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Abstract
We construct, for any H ∈ R, infinitely many free boundary annuli in geodesic balls of S

3

with constant mean curvature H and a discrete, non-rotational, symmetry group. Some of
these free boundary CMC annuli are actually embedded if H ≥ 1/

√
3. We also construct

embedded, non-rotational, free boundary CMC annuli in geodesic balls of H
3, for all values

H > 1 of the mean curvature H .

Mathematics Subject Classification 53A10 · 53C42

1 Introduction and statement of the results

1.1 Historical introduction

For a long time, it was believed that the only closed, i.e., compact without boundary, surfaces
with constant mean curvature (CMC) in Euclidean space R

3 were the round, totally umbilic
spheres. Hopf [16] proved in 1951 the validity of this statement for the particular case of
genus zero. However, the conjecture was unexpectedly solved in the negative by Wente [34]
in 1986, by constructing CMC tori in R

3 with self-intersections and a discrete symmetry
group. Subsequently, Abresch [1] and Walter [30, 31] gave a more explicit construction, by
prescribing that the CMC tori were foliated by planar curvature lines.

A fundamental achievement of CMC theory springing from these works was the classi-
fication of all CMC tori in the space forms R

3, S
3 and H

3 by Pinkall-Sterling [26] (in R
3),

Hitchin [15] (for minimal tori in S
3) and then by Bobenko [5] (for CMC tori in S

3 and H
3),
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using algebro-geometric methods from integrable systems. In these theorems, CMC tori were
described in connection with finite type solutions of the sinh-Gordon equation. Roughly, for
any natural N ≥ 1, the space of type N sinh-Gordon solutions is finite dimensional, all CMC
tori are of finite type, and they can be detected within their associated finite dimensional
space by explicit closing conditions.

This classification did not detect the possible embeddedness of CMC tori in S
3 (in R

3 and
H

3 there are no closed embeddedCMCsurfaces, byAlexandrov’s theorem). The fundamental
achievement in this direction was obtained more recently by Brendle [6], who proved that the
Clifford torus is the only embedded minimal torus in S

3, thereby solving in the affirmative a
long-standing conjecture by Lawson. The idea in [6] was then adapted by Andrews and Li
[2] to show that any embedded CMC torus in S

3 is rotational; this solved a conjecture by
Pinkall-Sterling.

There is a natural boundary version of the classification problem for CMC tori discussed
above: to classify all free boundary CMC annuli in geodesic balls of M

3(ε) = R
3,S

3 or H
3.

Here, we say that a compact CMC surface� has free boundary in a geodesic ballB ⊂ M
3(ε)

if � ⊂ B and � intersects ∂B orthogonally along ∂�. This problem was already considered
by Nitsche [25] in 1985. The solutions are critical points associated to a natural variational
problem for the area funcional, see [25, 28].

Nitsche proved in [25] that any free boundary CMC disk inB ⊂ R
3 is totally umbilic. Ros

and Souam [28, 29] extended this result to S
3 and H

3. In [25], Nitsche claimed without proof
that any free boundary CMC annulus in a ball B ⊂ R

3 should be rotational. This claim was
proved incorrect byWente in 1995 [35], through the construction of immersed free boundary
CMC annuli with very large mean curvature in the unit ball of R

3. However, two questions
remained: the existence of non-rotational free boundary minimal annuli and of embedded
free boundary CMC annuli in the unit ball.

The first question was recently answered by Fernández, Hauswirth and Mira in [11],
where they constructed immersed free boundary minimal annuli in the unit ball. For that,
they used theWeierstrass representation, and a study ofminimal surfaces inR

3 with spherical
curvature lines; later on, Kapouleas-McGrath [17] presented an alternative, more analytical
construction via doubling. The second question has also been recently answered by the
authors in [8], by constructing embedded non-rotational free boundary CMC annuli in the
unit ball of R

3, through a study of an overdetermined system for the sinh-Gordon equation.
This answered an open problem posed by Wente in 1995 [35].

These results still leave unsolved the critical catenoid conjecture, i.e., that any embedded
free boundary minimal annulus in the unit ball of R

3 should be the critical catenoid. See e.g.
[12, 13, 20]. This conjecture is conceived as the free boundary version of the aforementioned
Lawson conjecture for minimal tori in S

3.
The problem of whether the only embedded free boundary minimal annulus in a geodesic

ball of S
3 is a (spherical) critical catenoid has been studied in two interesting recent works

by Lima-Menezes [22] and Medvedev [23]. In [22], the uniqueness of this critical catenoid
is obtained among immersed annuli by imposing that its coordinate functions are first eigen-
functions of a suitable Steklov problem. In [23] it is shown that theMorse index of the critical
catenoid is 4, that its spectral index is 1, and that any free boundary minimal annulus with
spectral index 1 is a (spherical) critical catenoid. See e.g. [3, 7, 14, 21, 24, 29, 32] for other
results on free boundary CMC surfaces in spherical or hyperbolic balls.
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1.2 Main results

Our aim in this paper is to show that there exist many non-rotational free boundary CMC
annuli in geodesic balls of S

3 and H
3, which in many cases are actually embedded. In

particular, this shows that the class of minimal annuli in S
3 considered in [22, 23] is non-

trivial, and that the classification of all free boundary CMC annuli in geodesic balls of space
forms is a very rich geometric problem, both in the immersed and embedded cases. Our main
results are described in Theorems 1.1 and 1.2 below. They indicate that:

(1) In S
3 there exist immersed, non-rotational free boundary H -annuli in geodesic balls

B ⊂ S
3, for any H ∈ R. In particular, there exist free boundary minimal annuli in S

3

with a finite symmetry group. This answers a problem in [23].
(2) For H ≥ 1/

√
3, some of these free boundary CMC annuli in S

3 are embedded.
(3) In H

3, there exist embedded non-rotational free boundary H -annuli in geodesic balls
B ⊂ H

3, for any H > 1.
(4) All these H -annuli come in 1-parameter families, and are foliated by spherical curvature

lines. They can be seen as free boundary bifurcations from finite covers of adequate
rotational examples (nodoids in H

3, catenoids or nodoids in S
3).

We will also show that there exist embedded, non-rotational, capillary minimal annuli in
geodesic balls of S

3.
We should note that the analytic results by Kilian and Smith in [18] prove that any free

boundaryCMCannulus in a geodesic ball ofR3,S
3 orH3 is associated to a finite type solution

of the sinh-Gordon equation. The spherical curvature lines condition of our examples is very
natural in this context, since they correspond to solutions of type N = 2, see [26, 27, 33]. The
study of CMC surfaces in R

3 with spherical curvature lines dates back to classical works by
differential geometers of the 19th century, like Enneper, Dobriner or Darboux. See [30, 31,
33] for more modern approaches, and [4, 9] for studies on isothermic surfaces with spherical
curvature lines.

In the next theorems, we let H ≥ 0 and ε ∈ {−1, 1} so that H2 + ε > 0, and denote
M

3(1) = S
3 ⊂ R

4 and M
3(−1) = H

3 ⊂ L
4.

Theorem 1.1 There exists an open interval J = J(H , ε) contained in (0, 1) such that,
for any irreducible q = m/n ∈ J ∩ Q, there exists a real analytic 1-parameter family
Fq := {Aq(η) : η ∈ [0, ε0(q))} of compact annuli in M

3(ε) with the following properties:

(1) Each annulusAq(η) has constantmean curvature H, and has free boundary in a geodesic
ball B = B(q, η) ⊂ M

3(ε) centered at e4 = (0, 0, 0, 1) ∈ M
3(ε).

(2) Aq(η) is symmetric with respect to the totally geodesic surface S := M
3(ε) ∩ {x3 = 0}.

(3) The closed geodesic S ∩ Aq(η) of Aq(η) has rotation index −m in S.
(4) Aq(0) is a finite m-cover of a compact embedded piece of a Delaunay surface in M

3(ε).
(5) If η > 0, then Aq(η) is not rotational, and its symmetry group is generated by the

symmetry with respect to S, and by the symmetries with respect to n > 1 equiangular
totally geodesic surfaces ofM3(ε) orthogonal to S. That is, the symmetry group ofAq(η)

is prismatic of order 4n.
(6) Each annulus Aq(η) is foliated by spherical curvature lines, so that both of its boundary

components are elements of this foliation.

Theorem 1.2 Assume in Theorem 1.1 that ε = −1 or that ε = 1 and H ≥ 1/
√
3. Then, there

exist elements in J∩Q of the form q = 1/n, and for any such q, the free boundary H-annuli
Aq(η) are embedded, for η sufficiently small. When ε = −1, it actually holds 1/n ∈ J for
any n ≥ 2.
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1.3 Organization of the paper and sketch of the proof

The strategy to prove Theorems 1.1 and 1.2 is inspired by our previous works [8, 11] on
free boundary CMC annuli in R

3. We will start by constructing a family of immersions
ψ(u, v) : R

2 → M
3(ε)with constant mean curvature H (with H > 1 if ε = −1), depending

on three real parameters (a, b, c), obtained through special solutions of the sinh-Gordon
equation. Themain property of any such immersionψ is that, along each curvev �→ ψ(u0, v),
it intersects with a constant angle θ(u0) some totally umbilic surface Q(u0). Moreover, it
also satisfies ψ(−u, v) = 	(ψ(u, v)), where 	 denotes the symmetry with respect to the
totally geodesic surface M

3(ε)∩ {x3 = 0}. The proof of Theorems 1.1 and 1.2 is then based
on proving that there exist parameter values (a, b, c) such that:

(1) ψ is periodic in the v-direction, and so ψ covers an annulus.
(2) There exists u0 > 0 such that θ(u0) = π/2 and Q(u0) is a sphere invariant by 	.
(3) The annulus ψ([−u0, u0] × S

1) ⊂ M
3(ε) lies in the geodesic ball B of M

3(ε) bounded
by Q(u0), and so, because of the properties above, it is a free boundary annulus in B.

The idea of the proof will be to bifurcate from free boundary rotational examples (critical
catenoids or nodoids) within the family associated to the (a, b, c)-parameters, to create some
non-rotational examples, and to control their embeddedness.

Let us remark that there appear however several sources of complication in the process
when we consider S

3 or H
3 instead of R

3 as our ambient space, and their resolution requires
new ideas. For instance, we cannot use the Weierstrass representation of minimal surfaces
as in [11]. And, in contrast with the R

3 case in [8], in our spherical or hyperbolic setting
we do not have an explicit expresion for the period map that controls the periodicity of
the spherical curvature lines of our examples. Moreover, we cannot use CMC surfaces with
planar curvature lines as a limit in order to control the centers of the spherical curvature
lines, as we did in [8] for the Euclidean case, since such surfaces do not exist in S

3 or H
3.

We next explain the basic steps of the proof.
In Sect. 2 we present some preliminaries on CMC surfaces in space forms foliated by

spherical curvature lines, i.e. each curvature line of this foliation lies in some 2-dimensional
totally umbilic surface of the ambient space.

In Sect. 3 we recall our construction in [8] of some special solutions to an overdetermined
problem for the sinh-Gordon equation. When this equation is viewed as the Gauss equation
of a CMC surface in M

3(ε) = S
3 or H

3 parametrized by curvature lines (with H > 1 in
H

3), these solutions yield complete CMC surfaces in M
3(ε) foliated by spherical curvature

lines. Along such curvature lines, the surface intersects the corresponding totally umbilic
surface at a constant angle, by Joachimstal’s theorem. In this way, we end up with a family of
conformal CMC immersions ψ(u, v) : R

2 → M
3(ε) paramerized by curvature lines, which

depends on three parameters (a, b, c), and so that the curves v �→ ψ(u, v) are spherical.
In Sect. 4 we study the geometry of the immersions ψ(u, v). We prove that they are

symmetric with respect to a horizontal totally geodesic surface S ⊂ M
3(ε) and with respect

to a number of vertical totally geodesic surfaces �k ⊂ M
3(ε) that, in adequate conditions,

intersect along a vertical geodesic ofM
3(ε) that contains all the centers of the totally umbilic

surfaces where the spherical curvature lines v �→ ψ(u, v) of the immersion lie.
We also define a real analytic period map �(a, b, c) with the property that, when

�(a, b, c) = m/n ∈ Q, the spherical curvature lines v �→ ψ(u, v) are periodic curves
with rotation index m, while n gives the number of vertical symmetry surfaces�k . In partic-
ular, when �(a, b, c) = m/n, the restriction of ψ to [−u0, u0] × R covers a CMC annulus
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�0 = �0(a, b, c, u0) in M
3(ε) that intersects with a constant angle two (isometric) totally

umbilic surfaces of M
3(ε).

Thus, our objetive will be to show that along some real analytic curves in the parameter
space (a, b, c, u0), the resulting CMC annuli �0 are free boundary in some geodesic ball
B ⊂ M

3(ε). That is, we will need to control simultaneously that both boundary curves of�0

lie in the same totally umbilic surface of M
3(ε), that this surface bounds a compact geodesic

ball B ⊂ M
3(ε), that �0 is totally contained in B, and that the intersection angle along ∂�0

with ∂B is π/2. All of this while controlling the possible embeddedness of �0.
To achieve this, the main idea will be to bifurcate from some rotational free boundary

CMC surface, so that the spherical curvature lines condition is preserved. For this, we will
need a quite detailed description, that will be carried out in Sect. 5, on the existence of critical
(spherical) catenoids in S

3, and critical nodoids in geodesic balls of S
3 and H

3. Section5 is
essentially independent from the rest of the paper, and the proofs there are postponed to an
appendix.

In Sect. 6 we will show that, when a = 1, the immersion ψ(u, v) parametrizes a compact
piece of a rotational CMC surface. More specifically, of either a nodoid (in H

3), or a nodoid,
a (spherical) catenoid or a flat torus in S

3. The parameter c will control the necksize of this
example. The parameter b is needed to account for the fact that, in the rotational case, each
curve v �→ ψ(u, v) is a circle, and so there is a priori an infinite number of totally umbilic
surfaces in M

3(ε) that contain it. The parameter b determines a choice for such umbilic
surfaces.

In Sect. 7 we will give an explicit expression for the period map �(1, b, c) in the case
a = 1 that allows for a good control on the periodicity of the parametrized curvature lines
v �→ ψ(u, v), which in this a = 1 case are merely circles.

In Sect. 8 we will restrict to a certain free boundary region of our parameter space, and
control there, also for the case a = 1, the situation in which �0(1, b, c, u0) covers a critical
catenoid or nodoid in M

3(ε). We will show that these rotational free boundary surfaces must
appear along certain curves of the parameter domain in that a = 1 case.

In Sect. 9 we prove Theorems 1.1 and 1.2. For that we use our study of the rotational
a = 1 case in the previous sections in what regards the free boundary annulus structure of
the examples, and induce it to the non-rotational a > 1 case. The embeddedness is obtained
for values of the period �(a, b, c) of the form −1/n, with a > 1 close to 1.

Finally, in Sect. 10 we use some of the analysis of the previous sections to construct
embedded capillary CMC surfaces in geodesic balls of S

3, for all values of H .
The authors are grateful to the referee of this paper, for valuable comments that helped

improving the exposition of the results.

1.4 Open problems

It is very natural to conjecture that the (spherical) critical catenoids are the only embedded
free boundary minimal annuli in geodesic balls of S

3; see [22, 23]. Our results imply that the
embeddedness assumption cannot be removed from this conjecture.

More generally, aligned with the theorems in [8, 11] for the Euclidean case, one can
conjecture that any embedded free boundary CMC annulus in a geodesic ball ofR

3,S
3 orH

3

should be foliated by spherical curvature lines. We note that the existence of an embedded
free boundary minimal annulus with spherical curvature lines in a geodesic ball of S

3 is also
open (in R

3, the results in [11] show that these do not exist).
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In the immersed case, it would be interesting to construct a free boundary CMC annulus
in a geodesic ball that is not foliated by spherical curvature lines, or to show that such an
example cannot exist. We also do not know if there exist continuous deformations of free
boundary CMC annuli in a fixed geodesic ball of R

3, S3 or H
3, with a fixed mean curvature

H .

