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Abstract: Network traffic datasets are essential for the construction of traffic models, often
using machine learning (ML) techniques. Among other applications, these models can be
employed to solve complex optimization problems or to identify anomalous behaviors,
i.e., behaviors that deviate from the established model. However, the performance of
the ML model depends, among other factors, on the quality of the data used to train it.
Benchmark datasets, with a profound impact on research findings, are often assumed to be
of good quality by default. In this paper, we derive four variants of a benchmark dataset in
network anomaly detection (UGR’16, a flow-based real-world traffic dataset designed for
anomaly detection), and show that the choice among variants has a larger impact on model
performance than the ML technique used to build the model. To analyze this phenomenon,
we propose a methodology to investigate the causes of these differences and to assess the
quality of the data labeling. Our results underline the importance of paying more attention
to data quality assessment in network anomaly detection.

Dataset: https://codas.ugr.es/animalicos/en/results under the entry ’UGR16 Feature
data’.

Dataset License: CC-BY-NC

Keywords: Netflow; UGR’16; anomaly detection; data quality

1. Introduction
Machine learning (ML) has emerged as a cornerstone in the evolution of computer

networks, enabling adaptive decisions based on complex, large-scale data. In recent years,
the use of ML in networks has expanded beyond basic data analysis to drive innovations
in network management, optimization, and security [1]. Traditional network management
strategies are struggling to keep up with the exponential growth of connected devices and
network complexity. ML-based approaches offer a possible solution by enabling automated,
data-driven decision-making.

Network management and optimization represent a key application of ML in net-
working [2]. ML algorithms are used to monitor and predict network traffic patterns,
identify potential problems, and optimize routing and resource allocation. For instance,
when integrated with Software-Defined Networking (SDN), ML can facilitate centralized
control, enabling seamless adjustments across the network. ML is also valuable in network
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security [3], where it helps to detect anomalies by analyzing patterns that may indicate
malicious behavior.

However, the effectiveness of ML tools is inherently tied to the quality of the data they
are trained on, underscoring the necessity of high-quality datasets [4,5]. While significant
attention has been devoted to model optimization and the development of novel ML
methods, the assessment of data quality remains underexplored and often overlooked [6,7].

In this paper, we show that the impact of minor data modifications prior to modeling
with ML in network anomaly detection can be more relevant than the specific ML method
used. These modifications include subtle adjustments in the computation of traffic features,
data anonymization practices, and the selection of observations used for model fitting and
testing. The data from this case study illustrate that the research community needs to look
further into data quality assessment and improvement.

Our main contributions are as follows:

• We derive four variants of a benchmark dataset in network anomaly detection,
the UGR’16 dataset [8] (Dataset available online at https://nesg.ugr.es/nesg-ugr16/,
acessed on the 20 February 2025), by applying minor differences in the data treat-
ment. We perform anomaly detection using these variants with two very different
ML methodologies, finding negligible differences in performance between the ML
variants but significant differences among the dataset variants.

• We then sort the data corresponding to the four variants of UGR’16 available for the
community. We believe this example can be useful for future research on data quality
assessment and automatic labeling.

• We apply an analysis methodology to investigate the root causes of the performance
differences found. Applying this methodology to the case study provides a full
understanding of the differences, which allows us to obtain a better picture of when
these differences are relevant and/or when they are due to labeling inaccuracies,
particularly with respect to unlabeled anomalies.

Ultimately, the primary contribution of this work is the dataset itself. The anal-
ysis underscores the importance of selecting a high-quality dataset for machine learn-
ing tasks, demonstrating how even minor changes in the data can significantly impact
detection results.

The paper is organized as follows. Section 2 introduces the case study under analysis,
the preprocessing and data selection steps, and ML methods considered. Section 3 presents
the experimental results and Section 4 draws the conclusions.

2. Materials and Methods
In the following subsections, we present the original case study under analysis,

the dataset variants introduced in this paper, and the comparison approach and the strategy
to explain the results.

