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Abstract: Two methanogenesis inhibition strategies for enhancing volatile fatty acid (VFA)
production through the anaerobic fermentation of alperujo, a byproduct of olive oil pro-
duction, were evaluated. Methanogenesis inhibition was implemented via two different
approaches, one by pH adjustment to 5.0 and another one by chemical inhibition using
2-bromoethanesulfonate (BES) at pH 7. The VFA accumulation at the end of the experiment
was 67% higher under the BES condition than under the pH 5 condition. Interestingly,
the VFA profiles were similar under both conditions, with acetic acid as the dominant
product, followed by propionic and butyric acids. The results demonstrated a 25% increase
in alperujo solubilization under the BES condition, compared to under the pH 5 condition.
This latest finding, together with the similar VFA profiles on both strategies, suggests that
the hydrolysis step in alperujo solubilization was impacted by the pH difference. These
findings highlight the effectiveness of chemical inhibition in enhancing solubilization,
hydrolysis, and VFA accumulation during anaerobic fermentation of alperujo and, most
importantly, the negative effect of pH 5 on the solubilization step.

Keywords: anaerobic fermentation; pH adjustment; chemical inhibitor; carboxylate acid;
phenolic compounds; semi-continuous operation

1. Introduction
The olive oil production industry is growing worldwide, achieving 2.5 million tons

in the 2023/2024 season [1]. This production is primarily concentrated in the Mediter-
ranean basin, accounting for 90% of the total. Within the Mediterranean region, Spain is
a significant contributor, responsible for 30% of the overall production [1]. During the
olive oil production process, a by-product known as alperujo is generated in the two-phase
olive oil extraction system. Alperujo consists primarily of olive stones and pulp, having a
composition of approximately 70–75% moisture and 35% lignocellulosic compounds [2].
Different management methods are currently under consideration for alperujo, among
which anaerobic digestion is a feasible option to obtain renewable carbon materials, such
as biogas or a digestate [3].

The anaerobic digestion of alperujo operates most efficiently under mesophilic condi-
tions and within a pH range of 6.5–7.5. This process generates an average energy output
from methane production comparable to the energy yield achieved through its direct
combustion [4]. In fact, the biodegradability of alperujo under these operational conditions
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has been reported by different previous studies, with values between 60–90% [4]. Currently,
the prices of biogas from industrial waste ranges from USD 0.11 to USD 0.50 per cubic
meter of methane [5]. As an alternative, volatile fatty acids (VFAs), which are intermediate
metabolites produced during the fermentative stage of anaerobic digestion, have gained
significant scientific and economic interest. VFAs, short-chain carboxylic acids with 2 to
5 carbon atoms, are valuable for producing bioplastics, high-added-value chemicals, and
biofuels [6]. Among them, acetic acid is the most produced carboxylic acid, priced at USD
890 per ton, followed by propionic and butyric acids at USD 2200 per ton and USD 2550
per ton, respectively [7].

Several strategies have been proposed to transform anaerobic digestion processes
from methane production to fermentative processes to produce VFA. Examples of these
strategies are the thermal modification of the inoculum [8], acid or alkali pH operation [9],
hyperthermophilic operation [10], or low hydraulic retention time (HRT) operation [11],
among others. Actually, there is not much research on the production and accumulation of
VFAs from alperujo. The research up to date is mainly focused on the operation at different
pHs. Furthermore, all these studies have been conducted on batch reactor configuration,
yielding relatively low VFA production values [9,12–14]. Under alkaline conditions, the
highest VFA concentrations are achieved, with acetic acid being the predominant prod-
uct, in combination with the highest percentage of solubilization at around 50% [9]. In
contrast, acidic conditions result in lower overall VFA concentrations as a consequence of
a lower solubilization (20%) but yield a more diverse profile, with acetic, propionic, and
butyric acids present in similar proportions [9,12]. Additionally, these studies focused on
monitoring phenolic compounds, due to their antimicrobial activity and their increased
concentration under acidic conditions [9,12–14]. However, according to these same authors,
under neutral pH conditions and in a complete anaerobic digestion metabolic pathway,
the microorganisms were able to solubilize up to around 80% of the alperujo [9,12]. These
findings suggest that although operating reactors at extreme pH ranges might allow the
inhibition of methanogenesis, it also affects the capacity of the bacteria to solubilize alpe-
rujo, with respect to neutral pH. In fact, certain hydrolytic bacteria are sensitive to pH [15].
This sensitivity can result in reduced hydrolysis efficiency at an operational pH out of their
optimal range, particularly when processing complex organic materials, such as alperujo.

