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Abstract: Inflammatory bowel disease (IBD) management stands at the cusp of a transfor-
mative era, with recent breakthroughs heralding a paradigm shift in treatment strategies.
Traditionally, IBD therapeutics revolved around immunosuppressants, but the landscape
has evolved significantly. Recent approvals of etrasimod, upadacitinib, mirikizumab, and
risankizumab have introduced novel mechanisms of action, offering renewed hope for
IBD patients. These medications represent a departure from the status quo, breaking
years of therapeutic stagnation. Precision medicine, involving Artificial Intelligence, is
a pivotal aspect of this evolution, tailoring treatments based on genetic profiles, disease
characteristics, and individual responses. This approach optimizes treatment efficacy,
and paves the way for personalized care. Yet, the rising cost of IBD therapies, notably
biologics, poses challenges, impacting healthcare budgets and patient access. Ongoing
research strives to assess cost-effectiveness, guiding policy decisions to ensure equitable
access to advanced treatments. Looking ahead, the future of IBD management holds great
promise. Emerging therapies, precision medicine, and ongoing research into novel targets
promise to reshape the IBD treatment landscape. As these advances continue to unfold,
IBD patients can anticipate a brighter future, one marked by more effective, personalized,
and accessible treatments.

Keywords: inflammatory bowel disease; Crohn’s disease; ulcerative colitis; precision
medicine; artificial intelligence

1. Introduction
Crohn’s disease (CD) and Ulcerative Colitis (UC), both chronic inflammatory bowel

diseases (IBDs), are conditions characterized by chronic relapsing-remittent inflammation
of the gastrointestinal tract, significantly impacting patients’ quality of life. Despite the
availability of conventional immunosuppressant-based therapies, managing IBDs remains a
challenge due to limitations in their effectiveness and the potential for serious side effects [1].
This has sparked a critical need for novel treatment approaches that can effectively control
the disease and improve patient outcomes.
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In recent years, the landscape of IBD management has witnessed a promising
paradigm shift, driven by the emergence of breakthrough therapies and the growing
adoption of precision medicine principles. Precision medicine revolutionizes treatment by
tailoring therapies to individual patient characteristics, such as genetic profiles, disease
severity, and responses to previous therapies [2]. This personalized approach holds the
promise of unlocking improved treatment efficacy and reducing adverse effects, providing
hope for patients who have struggled with conventional therapies. Alongside precision
medicine, the development of novel therapies with distinct mechanisms of action has
further transformed IBD management [3,4]. Despite these advancements, the cost of IBD
therapies remains a significant barrier, particularly for biologics, which is a reason why the
biosimilar market has expanded in the last year. Ongoing research is dedicated to assessing
the cost-effectiveness of these treatments and informing policy decisions to ensure equitable
access for all patients [5]. This review aims to provide a comprehensive overview of emerg-
ing therapies, the role of precision medicine, and the integration of artificial intelligence in
IBD management. By highlighting the most recent advancements, current limitations, and
potential future directions, we seek to address gaps in knowledge regarding real-world
applications, therapeutic challenges, and accessibility issues that impact patient care.

2. Novel Therapies and Emerging Targets
Significant strides have been made in the development of novel treatments for IBD,

each targeting specific pathways implicated in the pathogenesis of involved in CD or UC [6].
The mechanism of action and clinical trials of promising novel therapies in CD and UC are
summarized in Table 1 and Figure 1.

Table 1. Comprehensive review of approved advanced molecules and active phase 2/3 trials in IBD.

Drug Mechanism of Action Indication Phase or Approval Identification Number
Infliximab Anti-TNFα CD and UC Approved by EMA and FDA

Adalimumab Anti-TNFα CD and UC Approved by EMA and FDA
Certolizumab Anti-TNFα CD Approved by FDA
Golimumab Anti-TNFα UC Approved by EMA and FDA

Vedolizumab Anti-α4β7 Integrin CD and UC Approved by EMA and FDA
Ustekinumab Anti-IL-12/23 CD and UC Approved by EMA and FDA
Risankizumab Anti-IL-23 CD and UC Approved by EMA and FDA

Guselkumab Anti-IL-23 UC
CD

Approved by FDA
Ongoing phase 3 (GALAXI)