2.1. The Original UGR’16 Dataset

The UGR’16 dataset was captured from a real network of a tier 3 Internet Server
Provider (ISP). The data collection was carried out with Netflow between March and June
of 2016 under Normal Operation Conditions (NOCs), meaning that the network was used
normally by the ISP clients. This allowed us to model and study the normal behavior of the
network and to unveil certain anomalies such as SPAM campaigns. The dataset flows were
labeled as either “background”, representing legitimate network traffic, or “anomalies”,
denoting non-legitimate traffic.

https://nesg.ugr.es/nesg-ugr16/
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Furthermore, an additional data collection took place between July and August 2016,
during which controlled attacks were introduced to generate a test dataset for validating
anomaly detection algorithms. In this phase, twenty-five virtual machines were set up
within one of the ISP’s sub-networks: five machines launched attacks on the other twenty.
The attacks included Denial of Service (DOS), and two types of port scanning: SCAN11 (one
attacker, one victim) and SCAN44 (four attackers, four victims). Botnet traffic (NERISBOT-
NET) was also introduced in the capture. These attacks were carried out over a twelve-day
period, at various times, following both pre-planned and random schedules, and with real
background traffic.

The primary advantage of the UGR’16 dataset is its origin in a real network environ-
ment, which allows for the validation of algorithms under realistic conditions. Background
traffic in the dataset reflects real-world day/night cycles and weekday/weekend usage pat-
terns, enhancing the authenticity of the data for cybersecurity research. To date, the UGR’16
dataset has been referenced in more than 260 research papers (according to Google Scholar),
establishing it as a benchmark in anomaly detection research using real network traffic.
The dataset’s general features are outlined in Table 1.

Table 1. Characteristics of the calibration and the test sets.

Feature Calibration Test

Capture start 10:47 h 03/18/2016 13:38 h 07/27/2016
Capture end 18:27 h 06/26/2016 09:27 h 08/29/2016
Attacks start N/A 00:00 h 07/28/2016
Attacks end N/A 12:00 h 08/09/2016
Number of files 17 6
Size (compressed) 181 GB 55 GB
# Connections ≈13,000 M ≈3900 M

2.2. Building New Versions of UGR’16

A custom step of the ML workflow, referred to as feature engineering, is to trans-
form raw data information into quantitative variables or features. This is a complex task
due to the unstructured nature of several system log formats and network traces, which
makes it difficult to parse the information in an automated manner. Moreover, selecting
which network features are suitable for analysis is not trivial. Traffic data are ordered in
time, but characteristics such as groups of IP addresses, destination ports and size of the
packets in the network should be considered to maintain a high degree of observability in
the analysis.

The pioneering work of Lakhina et al. [9] in anomaly detection with multivariate
techniques (in particular with Principal Component Analysis, PCA) approached feature
engineering by defining variables as counts of packets and bytes, and thus, quantitative
variables were obtained directly from Netflow records. Camacho et al. [10] extended this
definition to the feature-as-a-counter (FaaC) approach, in which the variables represent
counters for the number of times a particular traffic feature takes place in a time window.
This makes it possible to obtain quantitative variables of very different nature, e.g., variables
for traffic volume within a particular range of IPs or ports. Moreover, the window size
acts as a configurable sampling interval, significantly reducing the initial data size and
simplifying the data analysis.

Using the FaaC approach, the dataset is divided into 1-minute intervals, and a total
of 134 features are obtained per interval. The feature extraction process consists of two
main steps: (i) converting binary files into flow-level CSV files using the nfdump tool,
and (ii) transforming these CSV files into feature vectors with the FCParser tool [11].
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In our case, using parallelization with 16 CPUs, the daytime features were extracted in
approximately 3h, and the complete dataset was transformed within approximately 15 days
of processing. Given that flows are aggregated at 1-minute intervals, test observations are
categorized as normal when only background traffic is present, and as anomalous when
attack flows are included with background traffic. For more details on the FaaC approach,
please refer to reference [11].

The data for the new versions of UGR’16 can be accessed in the following different
data formats (DFs):

DF.1 Raw registers in nfcapd format (a binary format used in the nfdump package): We
downloaded the data from the original repository, accessed via the Network Engi-
neering and Security Group (NESG) website1, and fixed the original nfcapd files,
since they use a deprecated format which can no longer be interpreted with nfdump.
The IPs were anonymized, as discussed in the original paper [8]. The data in the
new nfcapd (nfdump readable) version are stored in weekly files and organized in
folders by month. The total amount of storage required for the data is 341 GB. The raw
registers are accessible through the Data Analysis as a Service (DAaaS) deployed at
https://codas.ugr.es/animalicos/es/daaas (accessed on the 20 February 2025).