The aim of this work was to compare the solubilization, as well as the production
and accumulation of volatile fatty acids (VFAs), in semi-continuous reactors under two
methanogenesis inhibition strategies: (1) at pH 5.0 and (2) using the chemical inhibitor
archaea 2-bromoethanesulfonate (BES) at pH 7. Both strategies were applied to monitor the
total soluble compounds, volatile fatty acids, and total and individual phenolic compounds
as possible inhibitors of alperujo.

2. Materials and Methods
2.1. Feedstock and Anaerobic Inoculum Characterization

Alperujo was obtained from the “Oleícola El Tejar Ntra. Sra. de Araceli” po-
mace plant, located in Marchena (Seville), Spain. The main physico-chemical charac-
teristics of the alperujo were as follows: pH = 4.4 ± 0.1; volatile solids/total solids
(VS/TS) = 93.9 ± 0.2%; moisture = 71 ± 0.5%; soluble chemical oxygen demand
(sCOD) = 86,409 ± 1528 mg O2/L; sCOD/ total chemical oxygen demand (tCOD) ra-
tio = 24%; and phenolic compounds = 24,744 ± 351 mg gallic acid eq./kg.

The anaerobic inoculum used in the experimentation was obtained from an indus-
trial anaerobic reactor of the wastewater treatment plant “COPERO” located in Seville,
Spain. The main anaerobic inoculum characteristics were as follows: pH = 7.0 ± 0.1;
VS = 22,607 ± 196 mg VS/kg; and sCOD = 443 ± 7 mg O2/L.
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2.2. Anaerobic Fermentation Experimental Procedure

Duplicate glass reactors (Pobel, Spain) operating under a semi-continuous regime
had a working volume of 1.6 L, and each one was inoculated with 10 g VS/L of fresh
inoculum. The reactors were operated under mesophilic conditions (35–37 ◦C), applying
a hydraulic retention time (HRT) of 14 days during four HRT repetitions, i.e., 57 days
of operation time. This short HRT was selected to favor VFA accumulation [16]. An
organic loading rate (OLR) of 3 g VS of alperujo/(L·d) was set and maintained throughout
the whole experimentation time. Methanogenesis inhibition was created on the first day
through manual pH adjustment to pH 5 in duplicate reactors, while other duplicate reactors
underwent chemical inhibition at pH 7. Chemical inhibition was added to the reactors at
a rate of 0.5 g of 2-bromoethanesulfonate (BES) per gram of volatile solids of inoculum.
The initial pH adjustment for each reactor was manually controlled using 2N NaOH and
2N HCl. In reactors maintained at pH 7 under the addition of the BES condition, sodium
bicarbonate (1 g) was supplemented when the pH dropped below 7.0. Methane, carbon
dioxide, and hydrogen production were collected in biogas bags.

2.3. Chemical Analysis

The characterizations of alperujo, anaerobic inoculum, and samples obtained from
the reactors were determined per duplicate following the analytical test. Total solids (TSs),
volatile solids (VSs), and total and soluble chemical oxygen demand (sCOD) were measured
in the samples according to the APHA Standard Methods [17].

Each analysis was carried out at least in duplicate. The standard deviation of each
mean value was considered to evaluate the measurement errors.