NCT05347095
NCT06408935

Mirikizumab Anti-IL-23 UC
CD

Approved by EMA and FDA
Published phase 3
awaiting approval

NCT03926130

Tofacitinib JAK Inhibitor UC Approved by EMA and FDA
Filgotinib JAK Inhibitor UC Approved by EMA

Upadacitinib JAK Inhibitor CD and UC Approved by EMA and FDA

Ozanimod S1P Modulator UC
CD

Approved by EMA and FDA
Ongoing Phase 3

NCT03440385
NCT03440372

Etrasimod S1P Modulator UC
CD

Approved by EMA and FDA
Ongoing Phase 3 NCT04173273

Tamuzimod
(VTX 0002) S1P Modulator UC Terminated Phase 2 NCT05156125

Spesolimab
(BI 655130) Anti IL-36R UC

CD
Ongoing Phase 2
Ongoing Phase 2

NCT03482635
NCT03752970

Olamkicept
(TJ301) Anti IL-6 trans-signaling UC Completed Phase 2

No phase 3 trial registered NCT03235752

Apremilast PDE4 inhibitor UC Completed Phase 2
No phase 3 trial registered NCT02289417

Obefazimod
(ABX464) Upregulator of miR-124 UC Ongoing Phase 3 NCT05507203

NCT05507216

PL-8177 Melanocortin-1
receptor agonist UC Ongoing Phase 2 NCT05466890

Lutikizumab Anti IL-1a and IL-1b UC
CD

Ongoing Phase 2
Ongoing Phase 2

NCT06257875
NCT06548542
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Table 1. Cont.

Drug Mechanism of Action Indication Phase or Approval Identification Number
Vixarelimab Anti IL-31 and oncostatin M UC Ongoing Phase 2 NCT06137183
Lanraplenib
(BI 3032950)

Inhibition of spleen tyrosine
kinase (SYK) UC Ongoing Phase 2 NCT06636656

Tilpisertib fosmecarbil
(GS-5290)

Serine/threonine
kinase inhibitor UC Ongoing Phase 2 NCT06029972

SAR443122 serine/threonine
protein kinase 1 UC Ongoing Phase 2 NCT05588843

Rosnilimab PD-1 checkpoint agonist UC Ongoing Phase 2 NCT06127043

SPH3127 Renin inhibitor UC Ongoing Phase 2 NCT05019742
NCT05770609

Eltrekibart (DB19017) CXCR1 and CXCR2 ligands UC Ongoing Phase 2 in
association with mirikizumab NCT06598943

ALTB-268 Tetravalent PSGL-1
agonist antibody UC Ongoing Phase 2 NCT06109441

ZYIL1 NLRP3
inflammasome inhibitor UC Ongoing Phase 2 NCT06398808

Dupilimumab Anti IL-4R UC Ongoing Phase 2 NCT05731128
Mufemilast
(Hemay005) PDE4 inhibitor UC Ongoing Phase 2 NCT05486104

Vorinostat Histone deacetylase inhibitor CD
Ongoing phase 1/2(in

combination
with ustekinumab)

NCT03167437

Aldesleuskin IL-2 inhibitor CD Ongoing Phase 1/2 NCT04263831
AGMB-129 ALK5 inhibitor Fibrostenotic CD Ongoing Phase 2 NCT05843578
AZD7798 Anti CCR9 CD Ongoing Phase 2 NCT06450197

Abrilumab Anti α4β7 integrin UC Completed Phase 2
No phase 3 trial registered NCT01694485

GS-1427 Anti α4β7 integrin UC Ongoing Phase 2 NCT06290934
AJM-300 Anti α4 UC Completed Phase 3 NCT03531892

ABBV-382 Anti α4β7 integrin CD Ongoing Phase 2 NCT06548542

MORF-057 Oral anti α4β7 UC
CD

Ongoing Phase 2
Ongoing Phase 2

NCT05611671
NCT06226883

Ontamalimab
(PF-00547659) Anti-MAdCAM-1 CD and UC Completed Phase 3

NCT03259334
NCT03259308
NCT03290781
NCT03559517
NCT03566823
NCT03627091

Tamuzimod S1P modulator UC Ongoing Phase 2 NCT05156125

Ivarmacitinib JAK inhibitor CD
UC

Completed Phase 2
Ongoing Phase 3

NCT03677648
NCT05181137

Brepocitinib JAK inhibitor UC Completed Phase 2
No Phase 3 trial registered NCT02958865

