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Abstract
Tinnitus is the perception of sound without an external source, often associated with changes in the auditory pathway and 
different brain regions. Recent research revealed an overload of missense variants in the ANK2 gene in individuals with 
severe tinnitus. ANK2, encoding ankyrin-B, regulates axon branching and inhibits microtubule invasion. Missense mutations 
in ANK2 may promote excessive axonal branching and the formation of excitatory synapses. This study aims to generate a 
patient-derived iPSC model from an individual with severe tinnitus and to differentiate these cells into otic-neural progeni-
tors and inner ear neurons. We successfully generated a severe tinnitus cellular model through cell reprogramming. Using a 
two-stage neural differentiation protocol, we differentiated these cells into otic-neural progenitors and neuron-like cells. We 
confirmed the expression of genes, proteins, and cellular markers, including ANK2, otic-neural progenitors, and neuron-like 
cells through qPCR and immunostaining. Our analysis revealed higher ANK2 expression in the control cell line compared to 
the patient cell line. Although both lines formed multipolar neurons, the patient cell line displayed a unique pattern of closely 
grouped neurons with increased neuronal projections and dendrites compared to the control. This cellular model provides a 
valuable tool for studying the cellular and molecular changes associated with the ANK2 gene. It holds great promise for the 
development of novel drug and gene-based therapies for severe tinnitus.

Keywords Tinnitus · HiPSC · Stem cells · Disease model · Inner ear neurons · Meniere disease

Introduction

Tinnitus is the perception of a phantom sound without any 
external source, affecting between 10 and 15% of the gen-
eral population. Of these, 1–3% can be diagnosed with a 

debilitating tinnitus disorder associated with sleep distur-
bances and psychological distress, leading to significant 
emotional, behavioral, and health-related quality-of-life 
impacts [1]. Despite the high burden on healthcare systems, 
treatments for tinnitus are presently lacking. This is partly 
due to the heterogeneity of tinnitus presentation, which 
makes the development of universal therapies challenging 
[2].

Tinnitus is not only a symptom associated with hearing 
loss; it is also considered the result of exacerbated plasticity 
of the central auditory system in response to the crosstalk 
with auditory nerve fibers [3]. Its development is related 
to different nuclei of the auditory pathway, particularly the 
cochlear nuclei and the primary auditory cortex. Addition-
ally, tinnitus perception involves multiple brain areas and 
neural networks, such as the hippocampus or prefrontal 
cortex [4]. Likewise, it can involve unknown auditory and 
non-auditory networks and molecular pathways. This com-
plexity has slowed progress in the field, with recent research 
focusing on the genetic contributions to tinnitus.
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Epidemiological studies in twins and adoptees indicate 
a strong genetic component to tinnitus, particularly for 
severe and bilateral cases, with evidence of familial aggre-
gation and higher susceptibility in women [5]. Genome-
wide association studies (GWAS) have reported few sig-
nificant genetic associations (p <  10−8), particularly among 
individuals with noise exposure [6, 7], but most of these 
findings are awaiting replication in larger cohorts.

Recently, exome sequencing has been used to identify 
rare genetic variants in individuals with extreme tinnitus 
phenotypes (EP) [8]. This approach has led to the identifi-
cation of the ANK2 gene as a potential candidate, linking 
membrane trafficking and cytoskeletal protein binding to 
the pathophysiology of severe tinnitus [9].

ANK2 encodes ankyrin-B, a scaffolding protein that 
anchors the axonal plasma membrane to L1CAM, play-
ing a crucial role in the development, maintenance, and 
refinement of neural circuits across different brain regions. 
Ankyrin-B suppresses axon branching by coordinating 
cortical microtubules (MTs) and preventing MT invasion 
into new axon branches through direct interaction with 
MTs. Therefore, deficiencies or mutations in the ANK2 
gene may exacerbate axonal branching, resulting in ectopic 
neuronal connections and increased excitatory synapses. 
This branching mechanism may enhance connectivity 
between auditory and non-auditory regions, particularly 
the para-hippocampus, contributing to the severity of tin-
nitus [9–11].

Disease modeling using patient-derived induced pluri-
potent stem cells (iPSC) offers a valuable approach to 
studying rare neurological diseases. The goal of this study 
was to generate an iPSC line from a severe tinnitus patient 
carrying mutations in the ANK2 gene. These iPSCs were 
then differentiated into neuronal progenitors and neuron-
like cells to assess how this rare variant affects cellular 
phenotype.

