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Abstract
Cheese production involves various lactic acid bacteria (LAB) that break down lactose, milk proteins, and fats, producing 
key nutrients and influencing the cheese’s flavor. They form communities that play a crucial role in determining the cheese’s 
organoleptic properties. The composition of cheeses’ microbial communities is shaped by physicochemical factors (e.g., tem-
perature, pH, and salinity) and biological factors (i.e. microbial interactions). While starter cultures are introduced to control 
these communities, non-starter LAB represent a significant portion of the final microbial assemblage, but their interactions 
remain unclear. LAB often produce bacteriocins, antimicrobial peptides that antagonize other bacteria, but their role within 
LAB communities is not fully understood. This study aimed to assess the impact of bacteriocin production on LAB diversity 
in cheese, using Enterococcus as a model organism, a common bacteriocin producer. We analyzed enterocin production of 
enterococcal isolates by antimicrobial assays and microbial diversity differences in raw milk cheeses by two approaches: 16S 
RNA gene amplicon metagenomic sequencing for the whole microbial community and multi-locus sequence analysis (MLSA) 
for the enterococcal diversity. Our results revealed that LAB communities were dominated by lactococci, lactobacilli, and 
streptococci, with enterococci present in lower numbers. However, cheeses containing bacteriocin-producing enterococci 
exhibited higher microbial diversity. Interestingly, the highest diversity occurred at low levels of bacteriocin producers, but 
this effect was not observed within enterococcal populations. These findings suggest that bacteriocin production plays a 
key role in shaping LAB communities during cheese ripening, although further research is needed to understand its broader 
implications in other microbial ecosystems.
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Introduction

Cheese is a dynamic ecosystem that is constantly influenced 
by external and internal factors, including milk composition, 
cheese-making methods, ripening conditions, and interac-
tions among microbial communities. Multiple biochemical 
reactions and microbial interactions during the ripening pro-
cess are involved in the development of desirable product 
sensory and organoleptic characteristics, including a pleas-
ing taste and aroma and protection against spoilage, food-
borne pathogens, and negative health effects [1, 2].

The microbial communities in cheese are highly complex, 
with lactic acid bacteria (LAB) being the most abundant 
microorganisms. LAB are a heterogeneous group of bac-
teria with the ability to ferment carbohydrates into lactic 
acid via homo fermentation, or into different end products 
 (CO2, lactate and acetate, or ethanol) via heterofermentative 
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metabolism [3, 4]. This rapid acidification of fermented milk 
inhibits the growth of the majority of undesirable micro-
organisms [5], thereby extending the shelf life of the fer-
mented food. LAB also contribute to the flavor, texture, 
and nutritional value of the cheese by producing diacetyl, 
acetoin, acetaldehyde, acetic acid, and other organic acids, 
and a wide range of volatile compounds [6, 7]. Although 
the LAB naturally present in milk have traditionally been 
used in cheese-making, it is now more common to select 
fully characterized LAB strains as starter cultures to improve 
the consistency of fermentation [8]. Growth of the cheese 
microbiota is also controlled by regulating temperature, salt, 
and humidity levels [9]. Nevertheless, a secondary or adven-
titious LAB microbiota, known as non-starter lactic acid 
bacteria (NSLAB), spontaneously develops in cheese made 
with either pasteurized or raw milk, especially during ripen-
ing [4]. This microbiota does not usually contribute to acid 
production [10] but plays a major role in cheese ripening, 
influencing the final flavor and texture [11]. In particular, 
cheese made with raw milk usually has a complex micro-
biota characterized by the succession of different microor-
ganisms throughout the cheesemaking process, from starter 
LAB to NSLAB [12]. This succession of communities may 
be influenced by the ripening conditions and by dynamic 
interactions among the microorganisms [1], which can be 
beneficial, neutral, or harmful, and affect the outcome of 
cheese ripening.

Antagonism is a frequent type of interaction in dairy fer-
mentation, either through the production of acids via metab-
olism of carbohydrates, the presence of bacteriophages, or 
the production of antimicrobial peptides such as bacteriocins 
[1]. Bacteriocins are ribosomal synthesized antimicrobial 
peptides that kill or inhibit the growth of closely related 
bacteria [13, 14]. They are considered to be safe and natural 
preservatives with immense potential for utilization alone 
or alongside other techniques in food preservation [15]. 
Bacteriocin-producing strains commonly have self-protec-
tion mechanisms against their own bacteriocins, allowing 
their possible utilization as “protective cultures” in cheese 
to inhibit the growth of pathogens and spoilage microorgan-
isms [16]. The fact that a large majority of LAB produce 
bacteriocins [15, 17] contrasts with the high diversity of the 
microbial communities, raising questions about their eco-
logical function.