OST-122 JAK3/TYK2/ARK5 UC Completed Phase 1b/2a NCT04353791
Zasocitinib (previously

TAK-279) TYK2 inhibitor UC
CD

Ongoing Phase 2
Ongoing Phase 2

NCT06254950
NCT06233461

OPRX-106 Anti TNF UC Completed Phase 2
No Phase 3 trial registered NCT02768974

RVT-3101 (previously
PF-06480605) Anti TL1A UC Ongoing phase 2b NCT04090411

Tulisokibart (MK-7240,
previously known as

PRA-023)
Anti TL1A UC

CD
Ongoing Phase 3
Ongoing Phase 3

NCT06052059
NCT06651281
NCT06430801

TEV-48574 Anti TL1A UC
CD

Ongoing Phase 2
Ongoing Phase 2

NCT05668013
NCT05499130

Note: The data presented in this table were extracted from ClinicalTrials.gov by filtering for all currently active
clinical trials investigating advanced new drugs for inflammatory bowel disease. The search included phase 2 and
phase 3 trials, and was performed using relevant keywords and condition filters. Only interventional studies with
ongoing recruitment or active status were considered. Approved drugs are shown in bold. The information was
retrieved and summarized as of 3 December 2024.
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Figure 1. Interplay between mucosal immunology and pharmaceutical mechanisms in IBD. Drugs
written in black are approved for IBD treatment, whereas those in red are currently in active phase
2/3 trials.

Interleukin (IL) inhibitors represent an important class of drugs that selectively target
key cytokines involved in IBD inflammation [7]. For instance, risankizumab, guselkumab,
and mirikizumab all aim to disrupt the IL-23 pathway [8–10]. IL-23 acts via JAK-STAT
pathway promoting Th17 lymphocytes differentiation that induces further IL production,
innate immune response, and leukocyte migration. Another emerging approach involves
the selective inhibition of IL-36, a cytokine from the Il-1 family. IL-36 R signaling is thought
to amplify the proliferation of gut cell populations that further promote recruitment and
activate intestinal inflammation. Spesolimab, a humanized monoclonal antibody targeting
the IL-36 receptor, works by blocking IL-36 signaling, thereby dampening the inflammatory
response in UC and CD patients [11].

Selective inhibitors of IL-6 trans-signaling, such as olamkicept (sgp130Fc), offer another
avenue for targeted therapy in IBD [12]. By specifically targeting IL-6 trans-signaling,
these drugs disrupt the inflammatory cascade while minimizing potential side effects
associated with global IL-6 blockade. Preliminary studies have demonstrated the clinical
effectiveness of olamkicept in UC patients, paving the way for further investigation in
larger clinical trials [13]. In addition, IL-33, a potent inflammatory cytokine, acting as both
a pro-inflammatory factor and a transcriptional regulator, could be an interesting objective
in future treatments due to its roles in innate and adaptive immunity [14]. Similarly, IL-1α
and IL-1β, known pain mediators, play important roles in the pathogenesis of certain
autoimmune diseases. Lutikizumab, an anti-IL-1 agent, is currently in phase 2 trials for UC
and CD [15].

Therapies targeting TNF-alpha have long been cornerstone treatments for IBD. The
TNF family includes a large number of cytokines, of which TNF-alpha is the best known.
That being said, the latest advances have focused on tumor necrosis factor-like cytokine
1A (TL1A), another TNF molecule that is involved in the inflammatory cascade. Recent
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research has revealed that TL1A acts as a regulator mucosal immunity, and is involved in the
immunological pathways that contribute to the development of IBD [16]. TL1A levels are
elevated in the colonic mucosa of patients with UC and are associated with the severity of
the disease. Thus, inhibiting TL1A could serve as a potential therapeutic target for treating
inflammatory diseases, as seen in two preliminary studies in patients with UC [17,18].
Additionally, advancements are underway with emerging oral anti-TNF treatments like
OPRX-106 and V565, promising new avenues for managing the condition [19,20]. These oral
alternatives represent innovative approaches that could offer increased convenience and
potentially enhanced effectiveness and treatment adherence for patients dealing with IBD.
Several studies have corroborated a preference for oral treatments over other administration
methods in patients with IBD. This has driven research efforts toward the development
of effective oral therapies [21]. One such approach, currently in an experimental phase,
involves the use of a robotic pill. The robotic pill is a novel oral device that navigates
the gastrointestinal tract and releases its payload, such ustekinumab, directly to the small
intestine [22]. It is nearly fully absorbable, minimizing the need for removal or other
interventions. Additionally, in a more advanced stage, JNJ-77242113, a potent oral anti-
IL-23 agent has been developed, which is showing promising efficacy in preliminary
studies [23].

