ increases both in
terms of global and individual errors.

For parameters η, α, p and σ , Fig. 5 shows the plots of the
evolution of the estimated values found by the algorithm.We

Table 3 Lognormal case with
n = 1 unknown: estimations of
the parameters and RAE for
η = 0.03, α = 0.8 and for
p = 1.01, 1.2, 1.5 and
σ = 0.025

p η̂ α̂ p̂ n̂ σ̂ RAE n0 n1

1.01 0.0261 0.7975 1.0161 1.0595 0.0251 0.0192 0.99 1.30

(0.0059) (0.0045) (0.0098) (0.0785) (< 10−4)

1.20 0.0287 0.8003 1.1978 1.0190 0.0248 0.0371 0.95 1.45

(0.0075) (0.0045) (0.0017) (0.1048) (< 10−4)

1.50 0.0364 0.8018 1.5157 0.9445 0.0249 0.0250 0.90 1.10

(0.0069) (0.0053) (0.0169) (0.0623) (< 10−4)

The last two columns show bounds of n. Standard errors in parentheses
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Fig. 8 Lognormal case with n = 1 unknown: evolution of the sequence of the mean of the estimates across replications for p = 1.5 and σ = 0.025

Fig. 9 Lognormal case with n = 1 unknown: RAE across replications
for p = 1.5 and σ = 0.025

observe that the sequence of the estimates draws a constant
line showing that the convergence is reached immediately;
this is in accordance with the results of the Table 2 in which
the standard errors are lower than 10−4. Finally, in Fig. 6,
evolution of RAE across replications can be seen for p = 1.5
and for σ = 0.025, 0.05, 0.075.

5.2 The case for n unknown

A simulation study for the general growth processes for n
unknown is carried out in this section. In this case, lower and
upper bounds for the parameter n can be found according to
the discussion done at the end of Sect. 4.1. We must bear in
mind that the metaheuristic approach presupposes an initial
limitation of the parameter space. Since α ∈ (0, 1), η ∈
(0, 1/n), p ∈ (1, 1 + 1/n) and σ ∈ (0, 0.1), when n is
unknown we need bounds for n. To obtain these bounds we
propose the following two-step procedure: in the first step
the lower and upper bounds of n are obtained; in the second
stepwe implement anMFO algorithm to estimate parameters
η, α, p, n, σ .

Specifically, the proposed strategy is the following

1. Step 1:

(a) Let I = [a, b] an interval for n and 0 < � < (b −
a)/2. Set i = 0, n∗

i = n∗ = a
(b) while (n∗ ≤ b)
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Table 4 Gaussian case with
n = 1 unknown: estimations of
the parameters and RAE for
η = 0.03, α = 0.8 and for
p = 1.01, 1.2, 1.5 and
σ = 0.025

p η̂ α̂ p̂ n̂ σ̂ RAE n0 n1

1.01 0.0331 0.8036 1.0059 0.9855 0.0251 0.0190 0.90 1.40

(0.0070) (0.0040) (0.0131) (0.0842) (< 10−4)

1.20 0.0377 0.8004 1.1926 0.9540 0.0253 0.0527 0.90 1.20

(0.0085) (0.0006) (0.0074) (0.0788) (< 10−4)

1.50 0.0369 0.8017 1.5085 0.9528 0.0246 0.0240 0.90 1.10

(0.0060) (0.0024) (0.0054) (0.0489) (< 10−4)

The last two columns show bounds of n. Standard errors in parentheses

Fig. 10 Gaussian case with n = 1 unknown: evolution of the sequence of the mean of the estimates across replications for p = 1.5 and σ = 0.025

• Obtain estimates η̂, α̂, p̂ and σ̂ for η, α, p and σ

by using MFO algorithm by assuming n known
and equal to n∗

• Evaluate the function L(n∗
i ) = Jν

x (̂η, α̂, p̂, n∗
i ,

σ̂ 2)

• i = i + 1, n∗
i = a + i�, n∗ = n∗

i
(c) Plot the values of the vector L(n∗

i ) versus n
∗
i

(d) Interpolate the points L(n∗
i ) in I and obtain the max-

imum of the interpolated function, namely M
(e) Fixed a confidence level 1 − α̃, calculate the values

n0 and n1 such that the interpolated function in the
interval [n0, n1] is greater than M − 1

2χ
2
1,̃α

(1.) Step 2:

• Assume n ∈ [n0, n1], α ∈ (0, 1), η ∈ (0, 1/n0),
p ∈ (1, 1 + 1/n0) and σ ∈ (0, 0.1)

• Obtain estimates η̂, α̂, p̂, n̂ and σ̂ for η, α, p, n and
σ by using MFO algorithm in 5 dimensions.