2.3.1. VFA Quantification by Gas Chromatograph Analysis

To measure the concentration of VFAs (acetic acid (C2), propionic acid (C3), iso-butyric
acid (i-C4), butyric acid (n-C4), iso-valeric (i-C5) acid, and valeric acid (n-C5)) in the samples,
these were centrifuged and microfiltered with 0.45 µm nylon microfilters. The sample was
prepared by adding an internal standard of 1500 mg/L ethylbutyric acid to phosphoric
acid (30% v/v). VFAs were determined in duplicate, injecting 0.5 µL of each sample in a
gas chromatograph equipped with a Shimadzu GC-2025 (Shimadzu Corporation, Kyoto,
Japan). A Stabilwax-DA capillary column (RESTEK Corporation, Bellefonte, PA, USA) of
0.25 mm i.d. × 30 m and a flame ionization detector (FID) were used. The oven temperature
gradually increased from 100 to 170 ◦C at 5 ◦C/min. The carrier gas (nitrogen, hydrogen,
and air) flowed at 40 mL/min at 504 kPa, with individual flow rates of 30 mL/min for
nitrogen, 40 mL/min for hydrogen, and 400 mL/min for air. The FID detector temperature
was set to 250 ◦C. Identification and quantification were performed using commercial
standards by comparing retention times with the reference compound.

2.3.2. Total and Soluble Phenolic Compounds

Samples were previously centrifuged and microfiltered with 0.22 µm nylon micro-
filter. The total soluble phenolic compounds were determined using the Folin–Ciocalteu
method [18]. For each sample, Na2CO3 (0.7 M) and Folin–Ciocalteu (0.2 M) were added.
After 15 min, the absorbances of the samples were recorded at 655 nm in a Bio-Rad iMark
model microplate reader (Hercules, CA, USA). Finally, a calibration curve with a known
gallic acid concentration was developed, and the results were expressed as milligrams of
gallic acid equivalents per kilogram or per liter. The phenolic compound profile was ana-
lyzed in a Hewlett-Packard 1100 series high-performance liquid chromatography (HPLC)
(Agilent, Barcelona, Spain) equipment coupled with a diode array detector and an Agilent
1100 automatic injector (20 µL). The chromatographic column was a Teknokroma Tracer
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Extrasil OSD2, with a 5 µm particle size and a 25 × 0.46 mm internal diameter (Teknokroma,
Barcelona, Spain). The mobile phases were Milli-Q (Merck Millipore, Darmstadt, Germany)
water with an adjusted pH with 0.01% trifluoroacetic acid (A) and HPLC-grade acetonitrile
(B). A 55 min gradient elution method was used: 0–30 min of 5% B, 30–45 min of 25% B,
45–47 min of 50% B, and 47–50 min of 0% B, held until the run was completed. Identification
and quantification were performed using commercial standards by comparing retention
times with the reference compound and recording UV spectra between 200 and 360 nm [19].
Results were expressed as milligrams of each phenolic compound per liter.

2.3.3. Biogas Quantification and Composition

Biogas produced during the hydraulic retention time (HRT) of the reactors was col-
lected in gas bags. The volume of accumulated biogas was subsequently quantified us-
ing a Ritter gasometer. Biogas concentrations in the headspace samples were taken and
stored using a vacuum tube. A 500 µL gaseous sample was manually injected into an
HP 8860 gas chromatograph unit (Agilent, Shanghai, China) following a method modi-
fied from Araujo et al. [20]. The equipment was equipped with a TCD detector (Agilent,
Shanghai, China) and two columns, an HP-PLOT/Q (Agilent, USA), 30 m × 0.53 mm i.d.
× 40 µm film thickness, and an HP-MOLESIEVE molecular sieve (Agilent, USA), 30 m
× 0.53 mm i.d. × 50 µm film thickness. The initial temperature was held at 35 ◦C for
3 min, followed by a ramp to 65 ◦C with a ramp of 10 ◦C/min, resulting in a total run
time of 6 min. The carrier gas was N2 at a flow rate of 10 mL/min. The injector was
operated in split mode (split ratio 2:1) and at 200 ◦C, with a pressure of 17.14 psi. The
TCD detector was maintained at 250 ◦C, with N2 as the reference gas, at a flow rate of
25 mL/min. Compound identification and quantification were performed, with retention
time and peak areas of the sample being compared to those of increasing amounts of pure
gases. The gas chromatograph analyses were carried out at the Instrumental Technical
Services of the Estación Experimental del Zaidín (SIC-EEZ), CSIC, Granada, Spain.