Beyond cytokine modulation, therapies targeting adhesion molecules have emerged
as promising strategies for the management of IBD. Agents such as vedolizumab, currently
approved for the treatment of both UC and CD, as well as investigational drugs like
abrilumab, ontamalimab, and AJM-300, disrupt critical pathways involved in inflammation
and immune cell trafficking, thereby modulating the disease process [24–26].

Looking ahead, the landscape of IBD management is poised for further transforma-
tion with the advent of sphingosine-1-phosphate receptor (S1PR) modulators, toll-like
receptor (TLR) agonists, and microRNA-based therapies [27]. Drugs like ozanimod and
etrasimod [28,29] are both currently approved for UC target S1PR receptors. By modulating
S1PR signaling, these drugs have an anti-inflammatory function via sequestration of T
cell subsets in the lymphoid tissues and prevention of gut homing in UC patients [30]. In
addition, etrasimod recently demonstrated significant improvements versus placebo in
patients with isolated proctitis [31].

JAK pathways have been demonstrated as crucial players in IBD [32]. Tofacitinib,
filgotinib, and upadacitinib represent a significant advancement in IBD management, offer-
ing effective induction and maintenance of remission, especially for patients unresponsive
to conventional therapies [33–35]. New generation JAK inhibitors, including izencitinib,
ivarmacitinib, and peficitinib, have shown promise in clinical trials, mainly for UC [36–38].

Researchers are exploring various avenues for the treatment of IBD. Toll-like recep-
tor 9 (TLR9) agonists might be of use in UC patients [39]. Cobitolimod is a synthetic
single-stranded DNA molecule containing a CpG motif, a specific DNA sequence that
TLR-9 recognizes as bacterial. By binding to TLR-9 on cells like intestinal Treg and B lym-
phocytes and antigen-presenting cells (APCs), cobitolimod triggers the release of potent
anti-inflammatory cytokines, including IL-10 and type I interferons, helping to reduce in-
flammation [40]. Despite early promising results, the development of cobitolimod has been
temporarily suspended, reflecting the complexities of advancing such treatments to broader
clinical use. Similarly, phosphodiesterase (PDE) inhibitors, particularly PDE4 inhibitors
like apremilast, have garnered attention for their potential to alleviate UC activity. An
overexpression of PDE4 isoforms and a defective cAMP-mediated pathway were initially
identified in active UC patients. Therapeutic inhibition of PDE4 via apremilast effectively
modulated cAMP-dominant signaling through protein kinase A (PKA) and cAMP-response
element-binding protein (CREB). This intervention led to clinical improvement in chronic
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UC, demonstrated by reduced mucosal ulcerations, decreased tissue fibrosis, and dimin-
ished inflammatory infiltration [41,42].

Recent studies have also focused on microRNAs (miRNAs) and their role in regulating
gene expression in IBD. ABX464 (obefazimod) facilitates the targeted cutting and joining of
a specific long non-coding RNA, resulting in the production of an anti-inflammatory mi-
croRNA known as miR-124. This new mechanism of action could help in inducing clinical
remission in moderate-to-severe UC patients by reversing the expression of inflammatory
cytokines [43].