In studies on intertidal marine predators, Paine [18] was 
the first to propose that negative interactions favor greater 
biodiversity by preventing one species from outcompeting 
others. A similar effect has been proposed for antagonistic 
interactions mediated by bacteriocins in bacterial commu-
nities, where bacteriocins may also play an important role 
in promoting biodiversity by producing ecological units of 
producers and resistant strains [19]. These ecological units 
could arise from the dynamics between producing, resistant, 

and sensitive strains in a similar manner to the game of 
“rock-paper-scissors.” In this way, the toxin producer can kill 
the toxin-sensitive strain, the toxin-sensitive strain can out-
grow the toxin-resistant strain, and the toxin-resistant strain 
can outgrow the toxin-producing strain [20]. This model can 
be extended to multiple populations if they form units of 
mutually immune strains that act as a single entity in this 
rock-paper-scissors game against each other [21].

Given this background, the objective of this study was to 
examine the effect of bacteriocin producer populations on 
community diversity. To this end, we used Enterococcus as a 
model organism because there are frequent bacteriocin pro-
ducers in this genus, and its population levels in cheese are 
variable, ranging from  103 to  108 CFU/g in ripened cheese 
[22, 23]. This allows to study the effect of enterocin pro-
ducers under different diversity scenarios on cheese, which 
is an excellent model system for studying the mechanistic 
principles that drive microbial diversity [24, 25]. Results 
obtained indicate a positive effect of enterocin production 
by enterococcal populations on the overall LAB commu-
nity biodiversity when bacteriocin-producer populations are 
small. These findings shed light on the impact of antimi-
crobial peptide production as a driver of LAB biodiversity.

Material and Methods

Sampling and Microbial Enumeration

Given the higher diversity of raw milk cheeses [2], the study 
included 15 different commercial ripened raw milk cheeses 
(Supplementary Table S1): five from cow’s milk, five from 
sheep’s milk, and five from goat’s milk. Cheese samples 
(5 g) were homogenized for 2 min in 45 mL of a prewarmed 
(37 °C), sterile, 2% sodium-citrate solution in sterile plastic 
bags with lateral filters using a masticator lab blender (IUL 
Instruments, Barcelona, Spain). Tenfold serial dilutions of 
this homogenate were then prepared in sterile 2% sodium-
citrate solution up to a dilution of  10–6. A 100 μL aliquot was 
spread in triplicate on agar plates for bacterial enumeration, 
using Brain Heart Infusion agar (BHI, VWR Chemicals) for 
total LAB, and Kenner Fecal agar (KF, VWR Chemicals) for 
enterococci. Viable counts were obtained after incubation 
for 3 days at 28 °C for total LAB enumeration and 37 °C 
for enterococci enumeration. Bacterial counts were calcu-
lated as the mean values of three determinations after log 
transformation.

Antimicrobial Assays and Microbial Isolation

The abundance of enterocin producers was estimated by 
testing randomly 45–52 enterococcal colonies per sample 
(KF medium) for their antimicrobial capacities, employing 



Bacteriocin-Producing Enterococci Modulate Cheese Microbial Diversity  Page 3 of 15   175 

the double-layer plate method of Gratia and Fredericq [26]. 
Enterococcal colonies were transferred by toothpick onto 
BHI agar buffered (BHA-B) in 0.1 M sodium phosphate 
buffer at pH7 (in triplicates) and incubated at 37 °C over-
night. Next day, plates were overlaid with 5 mL of BHA-B 
soft agar (1.8% BHI, 0.8% agar) inoculated at 2% with an 
overnight culture of the indicator strains Listeria innocua 
(CECT4030) or Enterococcus faecalis S-47 (lab collection) 
and left to solidify at room temperature. Plates were incu-
bated again overnight at 37 °C for the growth of the indicator 
strain. Colonies with an evident inhibition zone around the 
strain spot were considered to be enterocin producers. Sub-
sequently, a representative set of 67 isolates were collected 
(5–7 from each sample) for further analysis, selected accord-
ing to their zone of antibacterial activity. Pure cultures were 
stored in BHI medium containing 20% glycerol at − 80 °C.

To evaluate cross-immunity between selected isolates, all 
strains were tested against each other using the aforemen-
tioned double layer plate technique. Plates were incubated 
again overnight at 37 °C for growth of the indicator strain, 
and colonies with an evident inhibition zone around the 
strain spot were considered to be enterocin producers.