DF.2 Feature data per time interval using the feature-as-as-counter approach, with one file
in csv format per time interval of 1 min: The data are obtained in two steps. First, nf-
capd files are transformed into csv format using the nfdump tool. These intermediate
files are not stored due to the volume of the resulting data. Subsequently, the FCParser
is applied over intermediate files, generating output files (one per minute) with a
single row of 144 counters each. There are two versions of the UGR16 dataset in this
format, which consider bidirectional and unidirectional flows in nfdump, respectively.
The data volume is 1,5GB for the two versions, which reflects the compression capabil-
ity of the parsing operation. The data generation of these files can also be reproduced
at the DAaaS.

DF.3 Feature data for complete datasets, with as many rows as time intervals and a selection
of 134 counters as columns: The feature data are provided with labels for eight
attack classes: the artificial attacks (DOS, SCAN11, SCAN44 and NERISBOTNET)
and some real activity that has already been observed and labeled in the original
data [8] (BLACKLIST, UDPSCAN, SSHSCAN and SPAM). Data can be found in csv,
excel, and matlab format. The data are available for download at https://codas.
ugr.es/animalicos/en/results under the entry ’UGR16 Feature data’ (accessed on
the 20 February 2025). This is the easiest format to use for anyone interested in the
development of new ML models from the data. We provide four variants of the feature
data, which are described in Table 2:

– UGR’16v1. In this version, the original (non-anonymized) Netflow logs from
the entire NOC period (March to June) were used to generate the feature data,
but the resulting data were completely anonymized. This dataset corresponds to
the same data that were utilized in previous studies [11] and in most works that
make use of UGR’16.

– UGR’16v2. Fuentes [12] discovered that the training data from June in the previ-
ous version contain real anomalies, which hinder the detection of botnet attacks
in the test set. To address this, we created a second version by simply discarding
the observations from June in UGR’16v1.

– UGR’16v3. In the first two versions, only unidirectional Netflow flows were
considered, which made interpreting the results more challenging. Therefore, we
generated a third version using the bidirectional flows from DF.2. Like UGR’16v2,
this version also excludes June from the training data.

https://codas.ugr.es/animalicos/es/daaas
https://codas.ugr.es/animalicos/en/results
https://codas.ugr.es/animalicos/en/results
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– UGR’16v4. Finally, to differentiate the effect of anonymization from the use of
bidirectional or unidirectional flows, we developed a fourth version, which is
equivalent to UGR’16v3 but uses unidirectional flows from DF.2 instead.

All previous versions used the same previously described approach to feature engi-
neering (FaaC).

Table 2. UGR’16 dataset variants.

Label Training Type of Flows Anonymized Flows

UGR’16v1 March to June Unidirectional No
UGR’16v2 March to May Unidirectional No
UGR’16v3 March to May Bidirectional Yes
UGR’16v4 March to May Unidirectional Yes

2.3. Comparison

By considering the four different versions of UGR’16 described previously, we can
assess the impact of various data preprocessing steps on the quality of anomaly detection
models. Specifically, our strategy allows us to evaluate the following factors:

• The impact of training data selection, by comparing the performance between
UGR’16v1 (which includes June) and UGR’16v2 (which excludes June).

• The effect of using bidirectional versus unidirectional flows, by comparing perfor-
mance between UGR’16v3 (bidirectional flows) and UGR’16v4 (unidirectional flows).

• The effect of data anonymization, by comparing the results between UGR’16v2 (gener-
ated from non-anonymized flows) and UGR’16v4 (from anonymized flows).

To assess the impact of data preprocessing on anomaly detection performance, as com-
pared to the influence of different ML methods, we employ two distinct approaches:
Multivariate Statistical Network Monitoring (MSNM) [13] and a radial basis function (RBF)
kernel-based one-class support vector machine (OCSVM) [14,15], which is a commonly
used kernel choice. MSNM represents a linear approach well suited to handling the highly
multivariate nature of FaaC features, while OCSVM, as a nonlinear method, has the ad-
vantage of capturing complex, nonlinear behavior in normal traffic patterns. Thus, both
methods have very different features that could, in principle, affect performance in a
significant way.