2.4. Soluble Organic Matter Yield and Acidogenesis Ratio

To evaluate the fermentation process, the soluble organic matter yield (mg COD/g VS)
and acidogenesis rate ratio were calculated using Equations (1) and (2).

Soluble organic matter yield =
( [sCOD])effluent

VSeffluent
(1)

Acidogenesis rate(%) =
[sCODVFA] effluent
( [sCOD])effluent

× 100 (2)

where [sCOD] effluent = sCOD concentration represents the value of the reactor effluent
(g O2/L); [VS] effluent = volatile solids concentration stands for the effluent at the reactor
(g VS/L); and [sCODVFA] = VFA concentration is calculated as the COD (g O2/L).

2.5. Statistical Analysis

The results are expressed as mean values with their corresponding standard deviations
from duplicate reactors working as biological replicates. A one-way analysis of variance
(ANOVA) was conducted to evaluate statistical differences, followed by Tukey’s multiple
range test for sCOD and VFAs, while the Kruskal–Wallis test was used for total pheno-
lic compounds in pairwise comparisons. All statistical analyses were performed using
SigmaPlot 15.0 (Systat Software Inc., San Jose, CA, USA), with a significance threshold set
at p < 0.05.



Processes 2025, 13, 600 5 of 12

3. Results and Discussion
3.1. Soluble Compounds Accumulation Under Anaerobic Fermentation

During the first two HRTs (up to day 29), soluble chemical oxygen demand (sCOD)
increased under both the pH 5 and BES conditions. Under the pH 5 condition, sCOD
increased from 2034 ± 340 mg O2/L to 15,828 ± 508 mg O2/L, while under the BES
condition, it increased from 4328 ± 216 mg O2/L to 19,062 ± 88 mg O2/L (Figure 1). Steady-
state conditions were reached from the third HRT repetition onwards (from day 29 to 57),
with average values of 20,510 ± 1400 mg O2/L and 25,465 ± 1600 mg O2/L under pH 5
and BES, respectively (Figure 1). The nearly 25% increase in soluble compounds observed
under the BES condition (p-value < 0.001), compared to that under the pH 5 condition,
may be attributed to the pH-dependent activity of hydrolytic bacteria. Specifically, the
activity of certain hydrolytic bacterial populations may be limited at pH 5, while a greater
diversity and potentially higher activity of these populations may be observed at a neutral
pH [15,21].

The accumulation of organic matter in the reactor, evidenced by the increase in soluble
organic matter (Figure 1A,B), stabilized from day 28 onwards. An increase in the percentage
of sCOD/VS was observed up to this time, reaching final values of 54 ± 7% and 63 ± 6%
under pH 5 and BES conditions, respectively (Figure 1B). Consistent with these findings,
acidic pH can affect the enzymatic and metabolic activities of microorganisms, which may
affect the availability of the soluble substrate and thus the hydrolytic step [14,22].

The composition of the biogas, including methane (CH4), carbon dioxide (CO2), and
hydrogen (H2), is presented in Table 1. In the reactor under the pH 5 condition, a high
percentage of methane was observed during the first HRT, with a value of 51.35 ± 4.77%
(Table 1), while carbon dioxide was more dominant during the second and third HRTs.
The observed CH4 percentage was substantially lower than the range of 50–70% typically
achieved in complete anaerobic digestion processes [23,24]. Notably, a minimal percentage
of hydrogen was detected in the biogas during the second HRT, coinciding with higher
carbon dioxide composition. This composition indicated that, despite the use of pH 5
or BES conditions, the methanogenesis activity was not totally inhibited. In the reactor
operated under the BES condition, methane composition was lower across all HRTs, while
carbon dioxide was more predominant. Hydrogen was not detected, likely due to the
unfavorable condition at pH 7. Optimal conditions for effective hydrogen production
typically involve a pH of 5.5 and a temperature of 37 ◦C [25].

Table 1. Biogas compositions with their standard deviation at the end of each hydraulic retention
time (HRT) repetition.