DNA Extraction

Enterococcal populations and microbial communities were 
characterized by extracting total DNA from each strain 
and each cheese sample, following the modification of the 
salting-out procedure (MSOP) of Martin-Platero et al. [27]. 
Briefly, cells from 1 mL of an overnight culture of each iso-
late or cells from 2.5 g of cheese were resuspended in 100 
µL of lysozyme buffer and incubated for 30 min at 37 °C to 
hydrolyze the cell wall, followed by the addition of 600 µL 
of lysis buffer and a further incubation step at 80 °C to facili-
tate cell lysis. Cell debris and proteins were then removed 
by adding 200 µL of protein precipitation solution, mixing, 
chilling on ice for 10 min, and centrifuging for 10 min at 
20,000 × g. DNA was then precipitated with an equal volume 

of isopropanol and washed with 70% ethanol. The DNA was 
finally dried to remove any ethanol trace and dissolved in 
200 µL of 0.5 × Tris–EDTA buffer (Tris-ClH 10 mM pH 
8, EDTA 1  mM). DNA concentrations were measured 
using a NanoDrop 2000 spectrophotometer (Thermo Fisher 
Scientific).

Multi‑Locus Sequence Analysis (MLSA)

Representative bacterial isolates (67 strains; 5–7 from each 
sample) were characterized by MLSA to estimate the popu-
lation variability of the genus Enterococcus in each cheese 
sample. To this end, we constructed a phylogenetic tree 
based on the concatenated sequences of five housekeeping 
genes (Table 1): adk (adenylate kinase), atpA (ATP syn-
thase, alpha subunit), gyd (glyceraldehyde-3-phosphate 
dehydrogenase), gdh (glucose-6-phosphate dehydrogenase) 
[28], and groEL (chaperone GroEL). Primers for groEL gene 
were designed using Hyden software [29], allowing for two 
mismatches and two degenerate positions and targeting an 
amplicon size between 400 and 600 bp.

Each gene for each bacterial isolate was PCR-amplified 
using the following conditions: an initial denaturing step 
of 94 °C for 3 min followed by an amplification step of 35 
cycles of 30 s at 94 °C, 30 s at 50 °C, and 30 s at 72 °C, with 
a final extension of 5 min at 72 °C. Reactions were per-
formed in a final volume of 50 µL with Taq polymerase (1x) 
and buffers from IBIAN Technologies. Primers were used at 
a concentration of 0.5 µM, and 100 ng of DNA was added. 
PCR products were purified with the NucleoFast 96 PCR 
clean-up kit (Macherey–Nagel) and sequenced with PCR 
forward primers by Sanger sequencing [30], using the Stab 
Vida (Universidad de Nova de Lisboa) sequencing service. 
Next, each sequence was taxonomically assigned according 
to the best blast hit on the NCBI blast tool (https:// blast. ncbi. 
nlm. nih. gov/ Blast.cgi) [31].

Finally, a phylogenetic tree was constructed from the 
concatenated sequences. First, each gene was aligned and 

Table 1  Primers used for MLSA analysis

Primer pair Gene Primer sequence (5′- > 3′) Amplicon size 
(bp)

Reference

adk
adk2

Adenylate kinase TAT GAA CCT CAT TTT AAT GGG 
GTT GAC TGC CAA ACG ATT TT´

437 [28]

atpA1
atpA2

ATP synthase, alpha subunit CGG TTC ATA CGG AAT GGC ACA 
AAG TTC ACG ATA AGC CAC GG

556

gyd1
gyd2

Glyceraldehyde-3-phosphate dehydrogenase CAA ACT GCT TAG CTC CAA TGGC 
CAT TTC GTT GTC ATA CCA AGC 

395

gdh1
gdh2

Glucose-6-phosphate dehydrogenase GGC GCA CTA AAA GAT ATG GT
CCA AGA TTG GGC AAC TTC GTC CCA 

530

GroELF
GroELR

Chaperone GroEL GYG AAA AAT TWC AAG AAC G
ACG ACW GCT TCA GTY GTT AA

480 This study

https://blast.ncbi.nlm.nih.gov/
https://blast.ncbi.nlm.nih.gov/
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trimmed with MEGA-X software (version 10.1.8) [32] using 
the clustalW algorithm [33]. Then, the concatenation of the 
five genes was used to construct a maximum likelihood phy-
logenetic tree in MEGA-X with 1000 bootstrap replications 
following the Tamura-Nei evolution model (ML heuristic 
method: nearest-neighbor-interchange, number of threads: 
3) [34].