To evaluate anomaly detection performance across the various data and model vari-
ants, we calculate the false-positive rate (FPR) and true-positive rate (TPR) using the labeled
test dataset and plot receiver operating characteristic (ROC) curves to show the TPR as a
function of the FPR at different anomaly detection thresholds. This method is particularly
suitable for network security contexts, where balancing true positives and false positives
is essential [16,17]. We compare the ROC curves using the area under the curve (AUC)
metric, which quantifies the performance of the anomaly detector; ideally, the AUC should
approach 1, while an AUC around 0.5 indicates random performance.

2.4. Strategy for Explanation of the Results

We will use the Univariate-Squared (U-Squared) statistic [18] to interpret the differ-
ences in anomaly detection performance when using different dataset versions for model
training. U-Squared has superior diagnostic ability compared to other multivariate (multi-
feature) diagnosis tools and it has two main advantages: it is extremely simple and it is
model-agnostic2.
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The U-Squared statistic, like other diagnosis solutions [19], provides a discriminative
pattern for the attack in comparison to a reference. In our case, this reference is represented
by any of the versions of the UGR’16. To diagnose a certain anomaly type, represented
by a set of observations xn for n ∈ {1, ..., N} that contain such anomalies, we compute
the vectors of sample means µ and standard deviations σ of the reference dataset, where
xn, µ and σ are row vectors of length the number of features. Then, for each anomalous
observation xn, the U-Squared is calculated as follows:

d2
n = ((xn − µ)⊘ σ) · |(xn − µ)⊘ σ|T (1)

where the symbol ⊘ represents the Hadamard (element-by-element) division, and ∥∥
represents the absolute value. The accumulated U-Squared for the set of anomalous
observations is written as follows:

d2 = ∑
n

d2
n (2)

where vector d2 also represents the length and the number of features, and can be conve-
niently visualized using a bar plot. In this bar plot, high-magnitude bars (either positive or
negative) highlight the main ways in which the considered attack differs from the reference.
Positive (negative) bars mean that the attack shows significantly higher (or lower) values
than the reference for specific features.

The U-Squared statistic helps us to identify the feature subset that is most suitable for a
specific model and attack type. This is then analyzed statistically to evaluate its effectiveness
in detecting the anomaly. We will demonstrate that this approach can provide a simple
but complete interpretation of the performance differences between dataset variants in our
case study.

3. Experiments and Results
3.1. Influence of the Set of Observations

Figure 1 shows a comparison of the two anomaly detectors (MSNM and OCSVM)
when trained with the datasets UGR’16v1 and UGR’16v2, and with a sub-version of
UGR’16v2 (UGR’16v2 NoIRC) that will be discussed later. Figure 1a presents the general
ROC curves, obtained for the four types of artificial attacks, and Figure 1b represents the
AUCs per attack type. Performance differences between the two anomaly detectors are
minor in all cases. However, a significant difference emerges when June is included in the
training data (UGR’16v1) versus when it is excluded (UGR’16v2). This difference can be
mapped to one specific attack type, the NERISBOTNET. We hypothesize that this difference
is mainly caused by the anomaly detected in the background traffic of June, which is related
to suspicious activity through an MIRC channel [12].

To check our hypothesis, we compute the U-Squared statistics for the observations
in the test set that contains flows of the NERISBOTNET attack, and use UGR’16v1 and
UGR’16v2 as references, respectively. This is shown in Figure 2. When using UGR’16v1
as a reference (Figure 2a), we find that the NERISBOTNET attack is mainly characterized
by an excess in 3 out of the 134 features: sport_mds, dport_telnet and dport_irc. This
suggests that the number of flows with source port MDS, with destination port TELNET
and with destination port IRC are generally higher in observations where NERISBOTNET
attacks are taking place. However, when we use UGR’16v2 as a reference (Figure 2b),
the NERISBOTNET attack is mainly characterized by the amount of flows to or from
the IRC port3. The difference in U-Squared patterns between the two reference datasets
suggests that ML models trained on them will employ different methods to detect the
NERISBOTNET attack. These differences affect performance, as seen in the AUC results.
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Figure 1. ROC curve (a) and attack-type-based AUC results (b) for the data parsed from original
unidirectional flows in UGR’16v1 and UGR’16v2, and for a variant of the latter with no IRC features
(UGR’16v2 NoIRC).
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Figure 2. Comparison of U-Squared statistics for the NERISBOTNET attack using as a reference
UGR’16v1 (a) and UGR’16v2 (b).