2 Preliminaries

Let M
3(c0) denote the space form of constant curvature c0 ∈ R. In the case c0 	= 0, we view

M
3(c0) in the usual way as a hyperquadric of R

4
ε = (R4, 〈, 〉),

〈, 〉 = dx21 + dx22 + dx23 + εdx24 ,

where ε is the sign of c0. That is, R
4
ε is either the Euclidean 4-space (if ε = 1) or the

Lorentz-Minkowski space L
4 (if ε = −1) and

M
3(c0) = {x ∈ R

4
ε : 〈x, x〉 = 1/c0},

with x4 > 0 if ε = −1.
Let � denote an immersed oriented surface in M

3(c0) with constant mean curvature
H ∈ R. Let N denote the unit normal vector field of � in M

3(c0). Let ζ := u + iv denote a
conformal parameter for �, so that its first fundamental form is I = e2ω(du2 + dv2). Then,
the Codazzi equation gives that the Hopf differential Q := 〈ψζζ , N 〉 is holomorphic, and the
Gauss equation for � in the (u, v)-parameters is

�ω + (H2 + c0)e
2ω − 4|Q|2e−2ω = 0. (2.1)

Assume that � is simply connected and does not have umbilical points. Then, after a
change of conformal parameter, we can assume that Q is constant. In that way, the Gauss
equation (2.1) is of the form

�ω + Ae2ω − Be−2ω = 0, A, B ∈ R, B > 0. (2.2)

Conversely, let ω(u, v) : R
2 → R satisfy (2.2) with respect to constants A, B, and let

H , c0, Q ∈ R be constants, with Q 	= 0, so that

A = H2 + c0, B = 4|Q|2 (2.3)

hold. Then, there exists an immersion

ψ(u, v) : R
2 → M

3(c0)

with constantmean curvature H , Hopf differential Q, andwhose first and second fundamental
forms are

I = e2ω(du2 + dv2), I I = (He2ω + 2Q)du2 + (He2ω − 2Q)dv2 (2.4)

The principal curvatures κ1 > κ2 of ψ are

κ1 = H + 2|Q|e−2ω, κ2 = H − 2|Q|e−2ω. (2.5)

The smallest principal curvature κ2 corresponds to the principal u-curves (resp. v-curves) if
Q < 0 (resp. Q > 0).

This surface� is unique up to orientation preserving ambient isometries, or equivalently,
up to prescribing the moving frame {ψ,ψu, ψv, N } at some point (u0, v0). Here, N is the
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unit normal of � associated to the parametrization ψ . The Gauss-Weingarten formulas of ψ
are

ψuu = ωuψu − ωvψv + (He2ω + 2Q)N − c0e2ωψ

ψuv = ωvψu + ωuψv

ψvv = −ωuψu + ωvψv + (He2ω − 2Q)N − c0e2ωψ

Nu = −(H + 2Qe−2ω)ψu

Nv = −(H − 2Qe−2ω)ψv

(2.6)

We next analyze the property that a curvature line v �→ ψ(u,v) is spherical, i.e. it lies in
a totally umbilical surface of M

3(c0).
The totally umbilical surfaces of M

3(c0) are given by the intersection of hyperplanes of
R
4
ε with M

3(c0). They can be described by

S[m, d] := {x ∈ M
3(c0) : 〈x,m〉 = d}, (2.7)

for somem ∈ R
4
ε \{0} and d ∈ R (herem and d are determined up to a commonmultiplicative

factor). The condition for S[m, d] being a (non-empty) surface is that

〈m,m〉 − c0d
2 > 0

and that, if ε = −1 and 〈m,m〉 ≥ 0, d and the x4-coordinate of m have opposite signs.
When ε = −1 (c0 < 0), we have that S[m, d] is a sphere (resp. horosphere, pseudosphere) in
H

3(c0) if 〈m,m〉 is negative (resp. zero, positive). If d = 0, then S[m, d] is totally geodesic
in M

3(c0).

Lemma 2.1 For each fixed u ∈ R, the v-curvature line ψ(u, v) of ψ is spherical if and only
if there exist α(u), β(u) ∈ R such that

2ωu = α(u)eω + β(u)e−ω. (2.8)

In that situation, ψ intersects S[m(u), d(u)] at a constant angle θ(u) along v �→ ψ(u, v)
and we have

α = 2
|̂N |H cos θ − c0d

|̂N | sin θ
, β = −4Q

cos θ

sin θ
, (2.9)

where |̂N | = √〈m,m〉 − c0d2. In particular, β = 0 if and only if cos θ = 0, and α = β = 0
if and only if cos θ = 0 and S[m, d] is totally geodesic in M

3(c0).

Proof If for a fixed u = u0 the curve v �→ ψ(u0, v) lies in S[m, d], then 〈m, ψv〉 = 0. One
sees from here and 〈m, ψ〉 = d that

̂N := m − c0dψ

lies in TM
3(c0) and is normal to S[m, d] along ψ(u0, v), since 〈̂N , t〉 = 0 for every t ∈ R

4
ε

orthogonal to both ψ and m. Defining θ by 〈N , ̂N 〉 = |̂N | cos θ , one easily obtains that,
changing θ by −θ if necessary,

m = e−ω|̂N | sin θ ψu + |̂N | cos θ N + c0dψ. (2.10)

Using this expression together with (2.6) and 〈ψvv,m〉 = 0, we obtain (2.8) for α =
α(u0), β = β(u0) given by (2.9).
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Conversely, assume (2.8) holds along the line v �→ (u0, v). Then, (2.8) together with
(2.6), imply that the expression

m̃ = 4Qe−ωψu − βN − (2Qα + Hβ)ψ (2.11)

satisfies m̃v(u0, v) = 0, i.e., m̃ is constant along v �→ (u0, v). Therefore, 〈m̃, ψ〉 is also
constant along v �→ (u0, v), i.e., the curvature line ψ(u0, v) is spherical. �

3 Special solutions of the sinh-Gordon equation

In this section we recall the construction in our previous paper [8] of some special solutions
of the elliptic sinh-Gordon equation, that will be used later on. We will make a more detailed
discussion than in [8], in order to motivate their origin. We will also indicate some new
additional properties of these solutions that will be important for our purposes here.

3.1 Wente’s overdetermined system

We will seek solutions ρ(u, v) : R
2 → R to the overdetermined system

�ρ + coshρ sinh ρ = 0, (3.1)

2ρu = α̂(u)eρ + ̂β(u)e−ρ. (3.2)

for functions α̂, ̂β : R → R. Note that the system (3.1)–(3.2) is precisely the system (2.2)–
(2.8) for the choices A = B = 1/4. We will write (3.2) in the alternative form

ρu = y(u)coshρ + z(u) sinh ρ, (3.3)

where y(u), z(u) are real functions, so that α̂ = y + z and ̂β = y − z. The next discussion
is taken from Wente [33], pages 9-11 and 16-18.

To start, assume that ρ(u, v) satisfies (3.1) and (3.3). Then, y(u), z(u) should be a solution
to the differential system

{

y′′ = (̂a − 1)y − 2y(y2 − z2),

z′′ = âz − 2z(y2 − z2),
(3.4)

with respect to some constant â, see equation (3.6) in [33].
Moreover, if we denote Z(u, v) := eρ(u,v), then it follows by a computation from equation

(2.20) in [33] (choosing A = B = 1/4 and making the change α = y + z, β = y − z as
explained above) that

4Z2
v = p(u, Z), (3.5)

where

p(u, x) := −(1 + (y + z)2)x4 − 4(y′ + z′)x3 + 6γ̂ x2 + 4(y′ − z′)x − (1 + (y − z)2).

(3.6)

Here, we are denoting y = y(u), z = z(u), and 6γ̂ = 6(y2 − z2) − 4(̂a − 1/2). Thus, for
each fixed u value, p(u, x) is a polynomial of degree four.

This process can be reversed under some additional conditions, as explained in [33, Thm.
2.3]. Specifically, assume that we prescribe the initial values

(y(0), z(0), y′(0), z′(0), â, ρ(0, 0)). (3.7)
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so that p(0, eρ(0,0)) > 0, where p(u, x) is as in (3.6). Then, by [33, Thm. 2.3], there exists
a solution ρ(u, v) to (3.1)–(3.3) whose associated functions y(u), z(u) solve (3.4) for the
given constant â, with the given initial conditions y(0), z(0), y′(0), z′(0).

The system (3.4) has a Hamiltonian structure. The basic Hamiltonian constants of (3.4)
are

y′2 − z′2 − (̂a − 1)y2 + âz2 + (y2 − z2)2 = h ∈ R (3.8)

and

(zy′ − yz′)2 + z′2 + z2(y2 − z2 − â) = k ∈ R, (3.9)

see (3.7) in [33].
One can then follow the classical procedure to solve the Hamilton-Jacobi equations by

separation of variables in order to write system (3.4) into a more adequate form; see [33, pg.
17]. Specifically, first we apply the change of variables

y2 = −(1 − s)(1 − t), z2 = −st . (3.10)

Using (3.10), the system (3.4) transforms into the autonomous first order system
{

s′(λ)2 = s(s − 1)q(s), (s ≥ 1),

t ′(λ)2 = t(t − 1)q(t), (t ≤ 0),
(3.11)

where q(x) is the third-degree polynomial

q(x) = −x3 + (̂a + 1)x2 + (h − â)x + k, (3.12)

and the parameter λ of (3.11) is linked to u by (see [33, pg. 18])

2u′(λ) = s(λ) − t(λ) > 1. (3.13)

3.2 Constructions of special solutions to the system

We now explain our construction in [8]. To start, we will fix

y(0) = z(0) = 0 (3.14)

by geometrical reasons. More specifically, we intend to use (3.1) as the Gauss equation
for a CMC surface � in some space M

3(c0), see Sect. 4 below. These initial conditions
will determine that � intersects orthogonally a totally geodesic surface of M

3(c0). See also
Lemma 2.1. In particular � will have a useful symmetry plane.

We are interested in the possibility of obtaining embedded examples of free boundary
CMC annuli in geodesic balls of M

3(c0). After fixing the initial conditions (3.14), a lengthy,
detailed inspection of all the cases that we will not reproduce here seems to indicate that this
embeddedness is only possible when p(0, x) in (3.6) has two positive roots and two negative
roots. So, we should prescribe the values of y′(0), z′(0) and â in a way that this property holds
for p(0, x) in (3.6). We will also be interested in the situation where the two positive roots
of p(0, x) collapse into one, since this situation will detect Delaunay examples in M

3(c0).
Because of this, it seems convenient to seek initial conditions y′(0), z′(0), â so that p(0, x)

in (3.6) can be written in the factor form below, which will force it to have the desired root
structure:

p(0, x) = −
(

x − a

c

)

(

x − 1

ac

)

(x + bc)
(

x + c

b

)

, (3.15)
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where (a, b, c) lie in the parameter domain

O := {(a, b, c) ∈ R
3 : a ≥ 1, b ≥ 1, c ≥ 1}. (3.16)

Clearly, a = 1 if and only if p(0, x) has a double positive root. Note that, from (3.14) and
(3.6), we have

p(0, x) := −x4 − 4(y′(0) + z′(0))x3 + (2 − 4̂a)x2 + 4(y′(0) − z′(0))x − 1. (3.17)

By comparing (3.15) with (3.17) we can express â, y′(0), z′(0) in terms of (a, b, c). Specif-
ically, denoting for convenience

A := 1

2

(

a + 1

a

)

, B := 1

2

(

b + 1

b

)

, C := 1

2

(

c − 1

c

)

, (3.18)

we find that

â = 1 − AB + C2, (3.19)

and

y′(0) = (A + B)C
2

, z′(0) = (B − A)
√

C2 + 1

2
. (3.20)

In other words, if we make the choices (3.19), (3.20), then the value of p(0, x) in (3.17)
agrees with (3.15).

The next result is proved in Sect. 2 of [8]; see [8, Lemma 2.1] and the arguments prior to
it:

Theorem 3.1 ([8]) For each (a, b, c) ∈ O there exists a solution ρ(u, v) to (3.1) globally
defined on R

2 that satisfies the additional overdetermined condition (3.3) with respect to
functions y(u), z(u) that solve the system (3.4) for â as in (3.19), with the initial conditions
y(0), z(0), y′(0), z′(0) given by (3.14), (3.20). Moreover,

eρ(0,0) = 1

ac
. (3.21)

We note that, since y(0) = z(0) = 0, we have from (3.3) that ρu(0, v) = 0 for all v. Thus,
by uniqueness to the Cauchy problem for (3.1) along (0, v), we have

ρ(−u, v) = ρ(u, v), ∀ (u, v) ∈ R
2. (3.22)

Denote

X(v) := eρ(0,v). (3.23)

Then, it holds (see equation (2.6) in [8])

4X2
v = p(0, X), (3.24)

where p(0, x) is given by (3.15). It follows from (3.5) and (3.21) that X(v) takes its values in
the interval [1/(ac), a/c]. Recall that when a = 1, the two positive roots of p(0, x) collapse
into a double root at x = 1/c, and in that case X(v) = 1/c, constant.

Because of (3.5) and (3.15), one can prove (see [8], proof of Prop. 3.1) that, when a > 1,
X(v) varies monotonically from [0, σ ] to the interval [1/(ac), a/c], where

σ :=
∫ a/c

1/(ac)

2√
p(0, x)

dx > 0. (3.25)
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In this way, X(v) is 2σ -periodic, and X ′(v) = 0 only when v = kσ , with k ∈ Z.
Note that σ = σ(a, b, c) is only defined at first in O ∩ {a > 1}. However we have from

[8, Remark 5.2]:

Proposition 3.2 The function σ(a, b, c) extends analytically to the set {(a, b, c) : a, b >

0, c ≥ 1}, and
σ(1, b, c) = 2πc

√

1 + (b + 1/b)c2 + c4
. (3.26)

It was also proved in [8, proof of Prop. 3.1] that the solution ρ(u, v) has the symmetries

ρ(u, kσ + v) = ρ(u, kσ − v), (3.27)

with respect to σ , for any k ∈ Z.
Given (a, b, c) ∈ O, let (y(u), z(u)) : R → R

2 be the associated solution to system (3.4)
with our choice of initial conditions. The following result was proved in [8, Prop. 4.1 and
Rem. 4.2]:

Proposition 3.3 If c > 1, then there exists a unique u1 > 0 such that:

(1) y(u1) = 0.
(2) y(u) > 0 for every u ∈ (0, u1).
(3) If z(u) is not identically zero, then z(u) 	= 0 for every u ∈ (0, u1].
Moreover, the map u1 = u1(a, b, c) is real analytic in O ∩ {c > 1}.

Given (a, b, c) ∈ O, we define the free boundary region

W :=
{

(a, b, c) ∈ O : b ≥ a, C2 >
(A − B)2
4AB

}

, (3.28)

where A,B, C are defined in (3.18). We remark that if (a, b, c) ∈ W, then a ≥ 1 and c > 1.
The second inequality in (3.28) is equivalent to z′(0)2 < y′(0)2 for the initial values in (3.20).

By Lemma 2.1, the intersection angle of the spherical curvature line ψ(u0, v) with its
supporting totally umbilic surface is π/2 if and only if ̂β(u0) = 0, i.e., y(u0) = z(u0). Thus,
y = z detects the free boundary condition. The following result was proved in [8, Prop. 4.3]:

Proposition 3.4 Let (a, b, c) ∈ W. Then, there is a unique τ ∈ (0, u1] such that y(τ ) = z(τ ),
and y(u) > z(u) for every u ∈ (0, τ ).

Moreover, the map (a, b, c) ∈ W �→ τ(a, b, c) is real analytic.

Also, by [8, Rem. 4.4], in case (a, b, c) ∈ O with c > 1, b ≥ a and

C2 ≤ (A − B)2
4AB , (3.29)

it holds y(u) < z(u) for u > 0 small enough.

4 CMC surfaces with spherical curvature lines

The main objective of this section is to construct a family of compact CMC annuli in M
3(ε)

foliated by spherical curvature lines, and to study their geometric properties (symmetries,
intersection angles, centers of their associated spheres, etc). The main statement here is
Theorem 4.12, and our objective throughout this section will be to develop the theory that
leads to it.
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4.1 A special class of CMC surfaces with spherical curvature lines

We now fix (a, b, c) ∈ O as in (3.16), and let ρ(u, v) denote the solution to (3.1)–(3.3) con-
structed in Sect. 3 from (a, b, c), see Theorem 3.1. We will sometimes write ρ(u, v; a, b, c)
when we need to emphasize the dependence of ρ(u, v) on the parameters (a, b, c).

We consider constants H ≥ 0 and ε ∈ {1,−1} so that μ2 := H2 + ε > 0, and define
Q := 1/(8μ) > 0. We also define ω(u, v) : R

2 → R by

ω := ρ − log(2μ). (4.1)

By (3.1), ω satisfies the Gauss equation (2.1) for c0 = ε. Therefore, as explained in Sect. 2,
we obtain a unique (up to ambient isometry) immersion ψ(u, v) : R

2 → M
3(ε) = S

3 or H
3

with constant mean curvature H , with first and second fundamental forms given by

I = e2ρ

4μ2 (du
2 + dv2), I I =

(

He2ρ

4μ2 + 1

4μ

)

du2 +
(

He2ρ

4μ2 − 1

4μ

)

dv2. (4.2)

The Gauss–Weingarten formulas (2.6) for ψ(u, v) in M
3(ε) ⊂ R

4
ε are here

ψuu = ρuψu − ρvψv + 1
4μ2 (He2ρ + μ)N − ε

4μ2 e
2ρψ

ψuv = ρvψu + ρuψv

ψvv = −ρuψu + ρvψv + 1
4μ2 (He2ρ − μ)N − ε

4μ2 e
2ρψ

Nu = −(H + μe−2ρ)ψu

Nv = −(H − μe−2ρ)ψv

(4.3)

The principal curvatures κ1 > κ2 of the immersion are

κ1 = H + μe−2ρ, κ2 = H − μe−2ρ, (4.4)

where κ2 corresponds to the principal curvature associated to the v-curvature lines u = const.

