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Abstract: This work presents a comparative study of low cost and low invasiveness sensors
(plantar pressure and inertial measurement units) for classifying cross-country skiing tech-
niques. A dataset was created for symmetrical comparative analysis, with data collected
from skiers using instrumented insoles that measured plantar pressure, foot angles, and ac-
celeration. A deep learning model based on CNN and LSTM was trained on various sensor
combinations, ranging from two specific pressure sensors to a full multisensory array per
foot incorporating 4 pressure sensors and an inertial measurement unit with accelerometer,
magnetometer, and gyroscope. Results demonstrate an encouraging performance with
plantar pressure sensors and classification accuracy closer to inertial sensing. The proposed
approach achieves a global average accuracy of 94% to 99% with a minimal sensor setup,
highlighting its potential for low-cost and precise technique classification in cross-country
skiing and future applications in sports performance analysis.

Keywords: cross-country ski gear classification; skating instrumented insoles; pressure
sensors; IMU; wearable sensors; deep learning

1. Introduction
For several decades, researchers have explored in-shoe plantar pressure systems for

applications in health and sports [1]. These systems have been used in diverse contexts,
such as human gait analysis [2,3], early ulcer prediction and proactive prevention [4],
alpine skiing [5], and cross-country skiing [6–8], among others. Pressure detection in these
systems relies on various sensing mechanisms, including capacitive, inductive, resistive,
piezoelectric, and optical technologies [9]. Among these, piezoresistive sensors have been
extensively utilized due to their simplicity and high sensitivity, yielding excellent results in
recent studies [10–13]. Indeed, some commercial in-shoe plantar pressure systems, such
as F-Scan® (TekScan, Boston, MA, USA) and ParoTec (Paromed Medizintechnik GmbH,
Neubeuern, Germany) [14,15], are based on this technology.

In sports, where movements are rapid, multidimensional data can provide crucial
insights for performance analysis. To address these demands, multisensory techniques
integrating plantar pressure sensors with inertial measurement units (IMUs) have been
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proposed. This integration enhances data richness by capturing additional parameters,
such as foot angle, angular velocity, and acceleration. Such multisensory approaches have
been widely applied in research for various purposes, such as center of pressure trajectory
estimation and kinematic gait parameter analysis in walking and running [16], gait analysis
during lower limb injury rehabilitation [17], freezing-of-gait detection during walking [18],
and turning skill assessment in alpine skiing [19].

In addition, several commercial systems incorporate multiple sensor types. For in-
stance, OpenGo (Moticon, Munich, Germany) integrates 16 plantar pressure sensors and a
6-axis IMU [20] for analyzing human foot dynamics [21]. Similarly, XON snow-1 (Tokyo,
Japan) is a commercial monitoring system for snow sports, featuring 9-axis sensors (measur-
ing acceleration, angular velocity, and geomagnetism), dual flex sensors, and four pressure
sensors per foot [22].

Despite their usefulness, these instrumentation systems used in health assessment,
training, or competition often generate massive amounts of data, which can be challenging
to process and analyze. The rapid growth of artificial intelligence (AI) in recent years
has facilitated the development of solutions to these challenges in both medical [23–25]
and sports applications, such as skiing [26,27]. For example, the commercial Carv system,
specifically the model Carv 1 [7], designed for alpine skiing, uses machine learning (ML)
algorithms in a mobile application to evaluate performance. This system incorporates
72 pressure sensors and a combination of accelerometers, gyroscopes, and magnetometers
into instrumented insoles, demonstrating the potential of AI-powered systems for advanced
sports analysis.

Advancements in sensor technology and machine learning models have enabled
the sophisticated analysis of complex human movements [28], including sports, such as
cross-country skiing (XCS). This sport poses significant challenges for analysis due to the
demanding environment in which it is performed, rendering traditional or visual methods
inadequate. XCS can be divided into two distinct styles: classic and skating. Over the past
decade, researchers have employed various types of sensors to study these styles, such
as inertial sensors [2,6,29–31], pressure insoles [7], and force plates [32]. Both classic and
skating techniques rely on specific movement patterns known as gears, which are defined
by the coordinated actions of the upper and lower body [33,34]. The selection of a gear
depends on factors, such as speed, terrain slope, and environmental conditions.