Numerous phase 2 studies are investigating innovative treatments for UC, each with
pioneering mechanisms of action. Lanraplenib, a spleen tyrosine kinase (SYK) inhibitor, is
being tested for its ability to modulate immune cell signaling in B cells, monocytes, and
macrophages, crucial cells in autoimmune disease pathways [44]. Additionally, receptor-
interacting serine/threonine kinase inhibitors, such as tilpisertib fosmecarbil and ecli-
tasertib (SAR443122), target RIPK1/2 pathways, which are central to immune responses
through the nucleotide-binding oligomerization domain (NOD) and TLRs [45]. RIPK,
expressed in antigen-presenting cells like dendritic cells and macrophages, responds to
microbe-associated molecular patterns recognized by NOD1, NOD2, and TLRs. This in-
teraction activates RIPK2, leading to the release of pro-inflammatory cytokines, including
TNF-α, IL-6, and IL-12/23p40, which are central to the inflammatory response in UC.
Another novel approach is rosnilimab, a PD-1 agonist antibody, designed to inhibit T-cell
proliferation and cytokine secretion by depleting PD-1high T-cell subsets [46]. SPH3127,
which targets the renin-angiotensin system, offers potential anti-inflammatory and an-
tifibrotic effects, and is also under investigation [47]. Eltrekibart, a monoclonal antibody
blocking CXCR1/2, aims to disrupt neutrophil extracellular trap formation, and is currently
being tested in combination with mirikizumab [48]. Furthermore, leiolizumab (ALTB-268),
a PSGL-1 agonist antibody, functions as an immune checkpoint enhancer to reduce T-cell
effector activity, encouraging T-cell exhaustion [49]. Lastly, ZYIL1 targets the NLRP3 in-
flammasome, a complex that activates pro-inflammatory cytokines IL-1β and IL-18, aiming
to control inflammation at the cellular level in UC [50]. For patients with mild to moderate
UC who do not respond to 5-aminosalicylic acid (5-ASA), therapeutic options are scarce.
MH002, a novel biotherapeutic product, consists of a carefully selected consortium of six
non-pathogenic, commensal bacteria. These bacteria are well-characterized for their ability
to modulate the immune response, promote tissue repair, and reinforce the integrity of
the gut barrier, offering a potential new treatment pathway for UC, as seen in a recent
randomized clinical trial [51].

New mechanisms of action are being investigated for treating CD, including immune
system modulation by agents like vorinostat. Vorinostat, a histone deacetylase inhibitor
(HDACi) with anti-cancer properties, has shown potential for regulating immune responses,
though its precise mechanisms remain unclear. Studies have indicated that it reduces
inflammation by inhibiting monocyte activation, T-cell immune responses, and dendritic
cell functions, as well as suppressing Th1/Th17 cells and TNF-α levels, suggesting its utility
in autoimmune diseases and conditions such as graft rejection [52]. Additionally, fibrosis-
targeting therapies are gaining attention, particularly for fibrostenosing complications.
AGMB-129, an oral GI-restricted small molecule inhibitor of ALK5 (TGFβR1), is designed
to inhibit TGFβ, a key regulator of fibrosis, specifically within the GI tract [53].

Despite advances in medical therapy, surgery remains essential for refractory IBD
or complications such as strictures, fistulas, and colorectal cancer. In CD, laparoscopic
ileocecal resection is a viable alternative to anti-TNF therapy in selected cases, with lower
recurrence rates [54]. Early bowel resection has also been associated with reduced long-
term recurrence and a lower need for postoperative biologics. In UC, total proctocolectomy
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with ileal pouch–anal anastomosis (IPAA) remains as the preferred surgical approach for
medically refractory patients [55]. Minimally invasive techniques, including stricturo-
plasty and endoscopic balloon dilation, provide alternatives to resection in Crohn’s-related
strictures [56]. Optimized perioperative care and multidisciplinary management have
significantly improved surgical outcomes in IBD [57].

The evolving landscape of IBD treatment is marked by promising advancements
across various therapeutic avenues. Additionally, while challenges persist, such as meeting
primary endpoints consistently in clinical trials, the ongoing pursuit of novel treatments
underscores the dedication to improving outcomes for patients with IBD. As research
progresses and new insights emerge, the hope is to continue refining therapeutic strate-
gies, ultimately enhancing the quality of life for individuals living with these chronic
inflammatory conditions.

3. The Rise of Precision Medicine in IBD Management
Precision medicine, a rapidly evolving approach to healthcare, aims to tailor treatment

to individual patient characteristics, unlocking personalized treatment strategies that
optimize efficacy and minimize adverse effects. This personalized approach will very likely
transform IBD management [58]. Despite advancements in molecular biology and omics
technologies (genomics, proteomics, metagenomics, and metabolomics), understanding
IBD’s complexity remains difficult, largely due to the heterogeneity of the data and the lack
of standardized analytical pipelines [59].