Time
(Days)

HRT
Repetitions CH4 (%) CO2 (%) H2 (%) mL

Biogas/gVS

pH 5

0–13 1-HRT 51.35 ± 4.77 48.65 ± 4.77 n.d. 15.48 ± 17.29

14–28 2-HRT 11.93 ±5.89 87.12 ± 4.54 1.00 ± 1.00 15.79 ± 6.80

29–42 3-HRT 27.37 ± 7.44 72.63 ± 7.44 n.d. 9.28 ± 10.12

43–57 4-HRT 32.79 ± 15.01 67.21 ± 5.01 n.d. 2.88 ± 2.56

BES

0–13 1-HRT 8.69 ± 2.78 91.31 ± 2.78 n.d. 19.69 ± 15.84

14–28 2-HRT 22.10 ± 9.10 77.89 ± 9.09 n.d. 25.44 ± 22.38

29–42 3-HRT 29.59 ± 0.88 70.40 ± 0.88 n.d. 34.19 ± 14.92

43–57 4-HRT 13.34 ± 1.73 86.66 ± 1.73 n.d. 23.47 ± 1.07
n.d.: not detected.
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Figure 1. (A) Accumulation soluble compound (sCOD) values measured in milligrams of oxygen
per liter over the reactor operation time under pH 5 and BES conditions. (B) Representation of the
percentage of soluble organic matter in the reactor organic matter throughout the experimental time
under pH 5 and BES conditions.

3.2. Volatile Fatty Acid Accumulation Under Anaerobic Fermentation

Figures 2 and 3 show the pH measurements and the individual VFAs throughout the
whole experimental time. Under the pH 5 condition, pH adjustments were not required
throughout the operational time. On the contrary, under pH 7 conditions, sodium bicar-
bonate was periodically added, as its pH dropped to 6.3. This decrease could be due to the
acidification of the system by VFA accumulation (Figures 2 and 3).
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VFA concentration under the pH 5 condition increased steadily during the first HRT
repetition (up to day 14). Subsequently, after a period of stabilization, the VFA concentration
was observed from day 14 to day 57, with the average concentration remaining above
6000 mg/L (Figure 2), corresponding to 33 ± 2% of the acidogenesis rate at steady-state
days (from 30 to 57 days). Comparing these results with the BES condition, steady-state
conditions were observed slightly later than under the pH 5 condition, concretely on day 21,
accounting for total VFAs exceeding 10,000 mg O2/L, 67% higher than under the pH 5
condition (Figure 3). The ratio of acidogenesis (VFAs/sCOD) under the BES condition
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was 43 ± 3% on steady-state days (from 30 to 57 days), increasing to 10% more than the
results obtained under the pH 5 condition (p-value < 0.02). The increase in the percentage
of acidogenesis was in agreement with the results obtained by Lu et al. [26], in which the
acidogenesis rate was higher at pH 7 than at pH 5.

The difference between pH 5 and BES conditions in VFA accumulation and transfor-
mation could be related to the dissociation of VFAs. Under the pH 5 condition, it was
reported that approximately 60% of the total volatile fatty acids were dissociated, with
a pKa around 4.7–4.8. The concentration of undissociated organic acids can influence
fermentation, as these forms exhibit a stronger inhibitory effect, compared to their ionized
counterparts. Due to their neutral charge, undissociated acids can penetrate bacterial cells,
where they dissociate internally, releasing H+ ions and disrupting the transmembrane pH
gradient [27,28]. For these reasons, under the pH 5 condition, the accumulation of VFAs
may have resulted in an inhibition of the fermentation stage [29]. In contrast, at neutral pH,
the percentage of undissociated acids was <1% and did not disrupt the transmembrane
pH gradient [30]. Previous studies suggested that slightly acidic to neutral pH (5.5–7.0)
facilitated the best VFA yield during acidogenic fermentation [31]. Strazzera et al. [32]
investigated the impact of pH on VFA production from various household food waste
substrates in batch reactors, finding that pH 7 enhanced VFA accumulation (8–13 g/L) for
protein-rich, starch-rich, fiber-rich, and sugar-rich substrates, while hydrolysis limitations
restricted VFA production from cellulose-rich and lipid-rich wastes. Previous studies on the
anaerobic fermentation of food waste reported higher VFA concentrations under neutral
and alkaline pH conditions [33,34]. One of them, under a semi-continuous regime, achieved
VFA levels of 9.8–11.5 g/L, with a feed concentration of 5 g/L and an HRT of 3.5 days [33].
All of these studies reported difficulty in VFA accumulation at an acidic pH compared to
neutral or alkaline pH, due to the dissociation of the ions.