Materials and Methods

Patient Selection

A female patient with chronic persistent tinnitus and a rare 
variant in the ANK2 gene was selected from the Meniere 
disease (MD) Consortium database [12]. She has suffered 
MD and tinnitus for 50 years and reported severe distress 
according to the tinnitus handicap inventory (THI) score of 
76. After providing detailed information about the study’s 
goal, she gave informed consent to participate and donated a 
blood sample to generate the cell line. The Granada Ethical 
Review Board for Clinical Research approved the research 
protocol.

Psychoacoustic Characterization

An online tone generator (http:// www. onlin etone gener ator. 
com) was used to find the most similar tinnitus and to char-
acterize its loudness and frequency. The process began by 
introducing pure-tone sounds, starting at 1000 Hz, with the 
frequency adjusted—either ascending or descending—based 
on the patient’s feedback, until the perceived tinnitus tone was 
matched (frequency range: 125–16,000 Hz). If the patient did 
not recognize their tinnitus as a pure tone, we presented differ-
ent noise types (white, brown, or pink) until the patient identi-
fied the most similar sound. Following this, acufenometry was 
conducted in a soundproof booth to verify the noise type or 
frequency determined through the tone generator. During this 
process, the tinnitus loudness (in dB SL) and the minimum 
masking level (MML) were measured. Additionally, residual 
inhibition was assessed in the affected ear, which was consid-
ered positive if there was a reduction in intensity or complete 
disappearance of the tinnitus for at least 20 s. The audiological 
assessment was conducted using an AC40 clinical audiometer 
(Interacoustics, Middelfart, Denmark).

Psychometric Characterization

Two questionnaires, the tinnitus handicap inventory (THI) 
and the visual analog scale (VAS), were used to assess tinni-
tus-related discomfort and measure tinnitus’s impact on the 
patient’s quality of life. In addition, two standardized depres-
sion and anxiety questionnaires, the patient health question-
naire (PHQ-9) and the hospital anxiety and depression scale 
(HADS), were used. Finally, the Montreal cognitive assess-
ment (MoCA) was used to evaluate possible mild cognitive 
dysfunction.

Cell Derivation and Culture

The PBMC1-iPS4F1 healthy cell line generation and cell char-
acterization was derived from a Spanish female and published 
elsewhere [13]. The patient’s hiPSC line, ANK2-24, was 
obtained by reprogramming peripheral blood mononuclear 
cells (PBMCs) and transducing them with non-integrative 
Sendai virus (SeV) vectors containing the reprogramming 
factors OCT3/4, SOX2, KLF4, and c-MYC (CytoTune-iPS 2.0 
Sendai Reprogramming kit, ThermoFisher Scientific). Both 
hiPSC lines were maintained in mTeSR1 medium (STEM-
CELL Technologies) at 37 °C and 5%  CO2 and passaged when 
needed.

hiPSCs Differentiation into Inner Ear Neurons

We used a neural differentiation protocol based on Boddy 
et  al. [14] to generate inner ear neurons (IENs). The 

http://www.onlinetonegenerator.com
http://www.onlinetonegenerator.com
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differentiation protocol consisted of two phases: phase 1 
involved the generation of otic neuronal progenitors (ONPs), 
and phase 2 involved the formation of IENs.

Generation of ONPs Derived from hiPSCs (Phase 1)

To differentiate hiPSCs into ONPs, hiPSCs were plated at a 
density of 8000 cells/cm2 in DFNB medium (DMEM/F12 
with Glutamax (Gibco, UK) supplemented with 1 × N2 and 
1 × B27 (Gibco, USA) supplemented with 50-ng/ml FGF3 
(Palex Medical, Spain), 50-ng/ml FGF10 and 10 uM IWR-1 
(R & D Systems, UK) onto laminin-coated 6-well culture 
plates. The cell culture media was changed every other day 
until day 8. On day 9, IWR-1 was replaced by 2 uM BIO 
(Merck, Germany) while maintaining FGF3 and FGF10 until 
day 12, with media changing every other day. After phase 1, 
ONPs were cultured in DFNB supplemented with 20-ng/ml 
bFGF, 50-ng/ml IGF (Peprotech, UK), and 20-ng/ml EGF (R 
& D Systems, UK) at a density of 20,000 cells/cm2.