To further investigate the reason behind the performance differences when using
UGR’16v1 and UGR’16v2 as a reference, in Figure 3, we present the time series of the
training data from March to June for a set of selected features, previously highlighted by
the U-Squared. All features present a change in tendency in June, which is especially clear
in the case of IRC features. The latter show the suspicious activity in the MIRC channel
found in [12]. When June is included in the reference (UGR’16v1), it informs the anomaly
detection models that this type of behavior is normal, and that future similar events should
not be flagged as an anomaly. This is the reason why, when using UGR’16v1 as a reference,
the IRC activity is not the most relevant feature for characterizing the NERISBOTNET
attack (Figure 2a).
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Figure 3. Time series from March to May (light blue color) and June (dark red color) for features:
dport_telnet (a), dport_irc (b) and sport_irc (c).

Figure 4 provides a set of boxplots comparing the distributions of normal observations
and NERISBOTNET observations in the test set, focusing on the same selected features
of Figure 3. Additionally, we include the outcomes of a t-test to evaluate whether there
is statistical evidence to support the increased presence of NERISBOTNET activity in
the corresponding feature. Notably, the feature dport_telnet, which was emphasized in
the original reference of UGR’16v1, does not exhibit statistically significant differences
between normal and NERISBOTNET observations. This lack of distinction is attributed
to the inclusion of the June anomaly as part of the “normal data”, which leads detectors
to incorporate such activity into the normality model. Consequently, this inclusion limits
the detectors’ ability to identify it as anomalous in future traffic. As a result, this feature
(and, by extension, UGR’16v1) leads to lower detection capabilities for the attack. However,
all IRC features show statistically significant differences. Therefore, we can conclude
that models that use UGR’16v2 as a reference will detect the presence of NERISBOTNET
attacks as significant changes in the IRC features, and will yield a high detection ability.
This conclusion is further supported by the fact that if we take UGR’16v2 as a reference,
but we delete the IRC features sport_irc and dport_irc from the data, the detection of
NERISBOTNET is poor, as illustrated in Figure 1 under the label “UGR’16v2 NoIRC”.
Additionally, a further inspection of raw flows using nfdump revealed extensive usage of
IRC port 6667 in the NERISBOTNET traffic, corroborating our previous observations.
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Figure 4. Boxplots of selected features in background traffic (Negative) versus NERISBOTNET traffic
(Positive).

This example underscores the importance of conducting a thorough assessment of data
quality in anomaly detection tasks, especially for unsupervised identification of unusual
patterns, a topic that has received limited attention but is crucial for effective performance
in ML applied to computer networks. In this real world example, careful selection of
relevant observations and features had a far more significant impact on detection results
than the choice of ML method.
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3.2. Bidirectional vs. Unidirectional Flows

Figure 5 displays the performance results of anomaly detectors on datasets UGR’16v3
and UGR’16v4, as well as on a combination of both datasets that will be discussed later.
Across all tests, the performance difference between the two detectors, MSNM and OCSVM,
is negligible. However, there is a noticeable performance difference depending on whether
bidirectional or unidirectional flows are used, with unidirectional flows generally perform-
ing better. This performance disparity is particularly evident when it comes to detecting
DOS attacks. Therefore, as in the previous analysis, even minor decisions in data prepa-
ration, such as whether to apply an nfdump flag when parsing flows, can have a more
substantial impact on detection performance than the choice of the ML tool itself. Figure 5b
also indicates that bidirectional flows perform slightly better when it comes to detect-
ing NERISBOTNET attacks, implying that the most effective training dataset may vary
depending on the specific attack being targeted.
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Figure 5. ROC curve (a) and attack type-based AUC results (b) for the data parsed from
anonymized bidirectional (UGR’16v3) and unidirectional (UGR’16v4) flows, and a combination
of both (UGR’16v3v4).