Data Analysis

16S rRNA Metagenomic Sequencing

The microbial composition of cheese samples was deter-
mined by constructing and sequencing 16S rRNA metagen-
omic libraries for each sample. We constructed 16S rRNA 
libraries corresponding to the V4 variable region by a 
two-step amplification approach. The first primer pair (Mi_
U515F, 5′- TCGTC GGCAG CGTCA GATGT GTATA 
AGAGA CAGGT GCCAG CMGCC GCGGT AA −3′ and 
Mi_E786R, 5′- GTCTC GTGGG CTCGG AGATG TGTAT 
AAGAG ACAGG GACTA CHVGG GTWTC TAAT −3′) 
contained the primer sequences of U515F and E786R tar-
geting the V4 region of the 16S rRNA gene with partial 
overlap of Illumina primers, as previously described [35]. 
PCR was carried out in a final volume of 25 µL contain-
ing 12.5 µL of Phusion Flash High-Fidelity PCR Master 
Mix (Thermo Scientific™), 0.3 µM of each primer, and 
5 µL of template DNA. The amplification program com-
prised an initial denaturing step of 98 °C for 10 s followed 
by an amplification step of 20 cycles of 1 s at 98 °C, 5 s at 
52 °C, and 5 s at 72 °C, with a final extension of 1 min at 
72 °C. PCR was purified using the MEGAquick-spin™ Plus 
Total Fragment DNA Purification Kit (iNtRON Biotechnol-
ogy) and was re-amplified in a second PCR to introduce a 
unique combination of two barcodes for each sample. This 
PCR was performed in a final volume of 25 µL containing 
12.5 µL of Phusion Flash High-Fidelity PCR Master Mix 
(Thermo Scientific™), 0.4 µM of each primer, and 5 µL of 
the purified PCR product from the first PCR. The amplifi-
cation conditions were an initial denaturation step of 98 °C 
for 10 s followed by an amplification step of 9 cycles of 1 s 
at 98 °C, 5 s at 55 °C, and 5 s at 72 °C, with a final exten-
sion of 1 min at 72 °C. This second PCR was purified again 
using the aforementioned kit. Next, the DNA concentration 
was measured using a Qubit® 3.0 Fluorometer (Invitrogen, 
Carlsbad, CA, USA) and normalized to the same concentra-
tion. High-throughput sequencing was carried out on an Illu-
mina MiSeq platform at the Scientific Instrumental Center 
of the University of Granada (CIC-UGR, Spain). Sequences 
were uploaded to the Sequence Read Archive (SRA) on 

the Genbank—NCBI webpage (https:// www. ncbi. nlm. nih. 
gov/ sra) under the PRJNA988471BioProject (BioSamples-
SAMN36020620 to SAMN36020683).

Sequences and Data Analysis

QIIME2 2021.11 was used to process the 16S Illumina reads 
[36]. First, primers were trimmed with the cut adapt plugin 
[37], discarding untrimmed sequences. Then, amplicon 
sequence variants (ASVs) were inferred from paired reads by 
the dada2 plugin [38]. Given the expected insertion size of 
253 bases for the construction, ASVs shorter than 245 bases 
were filtered out. Next, all ASVs were aligned by the mafft 
method [39] and used to construct a phylogeny. The repre-
sentative sequences were taxonomically classified using the 
Silva-138 database clustered at 99% similarity [40] by the 
classify-sklearn method [41].

Differences in bacterial diversity were explored by esti-
mating alpha diversity from the ASV richness, the Shannon 
diversity index [42], and Faith’s phylogenetic diversity (PD) 
[43] in QIIME2 using a rarefied table at a sequencing depth of 
17,000 sequences per sample. We constructed general linear 
models (GLM) with the diversity indices as dependent vari-
ables and the presence of Enterococcus-bacteriocin producers 
as fixed factor. Parametric tests were applied, because all vari-
ables followed a Gaussian distribution (Shapiro–Wilk’s test of 
normality, p > 0.05).

In addition, the effect of antimicrobial strains on entero-
cocci population diversity was determined by using Faith’s 
PD to estimate the alpha diversity [43], quantifying this index 
by using a phylogenetic tree inferred from MLSA results. We 
also calculated the population richness in each cheese sample 
by assigning each strain with a sequence type (ST), which was 
determined by clustering unique sequences of each gene using 
the USEARCH program (version 11.0.66; identity = 100%) 
[44]. PHYLOViZ software (version 2.0) was used to identify 
strains with the same allelic profile [45]. Strains grouped in the 
same cluster in four out of the five genes were considered the 
same population. The non-parametric Kruskal–Wallis test was 
applied to explore the relationship between the diversity indi-
ces and the presence of Enterococcus-bacteriocin producers, 
because none of the indices followed a Gaussian distribution 
(Shapiro–Wilk’s test of normality, p > 0.05).

Pearson’s correlation test was also applied to evaluate the 
relationship between the proportion of enterococci producers 
and the corresponding alpha diversity. Finally, the Student’s 
t-test for dependent variables was used to establish the sig-
nificance of differences in sensitivity between strains from the 
same cheese and those from different cheeses. Statistica 10.0 
[46] was used for all statistical analyses.