Cell Doubling Time and Cell Viability Assays

We performed cell doubling time and cell proliferation 
assays to differentiate ONPs into IENs in a suitable range of 
culture passages. Cell doubling time was achieved by plating 
4000 cells/cm2 at day 0 onto 0.2% gelatin-coated 12-well 
culture plates. Cell numbers were determined by counting in 
a Neubauer chamber daily for 4 days. Moreover, cell viabil-
ity assays were performed using CellTiter96 Aqueous One 
Solution Reagent (Promega, USA), a colorimetric method to 
determine the number of viable cells in proliferation. ONPs 
were plated at 10,000 cells/cm2 density at day 0 on a 96-well 
culture plate previously coated with gelatin. On day 4, the 
CellTiter96 reagent was added to the cell culture, and at 3 h, 
the cell viability was determined by absorbance in an Infinite 
M200 Nanoquant reader (Tecan, Switzerland).

Generation of Sensory Inner Ear Neurons 
from hiPSC‑Derived Otic Neuronal Progenitors (Phase 2)

ONP cultures derived from hiPSCs were dissociated using 
1:10 trypsin solution (Sigma-Aldrich, UK) and plated at a 
density of 4000 cells/cm2 onto gelatin-coated 6-well culture 
plates in DFNB medium supplemented with 20-ng/ml bFGF 
(PeproTech, UK) and 500-ng/ml human Shh-C24II (Miltenyi 
Biotec, Spain). The cell culture medium was replaced every 
other day. From day 7 forward, Shh-C24II and bFGF were 
removed from the cell culture medium. RNA and protein 
were isolated at days 0, 7, 14, and 21. were fixed for immu-
nofluorescence staining at days 14 and 21.

Quantitative Real‑Time PCR

We used the High Pure RNA Isolation Kit (Roche, Switzer-
land) to isolate total RNA from cell lysates, according to 
the manufacturer’s protocol. Then, we used the Maxima’s 
first strand cDNA synthesis kit for RT-qPCR with dsDNase 
(Thermo Fisher Scientific, US). Q-PCR was run using Sybr 
Green (Quantabio, MA, USA) and 10 ng/uL of total RNA 
per reaction in the QuantStudio 6 Real-Time PCR thermo-
cycler (ThermoFisher Scientific, Waltham, MA, USA). 
Relative quantification was performed using GAPDH as 
the housekeeping gene. Fold changes for each gene were 
calculated using the  2−ΔΔCT method against the day 0 undif-
ferentiated ONP. All primers (Sigma Aldrich, USA) used are 
reported in Supplementary Table 1.

Immunofluorescence Staining

Cells were fixed with 4% paraformaldehyde (Sigma Aldrich, 
USA) in 1 × phosphate-buffered saline (PBS) for 20 min at 
room temperature. Then, permeabilized and blocked with 
0.3% Triton-X (Sigma Aldrich, USA), and 3% bovine serum 
albumin (BSA; Sigma Aldrich, USA) in PBS for 30 min. 
Cells were then incubated with primary antibodies in 3% 
BSA in PBS overnight at 4 °C. Secondary antibodies were 
added in 10% BSA in PBS and incubated for 1 h at room 
temperature in the dark. Subsequently, the nuclei were 
stained with 1-μg/mL Hoechst (Thermo Fisher Scientific, 
USA) for 5 min. Antibodies (all Thermo Fisher Scientific) 
and dilutions used in this study are reported in Supplemen-
tary Table 2. Cells were imaged on a Zeiss LSM 710 con-
focal microscope (Zeiss, Germany). All images were cap-
tured using identical settings for the posterior quantification. 
ImageJ (NIH) software [15] was used for image processing 
and analysis. Negative controls were determined by omit-
ting the primary antibodies during the immunofluorescence. 
ImageJ software was used to determine the quantification 
of ANK2 by counting cells with characteristic morpholo-
gies at days 14 and 21 of neuronal differentiation. Results 
are reported as mean fluorescence intensity/cell of 100 total 
cells ± SEM.