In the skating style of XCS, four gears have been identified [35,36]. Gear 1 (G1), which
is not typically used in competitions, involves a unilateral pole push for each ski push.
Gear 2 (G2), in contrast, is commonly employed on steep uphill sections and at lower
speeds. In this gear, the skis glide with a wide angle between them, and the skiers perform
bilateral but asymmetric pole pushes for every two ski pushes. The asymmetry in G2
results in two variations: G2R, in which the poles are angled to the right; and G2L, in which
the poles are tilted to the left. As the slope becomes less steep, skiers often transition to
Gear 3 (G3), which is characterized by a symmetric bilateral pole plant every ski push.
The final gear, Gear 4 (G4), differs from G3 in that the pole plant occurs with every two
ski pushes. During both training and competition, skiers switch between these gears to
adapt to varying terrain and speed requirements, making the analysis of their performance
critical [34]. However, analyzing the performance in XCS remains a complex task due to the
challenging conditions on ski tracks, and wearable systems have proven to be particularly
effective for studying these techniques [2,6,31].

From the perspective of instrumentation systems, implementing machine learning
models in real-time for systems that use extensive sensor arrays (e.g., in the case of the
commercial system Carv 1, 72 pressure sensors and 18 IMU sensors) requires significant
hardware resources, including a high-performance processor capable of handling such
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computational loads. The aim of this study is to classify three skating XCS gears—G2R,
G2L, and G3—using simple instrumented insoles, placed in the ski boots, with pressure
and inertial sensors. The minimal number of pressure sensors was used to reduce the
hardware complexity. By reducing the number of sensors, athletes experience less in-
terference with their movements and greater comfort, leading to a more authentic and
competition-like training environment. This approach also reduces computational demands
and system costs while maintaining acceptable levels of accuracy. In this work, various
sensor combinations were evaluated to determine the optimal configuration according to
the accuracy requirements.

Related Works

XCS gears have been the subject of classification in previous studies. Stöggl et al.
achieved an accuracy of 90% using accelerometer data from a smartphone attached to the
chest in a skating roller-skiing treadmill test [36]. Sakurai et al. placed IMUs on wrist and
roller skis and obtained a general accuracy of 95% when identifying skating gears [37].
Seeberg et al. achieved a 99–100% precision when identifying classic XCS gears, using
7 IMUs placed in different body parts [2]. Rindal et al. developed a system to identify
classic XCS gears with 93.9% accuracy using several IMUs in the arms and chest [38].
Johansson et al. obtained a 95% accuracy when identifying skating XCS gears intra-skier,
and 78% cross-user using a modified handle ski pole that includes a power meter [30]. Our
research group published a model to classify skating XCS gears using two IMUs placed
on both skis [6]. The overall accuracy obtained in this previous study was 98%, while
cross-user accuracy dropped to 90%. Pressure sensors provide interesting information
about the XCS technique; therefore, Pavailler et al. implemented pressure insoles in XCS to
study the relative edge time and ski angle [8].

This study further develops an XCS gear classification model, which was initially
proposed in [39], using data from three pressure sensors embedded in insoles. In an effort
to enhance accuracy, this study augmented the previous design in [39] by integrating
another pressure sensor and inertial sensors (IMUs) into the insoles, as well as increasing
the number of skiers participating in the study.

2. Materials and Methods
2.1. Experimental Setup

The instrumentation system used in this experiment includes a data logger unit
connected to pressure-sensitive insoles and foot movement sensors, which were previously
developed by the research group [40–42]. The instrumented insoles are equipped with four
Flexiforce A201 piezoresistive pressure sensors (Tekscan, South Boston, MA, USA) and an
inertial measurement unit (IMU). The IMU comprises a magnetometer, an accelerometer
(LSM303DLHC), and a gyroscope (L3GD20), all manufactured by STMicroelectronics
(Geneva, Switzerland) (see Figure 1).

The pressure sensors, each with a diameter of 9.53 mm, were strategically positioned
at the big toe (BT), the first (1 m) and fifth metatarsal (5 m) heads, and the heel (H). The
IMU, located under the arch of the foot, is calibrated to specific settings: a ±8.1 gauss range
for the magnetometer, 16 g for the accelerometer, and 2000 degrees per second (dps) for
the gyroscope. The datalogger unit is powered by a PIC24FJ256GB106 microcontroller
(Microchip Technology Inc., Chandler, AZ, USA), which features multiple I2C, ADC, and
SPI ports, among other capabilities. A microSD card reader, interfaced through the SPI
ports, stores the insole measurement data in text files at a sampling rate of 100 Hz.
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Figure 1. Overview of the developed system based on instrumented insoles with pressure and IMU 
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Four experienced skiers participated in this study: Participant A (41 years old, 182 
cm, 69 kg), Participant B (44 years old, 180 cm, 82 kg), Participant C (43 years old, 182 cm, 
71 kg), and Participant D (47 years old, 180 cm, 85 kg). All participants are highly skilled 
athletes and coaches with over two decades of experience in cross-country skiing. 