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
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Results

Differential Diversity Among Samples

Microbial counts and compositions varied widely among 
the studied LAB communities (n = 15). The total LAB 
microbial count ranged from 2.8 ×  105 to 2.6 ×  108 CFU/g 
(Supplementary Table S1; Fig. 1), and the enterococcal 
count ranged from 6.6 ×  102 to 1.1 ×  106 CFU/g (Sup-
plementary Table S1; Fig. 1) except in two samples that 
showed no growth (not depicted in Fig. 1). Hence, entero-
coccal populations were on average threefold lower than 
total LAB populations.

According to the corresponding 16S rRNA metagenomes, 
LAB communities were dominated by lactococci and strep-
tococci, followed by lactobacilli, at proportions that varied 
among samples (Table 2 and Fig. 2). In all samples, popula-
tions of enterococci were four to five orders of magnitude 
lower than those of lactococci or streptococci, including 
samples where enterococci did not grow in their selective 
media (KF). The total number of ASVs ranged from 12.83 
to 53.53, with the ranking for enterococci ranging from 8 to 
40th position (average of 24th position) according to their 
abundance in the samples. Alpha diversity scores ranged 
from 0.1593 to 3.4817 for the Shannon index and from 1.190 
to 3.360 for Faith’s PD.

MLSA identified four species of enterococci present in our 
cheese samples: E. faecalis, E. faecium, E. durans, and E. hirae 
(Fig. 3). E. faecalis and E. faecium were the most frequently 
isolated species. The phylogeny inferred from MLSA results 
showed no homogenous clusters in relation to the sample or 
antimicrobial activity, indicating that the isolated enterococci 
were not part of a clonal population. In the case of E. faecalis, 

Fig. 1  Cheese microbial counts. Total LAB counts and their cor-
responding enterococci counts are shown in logarithmic scale. Total 
LAB counts ranged from 5.4 to 8.4 log10 (cfu/g), while enterococci 
counts were on average threefold lower than total LAB counts; no 
growth of enterococci was observed in two samples. Colors indicate 
milk source
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Fig. 2  Bacterial genera present 
in raw milk cheeses. In all 
samples, the most abundant 
genera were Lactococcus, 
Streptococcus, Lactobacillus, 
and Leuconostoc. Color legend 
shows the ten most abundant 
genera overall ranked from most 
to least abundant
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Fig. 3  Phylogenetic tree of Enterococcus strains isolated from cheese 
made from raw milk. The phylogenetic tree is based on multi-locus 
sequence analyses (MLSA). From left to right, the first annotation 
bar represents the species: E. faecalis (green), E. faecium (orange), 

E. durans (blue), and E. hirae (red); the second bar represents the 
cheese sample and the third and fourth bars represent activity against 
L. innocua and E. faecalis S47, respectively
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however, the genetic distance between strains was very short, 
with low bootstrap values.

Nevertheless, determination of enterococcal population 
richness by the assignation of type sequences yielded 57 dif-
ferent sequence types, observing 2–7 different type sequences 
in each cheese sample.

Differential Antagonistic Producer Frequency 
Among Enterococci

Between forty-four and fifty-two bacterial strains from each 
cheese were screened for antimicrobial activity, finding 
activity against E. faecalis S-47 in 23.64% of strains, activ-
ity against L. innocua in 18.5%, and activity against both in 
21.25% (Fig. 4 and Table 3). Only three cheese samples had 
no strains with antimicrobial activity.

Impact of Enterocin Producers on Population 
and Community Diversity

Enterococcus diversity was not significantly affected by the 
presence of enterocin producers in enterococcal populations. 
Given the lack of sharp clusters in the MLSA (Fig. 3), we 
estimated the population richness and used the phylogenetic 
tree inferred from MLSA results to quantify Faith’s PD [43] 
in each sample. Neither the population richness estimation 

Fig. 4  Enterocin producers. Proportion of enterocin producers with 
antimicrobial activity against E. faecalis S-47 (yellow circles), L. 
innocua CECT4032 (blue circles), and both indicator strains (red cir-
cles)

Table 3  Percentage of enterocin producers per sample

Cheese sample % enterocin producers 
against E. faecalis S47

% enterocin pro-
ducers against L. 
innocua

AM1901QU01 8.16 0
AM1901QU02 0 0
AM1902QU03 29.54 20.45
AM1902QU04 11.54 1.92
AM1902QU07 0 0
AM1902QU08 36.54 32.69
AM1902QU09 23.08 26.92
AM1902QU10 46.15 50
AM1902QU11 30.43 30.43
AM1902QU12 28.85 28.85
AM1903QU14 39.2 39.2
AM1903QU15 0 0
AM1903QU16 53.8 11.5

Table 4  Effect of enterocin-producing populations on enterococcal 
diversity. Kruskal–Wallis non-parametric test to evaluate effects of 
the presence/absence of Enterococcus-bacteriocin producers on alpha 
diversity indices of the enterococci populations

H N p

Faith’s phylogenetic diversity 
index

1.02 13 0.31

Population richness 0.15 13 0.69

Fig. 5  Boxplot showing the difference in sensitivity between entero-
cocci in the same cheese sample and those in different cheese samples
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nor Faith’s PD significantly differed between producers and 
non-producers (Table 4).