Western Blot Analysis

For total protein extraction, sensory inner ear neuron cul-
tures from hiPSCs-derived ONPs from day 0 to day 21 were 
lysed using cell lysis buffer 10 × (Cell Signaling Technology, 
USA) containing protease inhibitor cocktail (Sigma Aldrich, 
USA). Cell lysates were separated by molecular weight using 
precast polyacrylamide gels (Bio-Rad, USA) and transferred 
to nitrocellulose membranes (Bio-Rad, USA). Proteins were 
detected using the ChemiDoc XRS + System (Bio-Rad, 
USA). To detect ANK2, the ankyrin B polyclonal antibody 
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(PA5-82,326, Invitrogen) was used. GAPDH (SAB3500247, 
Sigma Aldrich) loading control for total protein extractions 
was used. Western blotting was carried out using standard 
procedures. Image processing and quantification of band 
intensity were executed using Image Lab software (Bio-
Rad, USA).

Statistical Analysis

We used a two-way ANOVA statistical comparison and 
Sidak’s multiple comparisons test across the different cell 
lines using a p value < 0.05 as a threshold to test the expres-
sion of otic and neural genes. We used a one-way ANOVA 
statistical comparison and Sidak’s multiple comparisons test 
across the control and patient line using a p value < 0.05 as 
a threshold to analyze the expression of ANK2 in confocal 
images and western blot. The graphics and the statistical 
tests were run in GraphPad Prism software version 9.0 (San 
Diego, CA).

Results

Patient Selection and Audiological Characterization

A Spanish female patient was diagnosed with definite MD. 
She has experienced severe tinnitus in her left ear for over 30 
years, and recent exome sequencing (published elsewhere) 
identified a mutation in the ANK2 gene (Missense variant in 
4:114,294,537 G/A).

Pure-tone audiometry revealed bilateral SNHL, with 
moderate hearing loss in the right ear and severe loss in 
the left ear. Both ears showed profound hearing loss at high 
frequencies (Fig. 1). Acufenometry showed pitch-matching 
tinnitus as white noise, with a threshold of 75dBLH, a tin-
nitus loudness + 3dBSL, and MML + 9dBSL. Partial residual 
inhibition was also observed.

The patient’s psychometric profile was as follows: THI: 
96 (severe disability); VAS: 9 out of 10; PHQ-9: 14 out of 27 
(moderate depression); HADS-Anxiety: 19 out of 21 (case of 
anxiety): HADS-Depression: 13 out of 21 (case of depres-
sion); MoCA: 22 out of 30 (indications of mild cognitive 
impairment).

The latencies and amplitudes of ABR and AMLR at 
70dBnHL and 50dBnHL, respectively, are shown in Table 1. 
The amplitudes of ABR waves I, III, and V were higher in 
the tinnitus-affected ear, while the latencies of these waves 
were lower in the unaffected ear. The latencies of the AMLR 
components varied from one ear to the other without a con-
sistent pattern. However, the amplitudes of the positive 
AMLR waves (Pa and Pb) were greater in the left (tinnitus-
affected) ear compared to the contralateral ear.

ANK2‑24 Cell Line Characterization

Cell characterization of the ANK2-24 line showed typical 
pluripotent cell morphology and expresses pluripotency 
markers such as SSEA4, SSEA3, TRA1-81, TRA1-60, and 
endogenous pluripotency genes like NANOG, SOX2, and 
OCT3/4. It presented a normal karyotype (46, XX), and 
pluripotency was shown by differentiation into the three 
germ layers of an embryo (Supplementary Fig. 1).

Generation of Inner Ear Neurons from the ANK2‑24 
Cell Line

ANK2‑24 Differentiation into IENs

The ANK2-24 line was differentiated to IENs using a two-
step neuronal protocol. The first step was to generate ONPs. 
The second step was the neuralization of ONPs into IENs. 
The hiPSC control line and ANK2-24 line were cultured 
for 12 days in an otic-neural induction medium. Then, the 
ONPs generated were differentiated into sensory IEN-like 
cells for 21 days in a neuralization medium. The control and 
patient hiPSC lines developed ONP-derived IENs after 21 
days of culture; cells showed extended neurite projections 
and neural networks between cells (Fig. 2).

Expression of Otic‑Neuronal Progenitors

During neural differentiation, PBMC1-iPS4F1 and ANK2-
24 cell lines expressed otic markers such as PAX8 and 
FOXG1 and neural markers such as β-III TUBULIN (TUJ1) 
and POU4F1 (BRN3A), which are implicated in neurogene-
sis and ganglion sensory neurons development, respectively. 
The expression of ANK2, PAX8, FOXG1, and β-III TUBU-
LIN was validated by qPCR.