The VFA profile showed in steady-state condition (from day 29 to 57) that acetic acid
was the predominant acid under both conditions evaluated, with average concentrations of
3014 ± 187 mg O2/L (45% on a COD basis) and 4378 ± 351 mg O2/L (39% on a COD basis)
under pH 5 and BES conditions, respectively. The other most relevant VFAs were propionic
acid and butyric acid, whose distributions varied according to the operational condition.
Under the pH 5 condition, the second most predominant acid was butyric acid, with a value
of 1643 ± 320 mg O2/L (25% on a COD basis), while under the BES condition, the second
most dominant acid was propionic acid, reaching a value of 2347 ± 958 mg O2/L (21% on a
COD basis). The profile concentration under the pH 5 condition diverged from the research
of fed-batch fermentation of alperujo at pH 5, wherein propionic acid emerged as the
dominant acid, contributing 63% to the overall acid production [9]. These results suggest
that propionic and butyric acid fermentation pathways are not solely regulated by pH but
rather depend on other factors, such as HRT [35]. Also, the observed product distribution,
including the coexistence of both pathways at pH 5 with different dominances, indicates
a significant influence of redox potential on the metabolic activity [36]. Additionally,
under the BES condition, the profile was more complex than that observed under the
pH 5 condition. This was evidenced by the emergence of iso-butyric and iso-valeric
acids after 33 days, with concentrations of 202 ± 94 mg O2/L (2% on a COD basis) and
453 ± 75 mg O2/L (4% on a COD basis), respectively.

3.3. Phenolic Compounds Accumulation Under Anaerobic Fermentation

Phenolic compounds are solubilized from alperujo during the hydrolysis and degra-
dation steps of the organic matrix. Monitoring these phenolic compounds is crucial, as
they possess inherent antibacterial properties that can potentially inhibit bacterial activity
in anaerobic fermentation processes [37]. For this reason, total phenolic compounds and
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individual phenolic compounds were analyzed in fermentation processes (Figure 4, Table 2).
The total phenolic compounds concentration, expressed in mg gallic acid equivalents per
liter, increased over the operational time similarly under both assessed conditions. Under
the pH 5 condition, the mean concentration was enhanced from 62 ± 9 mg gallic acid eq./L
to 915 ± 66 mg gallic acid eq./L during the operational time. Under the BES condition,
concentrations increased from 178 ± 10 mg gallic acid eq./L to 864 ± 31 mg gallic acid/L.
These values did not exhibit a significant variance between the conditions, as indicated by
a p-value of 0.896. Despite these increases, more than 80% of total phenolic compounds
fed, provided by alperujo, were removed at the end of the operation time. Notably, the
total phenolic compound concentrations observed in this study consistently remained
below the inhibitory threshold for anaerobic digestion processes, which is typically around
2000 mg/L [38].
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Table 2. Individual phenolic compound concentrations with their standard deviations at the end of
four repetitions of hydraulic retention time (HRT).