Artificial intelligence (AI) has emerged as an outstanding tool to address some of these
challenges. IBD entails great complexity before diagnosis, and this becomes even more
complex once the disease is diagnosed, due to the relapsing course, progressiveness, and
lack of response, among other scenarios. Of particular interest is AI’s role in identifying
non-invasive biomarkers. AI has been applied to various omics studies in IBD, including
genomics, transcriptomics, and microbiomics, with the goal of improving diagnosis, predict-
ing therapeutic response, and understanding disease progression [60]. In genomic studies,
AI models leveraging genome-wide association studies’ (GWASs) data have demonstrated
better performance than whole-exome sequencing (WES) in distinguishing CD from UC,
likely due to the larger sample sizes available in GWASs [61]. Transcriptomic studies using
gene expression data from microarrays and RNA sequencing have been effective in differ-
entiating between UC, healthy controls, and other diseases [62,63]. These advancements
highlight AI’s potential utility in the diagnostic phases of IBD management by improving
accuracy and enabling earlier disease classification.

Genetic testing is being utilized to identify patients with certain genetic variants asso-
ciated with severe IBD, who may benefit from more intensive therapies [64]. For example,
AI models based on single-cell RNA-seq data have been applied to identify inflammatory
phenotypes and predict responses to biologic therapies like vedolizumab [65]. Addition-
ally, personalized biologics, designed to selectively target specific immune pathways, are
demonstrating remarkable efficacy in treating subsets of patients with IBD [66]. However,
in fields like proteomics, AI applications are less advanced, and most studies still rely on
traditional statistical approaches.

In the study of the intestinal microbiota, AI has been used to integrate microbiomic
data with clinical and demographic parameters, showing potential for predicting disease
progression and therapy response [67]. AI is also making strides in histological and endo-
scopic evaluations, which are crucial for IBD diagnosis and monitoring. AI can accurately
identify microscopic disease features, predict histological remission, anticipate flare-ups,
and optimize therapeutic management. AI-enhanced endoscopy could improve the de-
tection of subtle mucosal changes, aiding diagnosis, real-time disease activity assessment,
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and evaluation in clinical trials. However, there remain challenges in developing AI tools
that can be broadly applied due to selection bias and data variability [68,69]. In the coming
years, international data-sharing initiatives will be key to training AI on comprehensive,
unbiased datasets that better reflect the diversity of IBD patient populations.

One of the most validated applications of AI in IBD management is in endoscopic
evaluation. AI-assisted systems such as EndoBrain® and CAD-EYE® have been devel-
oped to enhance the detection of dysplasia and inflammatory lesions in patients with UC,
improving diagnostic accuracy and reducing interobserver variability [70]. Additionally,
convolutional neural networks (CNNs) have been trained to identify endoscopic disease ac-
tivity with accuracy comparable to expert gastroenterologists. Recent studies demonstrate
that AI models can automate the classification of endoscopic severity using standardized
scoring systems, including the Mayo Endoscopic Score and the Ulcerative Colitis Endo-
scopic Index of Severity (UCEIS), offering an objective and reproducible assessment of
disease progression [71,72].

Another emerging application of AI in IBD management is the use of generative AI
models, such as ChatGPT and other large language models (LLMs) (Gemini, LLaMA,
Deepseek. . .), to assist patients and healthcare professionals. These AI-driven tools have
been explored for patient education, symptom tracking, and personalized treatment guid-
ance. Chatbots powered by generative AI can provide 24/7 support to patients, answer-
ing questions about medications, dietary recommendations, and disease management
strategies, improving adherence to treatment and reducing the burden on healthcare
providers [73]. Moreover, AI-assisted clinical decision support systems are being devel-
oped to integrate patient-reported symptoms, laboratory data, and imaging findings to
optimize treatment adjustments in real time [74].

As these tools evolve, standardized AI-based methods are expected to improve
histopathology workflows, enabling more precise differentiation between IBD subtypes and
between IBD and non-IBD conditions. The integration of multi-omics data with AI offers
tremendous potential, but real-world clinical applications are still emerging. Nevertheless,
AI’s future role in IBD management looks promising, with the potential to enhance per-
sonalized treatment strategies, predict disease progression, and refine diagnostic accuracy.
Precision medicine, along with advancements in AI and other novel therapies, offers the
potential to improve the quality of life for IBD patients, aiming to reduce the disease’s
impact and better manage symptoms.

4. Navigating the Financial Landscape of IBD Management
In the landscape of IBD management, the complexities extend beyond medical intri-

cacies to financial challenges. Despite significant strides in therapeutic options, including
the advent of biologics, the burden of managing IBD remains substantial, primarily due to
the rising costs associated with treatment modalities [75,76]. This conundrum presents a
multifaceted dilemma for healthcare systems, providers, and, most importantly, patients.