The levels of PAX8 expression were higher in the con-
trol line than in the patient line, decreasing its expres-
sion on day 21 (Fig. 3a). The expression of FOXG1 in 

Table 1  ABR and AMLR latencies and amplitudes

Wave Latency (ms) Amplitude (µV)

Right Left Right Left

ABR
I 1.50 1.23 0.112 0.142
III 3.53 3.37 0.202 0.210
V 5.23 5.07 0.402 0.646
AMLR
Na 15.33 18.01 0.240 0.070
Pa 25.67 26.16 0.456 0.695
Nb 40.33 37.67 0.140 0.260
Pb 80.67 71.67 0.243 0.291
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Fig. 1  a Pure-tone audiometry (left) showing hearing thresholds 
(dB HL) for right ear (red dots) and left ear (blue crosses) in the 
frequency spectrum from 125 to 8000 Hz (0.125–8 kHz); high-fre-
quency pure-tone audiometry (right) showing hearing thresholds 
(dB HL) for right ear (red dots) and left ear (blue crosses) in the fre-
quency spectrum from 8000 to 20,000 Hz (8–20 kHz). b Recording 
of auditory brainstem responses (ABR) (above) evoked at 80 dB in 
both ears (red line, right ear; blue line, left ear) where the different 

components (I, III, and V waves) with their corresponding laten-
cies (ms) and amplitudes (nV) can be identified (1 µV = 1000 nV). 
c Recording of auditory middle latency responses (AMRL) (below) 
evoked at 70 dB in both ears (red line, right ear; blue line, left ear) 
where the different components (Na, Pa, Nb, and Pb waves) with their 
corresponding latencies (ms) and amplitudes (nV) can be identified (1 
µV = 1000 nV)
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the PBMC1-iPS4F1 line decreased until day 21. However, 
the ANK2-24 line showed an increased FOXG1 expres-
sion on day 21 because of a delay in its otic differentia-
tion (Fig. 3b). By contrast, the maturation of IEN was 
observed in both cell lines, showing an increase of β-III 
TUBULIN expression on day 21 (Fig. 3c). The level of the 
mutated gene expression ANK2, was higher in the control 
line during all otic-neural differentiation, especially on day 
7 (Fig. 3d).

Expression of Otic‑Neuronal Cell Markers

The expression of the cell markers ANK2, PAX8, FOXG1, 
POU4F1, and TUJ1 (β−3-TUBULIN) at day 14 and day 21 
during IEN generation was validated by immunostaining. 
On day 14, both cell lines expressed the progenitors’ mark-
ers FOXG1 and PAX8. Moreover, cells showed co-expres-
sion between ANK2 and PAX8 cell markers and FOXG1 
and PAX8 (Fig. 4a). On day 21, cells presented neuronal 

Fig. 2  Generation of IENs derived from hiPSC. a Schematic representation of neural differentiation protocol from hiPSC for 21 days. b Images 
of the IEN formation were obtained by optic microscopy for 21 days

Fig. 3  Gene expression of otic-neural progenitors. a Expression of 
PAX8. The PAX8 gene expression is higher in control and patient 
lines. b FOXG1 expression. The FOXG1 gene expression in the 
patient line is delayed compared to the control line. c Expression of 

β−3 TUBULIN. Both cell lines show an increase of β−3 TUBULIN 
expression at day 21. d Expression of ANK2 gene. The control cell 
line presents a higher expression of ANK2 when compared to the 
patient line
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projections and expressed the neural markers POU4F1 and 
TUJ1. Both cell lines exhibited a co-expression of ANK2 
and TUJ1 and POU4F1 and TUJ1 (Fig. 4b). The ANK2 
expression level observed in the confocal images showed a 
higher expression of ANK2 maker in the control line com-
pared to the patient line. On day 21 of neural differentiation, 
the ANK2 expression in PBMC1-iPS4F1 and ANK2-24 
lines was higher than on day 14. The ANK2 expression was 
elevated in the control cell line. These results showed sig-
nificant differences between the control and patient cell lines 
at both day 14 and day 21, with a p value < 0.05 (Fig. 4c).