Definition 4.1 Given H ≥ 0 and ε ∈ {−1, 1} with H2 + ε > 0, and (a, b, c) ∈ O, we will
let � = �(a, b, c) denote the immersed surface in M

3(ε) with constant mean curvature H
constructed above from ρ(u, v; a, b, c).
Because of (3.3) and (4.1) we see that

2ωu = α(u)eω + β(u)e−ω

holds for α, β : R → R given by

α = 2μ(y + z), β = y − z

2μ
, (4.5)

where y(u), z(u) are the functions in (3.3). Thus, byLemma2.1, the surface� = �(a, b, c) is
foliated by spherical curvature lines. Specifically, for each u ∈ R there existsm(u) ∈ R

4
ε\{0}

and d(u) ∈ R such that the curvature line v �→ ψ(u, v) lies in a totally umbilic surface (see
(2.7))

S[m(u), d(u)] ⊂ M
3(ε). (4.6)

Since m(u) and d(u) are defined up to a multiplicative factor, we can assume that
〈m(u),m(u)〉 ∈ {0,−1, 1}. So, for ε = 1 we will assume m(u) ∈ M

3(ε) = S
3, whereas for
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ε = −1 we will suppose m(u) ∈ M
3(ε) = H

3 when 〈m(u),m(u)〉 < 0, i.e., whenever the
surface S[m(u), d(u)] is compact.

Remark 4.2 Note that we are assuming that the spherical curvature lines of � are the ones
associated to the smaller principal curvature κ2 in (4.4).

4.2 Study of the center map

We study now the behaviour of m(u) in (4.6).

Proposition 4.3 The map m(u) : R → R
4
ε \ {0} lies in a 2-dimensional subspace P ⊂ R

4
ε .

In particular, if ε = 1, or if ε = −1 and S[m(u0), d(u0)] is compact for some u0 ∈ R,
then m(u0) lies in the geodesic of M

3(ε) given by P∩ M
3(ε). Moreover, m(u) is analytic at

u = u0 and m′(u0) 	= 0.

Proof Let us consider the function m̃ = m̃(u) defined in (2.11). Since the conformal factor
of the metric of � is eω = eρ/2μ and its Hopf differential is Q = 1/8μ, (see (4.2)), and
taking into account equations (4.5), (2.10) and (2.9), we can write

m̃ = e−ρψu − (y − z)

2μ
N − 1

2μ
(μ(y + z) + H(y − z)) ψ (4.7)

and it holds

m = 2μ|̂N | sin θ m̃. (4.8)

So, it suffices to prove that m̃(u) lies in a plane P of R
4
ε .

A long but straightforward computation using (3.3), (3.4) and (4.3) shows that m̃′′(u) is
proportional to m̃(u). More specifically,

m̃′′ =
(

â − H + μ

2μ
− 2y2 + 2z2

)

m̃. (4.9)

We prove first that m̃(0) and m̃′(0) are linearly independent. This follows from a compu-

tation using (3.20), (3.21) which shows that 〈m̃′(0), N (0, 0)〉 = 2 H+2aBμ+(a2−1)c2μ
4acμ > 0,

whereas 〈m̃(0), N (0, 0)〉 = 0 and m̃(0) 	= 0.
Let P ⊂ R

4
ε be the plane generated by m̃(0) and m̃′(0), and consider w1, w2 ∈ R

4
ε two

linearly independent vectors which are orthogonal to P. The functions fi (u) := 〈m̃(u), wi 〉,
i = 1, 2 satisfy the differential equation

f ′′
i (u) =

(

â − H + μ

2μ
− 2y2 + 2z2

)

fi (u), (4.10)

as well as the initial conditions fi (0) = f ′
i (0) = 0, which imply that fi (u) ≡ 0. In particular,

m̃(u) ∈ P. Since m(u) is just a scalar multiple of m̃(u), we deduce that m(u) also lies in that
plane.

Now assume that either ε = 1, or ε = −1 and S[m(u0), d(u0)] is compact for some
u0 ∈ R. Let us see that m(u) is analytic at u = u0. By the normalization condition on m,
〈m(u0),m(u0)〉 = ε and so m(u0) ∈ M

3(ε) ∩ P. Moreover, if ε = −1 then m̃ is timelike at
u0, and so the same holds on a neighbourhood of u0. Thus, we can write

m(u) = ± m̃(u)√
ε〈m̃(u), m̃(u)〉
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for u near u0. Since m̃(u) is analytic for all u ∈ R (see (4.7)), this ensures the analyticity of
m(u) at u = u0.

Finally, assume by contradiction that m′(u0) = 0. This implies that m̃′(u0) is a scalar
multiple of m̃(u0), so we can find a vector w3 ∈ P orthogonal to both m̃(u0) and m̃′(u0). By
the same arguments shown before, we deduce that the function f3(u) := 〈m̃(u), w3〉 must
vanish identically. Consequently, m̃(u) lies in a line of P ⊂ R

4
ε and so m̃′(u) and m̃(u) are

linearly dependent for all u. However, as we proved before, this is not the case when u = 0,
so we reach a contradiction. �

4.3 Study of the symmetries of 6

In order to have ψ(u, v) uniquely defined (and not just up to ambient isometry), we will fix
the following initial data for the moving frame (ψ,ψu, ψv, N ) at (u, v) = (0, 0):

ψ(0, 0) = e4, ψu(0, 0) = eρ(0,0)

2μ
e3, ψv(0, 0) = −eρ(0,0)

2μ
e2, N (0, 0) = e1, (4.11)

where (e1, e2, e3, e4) is the canonical basis of R
4
ε .

Lemma 4.4 If 	 denotes the symmetry in R
4
ε with respect to x3 = 0, then it holds

ψ(−u, v) = 	(ψ(u, v)), ∀(u, v) ∈ R
2. (4.12)

Thus, � is symmetric with respect to the totally geodesic surface S := M
3(ε) ∩ {x3 = 0}.

Proof It is a direct consequence of the fundamental theorem for surfaces in M
3(ε) and the

expressions for I , I I in (4.2), using (4.11) and the symmetry condition (3.22) for ρ(u, v).
Note that, in particular, the curve v �→ ψ(0, v) lies in {x3 = 0}. �

The surface� actually has infinitely many more symmetry planes orthogonal to {x3 = 0},
as detailed below.

Proposition 4.5 For each k ∈ Z, let Pk denote the 3-dimensional subspace Pk of R
4
ε that is

orthogonal to the vector νk := ψv(0, kσ), where σ > 0 is given by (3.25). Then the following
properties hold:

(1) Pk is orthogonal to {x3 = 0}, and it is timelike if ε = −1.
(2) If �k denotes the symmetry of R

4
ε with respect to Pk, it holds

ψ(u, kσ − v) = �k(ψ(u, kσ + v)) ∀(u, v) ∈ R
2. (4.13)

In particular, the curve u �→ ψ(u, kσ) lies in the totally geodesic surface of M
3(ε)

�k := Pk ∩ M
3(ε).

(3) If the Pk’s do not all coincide, then � := span{νk : k ∈ Z} is a 2-dimensional subspace
of R

4
ε . Moreover, the angle between νk and νk+1 in � does not depend on k.

(4) If the Pk’s do not all coincide, then ∩k∈ZPk = �⊥ = P, where P is the 2-dimensional
subspace of R

4
ε defined in Proposition 4.3.

Proof Recall that, by Lemma 4.4, the curve v �→ ψ(0, v) lies in {x3 = 0}. Thus, 〈νk, e3〉 = 0,
for all k. Since 〈νk, νk〉 = e2ω(0,kσ) > 0, Pk is timelike when ε = −1. This proves item (1).
We note that P0 = {x2 = 0}, from (4.11).
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Item (2) follows from the fundamental theorem for surfaces in M
3(ε), equation (4.2) and

the symmetry condition (3.27) for ρ(u, v).
As regards item (3), we have from (4.13) that−ψv(0, kσ −v) = �k(ψv(0, kσ +v)). From

here we obtain that −νk+1 = �k(νk−1). This easily implies that � is 2-dimensional (unless
all the planes Pk coincide, inwhich case it is 1-dimensional), and that 〈νk+1, νk〉 = 〈νk, νk−1〉,
from where the family {νk : k ∈ Z} is equiangular.

Regarding item (4), we first note that ∩k∈ZPk = �⊥ is immediate from item (3). On the
other hand, it follows from the proof of Proposition 4.3 that P = span{m̃(0), m̃′(0)}, where
m̃(u) is given by (4.7). By (4.7) we have 〈m̃(0), νk〉 = 0 for all k ∈ Z. Differentiating m̃ with
respect to u in (4.7) and using (4.2) and (4.3) we get

〈m̃′, ψv〉 = e−ρ〈ψuu, ψv〉 = − eρ

4μ2 ρv.

In particular, since ρv(0, kσ) = 0 (see (3.27)), then 〈m̃′(0), νk〉 = 0. Thus, �⊥ = P, as
claimed. �
Definition 4.6 We let O− be the open set of O (see (3.16)) for which the condition

〈ν0, ν0〉〈ν1, ν1〉 − 〈ν0, ν1〉2 > 0 (4.14)

holds, where ν0 := ψv(0, 0) and ν1 := ψv(0, σ ).

We note that if ε = 1, the condition (4.14) merely indicates that {ν0, ν1} are linearly
independent. This is equivalent to asking that the linear subspace� ⊂ R

4 in Proposition 4.5
has dimension two, i.e. that the hyperplanes Pk are not all coincident.

If ε = −1, the condition (4.14) tells additionally that � is a spacelike subspace of L
4,

and so P ∩ H
3 is a geodesic of H

3, by item (4) of Proposition 4.5.

4.4 The periodmap

Choose now (a, b, c) ∈ O−, and let � = �(a, b, c) be the immersion ψ(u, v) : R
2 →

M
3(ε) of Definition 4.1. For each u0 ∈ R, the principal curve ψ(u0, v) is spherical, and

� intersects orthogonally the totally geodesic slice M
3(ε) ∩ {x3 = 0} of M

3(ε) along
�(v) := ψ(0, v), see Lemma 4.4). We want to characterize next the periodicity of the curve
�(v), and to understand its rotation index and symmetry group when it is periodic. Note that
the periodicity of �(v) automatically implies that all the (spherical) v-curvature lines of �
are closed.

Since (a, b, c) ∈ O−, the subspace � in Proposition 4.5 is two-dimensional, and it is
spacelike if ε = −1; see the discussion after Definition 4.6. Moreover, �⊥ = P. Thus,
M

3(ε) ∩ P is a geodesic of M
3(ε). Note that e3 ∈ P, since 〈νk, e3〉 = 0 for all k. Also,

P ⊂ {x2 = 0}, since ν0 is collinear with e2 by (4.11). In this way, after a linear isometry of
R
4
ε that fixes e2, e3, we can assume that

P = {x1 = x2 = 0}. (4.15)

Note that this isometry changes the initial conditions for ψ(0, 0) and N (0, 0) in (4.11), but
it does so in a real analytic way, since σ = σ(a, b, c) is real analytic (see Proposition 3.2).

Remark 4.7 From now on, we will use these new initial conditions for any surface�(a, b, c)
with (a, b, c) ∈ O−.
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Let ϕ be the stereographic projection of M
3(ε) from −e4. So, if ε = 1, ϕ maps S

3\{−e4}
into R

3, while if ε = −1, ϕ maps H
3 into the unit ball B

3 ⊂ R
3. Since � lies in {x3 = 0},

the curve γ := ϕ ◦ � is then a planar curve in {z = 0} ⊂ R
3, where (x, y, z) denote the

Euclidean coordinates of R
3.

Definition 4.8 Using the above notation, we define the period map as

� : O− → R,

�(a, b, c) := 1

π

∫ σ

0
κγ ||γ ′||dv, (4.16)

where κγ and ||γ ′|| denote the Euclidean curvature and the length of γ , respectively. Note
that π� represents the variation of the (Euclidean) unit normal of γ (v) along the interval
[0, σ ].
Proposition 4.9 The map � = �(a, b, c) in (4.16) is real analytic in O−.

Proof It is an immediate consequence of the real analyticity of σ = σ(a, b, c) (Propo-
sition 3.2) and ρ = ρ(u, v; a, b, c), together with the analytic dependence of the
Gauss–Weingarten system (4.3) with respect to initial conditions. �

We explain next the geometry of � when its associated period is a rational number. We
start by describing the geometry of the planar geodesic �(v) = ψ(0, v).

Proposition 4.10 Assume that�(a, b, c) = m/n ∈ Q, with n ∈ N\{0} and m/n irreducible.
Then �(v + 2nσ) = �(v). In particular �(v) is a closed curve.

Moreover, �(v) has rotation index m ∈ Z and, if a > 1, a dihedral symmetry group Dn

with n ≥ 2.

Proof Let us see first that γ = ϕ ◦� satisfies γ (v+2nσ) = γ (v), where as before ϕ denotes
the stereographic projection of M

3(ε) from −e4. Consider the totally geodesic surfaces
�k = Pk ∩M

3(ε) (see Proposition 4.5). Then, ϕ maps�k into vertical planes�k containing
the z-axis. Let Lk := �k ∩ {z = 0}. Then {Lk : k ∈ Z} is a family of equiangular lines in
{z = 0} ≡ R

2 passing through the origin. It follows from Proposition 4.5 and the fact that
ϕ is conformal that the angle between Lk and Lk+1 is the angle betweeen γ ′(0) and γ ′(σ ).
We denote this angle by ϑ . Note that γ ′(kσ) is orthogonal to Lk . This implies that

π� = 2πl + ϑ (4.17)

for some l ∈ Z. In particular, nϑ ∈ πZ.
By (4.13), we have

γ (kσ − v) = Tk(γ (kσ + v)), (4.18)

where Tk denotes the symmetry of R
2 that fixes Lk . If R denotes the rotation around the

origin of angle 2ϑ , then we have by (4.18) that γ (v + 2σ) = R(γ (v)). From here and
nϑ ∈ πZ we obtain γ (v + 2nσ) = γ (v).

Also from (4.18) we obtain that f := ||γ ′||κγ satisfies f (kσ − v) = f (kσ + v) for all
k ∈ Z. Observe that this implies that, for all k ∈ Z,

� = 1

π

∫ (k+1)σ

kσ
κγ ||γ ′||dv.
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From here, � = m/n and the 2σn-periodicity of γ (v), it follows that the rotation index of
γ (v) is equal to m.

Finally, we determine the symmetry group of �(v)when a > 1. In that case we know that
X(v) in (3.23) only has critical values at the points of the form kσ , k ∈ Z. Also, by (4.4) and
since ψ(u, v) intersects S = M

3(ε) ∩ {x3 = 0} orthogonally along �(v), we have

κ�(v) = κ2(0, v) = H − μ

X(v)2
,

where κ� is the geodesic curvature of � in S. Since the stereographic projection ϕ preserves
the critical points of the geodesic curvature of regular curves (because it preserves curves
of constant curvature, and hence the contact order with these curves), we deduce that κγ (v)
only has critical points at the values v = kσ , k ∈ Z.

In particular, γ (v) has a (finite) dihedral symmetry group, as it is symmetric with respect
to the reflections T1, . . . , Tn . So, its isometry group is Dn′ for some n′ ≥ n, since m/n is
irreducible. If n′ > n, there would exist some additional symmetry line L ′ for γ (v) different
from all Lk . So, �(v0 − v) = 	′(�(v0 + v)) for some v0 /∈ {kσ : k ∈ Z}, where 	′
is the symmetry with respect to L ′. Thus, κγ would have a critical point at v0, what is a
contradiction. Hence, the symmetry group of γ (v) is Dn , and generated by the reflections
T1, . . . , Tn . Therefore, the symmetry group of �(v) is isomoprhic to Dn , as claimed.

Finally, we show that n ≥ 2. Indeed, if n = 1, then all the Lk’s agree, and this contradicts
that (a, b, c) ∈ O−, since {ν0, ν1} would be collinear. �

As an immediate consequence of Proposition 4.10, we have:

Corollary 4.11 Let (a, b, c) ∈ O− so that �(a, b, c) = m/n ∈ Q, where n ∈ N \ {0}, with
m/n irreducible. Then, ψ(u, v + 2nσ) = ψ(u, v).

4.5 Construction of CMC annuli

Following the results in Sect. 4.4, given u0 > 0, we can define �0 = �0(a, b, c, u0) as the
restriction ofψ(u, v) to [−u0, u0]×R. By Corollary 4.11, if�(a, b, c) = m/n ∈ Q, we can
view �0 as a compact H -annulus in M

3(ε) under the identification (u, v + 2nσ) ∼ (u, v).
With this, we have our main conclusion of this section:

Theorem 4.12 Let (a, b, c) ∈ O− so that �(a, b, c) = m/n ∈ Q, where n ∈ N \ {0},
with m/n irreducible. Then, for any u0 > 0, the following properties hold for the annulus
�0 = �0(a, b, c, u0):

(1) �0 is symmetric with respect to S = M
3(ε)∩{x3 = 0}, and with respect to n ≥ 2 totally

geodesic surfaces �1, . . . , �n of M
3(ε) that intersect equiangularly along a geodesic

L of M
3(ε) orthogonal to S.