In our study, we simulate 20 sample paths for the lognor-
mal version of the general growth process with parameters
η = 0.03, α = 0.8, n = 1 and p = 1.01, 1.2, 1.5, being
σ = 0.025 the diffusion parameter. We must point out that,
since we expect that adding parameter n leads to a slower
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Fig. 11 Gaussian case with n = 1 unknown: RAE across replications
for p = 1.5 and σ = 0.025
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Fig. 12 Weight of 29 rabbits over 30 weeks

convergence of the estimates, for this study we considered
200 replications for the Gaussian case and 300 for the log-
normal process because of the heteroscedasticity of the latter.
For the lognormal case, in Table 3 we list the mean and the
standard deviation (in parentheses) of the estimates obtained,
the RAE and the bounds for n obtained by using the proposed
methodology. Table 3 considers the same setup parameters
for η, α, p and σ of Table 1 but the new parameter n is
inclosed. The comparison between two Tables shows that the
estimates are very similar in the two cases. However, when
n is unknown the estimation errors are bigger, as is as global
error RAE.

For illustrative purpose, Fig. 7 shows graphically the com-
putation of the interval [n0, n1] for the case p = 1.5. Here
the confidence level 1 − α̂ is fixed to 0.80.

Table 5 Real application: estimates of the parameters, bounds for n
and RAE

η̂ α̂ p̂ n̂ σ̂ n0 n1 RAE

0.1043 0.7225 1.1148 0.6167 0.0691 0.55 0.84 0.0313

For parameters η, α, p and n, Fig. 8 shows the plots of
the evolution of the estimated values found by the algorithm.
The plot of σ is omitted since its estimated value remains the
same across the replications. Figure9 shows the stabilization
of RAE across the replications.

Finally, results for the Gaussian case are shown in Table 4
in which the estimates and errors illustrate the good per-
formance of the procedure, with a similar behavior to the
lognormal case comparing it to Table 2 in which parameter
n is assumed known. Also the convergence of the estimates
is reached as one can see in Figs. 10 and 11.

6 Application to real data

In the following section, we consider data provided from the
paper of Blasco et al. (2003), in which a study concerning
some aspects related to the growth of a population of rab-
bits was developed. Figure12 shows the weight (in grams)
of 29 rabbits over 30 weeks. The sample paths start at differ-
ent initial values, thus exhibiting a sigmoidal behavior, and
being their bounds dependent on the initial values. Further-
more, the graph shows how the variability observed between
trajectories is greater as the weight of the rabbits increases.
These aspects suggest that using the lognormal-type model
proposed above would be appropriate with respect to a Gaus-
sian model in which the variability is constant.

To obtain the parameter estimates, the MFO algorithm,
with 150 generations, 40 agents and 1000 replications, has
been considered. Parameter n is unknown, so the procedure
outlined in Sect. 5.2 has been used in the estimation. Final
results are listed in Table 5, in which the estimates of the
parameters of the model are shown, together with the con-
fidence interval for n with 1 − α = 0.95 and the value of
the related error (RAE), showing that the estimated mean is
close to the observed mean function.

In particular, the estimates in Table 5 can be used to
forecast the weight of a rabbit given its initial weight x0.
Specifically, thanks to the invariance property of the MLE,
we have m̂θ (t |t0) = m θ̂ (t |t0). In order to show the goodness
of fit of the estimated mean function with respect the weight
of rabbits, knowing its initial value, in Fig. 13 we show, for
four rabbits, the observed weights along the weeks and the
estimated mean function.
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Fig. 13 Observed values and estimated mean function for a choice of rabbits

7 Conclusion

In the previous pages we have considered two stochastic dif-
fusion processes, starting from a general growth curve given
by Eq. (1). Such equation includes the well known models
of hyper-logistic and hyper-Gompertz growth, so it is there-
fore able to describemany dynamic systems. Specifically, the
diffusion processes are obtained by considering in the deter-
ministicEq. (1) amultiplicative and an additive noise, leading
to a Lognormal and a Gaussian process, respectively. After
studying the probability distribution of the two processes,
the inference is addressed by means of the maximum likeli-
hood method. Due to the complexity of the resulting system
of equations, we have used metaheuristic techniques (MFO

algorithm) in order to maximize the likelihood function. In
particular, these methods require delimiting the parameter
space, and we have therefore considered two cases: n known
and n unknown. In the first case, parameter space is in R

4

and the bounds of the parameters are obtained starting from
similar information related to the inflection point. In the sec-
ond case, parameter space is in R

5 and the bounds of the
parameters are obtained by making use of a procedure based
on the one used to find a range of values for the parameter of
the Box-Cox transformation in linear models. Several sim-
ulation studies have shown that the estimates produced are
very close to the real values of the parameters and provide
small errors both for the estimate of each parameter and for
the estimate of the mean function of the process.
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