Data were collected at the SnoZone indoor ski facility in Arroyomolinos (Madrid, 
Spain), on a 10% slope within an 18,000 m2 area. Each skier performed multiple series of 
ascents and descents, completing between three and five consecutive runs while using the 
three targeted skiing techniques: G2R, G2L, and G3. The dataset was structured into five 
series for training and three series for testing. 

To assess the deep learning model’s ability to generalize unseen data and mitigate 
the risk of overfitting, we employed a 2-fold cross-validation procedure during the eval-
uation phase. The dataset was collected by the four experts and divided into two equally 
sized folds. It is crucial to emphasize that during each iteration, data from the four profes-
sionals was exclusively assigned to either the training or the testing fold. The performance 
metric was averaged across both folds to provide a more stable and reliable estimate of 
the model’s generalization performance, which reduces the influence of any peculiarities 
or biases that may exist in a single fold. 

2.2. Sensor Combinations 

The instrumented insoles described in the previous section were previously vali-
dated for gait [43,44] and jumping activities [40], demonstrating that the distribution and 
number of sensors are adequate for effectively monitoring these human activities. The 
pressure sensors provide information during the contact phase with the floor, while the 
inertial sensors collect data during all phases of movement, as shown in Figure 2. By inte-
grating data from both the pressure sensors and the IMU, the dataset used to train the 
machine learning model was enhanced. Indeed, this portable system provides a compre-
hensive analysis of the skiing technique while utilizing a minimal number of sensors. 

Figure 2 shows three cycles of G2R. Figure 2a illustrates the pressure flow, while Fig-
ure 2b shows the acceleration pattern. G2R is characterized by an asymmetric push of the 
upper body during the contact phase of the right ski. During the contact phase, the 

Figure 1. Overview of the developed system based on instrumented insoles with pressure and IMU
sensors for cross-country skiing classification using deep learning.

Four experienced skiers participated in this study: Participant A (41 years old, 182 cm,
69 kg), Participant B (44 years old, 180 cm, 82 kg), Participant C (43 years old, 182 cm,
71 kg), and Participant D (47 years old, 180 cm, 85 kg). All participants are highly skilled
athletes and coaches with over two decades of experience in cross-country skiing.

Data were collected at the SnoZone indoor ski facility in Arroyomolinos (Madrid,
Spain), on a 10% slope within an 18,000 m2 area. Each skier performed multiple series of
ascents and descents, completing between three and five consecutive runs while using the
three targeted skiing techniques: G2R, G2L, and G3. The dataset was structured into five
series for training and three series for testing.

To assess the deep learning model’s ability to generalize unseen data and mitigate the
risk of overfitting, we employed a 2-fold cross-validation procedure during the evaluation
phase. The dataset was collected by the four experts and divided into two equally sized
folds. It is crucial to emphasize that during each iteration, data from the four professionals
was exclusively assigned to either the training or the testing fold. The performance metric
was averaged across both folds to provide a more stable and reliable estimate of the model’s
generalization performance, which reduces the influence of any peculiarities or biases that
may exist in a single fold.

2.2. Sensor Combinations

The instrumented insoles described in the previous section were previously validated
for gait [43,44] and jumping activities [40], demonstrating that the distribution and number
of sensors are adequate for effectively monitoring these human activities. The pressure
sensors provide information during the contact phase with the floor, while the inertial
sensors collect data during all phases of movement, as shown in Figure 2. By integrating
data from both the pressure sensors and the IMU, the dataset used to train the machine
learning model was enhanced. Indeed, this portable system provides a comprehensive
analysis of the skiing technique while utilizing a minimal number of sensors.
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Figure 2. (a) Example of the pressure sensor output during the G2R gear for participant A; (b) Example
of the acceleration (from IMU) during G2R for participant A. In both cases, R refers to the right and L
to the left feet.