At the forefront of the cost challenge are biologics, which have redefined the treatment
paradigm for IBD. While these therapies offer unprecedented efficacy and the promise of
sustained remission, their high prices often place them beyond the reach of many patients
and strain healthcare budgets. Factors contributing to the high costs of biologics include
complex manufacturing processes, stringent intellectual property protections, and the
significant demand for these life-changing treatments [77]. Consequently, patients with
limited financial means face formidable barriers in accessing these potentially life-saving
therapies, exacerbating health disparities and compromising treatment outcomes. The
cost of IBD care continues to rise, driven largely by the increasing use of biologics and
small-molecule therapies, which now account for 75% of total CD and 50% of UC costs
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within five years of diagnosis [78]. While these treatments have significantly improved
patient outcomes, their high cost poses challenges for healthcare sustainability, particularly
in regions with limited drug price regulation.

Biosimilars present a viable solution, offering comparable efficacy at significantly
reduced prices [79]. Denmark achieved an 83% cost reduction in adalimumab expenditures
within three months of biosimilar adoption [80], while Canada reported 20–50% savings in
drug expenses. Cost-effectiveness studies show biosimilars can reduce treatment costs by
30–50% compared to originator biologics, increasing accessibility without compromising
clinical outcomes [81]. However, regulatory barriers and reimbursement policies in some
regions continue to slow their widespread adoption. Looking ahead, the introduction
of new biosimilars, such as ustekinumab biosimilars and tofacitinib generics, alongside
emerging treatments, is anticipated to influence cost reduction in IBD management. By
embracing these innovations and implementing cost-effective strategies, healthcare systems
could better meet the needs of patients with IBD while ensuring sustainable resource
allocation. However, successful integration of biosimilars into clinical practice necessitates
robust regulatory frameworks, clinician education, and patient engagement initiatives to
foster confidence and acceptance [82].

To enhance cost sustainability, early treat-to-target strategies, telemedicine, and policy
reforms are essential. Multidisciplinary care models, the introduction of AI, and remote
patient monitoring have shown cost savings by reducing hospitalizations and emergency
visits, while price negotiations and biosimilar incentives could further optimize healthcare
spending [83]. As treatment advances, a balance between innovation and affordability is key
to ensuring equitable access to effective IBD therapies. By fostering collaboration among
stakeholders, investing in research and development, and embracing progressive policies,
we can pave the way for a future where all individuals affected by IBD have equitable access
to the full spectrum of treatment options, irrespective of their socioeconomic status [5].
Through collective action and unwavering commitment, we can navigate the financial
landscape of IBD management with compassion, integrity, and innovation, ensuring that
no patient is left behind in their journey towards health and wellness.

5. Ensuring Safety in IBD Treatment
As the landscape of IBD management continues to evolve, concerted efforts are essen-

tial to strike a delicate balance between advancing therapeutic innovation and ensuring
affordability, accessibility and safety. Clinical trials recruitment is becoming more and
more complex for a number of reasons, among which placebo use has been a concerning
one [84]. In addition, understanding the safety profiles of biologics and small molecules
is essential for treatment selection. While anti-TNF agents remain widely used, they are
associated with serious infections, malignancies (e.g., melanoma, lymphoma), and immuno-
genicity, which can reduce their efficacy [85]. In contrast, anti-integrins (vedolizumab)
and anti-interleukins (ustekinumab, risankizumab) have a more favorable safety profile,
though risks such as respiratory infections should be considered [86]. Recently approved
small molecules, including JAK inhibitors (tofacitinib, upadacitinib) and S1PR modulators
(ozanimod), provide oral alternatives but come with unique risks, such as cardiovascular
events, venous thromboembolism, and serious infections (e.g., herpes zoster reactivation).
Treatment selection must be guided by patient-specific factors, such as malignancy history
and cardiovascular risk, alongside regular safety monitoring protocols to mitigate adverse
effects [87].

Future therapies in IBD are under investigation, targeting new inflammatory pathways
beyond current treatments. While promising for refractory cases, their long-term safety
remains unknown, requiring rigorous clinical trials and post-marketing surveillance. A
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risk-stratification approach will be essential to integrate these therapies safely, balancing
efficacy and risk in the expanding IBD treatment landscape.