Figure 5 provides a detailed view of IEN markers ana-
lyzed through confocal imaging, showing the expression of 
ANK2, FOXG1, and PAX8 at day 14 in both the control and 
patient cell lines (Fig. 5a). In contrast, Fig. 5b shows the 
expression of ANK2, POU4F1, and TUJ1 on day 21 for both 
cell lines, supporting the earlier description of otic-neural 
marker expression. Additionally, Fig. 5c provides a detailed, 
magnified confocal image of POU4F1, a transcription factor 
involved in specifying inner ear sensory neurons and guiding 
neurite projections. This allows for a more detailed analysis 
of the morphology of neuronal projections in both control 
and patient cell lines during neural differentiation.

Both cell lines show the presence of multipolar neurons 
with more than two neural projections and several dendrites. 
However, key differences between the control and patient 
lines are observed. The ANK2-24 patient cell line shows 
clusters of grouped neurons, while the control line displays 
individualized neurons. Additionally, the ANK2-24 cell line 
exhibits more neuronal projections and dendrites compared 
to the control iPSC line.

Expression of ANK2 Protein

We confirmed ANK2 protein expression by western blot 
using an ankyrin B polyclonal antibody. We detected the 
expression of the ANK2 protein (135 KDa) in the PBMC1-
iPS4F1 and the ANK2-24 cell lines according to their 
expected molecular weight. Moreover, we identified a band 
of 75 KDa in the control and patient lines corresponding to 
an ANK2 isoform produced by alternative splicing. Simi-
larly, it occurs in the human cell line U-251MG (glioblas-
toma cell line) tested by the commercial supplier of the 
ankyrin B polyclonal antibody used in this study (Fig. 6a). 
On day 21 of neuronal differentiation, we detected a higher 
expression of ANK2 protein in both cell lines. The ANK2-
24 cell line showed a decrease in ANK2 expression level 
compared to the control cell line from day 7 to day 21 of 
neuronal differentiation, but no significant differences were 
observed (Fig. 6b). Therefore, other regulatory factors of 
ANK2 expression could explain this decrease.

Discussion

Tinnitus is a complex condition that affects a wide range of 
the population and is believed to have a genetic basis involv-
ing both common and rare variants [16]. Animal models, 
such as those induced by noise or ototoxic drugs, have been 
developed to study tinnitus [17–19], their association with 
environmentally induced hearing loss limits their ability to 
explore genetic contributions. To overcome this, an interna-
tional effort is underway to develop non-animal models that 

Fig. 4  Expression of otic-neural cell markers by immunostaining. a 
Confocal imaging of otic markers expression at day 14 of otic-neural 
differentiation. Both cell lines express ANK2 (green), PAX8 (red), 
and FOXG1 (green) markers. b Confocal imaging of neural markers 
expression at day 21 of otic-neuronal differentiation. Both cell lines 

express ANK2 (green), POU4F1 (green) and TUJ1 (red) markers. c 
ANK2 gene quantification. The PBMC1-iPS4F1 line shows a higher 
expression of the ANK2 than the ANK2-24 cell line (**p < 0.003, 
****p < 0.0001)
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Fig. 5  Confocal images of otic-neural differentiation a higher-magni-
fication (40 ×). a Expression of otic markers on day 14 of IEN dif-
ferentiation. b Expression of neural markers on day 21 of IEN dif-

ferentiation. c Expression of POU4F1 (grayscale) on day 21 of neural 
differentiation. The patient cell line displays its IEN-forming clusters 
with higher neural projections and dendrites than the control cell line

Fig. 6  Expression of ANK2 protein. a Western blot analysis detect-
ing the ANK2 protein in the PBMC1-iPS4F1 and ANK2-24 lines. 
GAPDH is used as a loading control. Molecular weights: ANK2 
(135 kDa and 75 KDa) and GAPDH (36 kDa). b Analysis of ANK2 

expression level. The PBMC1-iPS4F1 line shows a higher expression 
of the ANK2 protein than the ANK2-24 cell line. One-way ANOVA 
statistical analysis and Sidak’s multiple comparisons test. No signifi-
cant differences (p > 0.05)
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reduce and refine the use of animals in biomedical research 
[20]. Personalized cellular models are emerging as essential 
tools for studying genetic variants in tinnitus neurobiology 
and conducting drug screening [21].

We generated a hiPSC line derived from a patient with 
severe tinnitus carrying a missense mutation in the ANK2 
gene (4:114,294,537 G/A) using a non-integrating Sendai 
virus method for reprogramming. This hiPSC line, charac-
terized at both cellular and functional levels, demonstrates 
pluripotency and the ability to differentiate in vitro into the 
three germ layers of an embryo. These findings highlight 
the potential of developing hiPSC-based cellular models for 
studying tinnitus and screening drugs to restore the cellular 
phenotype.