pH 5 BES

Time (Days)
1-HRT 2-HRT 3-HRT 4-HRT 1-HRT 2-HRT 3-HRT 4-HRT

0–13 Days 14–28
Days

29–42
Days

43–57
Days 0–13 Days 14–28

Days
29–42
Days

43–57
Days

3,4-dihydroxyphenylglycol
(mg/L) 7.46 ± 1.33 7.53 ± 1.87 83.46 ±

10.34
68.04 ±

21.69 4.57 ± 1.09 17.50 ±
11.41

22.33 ±
1.44

168.78 ±
27.40

Hydroxytyrosol (mg/L) 56.37 ±
23.37

46.70 ±
24.14

72.47 ±
11.49

116.25 ±
11.50 n.d. n.d. 30.39 ±

1.10
25.80 ±

1.77

Tyrosol (mg/L) 15.37 ±
7.19

37.57 ±
6.42

56.80 ±
16.11

38.68 ±
27.56 n.d. n.d. 17.83 ±

1.00
30.92 ±

27.40

Protocatechuic acid (mg/L) 11.53 ±
9.46

48.88 ±
17.39

54.92 ±
50.24

25.81 ±
18.78 8.67 ± 1.00 18.83 ±

7.04
40.93 ±

7.28
52.66 ±

2.10

3,4-dihydroxycinnamic acid
(mg/L) 4.80 ± 0.14 20.32 ±

20.26
38.51 ±

37.15
54.30 ±

9.03 n.d. 5.59 ± 0.60 7.34 ± 0.48 6.87 ± 0.64

4-Metylcatehol (mg/L) 8.71 ± 1.00 7.93 ± 0.69 9.03 ± 1.00 7.02 ± 1.11 80.82 ±
7.34

108.64 ±
18.39

56.44 ±
27.45

32.68 ±
17.55

n.d.: not detected.

The Table 2 presents the concentrations of individual phenolic compounds (mg/L)
measured under pH 5 and BES conditions at the end of each HRT repetition. The primary
compounds present in alperujo and released during the anaerobic digestion process in-
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cluded 3,4-dihydroxyphenylglycol, hydroxytyrosol, and tyrosol [39].The concentration of
3,4-dihydroxyphenylglycol consistently increased throughout the operational time, with
higher levels observed under the BES condition, reaching 168.78 ± 27.40 mg/L. Hydroxyty-
rosol and tyrosol showed an increasing trend at pH 5, while under the BES condition, there
was practically no accumulation, maintaining concentrations below 40 mg/L (Table 2). A
study on alperujo revealed that due to its high phenol content and variability, it has high
antimicrobial effects. However, this antimicrobial activity comes mainly from the high
concentrations of hydroxytyrosol. [40].

Protocatechuic acid, 4-dihydroxycinnamic acid, and 4-methylcatechol were analyzed,
as they are derived from lignocellulosic material, mainly form lignin, and act as indicators
of solubilization during the anaerobic digestion process [41,42]. Protocatechuic acid con-
centrations increased under both pH conditions, reaching approximately 50 mg/L (Table 2).
The 4-dihydroxycinnamic acid showed an increase under the pH 5 condition but remained
at low concentrations under the BES condition. Conversely, 4-methylcatechol exhibited low
concentrations under the pH 5 condition but higher concentrations under the BES condition.
These results suggest that under pH 5 conditions, phenolic compounds in alperujo and the
lignocellulosic material accumulate more concentration than under the BES condition, with
these phenolic compounds being degraded and transformed into VFAs.

4. Conclusions
The anaerobic fermentation of alperujo was evaluated under semi-continuous con-

ditions using two methanogenesis inhibition strategies. Under the pH 5 condition, sol-
ubilization was limited; this might be caused by the inhibitory effect of undissociated
volatile fatty acids (VFAs), which penetrate the cell and disrupt the transmembrane pH
gradient. In contrast, solubilization was more efficient under the BES condition (pH 7),
with a 25% increase compared to under the pH 5 condition, resulting in a higher VFA
concentration (exceeding 10,000 mg O2/L, 67% higher than under the pH 5 condition).
The profiles of both conditions evaluated were very similar, in which the main acid was
acetic acid, followed by butyric acid under the pH 5 condition and propionic acid under the
BES condition. Phenolic compound monitoring indicated concentrations below inhibitory
thresholds under both conditions, with a slightly greater degradation observed under the
BES condition. These findings suggest that bacterial inhibition at an acidic pH has a crucial
impact on the solubilization of organic matter, affecting the hydrolytic and, subsequently,
the acidogenic stages of anaerobic fermentation. Consequently, the chemical inhibition
strategy that facilitates the solubilization of alperujo may be extended to other complex
agro-industrial by-products to enhance VFA production.
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