(2) Along each boundary component ∂�i
0, i = 1, 2, �0 intersects at a constant angle θ a

totally umbilic surfaceQi of M
3(ε). Specifically, the intersection angle θ is the same at

both components, and Q1 = 	(Q2), where 	 is the symmetry of M
3(ε) with respect to

S.
(3) Assume u0 = τ , where τ = τ(a, b, c) is defined in Proposition 3.4. Then θ = π/2, i.e.,

∂�i
0 intersects Qi orthogonally.

(4) Assume that m3(u0) = 0, where m3 denotes the x3-coordinate of the center map m in
(2.10). Then both boundary curves ∂�1

0 , ∂�
2
0 lie in the same totally umbilic 2-sphere

Q1 = Q2 of M
3(ε).
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(5) If a > 1, the symmetry group of �0 is isomorphic to Dn × Z2, and generated by the
symmetries in item (1). In particular, �0 is not rotational.

Proof Item (1) is a direct consequence of Proposition 4.10. Item (2) follows from the sym-
metry of �0 with respect to S and the fact that the boundary curves of �0 correspond to the
spherical curvature lines ψ(±u0, v).

Item (3) follows from the definition of τ in Proposition 3.4, together with (4.5) and (2.9).
Regarding item (4), we first note that S[m(u0), d(u0)] is one of Q1,Q2; here, we follow

the notation of Lemma 2.1. If m3(u0) = 0, the center of this Qi lies in {x3 = 0}. Since
Q1 = 	(Q2) by item (2), we have Q1 = Q2 = S[m(u0), d(u0)]. We show next that
S[m(u0), d(u0)] is an umbilic 2-sphere if ε = −1, a property equivalent to m(u0) being
timelike by the discussion before Lemma 2.1. Let P denote the plane where m(u) lies, as
specified in Proposition 4.3. Since (a, b, c) ∈ O−, P is timelike, and by Proposition 4.5 it
contains e3. Since 〈m(u0), e3〉 = 0, then m(u0) is timelike, as desired.

To prove item (5), let	′ denote an isometry of M
3(ε) that leaves�0 invariant. Under this

isometry, we must have 	′(�) = �, since the points of � represent the middle points of the
(intrinsic) geodesics� j ∩�0 of�0. Therefore, the restriction of	′ to S is a symmetry of �,
and hence a compositionT of the symmetriesT j with respect to some� j , by Proposition 4.10.
If	′ takes each boundary component of�0 to itself, we deduce then that	′ = T. Otherwise
	′ = 	◦T, where	 is the symmetrywith respect toS (note that	 interchanges the boundary
components of �0). This proves item (5). �

Theorem 4.12 motivates the next definition and consequence.

Definition 4.13 For any (a, b, c) ∈ W, we define h : W → R as the map h(a, b, c) :=
m3(τ (a, b, c)), where m3 denotes the x3-coordinate function of the center m(u).

Corollary 4.14 Let (a, b, c) ∈ O− ∩ W so that �(a, b, c) = m/n ∈ Q, where n ∈ N \ {0}.
Assume that h(a, b, c) = 0. Then, choosing u0 = τ , both boundary components of the
annulus �0 in Theorem 4.12 intersect orthogonally the same umbilic 2-sphere Q of M

3(ε).

5 Critical catenoids and nodoids in space forms

In this section we introduce the family of rotational CMC surfaces in M
3(ε) = S

3 or H
3

following do Carmo-Dajczer [10], and prove that each element within a subfamily of them
has a compact piece that is an embedded free boundary rotational annulus in an adequate
geodesic ball of M

3(ε). This section can be treated independently of the rest of the paper;
the proofs are postponed to an appendix.

Up to an isometry, any rotational immersion in M
3(1) = S

3 can be expressed as

ψ(s, θ) = (x(s) cos θ,−x(s) sin θ,
√

1 − x(s)2 sin(φ(s)),
√

1 − x(s)2 cos(φ(s)))).(5.1)

for some functions x = x(s), φ = φ(s).
In the case of M

3(−1) = H
3, we will focus on rotational surfaces of elliptic type, that is,

surfaces that are invariant by a compact, continuous 1-parameter subgroup of isometries of
H

3. Up to an isometry, any rotational surface of this type can be expressed as

ψ(s, θ) = (x(s) cos θ,−x(s) sin θ,
√

x(s)2 + 1 sinh(φ(s)),
√

x(s)2 + 1cosh(φ(s)). (5.2)

If the immersion has CMC H ≥ 0 and is not totally umbilic, and we choose s as the arclength
parameter of its profile curve, it can be shown that x(s) is an analytic function satisfying the
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following differential equation:

x ′2 = h(x)

x2
:= x2 − εx4 − (Hx2 − δ)2

x2
, (5.3)

for some constant δ 	= 0. In order for (5.3) to have solutions, it is necessary that the biquadratic
polynomial h(x) be non-negative for some x ∈ R. We will treat the cases ε = 1 and ε = −1
separately.

5.1 Rotational CMC surfaces in S
3

In this case, the polynomial h(x) in (5.3) is non-negative for some x ∈ R if and only if

δ ∈
[

H − μ

2
,
H + μ

2

]

(5.4)

where, as in the previous section, μ := √
H2 + 1.

If δ = H±μ
2 then h(x) is non-positive, with double roots at the values x = ±√|δ|/μ.

In this case, the only solutions x(s) of (5.3) are the constant ones, x(s) ≡ ±√|δ|/μ (up
to an isometry, we can assume that x(s) ≡ √|δ|/μ). For δ ∈ (

H−μ
2 ,

H+μ
2 ), δ 	= 0, h(x)

has four simple roots {−xM ,−xm, xm, xM }, with 0 < xm < xM ≤ 1, and h(x) ≥ 0 for
all x ∈ [−xM ,−xm] ∪ [xm, xM ]. In this case, (5.3) has two types of analytic solutions: the
constant ones, and the non-constant ones, which oscillate either on the interval [−xM ,−xm]
or on [xm, xM ]. The only solutions that give rise to CMC immersions in S

3 are the non-
constant ones. Up to isometries, we can always assume that x(0) = xm .

Proposition 5.1 ([10]) Let ε = 1, H ≥ 0 and δ 	= 0 such that (5.4) holds. If δ = H±μ
2 , let

x(s) := √|δ|/μ, constant. Otherwise, let x(s) be the unique non-constant solution of (5.3)
with initial condition x(0) = xm. We define

φ(s) :=
∫ s

0

δ − Hx2

x(1 − x2)
ds. (5.5)

Then, denoting S
1 ≡ R/(2πZ), the immersion ψ : R × S

1 → S
3 given by (5.1) defines a

rotational surface in S
3 with constant mean curvature H ≥ 0 such that 〈ψs, ψs〉 ≡ 1. The

s-curves and θ -curves are curvature lines, with respective associated principal curvatures

κs = H + δ/x2, κθ = H − δ/x2. (5.6)

Conversely, any rotational CMC surface in S
3 must be an open piece of either one of these

examples, or of a totally umbilical round sphere.

Definition 5.2 (Spherical nodoids, unduloids and catenoids) Let ε = 1. For any H ≥ 0 and
δ 	= 0 such that (5.4) holds, let S = S(ε, H , δ) be the rotational CMC surface in S

3 of
Proposition 5.1.

• If H > 0 and 0 < δ < (H + μ)/2 we will say that S is a spherical nodoid.
• If H > 0 and (H − μ)/2 < δ < 0 we will say that S is a spherical unduloid.
• If H = 0 we will say that S is a spherical catenoid. Since the change δ �→ −δ just gives

a reparameterization of S, we can assume in this case that δ > 0.
• If δ = (H ± μ)/2, the surface covers a flat torus. For H = 0, it is a Clifford torus.
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5.2 Rotational CMC surfaces inH
3 of elliptic type

We recall that, in order for (5.3) to have solutions, it is necessary that h(x) be non-negative
for some x ∈ R. This will happen in any of the following situations:

(1) H < 1,
(2) H = 1 and δ > − 1

2 ,

(3) H > 1 and δ ≥ μ−H
2 , where μ := √

H2 − 1.

In the first two cases, h(x) only has two roots −xm < 0 < xm , and h(x) ≥ 0 for all x ∈
(−∞,−xm]∪[xm,∞). In the third case, h(x) has four roots−xM ≤ −xm < 0 < xm ≤ xM ,
and xm = xM if and only if δ = μ−H

2 . In this situation, h(x) ≥ 0 on [−xM ,−xm]∪[xm, xM ].
If H > 1 and δ = μ−H

2 , then xm = xM =
√

H−μ
2 and the only analytic solutions of (5.3)

are the constants x = ±xm . The resulting surfaces are flat hyperbolic cylinders in H
3.

In the rest of cases, (5.3) has two types of analytic solutions: the constants given by the roots
of h(x), and non-constant solutions. The only ones that give rise to actual CMC immersions
are those which are not constant. More specifically, if H > 1, then x(s) : R → R oscillates
on either [−xM ,−xm] or [xm, xM ]. If H ≤ 1, however, x(s) : R → R is unbounded, taking
values on either (−∞,−xm] or [xm,∞).

In all three cases, up to isometries in H
3, we can always assume that x(0) = xm , where

xm is the smallest positive root of h(x). We have then:

Proposition 5.3 ([10]) Let ε = −1, H ≥ 0, δ 	= 0. If H > 1 and δ = μ−H
2 , let x(s) ≡ xm.

Otherwise, let x(s) be the unique nonconstant solution of (5.3) with initial condition x(0) =
xm. We define

φ(s) :=
∫ s

0

δ − Hx2

x(x2 + 1)
ds. (5.7)

Under these conditions, the immersion ψ : R × S
1 → H

3 in (5.2) is a rotational surface in
H

3 with constant mean curvature H ≥ 0 and 〈ψs, ψs〉 ≡ 1, with principal curvatures given
by (5.6).

Conversely, any rotational CMC surface of elliptic type in H
3 must be an open piece of

either one of these examples, or of a totally umbilical surface of H
3.

Definition 5.4 We will say that the immersion ψ in Proposition 5.3 is a hyperbolic nodoid
(resp. unduloid) if H > 1 and δ > 0 (resp. μ−H

2 < δ < 0), and denote it by S = S(ε, H , δ).

5.3 Existence of free boundary nodoids and catenoids

Our goal in this section is to show that the nodoids and catenoids given in Propositions 5.1, 5.3
for δ > 0 (see also Definitions 5.2 and 5.4) are free boundary in a certain ball of M

3(ε). The
geodesic balls of M

3(ε) will be described as

B[m, d] := {x ∈ M
3(ε) : 〈x,m〉 ≥ d}. (5.8)

Here m ∈ M
3(ε) is the center of the ball, while d ∈ R satisfies |d| < 1 when ε = 1 and

d < −1 when ε = −1.
The fact that x(0) = xm and φ(0) = 0 along with (5.3), (5.5), (5.7) imply that the function

x(s) is symmetric, while φ(s) is antisymmetric. A geometric consequence of this is that the
immersions ψ(s, θ) given in (5.1), (5.2) are symmetric with respect to the totally geodesic
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surface S = {x3 = 0} ∩ M
3(ε). Moreover, the rotation axis of these examples is given by the

geodesic L := {x1 = x2 = 0} ∩ M
3(ε). We note that the balls B[e4, d] centered at the point

e4 ∈ M
3(ε) are also symmetric with respect to S and invariant under rotations with axis L.

Given s0 > 0, we define S0 as the compact annulus ψ([−s0, s0] × S
1) ⊂ M

3(ε), where
we have identified the points (s, θ + 2π) ∼ (s, θ) in the obvious way. Consider the profile
curve of S0,

s �→ ψ(s, 0) = (x(s), 0, x3(s), x4(s)). (5.9)

We are interested in studying whether S0 is free boundary in a certain ball. By the symmetries
of S0, it can be shown that its two boundary components are contained in the totally umbilical
sphere

S[e4, εx4(s0)] = ∂B[e4, εx4(s0)] ⊂ M
3(ε).

So, if S0 happened to be free boundary in some geodesic ball of M
3(ε), it would necessarily

be in B[e4, εx4(s0)].
Proposition 5.5 Let ε ∈ {−1, 1}, H ≥ 0, δ > 0. If ε = 1, assume further that δ <

H+μ
2 . For

any s, denote by �s the geodesic in M
3(ε) with initial conditions ψ(s, 0) and ψs(s, 0).

(1) There exists s̃ = s̃(H , δ) > 0 such that the compact annulus S0 := ψ([−̃s, s̃] × S
1) is

embedded and free boundary in the ball B := B[e4, εx4(̃s)] ⊂ M
3(ε), with x4(̃s) > 0.

Moreover, the principal curvature associated to the profile curve is strictly decreasing
on a certain interval [0, s̃ + ε), ε > 0.

(2) The map (H , δ) �→ s̃(H , δ) is analytic. Moreover, if ε = 1, s̃ extends continuously to
the boundary curve δ = H+μ

2 by

s̃

(

H ,
H + μ

2

)

= π

2
√
2μ(H + μ)

. (5.10)

(3) On a neighbourhood I ⊂ R of s̃ = s̃(H , δ), the rotational axis L of S0 and the geodesic
�s meet at a unique point p̂(s) with p̂4(s) > 0. Moreover, the function p̂ : I → L is
analytic with p̂3(̃s) = 0 and p̂3′(̃s) > 0 (here p̂3(s), p̂4(s) denote the third and fourth
coordinates of p̂(s) respectively).

Proof See Appendix A. �
Remark 5.6 The first item of the previous Proposition omits the limit case δ = H+μ

2 , which
corresponds to rotational flat tori. However, in this case the functions x(s), x3(s) can be
computed explicitly:

x(s) ≡
√

μ + H

2μ
, x3(s) =

√

μ − H

2μ
sin

(
√

2μ(μ + H)s
)

. (5.11)

With this, one can check that the embedded annulusψ([−̃s, s̃]×S
1), where s̃ = π

2
√
2μ(μ+H)

,
is free boundary in B[e4, 0].

6 Delaunay surfaces via double roots

We now consider the case a = 1 in our discussion of Sect. 4, i.e., we choose (1, b, c) ∈ O
and let � = �(1, b, c) be the CMC surface in M

3(ε) of Definition 4.1. This means that
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p(0, x) in (3.15) has a double root at x = 1/c. As explained after (3.24), in this case we
have eρ(0,v) = 1/c. Therefore, ρv(0, v) ≡ 0 and by uniqueness of the solution to the Cauchy
problem for (3.1) we have that ρ = ρ(u), i.e., ρv ≡ 0. It follows then by (4.2) that the
coefficients of I , I I for � only depend on u, and so � is invariant under a 1-parameter
group of ambient isometries of M

3(ε). Moreover, each curve v �→ ψ(u, v) is an orbit of
such 1-parameter group.

In our situation,�(v) := ψ(0, v) is such an orbit, which actually lies in the totally geodesic
surface S := M

3(ε)∩ {x3 = 0} of M
3(ε), see Lemma 4.4. Since� intersects S orthogonally

along �(v), the geodesic curvature of �(v) as a curve in S is given by the principal curvature
κ2(0, v), which by (4.4) is constant, and equal to H − μc2.

Therefore, in the case ε = 1, � is a rotational CMC surface in S
3. The u-curves (resp.

v-curves) of � correspond to the s-curves (resp θ -curves) in the parametrization ψ(s, θ) of
rotational surfaces of Sect. 5. In this way, ψ(u, 0) is a profile curve of �.

The principal curvature κ1(u) associated to this profile curve ψ(u, 0) is always positive,
by (4.4). Thus, if H 	= 0, � is the universal cover of either a flat torus or a spherical nodoid
of S

3. If H = 0, � covers a spherical catenoid or a Clifford torus. See Sect. 5.

Remark 6.1 If a = c = 1, then y′(0) = 0 by (3.20), and so y(u) ≡ 0. This implies by (3.21)
and (3.3) that ρ(u) ≡ 0. Thus, a = c = 1 corresponds to the case where � covers a flat
CMC torus in S

3.

In the case ε = −1, we have that� is a generalized rotational surface inH
3, i.e., it is invariant

by either hyperbolic, elliptic or parabolic rotations in H
3. We will be interested in the elliptic

case, i.e. the case where the orbits of these rotations are (compact) circles. This happens if
and only if the geodesic curvature of the orbits is greater than 1 in absolute value, that is, if
and only if

(H − μc2)2 > 1. (6.1)

Thus, if (6.1) holds for our choice of (H , c), then � will be a Delaunay surface in H
3 with

constant mean curvature H > 1. Again, since κ1 is positive by (4.4) and describes the
geodesic curvature of the profile curve of �, we deduce that � is a hyperbolic nodoid. See
Sect. 5. An equivalent form of (6.1) is

H <
μ

2

(

c2 + 1

c2

)

, (6.2)

where we have used that μ2 = H2 − 1 if ε = −1. This motivates the following definition.