Regarding the cross-immunity of each isolate (Supple-
mentary Table S2), the frequency of inhibition was lower 
for enterococci that were present in the same cheese sample 
than for those that were not (Fig. 5). This difference was not 
statistically significant, although it was close-to-significant 
(p = 0.068) (Table 5).

In contrast, the presence of enterocin producers increased 
the diversity of the whole community, being associated with 
a close-to-significant increase in ASV richness and Faith’s 
PD and with a statistically significant (p < 0.05) increase in 
Shannon index score (Table 6 and Fig. 6). This relationship 
between greater diversity and the presence of enterocin pro-
ducers was explored by testing the correlation between these 
variables in the samples that contained enterocin producers. 
A negative relationship was observed between diversity and 
enterocin producers in these samples (Tables 7 and 8), but 
statistical significance was only reached for the Shannon index 
with E. faecalis as indicator strain (Fig. 7). Hence, maximum 

Table 5  Student’s t-test of dependent variables to compare sensitivity 
between enterococci from the same cheese and those from different 
cheeses

d.f. degree of freedom

d.f N p

Same cheese * different cheeses 1.02 13 0.068

Table 6  General linear models on effects of the presence/absence of 
Enterococcus-bacteriocin producers on alpha diversity indices of the 
bacterial communities of cheeses

d.f. degree of freedom
The first number is the d.f. of the independent variable and the second 
is the d.f. of the error term. Significant p-value (p < 0.05) highlighted 
in bold

d.f F p

Shannon diversity index 1;11 6.12 0.031
Faith’s phylogenetic diversity index 1;11 1.90 0.196
AVS richness 1;11 3.74 0.079

Fig. 6  Boxplot showing dif-
ferences in Shannon index (a), 
Faith’s phylogenetic diversity 
(b), and amplicon sequence 
variant richness (c) between raw 
milk cheeses with and without 
the presence of Enterococcus-
bacteriocin producers. Dots 
represent the average, boxes the 
standard error of the mean, and 
whiskers the confidence inter-
val. *A significant difference
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community diversity was obtained with low proportions of 
enterocin producers.

Dots represent the average, while boxes show the standard 
error of the mean and whiskers the confidence interval.

Discussion

Cheese is a good model for the study of interacting multi-
species microbial communities of reduced complexity 
[47], enabling comparisons with less manageable systems 
in which numerous bacterial species coexist. The micro-
bial communities in cheese can be readily cultivated and 
managed, facilitating study of the patterns and mecha-
nisms underlying the assembly, function, and interactions 
among constituents of microbial communities [48]. This 
study reveals a general trend towards greater diversity 
in LAB communities that include enterocin producers, 
although the greatest diversity is found when enterococ-
cal abundance of enterocin producers are low to moderate. 
According to these findings, low levels of enterocin pro-
ducers in enterococcal populations increase LAB diversity 
in cheese microbial communities.

LAB play an essential role in traditional cheese making 
by contributing to the development of its sensory charac-
teristics and nutritional value [2]. LAB counts ranged from 
2.8 ×  105 to 2.6 ×  108 in the cheeses under study (Fig. 1, 
Supplementary Table  S1), within the range of values 
reported by other authors [49]. Massive DNA sequencing 
has shown that the main LAB genera in raw milk cheeses 
are Lactococcus, Lactobacillus, Enterococcus, Streptococ-
cus, and Leuconostoc [50–53], as observed in the present 
cheese samples (Table 2 and Fig. 2). It is worth noting that, 
in one sample, (AM1902QU05) enterococci were detected 
by massive sequencing but not by a culture approach, 
while on the other hand, in two samples (AM1902QU08 
and AM1902QU10), enterococci were detected by a cul-
ture approach, but not by metagenomic sequencing. While 
this discrepancy affected only a few samples in our study, 
it is frequent between culture-dependent and culture-inde-
pendent approaches. The first case could be the result of 
dead cells or a viable but nonculturable (VBNC) state of 
these bacteria [54, 55], while the second case could be the 
result of primer bias or primer preferential annealing to 
other taxa [56, 57].