The ANK2 gene encodes ankyrin-B, a key protein 
involved in cellular functions such as motility, activa-
tion, proliferation, and maintaining specialized membrane 
domains. It has been extensively studied in autism spectrum 
disorder and is also implicated in cardiac and neurological 
diseases [11, 22, 23]. Exome sequencing in tinnitus patients 
has identified rare variants in ANK2 associated with severe 
tinnitus [8, 9]. Although animal models have explored 
ANK2’s role in acoustic trauma and neuronal dysfunction 
[18, 22, 24], its involvement in auditory-evoked responses 
and neural development, particularly in tinnitus, has not 
been studied in human cellular models. In this study, we 
generated a cellular model derived from patients with MD 
and tinnitus to explore the role of ANK2 in auditory-evoked 
responses and neural development, comparing it with a con-
trol cell line.

The hiPSC-derived tinnitus model successfully differenti-
ates into inner ear neurons within 21 days. Gene expression 
analysis using qPCR revealed differences in otic neuronal 
progenitor (ONP) formation between the control and patient 
lines, suggesting that the impaired ANK2 gene function 
impacts the patient line.

In mice, the Ank2 gene plays a critical role in maintain-
ing pre-myelinated axons during early neurodevelopment. 
Loss-of-function mutants exhibit dysregulated calcium 
homeostasis and abnormal axonal branching [25]. A 2022 
study showed high Ank2 expression in the cerebral cortex 
during early neurodevelopment, regulating neural stem cell 
differentiation. Loss of Ank2 alters neural development gene 
expression, contributing to an increased risk of ASD [22]. 
The study also highlights the importance of Pax2, Pax8, and 
FoxG1 in mouse inner ear development and auditory system 
differentiation. In a human cellular model, decreased ANK2 
expression is associated with altered PAX8 and FOXG1 
expression during neuronal differentiation [26–28]. How-
ever, further studies using additional patient-derived cell 
lines are needed to confirm these patterns. Despite a het-
erozygous benign mutation in the ANK2-24 cell line, β-III 
TUBULIN expression remained normal during neuronal 

differentiation that maturation into neurons was unaffected 
compared to the control line.

This study compared the formation and maturation of 
IENs between the control and patient lines, focusing on the 
expression of the transcription factor POU4F1, which plays 
a role in the formation and development of inner ear sensory 
neurons and neurite projections [29, 30]. The patient line 
showed increased neural projections and dendrites, which 
may be linked to hearing loss and tinnitus. Auditory sensi-
tivity and tinnitus are interconnected, impacting quality of 
life. Increased neural activity, often triggered by early noise 
exposure, correlates with heightened sensitivity to auditory 
input and tinnitus perception [31–34]. The brain adapts by 
reorganizing neural connections, shaping how individu-
als with hearing loss and tinnitus perceive sound. Tinnitus 
involves heightened neural projections, which can contribute 
to emotional responses, and traumatic events may trigger 
its onset [32, 35, 36]. Understanding these changes is criti-
cal for developing targeted treatments for tinnitus, requiring 
an approach that addresses both auditory and neural factors 
[37–40].

It is important to recognize that the functional effects of 
hearing loss and tinnitus may vary between individuals, and 
that the relationship between neural changes and these con-
ditions is complex. More research is needed to fully under-
stand these dynamics and develop personalized treatments.

A major gap in understanding is how rare variants in the 
ANK2 gene contribute to severe tinnitus or inner ear neuron 
development in MD patients. Developing this hiPSC-based 
model with an ANK2 mutation is a crucial first step. This 
model provides a valuable resource for studying the muta-
tion’s impact during neurodevelopment in MD.

hiPSC models are valuable tools for personalized medi-
cine. They can be used to generate organoids and rebuild 
organs. Moreover, they can be used to screen drugs and test 
their efficacy. Additionally, gene therapy holds potential for 
reversing mutations and studying how they affect cellular 
phenotypes and functions [41–43].

Conclusions

We have developed a hiPSC cell model able to differentiate 
into ONPs and IENs. This cell model serves as a valuable 
resource for drug screening and for testing gene therapies 
aimed at correcting the underlying mutation. The generation 
of this hiPSC model opens up promising opportunities for 
targeted and personalized interventions in treating severe 
tinnitus.
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