6. Limitations and Future Directions
This review provides an updated perspective on key advances and future directions

in IBD management, covering novel therapies, precision medicine, artificial intelligence
applications, and healthcare cost challenges. However, several limitations must be acknowl-
edged. Firstly, this is a non-systematic review, meaning it does not follow a structured
methodology for literature selection and synthesis. While this approach allows for a broad
discussion of cutting-edge aspects, it does not provide a comprehensive analysis of all
available evidence, which systematic reviews typically offer. Secondly, although precision
medicine and artificial intelligence hold great promise for optimizing IBD management,
their real-world implementation remains complex. Genetic variability, disease heterogene-
ity, and the need for standardization in omics data analysis and AI-driven models present
ongoing challenges. Further research is required to ensure the reproducibility and clinical
applicability of these technologies.

Additionally, one notable limitation of this review is the lack of discussion on pediatric
IBD. Pediatric IBD often presents with more extensive disease at diagnosis, compared to
adults. Growth failure and delayed puberty are major concerns in this population, which
were not addressed in our study. Pediatric-onset IBD accounts for 20–30% of diagnoses,
and is often more aggressive than adult-onset disease. CD is more common than UC,
and pediatric UC frequently presents as extensive pancolitis [88]. Additionally, children
have a higher risk of surgery within five years of diagnosis. Furthermore, pediatric IBD
has a stronger genetic component, and may require different treatment strategies due to
distinct disease progression patterns and long-term safety considerations. Very early-onset
IBD is more likely to have a monogenic origin, affecting immune regulation and barrier
function [89]. Biologics are increasingly used early, but data on newer therapies in children
are limited. Despite advances, surgical rates remain high, often due to growth failure or
refractory disease, requiring tailored surgical approaches. Future research should focus on
age-specific treatment approaches and long-term outcomes in pediatric IBD, bridging the
gap between pediatric and adult management strategies.

The future of IBD management is set to be transformed by advancements in precision
medicine, AI, and innovative therapeutic strategies. Looking forward, research should
prioritize identifying specific patient subgroups that will benefit most from targeted ther-
apies, optimizing precision medicine approaches [90]. Chimeric Antigen Receptor T-cell
Therapy (CAR-T) cell therapy is gaining interest in the treatment of autoimmune diseases,
including IBD. CAR-T cell therapy involves genetically engineering a patient’s own T cells
to target and eliminate specific immune cells responsible for the autoimmune response.
The potential benefits of CAR-T cell therapy include the ability to specifically target and
eliminate the autoreactive immune cells responsible for the disease, hypothetically leading
to a better management of the disease [91]. This approach may also avoid the need for
long-term immunosuppressive therapy, which are not free of side effects [92]. Additionally,
microbiome-based therapies, including next-generation probiotics and fecal microbiota
transplantation (FMT), are emerging as promising strategies to restore gut homeostasis
and improve treatment efficacy [93]. Beyond inflammation control, future therapies will
likely target fibrosis modulation, epithelial barrier repair, and the gut–brain axis, address-
ing complications like strictures and motility disorders [94,95]. The rise of digital health
tools, such as wearable biosensors and AI-powered symptom-tracking apps, will enable
real-time monitoring and personalized disease management, improving patient adherence
and outcomes [96]. As research advances, a multidisciplinary approach integrating preci-
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sion medicine, novel therapeutics, and digital innovations will reshape the IBD treatment
paradigm, offering more effective, personalized, and accessible care.

7. Conclusions
Recent advancements in CD and UC management offer new hope for patients. Pre-

cision medicine, AI, and novel therapies targeting specific inflammatory pathways show
promise in improving treatment efficacy and minimizing adverse effects. However, the
rising costs of biologics present challenges in access and affordability. The introduction of
biosimilars and emerging treatments may alleviate this burden, provided robust regula-
tory frameworks and clinician education are in place. AI-driven tools have the potential
to revolutionize IBD management by enhancing diagnostic accuracy, predicting disease
progression, and personalizing treatment strategies. The integration of multi-omics data
with AI is particularly promising in uncovering disease mechanisms and identifying non-
invasive biomarkers, further advancing precision medicine.

Moving forward, collaborative efforts, investment in research, and progressive policies
are crucial to ensuring equitable access to effective and affordable IBD treatments. By
prioritizing patient-centered care and addressing socioeconomic disparities, we can strive
towards a future where all individuals affected by IBD receive optimal care.
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