Definition 6.2 We let R ⊂ R
3 be the open subset of O ∩ {a = 1} given by

R := {(1, b, c) ∈ O : (H − μc2)2 + ε > 0}.
Note that R is just O ∩ {a = 1} if ε = 1, and that the inequality defining R is (6.1) if

ε = −1. We thus have from the discussion above:

Proposition 6.3 Assume that (1, b, c) ∈ R. Then, � = �(1, b, c) is the universal cover of
the (spherical or hyperbolic) nodoid (H 	= 0) or catenoid (H = 0) in M

3(ε) with neck
curvature given by κ = H − μc2.

Remark 6.4 If (1, b, c) ∈ R ∩ O−, then the rotation axis of �(1, b, c) is the geodesic L
described in item (1) of Theorem 4.12. This follows from the fact that, in this case, �(v) =
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ψ(0, v) is a (compact) circle, and any of the symmetries in that item (1) must leave the center
of �(v) fixed, i.e. the center lies in the intersection of the symmetry planes �k . Since both
the rotation axis and �k are orthogonal to S, we conclude from there that the rotation axis
agrees with L = ∩k∈Z�k .

If follows from the above construction that the parameter c determines uniquely the immer-
sion ψ(u, v) that defines �(1, b, c). On the other hand, the role of the parameter b is to
determine the initial values (3.7) of system (3.4) via (3.19), (3.20). More conceptually, since
ψ(u, v) is rotational, each curve v �→ ψ(u, v) is a circle that can be seen as contained in
infinitely many 2-dimensional totally umbilic surfaces S[m(u), d(u)] of M

3(ε). The choice
of b in �(1, b, c) determines the values of m(u), d(u) in this description.

We will next describe the behavior of the solutions to system (3.4) associated to our
solution ρ(u, v) in our current case a = 1. So, we consider the initial conditions (3.14),
(3.19), (3.20) for system (3.4), that give together with (3.21) the solution ρ(u, v) to (3.1)
starting from (1, b, c) ∈ O− constructed in Theorem 3.1.

The Hamiltonian constants h, k in (3.8) and (3.9) can be expressed in terms of (b, c) using
a = 1, (3.19) and (3.20). This lets us write q(x) in (3.12) in terms of (b, c) as

q(x) = −(x − r1)
2(x − r3), (6.3)

where

r1 = − (b − 1)2

4b
≤ 0 (6.4)

and

r3 = 1

4

(

c + 1

c

)2

≥ 1. (6.5)

Let (s(λ), t(λ)) be the solution to (3.11) obtained after the change of coordinates (3.10)
from our initial solution (y(u), z(u)) to (3.4). We list the following properties, that were
obtained in [8], and that will be used later on:

i) (s(λ), t(λ)) is defined for all λ ∈ R, and up to a translation in the λ parameter it satisfies
the initial conditions s(0) = 1, t(0) = 0.

ii) s(λ) takes values in [1, r3], while t(λ) takes values in [r1, 0]. Moreover, s(λ) ≡ 1 if and
only if r3 = 1 and t(λ) ≡ 0 if and only if r1 = 0.

iii) s(λ) is 2l-periodic, where

l =
∫ r3

1

dx√
x(x − 1)q(x)

< ∞.

In this way, s(2 l) = s(0) = 1 and s(l) = r3.
iv) If r1 < 0, then t(λ) is strictly decreasing, with t(λ) → r1 as λ → ∞.

7 The periodmap for nodoids and catenoids

In this section we will assume, as in Sect. 6, that a = 1, and keep the same notations.
Therefore, ρ = ρ(u), and � is the rotational example of Proposition 6.3. In particular
κ2(0, v) = H − μc2.

As explained in Sect. 6, if ε = 1, �(v) is a circle in S
3∩{x3 = 0}. Also, if ε = −1, �(v) is

a curve inH
3∩{x3 = 0} ≡ H

2 of constant curvature H−μc2. This curve will be a (compact)
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circle if and only if (6.1) holds, i.e., if and only if (1, b, c) ∈ R (see Definition 6.2). We
also recall that the set O− and the period map � were introduced in Definitions 4.6 and 4.8
respectively.

We prove next:

Theorem 7.1 Let (1, b, c) ∈ R ∩ O−. Then,

�(1, b, c) = −√

(H − c2μ)2 + ε

cμ
√

( 1
c + bc

) ( 1
c + c

b

)

. (7.1)

Proof Consider the planar curve γ (v) = ϕ(�(v)) defined above (4.16). The metric on
S\{−e4} can be written via the inverse stereographic map ϕ−1 as

!(dx2 + dy2), ! := 4

(1 + ε(x2 + y2))2
, (7.2)

where (x, y) are Euclidean coordinates in R
2. From here and (4.2), we have

||γ ′|| = X

2μ
√
!
, (7.3)

where we have used our usual notation X(v) = eρ(0,v). On the other hand, by standard
formulas of conformally related Riemannian metrics, the geodesic curvature κ� of �(v) in S,
i.e., the geodesic curvature of γ (v)with respect to the metric (7.2), is related to the Euclidean
geodesic curvature κγ of γ by

κγ = 〈∇√
!,n〉√
!

+ √
!κ�, (7.4)

where n is the unit normal of γ in R
2, and both ∇, 〈, 〉 are Euclidean. Recall that κ� =

κ2(0, v) = H −μc2 < 0. Since �(v) is a horizontal circle, its stereographic projection γ (v)

parametrizes a circle of a certain radius r > 0 in the plane (or in the unit disk of R
2, if

ε = −1), which is negatively oriented since κ� < 0. Along γ (v) we have

√
! = 2

1 + εr2
, ∇√

! = −4ε

(1 + εr2)2
γ (v), (7.5)

and n = 1
r γ (v). Then, it follows from (7.4), (7.5) and κγ = −1/r that

r = ε
(

H − c2μ ±
√

(H − c2μ)2 + ε
)

.

Here, we should recall that (6.1) holds when ε = −1, since (1, b, c) ∈ R. Moreover, taking
into account that r > 0 if ε = 1 and r ∈ (0, 1) if ε = −1, we deduce that, actually,

r = ε
(

H − c2μ +
√

(H − c2μ)2 + ε
)

. (7.6)

We now compute the value of � = �(1, b, c) using (4.16). First note that, by (7.3), (7.5)
and X(v) = 1/c, we have

||γ ′|| = 1 + εr2

4cμ
.
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Thus using that κγ = −1/r and (3.26), we have from (4.16)

�(1, b, c) = −(1 + εr2)

2cμr
√

( 1
c + bc

) ( 1
c + c

b

)

.

Using (7.6) in this expression, we obtain (7.1). �
Remark 7.2 For any p0 = (1, b, c) ∈ R ∩ O−, c > 1, a straightforward computation
from (7.1) shows that �c(p0) 	= 0. By the implicit function theorem and the analyticity of
�(a, b, c) (Proposition4.9), it follows that the level set�(a, b, c) = �0,where�0 := �(p0)
can be locally expressed around p0 as a graph c = c�0(a, b), where c is real analytic with
respect to a, b.

Similarly, if p0 ∈ R ∩ O−, b > 1, an analogous computation shows that �b(p0) 	= 0,
and so in this case we can express locally the level set �(a, b, c) = �(p0) as an analytic
graph b = b�0(a, c).

We now consider (r1, r3) given by (6.4), (6.5). The map (b, c) �→ (r1, r3) is a home-
morphism from {(b, c) : b ≥ 1, c ≥ 1} onto {(r1, r3) : r1 ≤ 0, r3 ≥ 1}, and so we can
view �(1, b, c) as a map �(r1, r3). Using (6.4), (6.5) and μ2 = H2 + ε, the expression for
� = �(r1, r3) in (7.1) simplifies to

�2 = μ(2r3 − 1) − H

2μ(r3 − r1)
. (7.7)

This can be rewritten alternatively as

r3 = �2

�2 − 1
r1 + H + μ

2μ(1 − �2)
(7.8)

For any fixed � = �0, this equation represents the line with slope �2
0/(�

2
0 − 1) that passes

through the point

p0 :=
(

H + μ

2μ
,
H + μ

2μ

)

. (7.9)

As an immediate consequence of (7.1) and (7.7), we have:

Corollary 7.3 �(1, b, c) ∈ (−1, 0) for any (1, b, c) ∈ R ∩ O−.

We next show that in Theorem 7.1 we can simply assume (1, b, c) ∈ R.

Proposition 7.4 R ⊂ O−.

Proof Let (1, b, c) ∈ R. Then, �(1, b, c) is a rotational surface in M
3(ε) whose rotation

axis is orthogonal to e2. After a linear isometry of R
4
ε that fixes e2, e3, we can assume that

this rotation axis is M
3(ε) ∩ {x1 = x2 = 0}. We now consider, as we did in Sect. 4.4, the

stereographic projection ϕ of M
3(ε) from −e4 to R

3, and the planar curve γ (v) := ϕ(�(v)).
Define next the number

̂θ := 1

π

∫ σ

0
κγ ||γ ′||dv,

just as in (4.16). We use here the new notation̂θ , since � in (4.16) was only defined onO−;
nonetheless, the right hand side of (4.16)makes sense in our case.Moreover, the computations
in Theorem 7.1 show that ̂θ is also given by the right hand side of (7.1).
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In order to show that (1, b, c) ∈ O− we must prove first of all that {ν0, ν1} are linearly
independent. If ν1 were proportional to ν0, then̂θ would be an integer, since π̂θ measures the
variation of the unit normal of γ (v) along [0, σ ], and the unit normals at v = 0 and v = σ are
collinear (since ν0, ν1 are). But on the other hand, the computations in Corollary 7.3 using
that ̂θ is given by (7.1) show that ̂θ ∈ (−1, 0).

This shows that (1, b, c) ∈ O− if ε = 1. In the case ε = −1, we also need to check that
the plane � := span{ν0, ν1} is spacelike. This condition holds because � is orthogonal to
the rotation axis M

3(ε) ∩ {x1 = x2 = 0} of �(1, b, c). �

8 Detecting critical nodoids and catenoids

Throughout this section we will consider points of the form (1, b, c) ∈ R ∩ W, and let
� = �(1, b, c) be the associated rotational H -surface in M

3(ε), see Proposition 6.3. Our
objective in this section will be to find some special zeros of the map h(1, b, c) introduced
in Definition 4.13. These zeros will detect those rotational H -surfaces whose restriction to
u ∈ [−τ, τ ] are free boundary in some geodesic ball (i.e. they cover critical nodoids or
catenoids in M

3(ε)). These special values where h(1, b, c) = 0 will be used in Sect. 9 as
bifurcation points in our parameter domain (a, b, c) in order to construct non-rotational free
boundary CMC annuli.

Using (6.4), (6.5) we can actually view � = �(r1, r3) as depending on r1, r3. We can
then reparametrize the parameter domainR ∩ W in terms of (r1, r3) as

R ∩ W ≡ ̂W =
{

(r1, r3)∈ R
2 : r1 ≤ 0, r3 > max

{

(r1 − 1)2

1 − 2r1
,−ε

H + μ

2μ

}}

. (8.1)

This follows directly from a computation using (6.4), (6.5), the definition of W in (3.28),
Proposition 7.4 and (6.2). Note that if ε = 1, the maximum in (8.1) is always the first quantity
(the other one being negative in that case); see Fig. 1.

Similarly, we can write the functions τ(1, b, c) in Proposition 3.4 and h(1, b, c) in Defi-
nition 4.13 as τ(r1, r3) and h(r1, r3), respectively. Both of them are naturally defined in this
way on ̂W, and are real analytic.

By Proposition 6.3, �(r1, r3) corresponds to one of the catenoids or nodoids ψ(s, θ)

in M
3(ε) studied in Sect. 5, whose profile curves were parametrized by arc-length, that is,

‖ψs‖2 ≡ 1. If δ > 0 denotes the parameter in Propositions 5.1 and 5.3 that defines ψ(s, θ),

Fig. 1 The parameter domain ̂W in (8.1) for the cases ε = 1 (left) and ε = −1 (right). In the right picture, the
value r0 stands for r0 = H+μ

2μ
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then it follows that the map r3 �→ δ(r3) is real analytic and injective; here we recall that
r3 determines �(r1, r3) uniquely, as explained after Remark 6.4. We also emphasize that if
ε = 1, the value r3 = 1 corresponds to the case where �(r1, 1) covers a flat torus in S

3; see
Remark 6.1. Therefore, it follows from Remark 5.6 that δ(r3) can be continuously extended
to r3 = 1, with value δ(1) = H+μ

2 . Besides, since ψ(s, θ) is a parametrization by curvature
lines of �, it is easy to see that the parameter u of � is linked to the arclength parameter s
by s = s(u), with

s′(u) = eρ(u)

2μ
, s(0) = 0. (8.2)

Here, the fact that s = 0 corresponds to u = 0 comes from the fact that, in both parametriza-
tions, the value 0 gives a point where the geodesic curvature of the profile curve has a
maximum. In this way, the change of parameters s = s(u) is real analytic also with respect
to r3, and is independent from r1.

This leads to the following definition.

Definition 8.1 We define ũ(r3) as the value ũ(r3) := u(̃s; r3), where s̃ is defined in Proposi-
tion 5.5. By construction, the map r3 �→ ũ(r3) is real analytic.

Remark 8.2 Assume that �(r1, r3) = m/n ∈ Q ∩ (−1, 0), with n ∈ N and m/n irre-
ducible. Choose u0 := ũ(r3), and let�0 := �0(1, b, c, u0) ≡ �0(r1, r3, u0) be the compact
H -annulus in M

3(ε) of Theorem 4.12. Then, by the definition of ũ(r3) and the previous
discussion, we deduce that �0 covers a critical catenoid or nodoid N in M

3(ε). The value
of r3 determines the specific catenoid or nodoid (since it determines its neck curvature).
Contrastingly, r1 can be regarded as a free parameter in this description.

Let us be more specific about this covering property. Since the central planar geodesic
� := S ∩ �0 of �0 has rotation index m ∈ Z

− (by Proposition 4.10), we observe that �0 is
a finite (−m)-cover of N. In particular, if �(r1, r2) = −1/n for some n ≥ 2, then �0 is an
embedding, since it is a trival covering of the embedded compact annulusN ⊂ M

3(ε).

Proposition 8.3 Following the above notations, let (r01 , r
0
3 ) ∈ ̂W, and assume that ũ(r03 ) =

τ(r01 , r
0
3 ). Then, h(r

0
1 , r

0
3 ) = 0.

Proof Take (r1, r3) ∈ ̂W. By Remark 6.4, Propositions 7.4 and 4.5, we know that the rotation
axis L of �(r1, r3) is contained in the 2-plane P of R

4
ε where {m(u) : u ∈ R} is contained.

Also, by continuity of the functions ũ, τ , we can define p̂(s(τ )) for all (r1, r3) close enough to
(r01 , r

0
3 ), where p̂ is defined in Proposition 5.5. By construction, p̂(s) lies in L. In particular,

both m(τ ) and p̂(s(τ )) lie in P.
Let now P′ denote the 2-plane of R

4
ε generated by ψ(τ, 0) and ψu(τ, 0), where τ =

τ(r1, r3). By construction, p̂(s(τ )) ∈ P′. And on the other hand, it follows from the definition
of τ and (2.10) that m(τ ) ∈ P′. Note also that P 	= P′, since ψ(τ, 0) /∈ P, due to the fact
that catenoids and nodoids in M

3(ε) do not touch their rotation axis, see Sect. 5. Thus, m(τ )

and p̂(s(τ )) are collinear, since they both lie in the line " := P ∩ P′ of R
4
ε . Depending on

the value ε, we deduce the following:
If ε = 1, then " ∩ S

3 consists of the two antipodal points {m(τ ), −m(τ )}. So, changing
m(u) by −m(u) if necessary (recall that m(u) was defined up to a multiplicative factor, see
the discussion after (4.6)), we deduce from p̂(s(τ )) ∈ S

3 that

p̂(s(τ )) = m(τ ). (8.3)
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Similarly, if ε = −1, then " must be timelike, since it contains the point p̂(s(τ )) ∈ H
3. In

particular, m(τ ) ∈ " is also timelike, and so m(τ ) ∈ H
3, see again the discussion after (4.6).

The intersection " ∩ H
3 consists of a single point, and so (8.3) holds again.

To prove Proposition 8.3, assume finally that (r1, r3) = (r01 , r
0
3 ). By (8.3), Proposition 5.5

and Definition 4.13,

h(r01 , r
0
3 ) = p̂3(s(τ )) = p̂3(s(̃u)) = p̂3(̃s) = 0,

what completes the proof. �
The following result allows to find roots of h(r1, r3) along curves in ̂W joining two of the

boundary curves of ∂ ̂W (see Fig. 2).