Enterococcus is an important genus in LAB frequently 
found in traditional raw milk cheeses [58–61]. The propor-
tion of enterococci can change during the cheese making 
process, being reported as between  104 and  106 CFU/g at 
the beginning of ripening and between  105 and  107 CFU/g 
at the end [62]. In the present samples, enterococcal counts 
ranged from 6.6 ×  102 to 1.1 ×  106 CFU/g (Fig. 1, Sup-
plementary Table S1). The most frequently isolated ente-
rococci were E. faecalis and E. faecium, followed by E. 
durans and E. hirae (Fig. 3), in agreement with previ-
ous reports on the greater abundance of E. faecium and 
E. faecalis, with a lesser amount of E. durans [63–67]. 
In addition to its proteolytic and lipolytic activities [22], 

Table 7  Pearson’s correlation analysis results for the effects of pro-
portion of Enterococcus-bacteriocin producers in two indicator 
strains on alpha diversity indices of the bacterial communities of the 
cheeses

Significant p-values (p < 0.05) are shown in bold

Indicator strain Shannon Faith ASV richness

L. innocua r  − 0.46  − 0.56  − 0.49
p 0.209 0.115 0.179

E. faecalis S47 r  − 0.65  − 0.58  − 0.40
p 0.041 0.079 0.256

Table 8  Correlation between the proportion of enterococci that are 
bacteriocin producers and alpha diversity indices of the Enterococcus 
populations per cheeses

Sensitive strain Faith ST-richness

L. innocua r  − 0.64 0
p 0.061 0

E. faecalis S47 r  − 0.28  − 0.56
p 0.43 0.094

Fig. 7  Correlations between proportion of Enterococcus-bacteriocin 
producers against E. faecalis S47 and the Shannon diversity index for 
the bacterial communities of cheeses
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enterococcal strains can also produce enterocins, which 
have the capacity to inhibit bacteria other than enterococci, 
including the pathogens Listeria and Clostridium [22, 68, 
69]. Most of the present cheese samples contained entero-
cocci that produced antimicrobial compounds (Fig. 4 and 
Table 3), and 21.2% of them demonstrated antimicrobial 
activity against both sensitive strains (E. faecalis and L. 
innocua) within the range described in previous studies 
[23, 70–72]. Moreover, 24.6% of the present samples evi-
denced antimicrobial activity against L. innocua. This 
type of bacteriocins is of particular interest in the cheese 
industry due to its ability to inhibit Listeria while allowing 
LAB to carry out their cheese ripening functions [69, 73].

The highly variable and complex nature of the micro-
biota in cheese makes competitive interactions inevitable, 
given that its members share the same niche and seek the 
same resources [47], which may ultimately affect the rela-
tive proportions of community members. Studies of cheese 
have shown that bacteriophage predation ensure bacterial 
diversity by eliminating large numbers of strains in accord-
ance with the ‘kill the winner’ theory, thereby stabilizing the 
overall function of the community [74]. This theory, analo-
gous to the classical Lotka-Volterra explanation of preda-
tor–prey population dynamics, proposes that a rise in the 
population of a host organism (the winner) in phage–bacteria 
interactions often results in a higher number of its corre-
sponding predators (phages), increasing the kill rate of the 
winner [75]. Phages can have a drastic impact on fermenta-
tions that need LAB populations to reach high cell counts 
within a short time period [76]. In the present study, the 
presence of Enterococcus-enterocin producers significantly 
affected the Shannon diversity index of the community 
(Fig. 6 and Table 6), suggesting that species abundance in 
cheese is more equitably distributed when the community 
contains at least one producer. The impact of bacteriocino-
genic strains depends on their ability to grow and produce 
optimal levels of bacteriocins, not only under technological 
conditions but also in the natural environment, where they 
must compete with other microbes in the food without alter-
ing its physicochemical or organoleptic characteristics [77]. 
In this way, the production of bacteriocins by NSLAB can 
have a positive effect by acting on other LAB strains such as 
starter cultures, promoting their lysis and release of enzymes 
that can contribute to the ripening process and enhance the 
flavor of the mature cheese [78].

Simulation studies have revealed that antagonistic inter-
actions markedly increase the diversity and stability of a 
microbial community by promoting spatial structuring, 
which generates more robust populations [19, 79, 80]. In 
contrast, communities with a predominance of coopera-
tive interactions are more easily destabilized [81]. This is 
because cooperation enhances between-species dependency, 
so that if one species decreases in abundance, it will tend 

to reduce the abundance of other species, destabilizing the 
system.