Figure 2 shows three cycles of G2R. Figure 2a illustrates the pressure flow, while
Figure 2b shows the acceleration pattern. G2R is characterized by an asymmetric push
of the upper body during the contact phase of the right ski. During the contact phase,
the pressure sensors provide values higher than during the non-contact phase (ideally, it
should be equal to zero). Thus, the pressure and acceleration patterns can be described as
follows: The cycle starts with the left ski contacting and pushing on the snow, while the
right ski is in a non-contact phase. The poles are being recovered and prepared to plant, so
there is propulsion action from the upper body. The transition of contact from the left to
the right ski occurs with a power push and external rotation from the left ski. The right ski
contact with the snow and poles is then planted. The poles and right ski are propelled at
the same time. Overall, the pressure in both feet follows the same order of pressure flow:
first heel, first metatarsals and big toe afterwards, and finally the fifth metatarsals at the
end. As it pertains to G2R, it is expected that overall, pressure on the left ski would be
greater than that on the right ski. The contact phase of the ski on the snow is similar for
both feet: the ski contacts the snow flat, maintaining the smallest possible Z-angle. During
the propulsion phase, the ski rotates externally, with the inner edge embedded deeper in
the snow.
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In the current work, different sets of sensors were evaluated, from the simplest form
using two pressure sensors to the inclusion of four pressure sensors and the 9 degrees of
freedom of the IMU (the three-dimensional gyroscope, magnetometer, and accelerometer).

A sequential discussion was conducted to analyze the 23 sensor combinations, as
follows. Each configuration is labeled as numberP to indicate the number of pressure
sensors, with 1 m and 5 m referring to the first and fifth metatarsals, respectively, and H for
the heel. This notation is followed by the inertial sensors used: A for the accelerometer, G
for the gyroscope, and M for the magnetometer.

• No pressure sensors (0P); only one (A), two (AG), or three (AGM) inertial sensors:

# 0P + A: The input to the deep learning model is the output of the 3D accelerom-
eter (A).

# 0P + AG: The outputs of the accelerometer (A) and gyroscope (G) were considered.
# 0P + AGM: All the inertial sensors: accelerometer (A), gyroscope (G), and

magnetometer (M), were considered.

• Combinations of two pressure sensors (2P) without inertial sensors:

# 2P.1m5m: Involving the first (1 m) and fifth metatarsals (5 m) sensors.
# 2P.1mH: Considering the first metatarsal (1 m) and heel (H) sensors.
# 2P.5mH: Considering the fifth metatarsal (5 m) and heel (H) sensors.

• Combinations of two pressure sensors on the first and fifth metatarsals (2P.1m5m)
with one, two, or three inertial sensors:

# 2P.1m5m + A: Combination of 2P.1m5m plus A.
# 2P.1m5m + AG: Combination 2P.1m5m plus A and G.
# 2P.1m5m + AGM: Combination 2P.1m5m plus A, G, and M.

• Combinations of two pressure sensors on the first metatarsal and heel (2P.1mH) with
one, two, or three inertial sensors:

# 2P.1mH + A: Combination of 2P.1mH plus A.
# 2P.1mH + AG: Combination 2P.1mH plus A and G.
# 2P.1mH + AGM: Combination 2P.1mH plus A, G, and M.

• Combinations of two pressure sensors on the fifth metatarsal and the heel (2P.5mH)
with one, two, or three inertial sensors (A, AG, or AGM):

# 2P.5mH + A: Combination of 2P.5mH plus A.
# 2P.5mH + AG: Combination 2P.5mH plus A and G.
# 2P.5mH + AGM: Combination 2P.5mH plus A, G, and M.

• Three pressure sensors (3P) without inertial sensors:

# 3P.1m5mH: Involving the first and fifth metatarsals and the heel sensor.

• Three pressure sensors on the first and fifth metatarsals and the heel (3P.1m5mH) with
one, two, or three inertial sensors:

# 3P.1m5mH + A: Combination of 3P.1m5mH plus A.
# 3P.1m5mH + AG: Combination of 3P.1m5mH plus A and G.
# 3P.1m5mH + AGM: Combination of 3P.1m5mH plus A, G, and M.

• Four pressure sensors (4P) without inertial sensors:

# 4P: All pressure sensors, involving the first and the fifth metatarsals, heel, and
big toe sensors.

• Four pressure sensors (4P) with one, two, or three inertial sensors:

# 4P + A: Combination of 4P plus A.
# 4P + AG: Combination of 4P plus A and G.
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# 4P + AGM: Combination of 4P plus A, G, and M.

Based on the observed kinematic and dynamic patterns, the technique performed at
each moment can be classified using data from both pressure and inertial sensors. To explore
this, the 23 configurations described above were analyzed to evaluate the information
provided by the different sensors and their locations to determine their effectiveness in
classifying the three techniques with the minimum hardware resources possible.