Theorem 8.4 Let ϒ : [0, 1] → R
2, ϒ(r) = (r1(r), r3(r)), be an analytic curve satisfying:

(1) ϒ(r) ∈ ̂W for every r ∈ [0, 1).
(2) ϒ(0) = (0, r3(0)).
(3) ϒ(1) = (r1, r3) /∈ ̂W, with

r3 = (r1 − 1)2

1 − 2r1
, r3 > −ε

H + μ

2μ
. (8.4)

Then there exists some value r∗ ∈ (0, 1) such that h(ϒ(r∗)) = 0. Moreover, h(r) := h(ϒ(r))
changes sign at this point; specifically, h(r) > 0 for r ∈ (r∗ − ε, r∗) and h(r) < 0 for
r ∈ (r∗, r∗ + ε), for some ε > 0.

Proof Let us consider the analytic function f : [0, 1) → R defined as

f (r) := τ(ϒ(r)) − ũ(r3(r)) ≡ τ(r) − ũ(r3(r)).

Our goal will be to prove that f vanishes at some point r∗ ∈ (0, 1) and it changes sign. From
that, we will conclude that h(r) shows the same behaviour at such point.

We show first that f (0) > 0. Since r1 = 0 at ϒ(0), we see from the comments at the
end of Sect. 6 that the solution (s(λ), t(λ)) of the system (3.11) associated to the parameters
(0, r3(0)) satisfies t(λ) ≡ 0, while s(λ) oscillates between s = 1 and s = r3(0). According
to (3.10), z(u) ≡ 0 while y(u) is not constant. By definition, τ is the first value for which
y(τ ) = z(τ ) (see Proposition 3.4), so in this case τ is the first positive root of y(u), that
is, τ(0, r3(0)) = u1(0, r3(0)); see Proposition 3.3 for the definition of u1. We will now
show that ũ(r3(0)) < u1(0, r3(0)). The curvature of the profile curve u �→ ψ(u, 0) is

Fig. 2 Example of a curve ϒ(r)
in the conditions of Theorem 8.4
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κ1(u, 0) = H + μe−2ρ(u,0), by (4.4). By (3.3) and z(u) ≡ 0, this curvature is strictly
decreasing on the interval u ∈ [0, u1], and it actually has a local minimum at u = u1. On
the other hand, by Proposition 5.5 the principal curvature κ1 is strictly decreasing on an
interval [0, u0) containing ũ. So, we must have ũ(r3(0)) < u1(0, r3(0)) = τ(0, r3(0)). As a
consequence, f (0) > 0.

We will show next that limr→1− f (r) < 0. To start, note that the function ũ(r3(r)) is
positive by construction. Also, ũ(r3(r)) can be defined at r = 1 by the inequality in (8.4).
So, limr→1− ũ(r3(r)) = ũ(r3) > 0. Now we claim that limr→1− τ(r) = 0. Assume by
contradiction that there exists a sequence (rn)n → 1 of values in (0, 1) such that lim τ(rn) =:
L0 > 0. Let (yn(u), zn(u)) denote the solutions (y(u), z(u)) of (3.4) associated to the
parameters ϒ(rn), and (y0(u), z0(u)) be the corresponding solution for the limit case ϒ(1).
By definition of τ , we have that yn(u) > zn(u) for all u ∈ (0, τ (rn)). By continuity of
solutions of ODEs with respect to initial conditions and parameters, we deduce that y0(u) ≥
z0(u) for all u ∈ [0, L0]. This leads to a contradiction, since the equality in (8.4) implies that
y0(u) < z0(u) for any u > 0 small enough; see the discussion after Proposition 3.4.

Therefore, the analytic function f (r) changes sign on the interval [0, 1).More specifically,
there exists a value r∗ ∈ (0, 1) with f (r∗) = 0, and so that f (r) > 0 for r ∈ (r∗ − ε, r∗)
and f (r) < 0 for r ∈ (r∗, r∗ + ε), for ε > 0 small enough.

Let us now study the functionh(r).Weknow that τ(r∗) = ũ(r3(r∗)), so byProposition 8.3,
h(r∗) = 0. In order to prove that h(r) changes sign at r∗, consider r ∈ (r∗ − ε, r∗) for some
ε > 0 small enough. Then, at ϒ(r) we have τ > ũ, since f (r) > 0. Thus, s(τ ) > s(̃u) = s̃

and by Proposition 5.5 we have p̂3(s(τ )) > p̂3(̃s) = 0, since p̂(s) is strictly increasing near
s̃. Similarily, p̂3(s(τ )) < 0 at ϒ(r) if r ∈ (r∗, r∗ + ε). Now, using (8.3), this implies that
m3(τ ) changes sign at r = r∗ along ϒ(r). This proves that h(r) changes sign at r∗, see
Definition 4.13. �

We will next prove a further result that, in the spherical case ε = 1, will allow us to find
roots of h(r1, r3) along curves in ̂W that start from the vertex (r1, r3) = (0, 1).

Lemma 8.5 Let ε = 1. Given l > 0, consider the half-line given by

L(r) := (r1(r), r3(r)) = (−r , lr + 1) (8.5)

for all r > 0. Then, there exists limr→0+ τ(L(r)) − ũ(r3(r)) > 0. In particular, τ(L(r)) >

ũ(r3(r)) for any r > 0 small enough.

Proof Note that the expression in this directional limit makes sense, since L(r) ∈ ̂W for
r > 0 small enough.

To start, we prove that ũ(r3) can be extended to r3 = 1. Recall first of all that δ(r3)
converges to H+μ

2 as r3 → 1. By Proposition 5.5, the limit of s̃(H , δ) at δ = H+μ
2 is given

by (5.10). On the other hand, if r3 = 1, then c = 1 andwe are in the conditions of Remark 6.1.
So, ρ(u) ≡ 0, and from (8.2) we have s(u) = u/(2μ) in that situation. Therefore, there exists

ũ(1) := lim
r3→1+ ũ(r3) = 2μ s̃

(

H ,
H + μ

2

)

= π√
2

√

μ

H + μ
≤ π√

2
.

In particular, from (8.5), there exists ũ(r3(0)) < π .Wewill nowprove that limr→0+ τ(L(r)) =
π , and so the Lemma follows.

Let r > 0 so that L(r) ∈ ̂W, and define τ̂ (r) := λ(τ(L(r))), where λ = λ(u) is the
parameter used in the differential system (3.11), in which we recall that the polynomial
q(x) is given by (6.3). Equivalently, τ̂ (r) can be defined as the first positive value for which
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s (̂τ (r); r) + t (̂τ (r); r) = 1, where by s(λ; r), t(λ; r) we denote the solutions of (3.11) for
the parameters (r1(r), r3(r)). Now, we define the functions

S(λ; r) := s − 1

r3(r) − 1
= s − 1

lr
, T (λ; r) := t

r1(r)
= − t

r
. (8.6)

In this way, τ̂ (r) corresponds with the first value λ > 0 for which

F(λ; r) := l S(λ; r) − T (λ; r) (8.7)

vanishes. From (3.11) and (6.3), we deduce that S, T are solutions of the differential system
⎧

⎨

⎩

S′(λ)2 = S(1 − S)(1 + rlS)(1 + r + rlS)2, (S ≥ 0),

T ′(λ)2 = rT (1 − T )2(1 + rT )(1 + lr + rT ), (T ≥ 0),
(8.8)

with the initial conditions

S(0; r) = T (0; r) = 0. (8.9)

More specifically, since r > 0, we have that s(λ; r) and t(λ; r) are not constant, see the
comments at the end of Sect. 6. Thus, from (8.6), we see that S(λ; r), T (λ; r) are the unique
non-constants solutions to (8.8)-(8.9). By differentiation of (8.8) and using (8.9), we obtain
2S′′(0; r) = (1 + r) > 0 and 2T ′′(0; r) = r(1 + lr) > 0.

The system (8.8) depends analytically on the parameter r , and for the limit r = 0 case
we can solve it directly. By the previous observations, we deduce that S(λ; r) and T (λ; r)
converge analytically as r → 0 to

S(λ; 0) = 1 − cos(λ)

2
, T (λ; 0) ≡ 0. (8.10)

Let us prove that limr→0+ τ̂ (r) = 2π . First, we show that lim sup τ̂ (r) ≤ 2π . Let λ1(r) :=
λ(u1(L(r))), see Proposition 3.3 for the definition of u1. Then, by Proposition 3.3 and (3.10),
(8.6), λ1(r) is the first positive value for which S(λ; r) vanishes. According to (8.8), this
quantity is equal to

λ1(r) = 2
∫ 1

0

dS
√

S(1 − S)(lr S + 1)(lr S + 1 + r)2
,

which depends analytically on r , and λ1(0) = 2π . Notice, on the other hand, that τ̂ (r) ≤
λ1(r) for all r > 0, according to Proposition 3.4. Consequently, lim sup τ̂ (r) ≤ 2π .

Wewill nowprove that δ := lim infr→0+ τ̂ (r) ≥ 2π . First, note that F(0; r) = F ′(0; r) =
0 by (8.8), (8.9).

By definition of δ and F(λ; r), there exists a sequence (λn, rn) such that λn → δ, rn → 0
and F(λn; rn) = 0 for all n, with F(λ; rn) 	= 0 for all λ ∈ (0, λn). By continuity of F ,
it follows that F(δ; 0) = 0. By (8.10) and (8.7), we see that δ must be either 0 or 2π
(recall that lim sup τ̂ (r) ≤ 2π ). Assume by contradiction that δ = 0. Since F(0; rn) =
F ′(0; rn) = F(λn; rn) = 0 for all rn , we deduce the existence of a sequence λ∗

n ∈ (0, λn)
such that F ′′(λ∗

n; rn) = 0 for all n. Since δ = 0 by hypothesis, we have λ∗
n → 0, and so

F ′′(0; 0) = 0 by continuity. However, a direct computation using (8.7), (8.10) shows that
F ′′(0; 0) = l

2 > 0, a contradiction. In conclusion, lim infr→0+ τ̂ (r) = limr→0+ τ̂ (r) = 2π .
Finally, to compute limr→0+ τ(L(r)),we justmakeuseof the changeof variablesu = u(λ)

given by (3.13) and the fact that s(λ; r), t(λ; r) converge uniformly to the constants 1 and 0
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respectively; see the comments at the end of Sect. 6. This yields

lim
r→0+ τ(L(r)) = lim

r→0+

∫ τ̂ (r)

0

s(λ; r) − t(λ; r)
2

dλ =
∫ τ̂ (0)

0

1 − 0

2
dλ = π.

This completes the proof of Lemma 8.5. �

9 Free boundaryminimal and CMC annuli

In this section we will prove Theorems 1.1 and 1.2. The general idea behind these results
is to study the rational level sets of the Period map (see Definition 4.8), �(a, b, c) =
�0 ∈ (−1, 0) ∩ Q. Suppose that for some parameters (a, b, c) in this level set we have
that h(a, b, c) = 0 (see Definition 4.13). By Theorem 4.12, the associated surface �0 is an
annulus, and by Corollary 4.14,�0 intersects orthogonally a certain totally umbilic sphereQ
of M

3(ε). Under certain conditions, we will be able to prove that�0 is actually contained in
the geodesic ballBwhose boundary isQ, that is,�0 is free boundary inB. The embeddedness
of �0 will also be studied.

The results obtained in Sect. 8 can be applied to find roots of h(a, b, c)when a = 1. In that
case, the corresponding compact annuli �0(1, b, c, u0) are pieces of nodoids or catenoids:
see Sect. 5. Our goal now is to find new zeros of h with a > 1, which will correspond with
non-rotational CMC annuli.

9.1 Proof of Theorem 1.1

The proof will consist of two steps. On the first one, we will show that for any H ≥ 0,
ε = ±1 such that H2 + ε > 0, there are countably many values �0 ∈ (−1, 0) ∩ Q such
that the function h(a, b, c) vanishes along an analytic curve C(η) ⊂ W on the level set given
by �(a, b, c) = �0. Then, on the second step, we will show that the family of surfaces
�0 = �0(η) associated to the curve C(η) constitute examples of free boundary H -annuli in
M

3(ε).
For the first step, we distinguish two cases, depending on the sign of the quantity 8H2−ε.
First step, case 8H2 − ε > 0. Let J be the interval

J =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

− 1√
3
, 0

)

, if ε = −1,

(

− 1√
3
,−

√

μ−H
2μ

)

, if ε = 1,

(9.1)

where we recall that μ := √
H2 + ε. Note that J is indeed an interval when ε = 1, due to

8H2 − ε > 0. Given some �0 ∈ J ∩ Q, consider the level set of the Period map given by
�(a, b, c) = �0. On the plane {a = 1}, this level set can be expressed as (7.8) in terms of
(r1, r3) given by (6.4), (6.5), i.e., as the line

ϒ(r) := (r1(r), r3(r)) =
(

−r ,
�2

0

1 − �2
0

r + H + μ

2μ(1 − �2
0)

)

. (9.2)

We now show that a segment of ϒ(r) satisfies the properties listed in the statement of
Theorem 8.4.
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Fig. 3 Level linesϒ of the period map on the parameter domain (r1, r3) for the cases ε = 1 (left) and ε = −1
(right). If 8H2 − ε > 0, there are infinitely many level lines for which a segment ofϒ satisfies the hypotheses
of Theorem 8.4

First, it is clear from (9.2) and �0 ∈ J that ϒ(0) = (0, r3(0)) ∈ ̂W, i.e. the second
condition of Theorem 8.4 holds. Also, ϒ(r) ∈ ̂W for r ≥ 0 small enough; see Fig. 3.

On the other hand, ϒ(r) /∈ ̂W for r big enough; indeed, consider the inequality for r3 in
(8.1). It is clear that r3(r) > −ε

H+μ
2μ for any r ≥ 0, sinceϒ(r) has negative slope. However,

we can prove that

r3(r) < G(r) := (r1(r) − 1)2

1 − 2r1(r)

for r large enough. This follows directly from�2
0 < 1/3 (since�0 ∈ J) and the inequalities

0 < r ′
3(r) = �2

0

1 − �2
0

<
1

2
= lim

r→∞G′(r).

As a consequence, there is a first value r̃ > 0 such that ϒ(̃r) /∈ ̂W, for which the equality in
(8.4) is satisfied. Thus, the segment ϒ(r) : [0, r̃ ] → R

2 is in the conditions of Theorem 8.4,
after the linear change r �→ r /̃r .

Thus, by Theorem 8.4, there exists r∗ > 0 such that ϒ(r∗) ∈ ̂W, with h(ϒ(r∗)) = 0 and
so that h(ϒ(r)) changes sign at r∗. Now, let (1, b∗, c∗) be the point related to (r1(r∗), r3(r∗))
by the change (6.4), (6.5). Consider the function

g(a, b) := h(a, b, c�0(a, b)), (9.3)

defined on a neighborhood of (1, b∗) ∈ R
2, where c�0(a, b) is the analytic map defined

in Remark 7.2, which parametrizes the level set �(a, b, c) = �0 in a neighbourhood of
(1, b∗, c∗) ∈ R

3. We know by our previous discussion that g(1, b∗) = 0 and, moreover, that
g changes sign at b∗, meaning that g(1, b) < 0 (resp. g(1, b) > 0) for b ∈ (b∗ − ε, b∗)
(resp. b ∈ (b∗, b∗ + ε)), for ε > 0 small enough. Since g(a, b) is analytic, there exists a
real analytic curve ζ(η) := (a(η), b(η)), η ∈ [0, δ) for δ small, satisfying g(ζ(η)) ≡ 0 and
ζ(0) = (1, b∗). This is a consequence of the classical fact that if a non-constant real analytic
function f : U ⊂ R

2 → R has a non-isolated zero at p0 ∈ U , then the set { f = 0} is,
around p0, the union of a finite number of real analytic arcs meeting at p0; see e.g. [19, Thm.
5.2.3]. Moreover, as b �→ g(1, b) changes sign, then a(η) > 1 for all η > 0. We define then
the curve

C(η) := (a(η), b(η), c�0(ζ(η))), (9.4)
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Fig. 4 The level line ϒ and the
line L meet at a point ϒ(r) ∈ ̂W

which by definition is contained in the level set �(a, b, c) = �0, and satisfies h(C(μ)) ≡ 0.
Observe that we obtain a different curve C(η) for every �0 in the countable set J ∩ Q. This
concludes the proof of the first step in the case 8H2 − ε > 0.

First step, case 8H2 − ε ≤ 0. This implies in particular that ε = 1, and so μ > H . Now,
take any l > 0 such that l < μ−H

μ+H , and consider the line L(r) := (−r , lr + 1). Also, for any

�0 ∈
(

−
√

μ − H

2μ
,−

√

l

1 + l

)

(9.5)

we consider the level line of the period map ϒ = ϒ(r;�0) in (9.2). The conditions on �0

in (9.5) imply that ϒ and L meet at a point L(r) = ϒ(r), r = r(�0) > 0; see Fig. 4. The

value L(r) depends analytically on�0, and for the limit case�0 = −
√

μ−H
2μ it holds r = 0,

that is, L and ϒ meet at (r1, r3) = (0, 1).
Note also that, by Lemma 8.5, the inequality τ(L(r)) > ũ(lr + 1) holds for all r > 0

sufficiently close to zero. In particular, there exists a smaller interval

J :=
(

−
√

μ − H

2μ
, ˜�

)

such that, for all �0 ∈ J:

(1) The point L(r) belongs to ̂W, and so τ(L(r)) is well defined.
(2) The inequality τ(L(r)) > ũ(lr + 1) is satisfied.