To shed some light into the observed differences in the detection of DOS attacks,
we computed the U-Squared for the observations with DOS attacks using UGR’16v3 and
UGR’16v4 as references (Figure 6). Again, we found different patterns of characteriza-
tion depending on the reference dataset. When bidirectional flows were used, the DOS
attacks were characterized by flows with destination ports HTTP and TELNET. Statistically
significant differences between normal observations and those containing DOS attacks
confirmed this characterization (Figure 7). However, upon examining the raw flows labeled
as DOS attacks using nfdump, we found that these flows only involve destination port
HTTP. The correlation between DOS attacks and TELNET activity is confirmed in Figure 8.
As shown in the Figure, every time there is a DOS attack, we can see an increase in both
HTTP activity (due to the attacking flows themselves) and TELNET activity (which is not
part of the flows that are labeled as attacks). We believe this TELNET activity may have
been erroneously introduced by the research group during the UGR’16 dataset generation.
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Figure 6. Comparison of U-Squared statistics for the DOS attack using UGR’16v3 (a) and UGR’16v4
(b) as the references.
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Figure 7. Boxplots of selected features in background traffic (negative) versus DOS traffic (positive)
in UGR’16v3.
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Figure 8. Time series of the DOS Attacks (top), of feature dport_http in UGR’16v3 (middle) and of
feature sport_telnet in UGR’16v4 (bottom).
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When we use unidirectional flows (UGR’16v4), the DOS attacks are only characterized
by the activity in the TELNET source port (Figure 6b). This activity represents the flows
from the TELNET server to the client. Figure 9 shows this characterization is statistically
significant but also of high quality: the activity of TELNET source port in normal observa-
tions is almost null. This result explains the improved performance of anomaly detection
models when using unidirectional flows for DOS attacks. When we employ bidirectional
flows instead, both client–server and server–client flows are combined in such a way that
the detection ability is reduced, since the resulting pattern in background traffic is less
negligible (Figure 7).
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Figure 9. Boxplot of sport_telnet in background traffic (negative) versus DOS traffic (positive)
in UGR’16v4.

We repeated the U-Squared analysis for the observations including NERISBOTNET
attacks (Figure 10). For this attack, unlike in the DOS attacks, the bidirectional flows provide
a better detection performance. Using as a reference UGR’16v3, the U-Squared points to
‘sport_irc’ as the main feature of the attack4. If otherwise UGR’16v4 is used, both ‘sport_irc’
and ‘dport_irc’ are deemed relevant. While all aforementioned features, regardless of the
reference, yield statistically significant results, according to the AUC values in Figure 5,
using bidirectional flows is more effective in this case.
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Figure 10. Comparison of U-Squared statistics for the NERISBOTNET attack using as a reference
UGR’16v3 (a) and UGR’16v4 (b).

Given that the convenience of the use of unidirectional or bidirectional flows is attack-
specific, we can always combine both set of features in a single dataset with twice the
number (268) of features. We name such a dataset UGR’16v3v4. When we do so, the perfor-
mance is improved in general terms, as shown in Figure 5.
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3.3. Anonymization

UGR’16v4 represents the anonymized version of UGR’16v2. The performance
results for UGR’16v4 are slightly better than those achieved for UGR’16v2 (compare
Figures 1 and 5). However, it should be noted that in the original versions of UGR’16
(UGR’16v1 and UGR’16v2), the real anomalies that were detected (e.g., SPAM) [8] were
discarded at the flow level prior to the parsing step, while in new versions (UGR’16v3
and UGR’16v4), corresponding 1-minute observations were omitted after the parsing step.
If we remove the corresponding observations from UGR’16v2, the AUC results are actually
better than for UGR’16v4, once again demonstrating that understanding the impact of data
preprocessing on the final quality is instrumental for a sound interpretation of the results.