It has been proposed that antagonistic systems can pro-
mote diversity in environments under certain conditions, as 
experimentally demonstrated for E. coli colicin [19, 82]. 
However, conditions cannot always be controlled in natu-
ral environments. In a study of mouse gut microbiota, Umu 
et al. [83] found that dietary supplementation with Class II 
bacteriocin-producing bacteria had no effect on the overall 
structure of the community. Nevertheless, some significant 
alterations were observed at lower taxonomic levels, espe-
cially when the bacteriocins had relatively wide inhibitory 
spectra (e.g., enterocins Q and L50, and garvicin ML). The 
presence of bacteria-producing bacteriocins also increased 
the proportion of LAB, indicating the possibility of manipu-
lating specific populations by treatments with bacteriocin 
producers at different levels and in different directions with-
out affecting the normal inhabitants of the intestine. Qiao 
et al. [84] studied the effect of bacteriocin-producing Pedio-
coccus acidilactici strains on the gut microbiota of normal 
mice, observing an increase in the total number of species 
but a slight decrease in the diversity and uniformity of the 
community. Likewise, only minor alterations in overall com-
munity composition were observed with ABP-118, a broad-
spectrum class IIb bacteriocin produced by gut isolates of 
Ligilactobacillus salivarius [85]. In contrast, the present 
study focused on enterocin-producing populations in the 
community rather than a specific bacteriocin, considering 
bacteriocin production as an ecological factor in microbial 
interactions.

According to the present findings, bacteriocin produc-
tion does not appear to affect the enterococcal population, 
with its effect being observed at community (between-
species) but not population (within-species) level. This 
may be attributable to the highly variable spectrum of 
action of bacteriocins, which ranges from narrow to broad 
inhibitory activity against both closely-related and non-
related species [86]. Broad-spectrum bacteriocins are more 
likely to be produced when the producer strain is highly 
abundant, allowing its ecological dominance to be consoli-
dated through the suppression of community members in 
general [87]. For their part, narrow-spectrum bacteriocins 
are more focused on inhibiting the growth of competing 
strains that pose the greatest threat [87]. This is because 
closely-related species are more likely to exploit similar 
niches in an environment and engage in greater competi-
tion for space and resources [88]. In the present study, the 
bacteriocins may have a more specific spectrum of action 
against a genus other than Enterococcus. It is also possible 
that the producer strains are closely related (Fig. 3) and 
may share immunity mechanisms, increasing resistance to 
the antimicrobials being produced without affecting the 
diversity of the Enterococcus population [89, 90]. These 
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types of ecological units of production and resistance 
have been described in other wild habitats [91]. Although 
we found no statistically significant variation in sensitiv-
ity between enterococci from the same cheese and those 
from different cheeses, a close-to-significant difference 
was observed (p = 0.068), suggesting the possibility of a 
greater degree of resistance from coexisting populations 
(Fig. 5).

In addition, the spatial structure is a key factor in promot-
ing biodiversity by bacteriocin production. A spatial struc-
ture allows a producer to outcompete a sensitive strain even 
at much lower abundance levels because the bacteriocin does 
not diffuse away and reach a higher local concentration [19]. 
In this sense, cheese is a three-dimensional particulate gel 
matrix of casein or paracasein that wraps fats, minerals, and 
water [92]. Therefore, in this scenario, low abundant produc-
ers, such as the overserved here for enterocin producers, can 
have an impact on the overall community diversity due to the 
spatial structuring of producer populations.

In the present study, the presence of bacteriocin producers 
in the cheese microbiota was found to increase the bacterial 
diversity of cheese. However, examination of cheeses con-
taining at least one producer revealed a negative correlation 
between diversity and the percentage of enterocin producers 
(Fig. 7). In other words, the existence of producers in the 
community increases its diversity, but this can be decreased 
by the presence of too many. In this way, the production 
of moderate bacteriocin levels may promote diversity by 
preventing one species from competitively excluding others 
[21]. These results are also compatible with the intermediate 
disturbance hypothesis, which proposes that species diver-
sity is maximal at intermediate levels of disturbance, being 
sufficiently infrequent to allow many species to survive 
fluctuations but sufficiently frequent to avoid domination 
by more competitive species [93]; however, this hypothesis 
remains highly controversial [93–96].

Microbial community composition depends on biotic and 
abiotic factors. While physico-chemical factors are the first 
constraint to microbial development, microbial interactions 
fine-tune the microbial assemblage. Our findings suggest 
that bacteriocins not only play a role in the local structur-
ing of resistant and sensitive producer strains but may also 
exert modulatory effects on whole microbial communities. 
It remains unknown whether these results can be extrapo-
lated to other LAB species or even other wild microbial eco-
systems. In this study, bacteriocin production proved to be 
important in controlling LAB communities during cheese 
ripening; further research is required on the effect of bacte-
riocin production on microbial diversity in other LAB com-
munities and in wild microbial ecosystems.
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