We now fix some �0 ∈ J ∩ Q and define τ(r) := τ(ϒ(r)), h(r) := h(ϒ(r)). We will
prove that there exists a value r∗ ∈ (0, r) where τ(r∗) = ũ(r3(r∗)), with r3(r) as in (9.2),
and so h(r∗) = 0.

By hypothesis, we know that ϒ(r) = L(r) ∈ ̂W, and in fact τ(r) > ũ(r3(r)), by item
(2) above. Since r3(r) is strictly increasing with r3(0) < 1 and r3(r) > 1, we can define
rb := r−1

3 (1) ∈ (0, r). Moreover, ϒ(rb) = (−rb, 1) does not lie in ̂W, since the inequality
for r3 in (8.1) does not hold at that point.

Consequently, there exists a certain interval (rc, r ] � (rb, r ] such that ϒ(r) ∈ ̂W for all
r ∈ (rc, r ], and ϒ(rc) ∈ ∂ ̂W; see Fig. 4. By a similar argument to the one in the proof of
Theorem 8.4, it is possible to check that limr→r+

c
τ(r) = 0. On the other hand, ũ(r3(r)) is a
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positive function defined at r = rc, so

lim
r→r+

c

(τ (r) − ũ(r3(r))) = −ũ(r3(rc)) < 0.

In particular, there exists some r∗ ∈ (rc, r)where τ(r∗) = ũ(r3(r∗)). In fact, since ũ and τ are
analytic and they do not coincide, we can take r∗ so that the function f (r) := τ(r)− ũ(u3(r))
changes sign at r = r∗, being negative (resp. positive) for any r < r∗ (resp. r > r∗) close
enough to r∗.

From the definition of r∗ and Proposition 8.3 it follows that h(r∗) = 0. In fact, since f (r)
changes sign at r∗, arguing as in the last part of the proof of Theorem 8.4, we deduce that h(r)
also changes sign. Now, let (1, b∗, c∗) ∈ O− be the point associated with (r1(r∗), r3(r∗)) by
(6.4), (6.5). We deduce that the analytic function b �→ g(1, b), with g(a, b) given by (9.3),
changes sign at b = b∗. Consequently, as explained in the proof of the case 8H2 − ε > 0
above, it follows from the local description of the zero set of real analytic functions ([19,
Theorem5.2.3]) that there exists an analytic curve ζ(η) = (a(η), b(η)) such that g(ζ(η)) ≡ 0,
ζ(0) = (1, b∗) and a(η) > 1 for all η > 0. We deduce that the curve C(η) defined as in (9.4),
contained in the level set �(a, b, c) = �0, satisfies h(C(μ)) ≡ 0. We remark that we obtain
(at least) one such curve for every �0 in the countable set J ∩ Q. This completes the first
step of the proof.

To sum up: so far, we have proved that for any values H ≥ 0, ε = ±1 with H2 + ε > 0,
there is a countable number of curves Cq := Cq(η) : [0, δ(q)) → W ∩ O−, each of them
contained in the level set of the Period map �(a, b, c) = q ∈ J ∩ Q ⊂ (−1, 0) ∩ Q, with
the property that h vanishes identically along Cq(η). Let us now define Aq = Aq(η) as
the compact annulus �0 = �0(a, b, c, τ (a, b, c)) of Theorem 4.12 associated to the point
(a, b, c) = Cq(η). Our goal is to prove that Aq(η) satisfies each of the properties listed in
Theorem 1.1.

Items (2) and (5) of Theorem1.1 are a direct consequence of Theorem4.12 and the fact that
a(η) > 1 for all η > 0. Similarly, item (3) follows from Proposition 4.10 and item (4) from
Proposition6.3 andRemark8.2. Item (6) holds by construction, as any surface� = �(a, b, c)
has constant mean curvature H and is foliated by spherical curvature lines. Let us now prove
item (1). Since h vanishes along the curve Cq(η), we deduce by Corollary 4.14 that the annuli
Aq(η) meet orthogonally a certain totally umbilic 2-sphere Q = Q(q, η) of M

3(ε) along
their boundary. Let us denote by B(q, η) the geodesic ball of M

3(ε) whose boundary is the
sphereQ(q, η); in the case ε = 1 there are two such balls, and we choose the one for which
ψ(0, 0) ∈ B(q, η). For η = 0, we know that τ(Cq(0)) = ũ(Cq(0)), so the compact nodoid or
catenoid Aq(0) is one of the examples constructed in item 1 of Proposition 5.5. In particular,
this rotational annulus is contained in B(q, 0). By real analyticity, we conclude that the
(non-rotational) annuli Aq(η), η ∈ (0, δ0(q)), will also be contained in their respective balls
B(q, η), at least for some δ0(q) > 0 small enough. This completes the proof of Theorem 1.1.

9.2 Proof of Theorem 1.2

The key idea is to study the level sets of the form �(a, b, c) = −1/n, where n ∈ N, n ≥ 2.
Suppose that either ε = −1 or H ≥ 1√

3
. Then, the inequality

μ − H

2μ
≤ 1

n2
(9.6)
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is satisfied for some n ≥ 2. More specifically, if ε = 1 and H ≥ 1√
3
, then it holds for a finite

set of natural numbers, while if ε = −1 it is true for all n. We will split our analysis into two
cases, depending on whether the inequality (9.6) is strict or not.

Suppose first that (9.6) is strict for some n ≥ 2. This means that we are in the case
8H2 − ε > 0 detailed in the proof of Theorem 1.1, and that qn := −1/n lies in the open
interval J defined in (9.1). By the proof of Theorem 1.1, we deduce that there is a curve
Cqn (η) : [0, δ(n)) → O−, contained in the level set�(a, b, c) = qn , such that the associated
annuliAqn (η) are free boundary in a geodesic ballB(qn, η) ofM

3(ε). It just remains to check
the embeddedness of these examples, which will be studied later.

Suppose now that (9.6) holds for the equality case. In that situation, we cannot use Theo-
rem 1.1 directly. By the equality in (9.6), and using (9.2), the level curve�(1, b, c) = qn :=
−1/n is expressed in terms of (r1, r3) as

ϒ(r) := (r1(r), r3(r)) =
(

−r ,
r

n2 − 1
+ 1

)

.

This is the equation of a line L(r) := ϒ(r) that is in the conditions of Lemma 8.5, so for any
r > 0 small enough, we have ϒ(r) ∈ ̂W and τ(ϒ(r)) > ũ(r3(r)). However, it is possible
to check that ϒ(r) /∈ ̂W for r > 0 large enough, by a similar argument to the first step of
the proof of Theorem 1.1. Also following the proof of that first step, we can deduce that
there exists a point r∗ where ũ(r3(r∗)) = τ(ϒ(r∗)), and so h(ϒ(r∗)) = 0. In fact, we can
show that there is a real analytic curve Cn(η) such that h vanishes identically along Cn , and
from this we obtain a 1-parameter family of free boundary annuli An(η) that satisfies the
properties stated in Theorem 1.1.

In conclusion, for any n ≥ 2 such that (9.6) holds, there exists a 1-parameter family
of immersed, free boundary annuli Aqn (η). It just remains to prove that the annuli Aqn (η),
η ∈ [0, δ(n)), are embedded for some δ(n) > 0 small enough.

For every η ∈ [0, δ(n)), let us denote by ψη(u, v) our usual parametrization by curvature
lines of the compact annulus Aqn (η). We know by Corollary 4.11 that ψη(u, v) = ψη(u, v+
2nσ), where σ depends analytically on η. Identifying (u, v) ∼ (u, v + 2nσ) as usual (see
Sect. 4.5), we can view ψη as a parametrization ψη : [−τ(η), τ (η)] × S

1 → Aqn (η) of
Aqn (η). Observe that for η = 0, the annulus Aqn (0) is an embedding, since it is a trivial
covering of a critical catenoid or nodoid N embedded in M

3(ε); see Remark 8.2. Thus, ψ0

is injective.
Now, by the real analyticity of the family of compact annuli Aqn (η), we deduce that for

all η sufficiently close to zero, the parametrizations ψη are also injective, and so the annuli
Aqn (η) are embedded. This completes the proof.

10 Embedded capillary minimal and CMC annuli in S
3

In Theorem 1.2, we constructed embedded examples of non-rotational, free boundary CMC
annuli in geodesic balls of H

3 (for H > 1) and S
3 (for H ≥ 1/

√
3). In this section we will

show that if we relax the free boundary condition to capillarity, then there exist embedded
non-rotational capillary CMC annuli in S

3 for any H ≥ 0.
Recall that a compact surface � in M

3(ε) is called a capillary surface in a geodesic ball
B ⊂ M

3(ε) if � ⊂ B intersects ∂B at a constant angle along ∂�. We prove next:
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Theorem 10.1 For any H ≥ 0 and any n ≥ 2 there exists a real analytic 2-parameter family
of embedded capillary annuli An(a, η) with constant mean curvature H in a geodesic ball
B = B(n, a, η) of S

3, with a prismatic symmetry group of order 4n.

The rough idea behind this result is as follows: consider the level set of the period
�(a, b, c) = −1/n, and suppose that for some (a, b, c) ∈ O− with a > 1 in this level
set there exists a value u∗ > 0 such that m3(u∗) = 0, that is, the third coordinate of the
center function vanishes. According to items (2), (4) and (5) of Theorem 4.12, the compact
annulus �0(a, b, c, u∗) intersects along ∂�0 at a constant angle a totally umbilic sphere Q
of S

3, and�0 has a prismatic symmetry group of order 4n. Consequently, it suffices to check
that the annuli �0 are embedded and contained in a geodesic ball B of S

3 whose boundary
is Q.

We will make use of the following lemma:

Lemma 10.2 Suppose that for some (a0, b0, c0) ∈ O− there exists u0 > 0 such that
m3(u0) = 0. Then, there exists a neighbourhood V of (a0, b0, c0) and an analytic func-
tion u∗ = u∗(a, b, c) : V∩O− → R such that u∗(a0, b0, c0) = u0 and m3(u∗(a, b, c)) ≡ 0.

Proof The Lemma is a direct consequence of the implicit function theorem if we prove that
m′

3(u0) 	= 0. Assume by contradiction that m′
3(u0) = 0. Since m3(u0) = 0, we deduce

that the function m̃3(u) in (4.7) satisfies m̃3(u0) = m̃′
3(u0) = 0, due to (4.8). Moreover,

m̃3 satisfies the differential Eq. (4.9), and so we conclude that m̃3(u), and hence, m3(u),
vanish identically. This is a contradiction, as (2.10) and the initial conditions (4.11) imply
that m3(0) = 1. �

10.1 Proof of Theorem 10.1

Let n ≥ 2 and ε = 1.We will distinguish two cases, depending on whether or not (9.6) holds.
Assume first that (9.6) holds, and consider the level set �(a, b, c) = −1/n =: �0.

Following the proof of Theorem 1.2 in Sect. 9.2, we know that there is a point (1, b∗, c∗) in
that level set such that h(1, b∗, c∗) = m3(τ (1, b∗, c∗)) = 0. By applying Lemma 10.2 with
u0 = τ(1, b∗, c∗), we deduce the existence of a function u∗ defined on a neighbourhood
V of (1, b∗, c∗) such that m3(u∗(a, b, c)) vanishes identically. Now, consider the analytic
function

(a, b) �→ u∗(a, b) := u∗(a, b, c�0(a, b)),

where c�0(a, b) is the analytic map in Remark 7.2. Let An(a, b) ≡ ψ([−u∗, u∗] × S
1) be

the compact annulus associated to the parameters (a, b, c�0(a, b)), where we identify the
points (u, v) ∼ (u, v+2nσ) as in Remark 4.11. By construction, any of these annuli meets a
totally umbilic sphereQ(n, a, b) of S

3 with constant angle along its boundary ∂An(a, b), so
in order to prove Theorem 10.1 we just need to check that the annuli An(a, b) are embedded
and contained in a geodesic ball of S

3 bounded by their corresponding sphereQ. Notice that
in Theorem 1.2 we already proved this for the annulus An(1, b∗), so by real analyticity, there
is an open neighbourhoodG ⊂ R

2 of (1, b∗) such that the annuliAn(a, b) are also embedded
and contained in a geodesic ball B(n, a, b) of S

3 bounded by Q(n, a, b) for all (a, b) ∈ G.
We also recall that there are two such geodesic balls in S

3; we make the same choice for it
that we did when proving Theorem 1.2.

Take next some n ∈ N, n ≥ 2, such that (9.6) does not hold, and consider the level curve
�(1, b, c) = �0 := −1/n. In the (r1, r3)-coordinates, this curve is given by ϒ(r) in (9.2),
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and so it meets the horizontal line r3 = 1 at a certain pointϒ(rα) = (−rα, 1), where rα > 0.
Let us see that (1, bα, cα) ≡ ϒ(rα) is in the conditions of Lemma 10.2.

Let � denote the rotational H -surface associated to (r1, r3) = ϒ(rα) ≡ (1, bα, cα); note
that cα = 1 since r3 = 1, see (6.5). Thus, by Remark 6.1, � covers a flat CMC torus in
S
3. Since � = −1/n, we can consider for any u0 > 0 the compact immersed H -annulus

�0 = �0(1, bα, 1, u0) as defined in Sect. 4, after the identification (u, v) ∼ (u, v + 2nσ).
Under this identification, the v-curves ψ(u0, v) : S

1 → S
3 are injective parametrizations of

circles.
We find next an explicit parametrization for the profile curve ψ(u, 0) of �0, using the

expresion of the flat H -torus in S
3 given in Remark 5.6 in terms of the parameters (s, θ).

To start, note that it holds eρ(u) ≡ 1 for �0 due to c = 1, and so the reparametrizacion
u = u(s) in (8.2) is just u = 2μs. In addition, the rotation axis of the flat torus in Remark 5.6
is S

3 ∩ {x1 = x2 = 0}, which agrees with the geodesic of S
3 that contains the centers m(u)

of �; see Remark 6.4. Thus, by (5.11), we see that the profile curve of � is

ψ(u, 0) =
(√

μ + H

2μ
, 0,

√

μ − H

2μ
sin

(√

μ + H

2μ
u

)

,

√

μ − H

2μ
cos

(√

μ + H

2μ
u

))

.

(10.1)

Let u0 ∈ (0, u), where u :=
√

2μ
μ+H π . From the expression of the profile curve ψ(u, 0)

and the previous discussion, it follows that the parametrization ψ : [−u0, u0] × S
1 → S

3 of
�0 is injective, where we identify (u, v) ∼ (u, v+2nσ) as usual. Moreover,�0 is contained
in the ball B[e4, x4(u0)].

We now claim that there exists some u0 ∈ (0, u) such that m3(u0) = 0. To prove this,
note first that f (u) := 〈m(u), ψu(u, 0)〉 never vanishes; indeed, by (2.10), it holds f (u) =
eρ
2μ |̂N | sin θ . But now, we have |̂N | > 0 by construction, and sin θ cannot be zero by (2.9),
as β is bounded since the functions (s, t) in (3.11) are; see also (6.3). Therefore, f (u) does
not change sign. On the other hand, observe that, by (10.1),

f (0) = 〈m(0), ψu(0, 0)〉 = m3(0)

2μ
,

f (u) = 〈m(u), ψu(u, 0)〉 = −m3(u)

2μ
.

Since the sign of f (u) is constant in (0, u), we deduce that there is some u0 ∈ (0, u) for
which m3(u0) = 0. So, by Lemma 10.2, there exists a function u∗(a, b, c) defined on a
neighbourhood of (1, bα, 1), with u∗(1, bα, 1) = u0 and m3(u∗(a, b, c)) ≡ 0.

We consider the analytic function u∗(a, c) := u∗(a, b�0(a, c), c) and define for any (a, c)
in a neighborhood of (1, 1) the compact H -annuli

An(a, c) := �0(a, b
�0(a, c), c, u∗(a, c)),

where b�0(a, c) is the analytic map in Remark 7.2. By construction, An(a, c)meets a totally
umbilic sphere Q(n, a, c) with constant angle along ∂An(a, c), according to Theorem 4.12.
The annulus An(1, 1) is equal to �0(1, bα, 1, u0), which by our previous discussion, is
embedded and contained in a geodesic ball of S

3 bounded byQ(n, 1, 1). Consequently, there
is a neighbourhood of (1, 1) such that the annuli An(a, c) are embedded capillary CMC
annuli in a geodesic ball of S

3 bounded byQ(n, a, c). This completes the proof of Theorem
10.1.
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A Appendix: Proof of Proposition 5.5

In this Appendix we will prove separately the three items of Proposition 5.5.