3.4. Assessing the Test Labeling for False Negatives

We can use the same general interpretation approach for background observations that
obtain a high anomaly score when using a reference dataset. As an example, in Figure 11,
we present the anomaly scores for the MSNM model trained using UGR’16v4, with circles
highlighting the location of the labeled attacks. We use dots to highlight the background
observations that obtain an anomaly score above 100, which are false-negative candidates
(that is, they are labeled as normal observations when in reality they may be affected by
some form of attack). We will focus on an interval with 13 consecutive instances of this
type of observation, starting at ‘201608040948’.
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Figure 11. Time series of the attacks (top) and of the anomaly score by MSNM in UGR’16v4 (bottom).

Inspecting this period with the U-Squared statistic (Figure 12) and UGR’16v4 as a
reference, we found that the pattern of anomaly was associated with the destination port of
the gopher and finger protocols. Comparing the rest of background traffic with this period
in those specific features, we found a clear and statistically significant excess with regard to
the use of the protocols in the period (Figure 13). Inspecting the raw flows of the anomaly
with nfdump, we found one device that was subtly scanning for open ports in the network.
Clearly, this corresponds to malicious activity and, as such, the labeling is incorrect and the
observations are indeed false negatives. We found similar results in other analyzed periods.
It is important to note that the accuracy of labeling significantly impacts the interpretation
of results when using ROC/AUC values. To some extent, this is a similar problem to the
one associated with the anomaly in June, which was mislabeled as ’normal’ background
traffic. In this case, however, mislabeling in the test dataset affects the reliability of the
ROC/AUC.
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Figure 12. Comparison of U-Squared statistics for the anomalous period detected in UGR’16v4.

Notice that mislabeling is a general problem when dealing with real data, particularly
in massive network datasets. Expecting a real dataset to be perfectly labeled can be generally
regarded as a naive assumption. We need tools to identify this situation, particularly when
it is dramatic, and a good understanding of its consequences (loss of reliability of ROC
results) is required.

1 2

0

200

400

600

 d
p
o
rt

_
g
o
p
h
e
r

(a) Ttest p−value < 0.01
1 2

0

1000

2000

3000

4000

5000

 d
p
o
rt

_
fi
n
g
e
r

(b) Ttest p−value < 0.01

Figure 13. Boxplot of dport_gopher (a) and dport_finger (b) in background traffic (negative) versus
the detected period (positive) in UGR’16v4.

4. Conclusions
In this paper, we present four derived variants of the UGR’16 dataset, a real-world

network dataset widely recognized as a benchmark in the field of network anomaly detec-
tion. Our work primarily focuses on these dataset variants, aiming to evaluate the impact
of customary data preprocessing steps on anomaly detection performance, as well as the
role of different anomaly detection models. The motivation of these experiments is that a
vast amount of the literature on this topic is focused on exploring and improving modeling
variants, while data preprocessing and data quality assessment are regarded minor topics,
which do not deserve as much research attention. However, the data from this case study
demonstrates that data preprocessing can significantly influence performance outcomes,
sometimes even more so than the choice of detection model. As this case study serves as
both a benchmark for research and a realistic scenario, we conclude that the community
should focus more on (automatic) data quality assessment.

Furthermore, we introduce an approach to investigate the reasons behind disparate
performance results when using different dataset variants in a network anomaly detection
context. In this approach, we employ the Univariate-Squared statistic to identify the pattern
of a given anomaly, and the statistical/visualization assessment of this pattern with t-
tests, boxplots and time series visualizations. Analyses like the one performed in this
case study can be useful for identifying the dataset with the highest quality for anomaly
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detection among a set of variants considered and to understand the reasons behind its
superior performance.
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Notes
1 https://nesg.ugr.es/nesg-ugr16/, acessed on the 22 February 2025.
2 While the U-Squared is theoretically model-agnostic, it is consistent with any linear multivariate model with squared detection

statistics, like MSNM.
3 Recall both UGR’16v1 and UGR’16v2 use unidirection flows. This means that the flows in the direction from the server to the

client identify the server port as the source of the communication.
4 Inspecting the raw bidirectional flows with nfdump, the attacks are communications in which the server part is IRC and the

client port uses a lower number than the server port. For this reason, when parsing bidirectional flows, nfdump mistakes IRC as
the client (source) port. When parsing unidirectional flows, we see a separated amount of communications in both directions.
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