A.1 Proof of item 1 of Proposition 5.5

By the symmetries of S0, if this annulus were free boundary, it should necessarily be in the
ball B[e4, εx4(̃s)]. In such case, S0 and S[e4, εx4(̃s)] would meet orthogonally along ∂S0.
This happens if and only if the geodesic �̃s passes through the point e4, i.e., the center of the
ball. As we will see in Appendix A.3, this property holds for the first positive root s̃ of the
function

F(s) := x3(s)x
′(s) − x ′

3(s)x(s), (A.1)

where x, x3 are defined in (5.9). Consequently, our goal will be to show the existence of such
s̃ = s̃(H , δ). We will deal with several cases depending on the values ε ∈ {−1, 1}, H ≥ 0,
δ > 0, but the general strategy is to prove that F(0) < 0 and that there is some s0 > 0 with
F(s0) > 0.

We first consider the case where ε = 1 and δ <
H+μ
2 , or ε = −1 and H > 1. Then,

we showed in Sect. 5 that the function x(s) in (5.3) takes values on the interval [xm, xM ],
where xm < xM are the two positive roots of h(x); we recall here our assumption that
x(0) = xm > 0. In this situation, we define s2 > 0 as the first positive value for which
x(s2) = xM . Consequently, x(s) will be strictly increasing for all s ∈ [0, s2]. We remark
that if x ≥ 0, then h(x) ≥ 0 if and only if x ∈ [xm, xM ]. Additionally, if ε = −1, H ≤ 1,
then x(s) is unbounded, taking values on [xm,∞), where xm is the unique positive root of
h(x). The function x(s) will be strictly increasing for all s ≥ 0. In this case, if x ≥ 0, then
h(x) ≥ 0 if and only if x ≥ xm .

Let us now show that F(0) < 0. By construction, x3(0) = 0, x(0) = xm > 0 and
x ′(0) = 0, so it remains to prove that x ′

3(0) > 0. By (5.1), (5.5) for ε = 1 and (5.2), (5.7) for
ε = −1, this is equivalent to the fact that δ − Hx2m > 0, that is, x0 := √

δ/H > xm . Assume
by contradiction that x0 ≤ xm . This implies that h(x0) ≤ 0, as h(x) ≤ 0 in [0, xm]. Now,
a direct computation shows that h(x0) = x20 − εx40 . This quantity is clearly positive when
ε = −1 and also when ε = 1, since x0 ≤ xm < 1. We reach a contradiction, what proves
that F(0) < 0.

We are going to show next that there is some s0 > 0 such that F(s0) > 0, and so the
existence of s̃ follows.We split our analysis into five different scenarios: the first three concern
the spherical case (ε = 1), while the fourth and fifth cover the hyperbolic case (ε = −1).

Case 1: ε = 1, δ ∈ (0, H).
In this case, x0 = √

δ/H satisfies xm < x0 < xM , so the function s �→ δ − Hx(s)2,
and consequently φ′(s), changes sign on the interval (0, s2). Let s1 ∈ (0, s2) be the value
for which φ′(s1) = 0, so that φ(s) is increasing on [0, s1]. If φ(s1) > π/2, then we define
s0 < s1 as the value for which φ(s0) = π/2. Otherwise, let s0 = s1. In any of the cases, we
see that x(s0), x ′(s0) > 0, x ′

3(s0) < 0 and x3(s0) ≥ 0, so necessarily F(s0) > 0. We note
that the function x4(s) defined in (5.9) is strictly decreasing and positive for all s ∈ [0, s0).

Case 2: ε = 1, δ = H .
A direct computation using (5.3) shows that xM = 1. This implies that x3(0) = x3(s2) =

0, and since x ′
3(0) > 0, there exists a first s0 ∈ (0, s2) such that x ′

3(s0) = 0. x3(s) is
increasing on [0, s0], so in particular x3(s0) > 0, and hence F(s0) > 0. Note also that the
function φ(s), which must be increasing on [0, s0], satisfies φ(s0) < π

2 : otherwise, there
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Fig. 5 Integration path Cn for
f (z)

would be an intermediate value s such that φ(s) = π
2 , and so x ′

3(s) < 0 at that point,
reaching a contradiction. A consequence of this fact is that x4(s) is decreasing and positive
for all s ∈ [0, s0).

Case 3: ε = 1, δ > H .
In this case, δ− Hx2 > H(1− x2) ≥ 0, so φ(s) is increasing for all s ∈ R. If we manage

to prove that φ(s2) > π/2, then there exists a unique s0 ∈ (0, s2) such that φ(s0) = π/2. In
particular, x3(s0) > 0, x ′

3(s0) < 0, and so F(s0) > 0. Additionally, we deduce that x4(s) is
decreasing and positive for all s ∈ [0, s0).

Consider the change of variables w(s) = x(s)2 on the integral that describes φ(s2).
Defining wm = w(0) = x2m , wM = w(s2) = x2M , we get using (5.3) that

φ(s2) =
∫ wM

wm

δ − Hw

2
√
w(1 − w)

√

w − w2 − (Hw − δ)2
dw.

We analyze this integral via residues. Note that

z − z2 − (Hz − δ)2 = −(H2 + 1)(z − wm)(z − wM ) (A.2)

by definition of wm, wM , and consider from there the meromorphic function

f (z) := i
δ − Hz

2
√
H2 + 1(1 − z)

√
z
√
z − wm

√
z − wM

defined on C \ ((−∞, 0] ∪ [wm, wM ]) and with a pole at z = 1. We will integrate along
a sequence of closed paths Cn shown in Fig. 5. Each such path Cn can be divided into five
pieces: a circle arc C (1)

n of radius n, a curve C (2)
n enclosing the segment [wm, wM ], another

curve C (3)
n around the interval (−∞, 0] with the same boundary points as C (1)

n , and a pair
of segments S(1)

n , S(2)
n which connect C (2)

n , C (3)
n . The segments S(1)

n , S(2)
n coincide but have

opposite orientations. We take C (2)
n and C (3)

n so that they converge to the intervals [wm, wM ]
and (−∞, 0] respectively as n grows to infinity.

By the residue theorem, and using (A.2),
∫

Cn

f (z)dz = 2π i Res( f , 1) = π.
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A careful analysis of f (z) shows that

lim
n→∞

∫

C(1)
n

f (z)dz = 0,

lim
n→∞

∫

C(2)
n

f (z)dz = 2
∫ wM

wm

i
δ − Hw

2i
√
H2 + 1(1 − w)

√
w

√
w − wm

√
wM − w

dw = 2φ(s2),

lim
n→∞

∫

C(3)
n

f (z)dz = 2
∫ 0

−∞
i

δ − Hw

2i3
√
H2 + 1(1 − w)

√−w
√
wm − w

√
wM − w

dw = −M,

for some positive constant M > 0. On the other hand, since the segments S(1)
n and S(2)

n have
opposite orientations, we deduce that

∫

S(1)n

f (z)dz = −
∫

S(2)n

f (z)dz,

and so we end up with

π = 2φ(s2) − M < 2φ(s2),

as we wanted to prove. From this, the existence of s̃ is immediate. It is also possible to deduce
that x4(s) is decreasing and positive for all s ∈ [0, s0).

Case 4: ε = −1, H > 0.
In this case, we define s0 as the first value for which x(s0) = x0, where x0 = √

δ/H . Let
us prove that s0 exists. First, if H > 1, then x(s) oscillates between xm and xM , and the fact
that h(x0) > 0 implies that x0 ∈ (xm, xM ), and so s0 exists indeed. In the case H ≤ 1, it holds
x0 ≥ xm . Since for s ≥ 0 the function x(s) is increasing and satisfies lims→∞ x(s) = ∞,
we see again that s0 exists. Now, notice that φ(s) is an increasing function on the interval
[0, s0], and φ′(s0) = 0. In particular, φ(s0) > 0. A direct computation using (5.2) shows
that

F(s0) = x ′(s0)
sinh(φ(s0))
√

x(s0)2 + 1
> 0,

as we wanted to prove. It is also immediate to prove that εx4(s) = −x4(s) is decreasing for
all s ∈ [0, s0].

Case 5: ε = −1, H = 0.
In this case, φ(s) is an increasing function satisfying lims→∞ φ(s) =: φM < ∞ (the

integral in (5.7) is convergent). On the other hand, x(s) increasing and unbounded, and
satisfies (5.3). We deduce that

lim
s→∞ F(s) = lim

s→∞

(

x ′ sinh φ√
x2 + 1

− δ
coshφ√
x2 + 1

)

= sinh(φM ) > 0,

In particular, it follows that F(s) vanishes for some s̃ > 0, as we wanted to prove. It also
follows that −x4(s) is decreasing for all s ∈ [0, s̃].

In any of the considered cases, we deduce the existence of a first value s̃ > 0 such that
F (̃s) = 0. As commented before, this means that S0 meets orthogonally the boundary sphere
S[e4, εx4(̃s)] (see Appendix A.3).

Moreover, we also find that x(s), x ′(s), x3(s) > 0, F(s) < 0 for all s ∈ (0, s̃). In addition,
x ′(̃s) > 0, which shows by (5.6) that the principal curvature κs(s) associated to the profile
curve must be strictly decreasing on [0, s̃+ε) for some ε > 0. Another consequence of these
inequalities is that x ′

3(s) > 0 on (0, s̃). Since the function x3(s) is odd, we obtain that x3(s)
is injective on [−̃s, s̃]. As a result, the annulus S0 must be embedded.
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Finally, we will show that S0 is free boundary in B. It suffices to check that S0 is contained
in that ball. This is a consequence of the already proven monotonicity of εx4(s), since

〈e4, ψ(s, θ)〉 = εx4(s) ≥ εx4(̃s),

for all s ∈ [0, s̃], which shows that S0 ⊂ B[e4, εx4(̃s)].

A.2 Proof of item 2 of Proposition 5.5

We will first prove the analiticity of s̃. This fact is a consequence of the implicit function
theorem applied on the function F = F(s; H , δ) defined in (A.1). We remark that this
function not only depends analytically on s, but also on the parameters H , δ which define the
functions x and x3. If we differentiate F with respect to s at s = s̃, we obtain using F (̃s) = 0
that

F ′ = −xx ′
(

x ′′
3

x ′ − x ′
3x

′′

x ′2

)

= −xx ′
(

x ′
3

x ′

)′
. (A.3)

Since x (̃s), x ′(̃s) > 0, we just need to check that
(

x ′
3
x ′

)′ 	= 0 at s̃ to deduce analyticity. If

ε = 1, then by (5.3), (5.5) and the fact that F (̃s) = 0, we deduce after a long but direct
computation that

(

x ′
3

x ′

)′ ∣
∣

∣

s=̃s
= −cos(φ)

√
1 − x2(δ + Hx2)

x2x ′2 < 0, (A.4)

where the final quantity is negative since δ > 0, H ≥ 0 and 0 < φ(̃s) < π/2 (see Appendix
A.1). Similarly, if ε = −1, then by (5.3), (5.7), we obtain at s = s̃ that

(

x ′
3

x ′

)′ ∣
∣

∣

s=̃s
= −cosh(φ)

√
x2 + 1(δ + Hx2)

x2x ′2 < 0. (A.5)

In any of the cases, we deduce that s̃ = s̃(H , δ) is analytic.
Wewill now prove that the extension of s̃(H , δ) along the boundary curve δ = H+μ

2 given
by (5.10) is continuous. We consider the function F(s; H , δ) : � → R in (A.1) defined on
the set

� :=
{

(s, H , δ) : s ∈ R, H ≥ 0, 0 < δ ≤ H + μ

2

}

.

We know that F is continuous on � since x , x3 and their derivatives with respect to s

depend continuously on the parameters H , δ. We now claim that F(s; H , δ) < 0 for all
0 ≤ s < s̃, and that s �→ F(s; H , δ) changes sign at s = s̃. This is true when δ <

H+μ
2 ,

according to the results in Appendix A.1 and the fact that F ′(̃s) > 0; see (A.3), (A.4). In
the remaining case δ = H+μ

2 , it is possible to compute explicitly the functions x(s), x3(s),
which are given by (5.11). This allows us to prove the claims on F in this situation, where

we are defining s̃
(

H ,
H+μ
2

)

as in (5.10).

We now fix some H0 ≥ 0, and denoteμ0 :=
√

H2
0 + 1.We need to prove that there exists

lim
(H ,δ)→

(

H0,
H0+μ0

2

)

s̃(H , δ) = π

2
√
2μ0(H0 + μ0)

=: s̃0. (A.6)
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Now, let sI ≤ sS denote respectively the limits inferior and superior of the left hand-side
of (A.6). We need to prove that these limits coincide and are equal to s̃0. First, we will prove
that sS ≤ s̃0. By the continuity of F , it follows that F(s; H0,

H0+μ0
2 ) ≤ 0 for all s ∈ [0, sS].

Moreover, since F(s; H0,
H0+μ0

2 ) > 0 for any s > s̃0 sufficiently close to s̃0, we deduce that
sS ≤ s̃0.

Now, we will prove that s̃0 ≤ sI . Notice first that sI ≥ 0 since s̃(H , δ) is positive for
all δ <

H+μ
2 . Moreover, the fact that F (̃s(H , δ); H , δ) ≡ 0 implies by continuity that

F(sI ; H0,
H0+μ0

2 ) = 0. However, s̃0 is the first positive root of s �→ F(s; H0,
H0+μ0

2 ), so
necessarily s̃0 ≤ sI . As a consequence, sI = sS = s̃0, and (A.6) holds.

A.3 Proof of item 3 in Proposition 5.5

We will deal with the spherical and hyperbolic cases separately. Assume first that ε = 1 and
let S

2 := {x2 = 0} ∩ S
3. Consider the totally geodesic projection P : S

2 ∩ {x4 > 0} → R
2,

(x, y) = P(x, 0, x3, x4) =
(

x

x4
,
x3
x4

)

. (A.7)

The image by P of the rotation axis L is the line {x = 0}. Recall next the notation in (5.9)
and the definition of �s0 ⊂ M

2(ε) as the geodesic passing through ψ(s0, 0) with tangent
vector ψs(s0, 0). For any s0 such that x4(s0) > 0, the image of �s0 by P is exactly the
tangent line of the curve s �→ P(ψ(s, 0)) at s = s0, since P is totally geodesic. This tangent
line intersects the axis {x = 0} exactly at the point

y0(s0) = x3(s0)

x4(s0)
− x(s0)

x4(s0)

(

x3
x4

)′ |s0
(

x
x4

)′ |s0
. (A.8)

A direct computation shows that, at s0,

y0(x
′x4 − xx ′

4) = x3x
′ − xx ′

3 = F(s0). (A.9)

Observe that x4(̃s) > 0, so ψ(̃s, 0) lies in the definition domain of P . We will prove later on
that the inequality

x ′x4 − xx ′
4 > 0 (A.10)

holds at s0 = s̃, but let us assume it for now. An immediate consequence of this is that
y0 (̃s) = 0. Geometrically, this implies that the geodesic �̃s passes through P−1(0, 0) =
(0, 0, 0, 1) = e4. This proves a claim made in Appendix A.1 for the spherical case.

Since (A.10) holds at s̃, there is a neighbourhood I of this point where the inequality is
also satisfied. For all s0 ∈ I, we can express the function p̂(s0) as

p̂(s0) = P−1(0, y0(s0)).

This shows that p̂ is analytic, as y0 depends analytically on s0.Moreover, a direct computation
using (A.9) and the fact that F ′(̃s) > 0 (see (A.3), (A.4)) shows that p̂′

3(̃s) > 0. This
completes the proof of item 3 of Proposition 5.5 when ε = 1.

We will now deal with the hyperbolic case. Let ε = −1, H
2 := {x2 = 0} ∩ H

3 and
consider the totally geodesic projection P : H

2 → D given by (A.7), whereD is the unit disk
of R

2. Just as before, the image of �s0 by P is the tangent line of the curve s �→ P(ψ(s, 0))
at s = s0, which meets the axis {x = 0} at a point y0 given by (A.8). If we assume again
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that (A.10) holds at s̃, then we obtain that the geodesic �̃s passes through P−1(0, 0) = e4.
In particular, this proves the claim made in Appendix A.1 for the hyperbolic case. From this
point, the proof of item 3 of Proposition 5.5 for the hyperbolic case is entirely analogous to
spherical one, so we omit it.

It just remains to prove that (A.10) holds at s̃. Let χ := x ′ (̃s)
x (̃s) − x ′

4 (̃s)

x4 (̃s)
. Differentiating

〈ψ(s, 0), ψ(s, 0)〉 = x2 + x23 + εx24 = ε

with respect to s, we obtain at s̃ that

0 = xx ′ + x3x
′
3 + εx4x

′
4 = x ′

x

(

x2 + x23 + εx24
) − εχx24 = ε

(

x ′

x
− χx24

)

,

where we have used the fact that F (̃s) = x3x ′ − x ′
3x = 0. Since x is a positive function and

x ′(̃s) > 0 by Proposition 5.5, we deduce that χ > 0, and consequently (A.10) holds at s̃.
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