2.3. Data Curation and Segmentation

During data acquisition and cleaning, raw data from the pressure sensors and in-
ertial units were collected and stored in text files, as described in [6,39]. After storage,
preprocessing is performed, which involves removing the offset introduced by the pressure
sensors and normalizing the data by their area to calculate the pressure in kg/cm2. Then,
data is cleaned by correcting, removing, or interpolating any missing or corrupted data
points. This step ensures data’s integrity and reliability for subsequent analysis. Next, an
exponential moving average filter is applied to smooth the data. This reduces noise and
fluctuations, revealing the underlying trends and patterns. The temporal smoothing tech-
nique further enhances data consistency across time. Finally, a sliding window technique
is applied to segment the data into fixed-size windows. The smoothed data is segmented
into 5000-ms intervals with 50-ms overlaps. This creates manageable chunks for detailed
analysis, allowing us to examine specific time windows and extract meaningful features.

Following this, the labeling and feature extraction stages are performed. Each time
window is assigned a label based on predefined periods that mark the start and end of
various skiing gears, as determined by expert knowledge and linked to the athletes’ ascents
(see Figure 3), using the users’ jumps to mark their beginnings and endings. The labeling
was also based on the recorded videos of the experiments and the signals obtained from
the various sensors in the instrumented insoles. Data from intervening periods, such as
the time spent preparing for the next ascent, is excluded from the analysis. Although this
exclusion is suitable for controlled testing environments, it may not be applicable in all
cases. In future iterations, these transitional periods could be labeled as a separate class,
such as ‘preparation’ or ‘transition’, to more comprehensively account for all phases a skier
encounters during training or competition.

For each temporal window, the median value is computed for each sensor, serving
as the primary statistical feature. The pressure and inertial sensor data are subsequently
fused within each time window, creating a consolidated feature set. These fused features,
representing each sensor modality, are stored as multidimensional arrays corresponding to
the time windows. To ensure consistency in the model’s input scale, the data is normalized
for each sensor dimension. This normalization is performed by calculating the mean and
standard deviation of the training data, and the same transformation is applied to both
the training and validation datasets. This process guarantees that the model receives
input features with consistent statistical properties, facilitating improved learning and
model generalization. The segmentation and model evaluation were conducted on a
computer with an NVIDIA RTX 4070 Ti SUPER GPU (NVIDIA Corporation, Santa Clara,
CA, USA), 11th Gen IntelR CoreTM i9-11900KF processor (Intel Corporation, Santa Clara,
CA, USA) with 3.50 GHz (ASUSTeK Computer Inc., Taipei, Taiwan) and 32 GB RAM
(Crucial Technology, Meridian, MI, USA).
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Figure 3. Example of ascent labelling for (a) left foot pressure sensors; and (b) left foot magnetometer
sensor.

2.4. Deep Learning Model for Ski-Gear Classification

This study proposes a hybrid deep learning model for skiing gear classification that
combines four 1D convolutional layers and two Long Short-Term Memory (LSTM) layers
to extract spatial and temporal features from multidimensional sensor data. The input
consists of time-series data segmented into fixed-size windows, with feature normalization
applied to ensure uniform scaling. The input consists of time-series data, segmented into
fixed-size windows, with feature normalization applied to ensure uniform scaling. This
time-series data is derived from a set of key features extracted from multidimensional
sensor measurements, which capture important patterns for skiing gear classification. The
recorded measurements include plantar pressure (expressed in kg/cm2, equivalent to
9.8 × 105 Pa), acceleration (expressed in g, where 1 g = 9.8 m/s2), angular velocity (in
degrees/s, dps), and the magnetic field (in gauss). These measurements were registered
along the three Cartesian axes (X, Y, Z) for each foot.
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• R1_Meta and L1_Meta: Pressure data from the first metatarsal for the right and left
foot, respectively.

• R5_Meta or L5_Meta: Pressure data from the fifth metatarsal for the right and left foot,
respectively.

• R_Heel or L_Heel: Pressure data from the heel for the right and left foot, respectively.
• R_Big Toe or L_Big Toe: Pressure data from the big toe for the right and left foot,

respectively (measured in kg/cm2).
• R_Gx, R_Gy, R_Gz, L_Gx, L_Gy and L_Gz: Gravitational acceleration components

along the X, Y, and Z axes for the right and left foot, respectively.
• R_Ax, R_Ay, R_Az, L_Ax, L_Ay and L_Az: Dynamic acceleration components along

the X, Y, and Z axes for the right and left foot, respectively.
• R_Mx, R_My, R_Mz, L_Mx, L_My and L_Mz: Acceleration components of the foot

in relation to the magnetic field along the X, Y, and Z axes for the right and left foot,
respectively, during activity.

The fusion of pressure and inertial sensor data were performed at the feature level,
as introduced in Section 2.3. The signals from all sensors were synchronized to ensure
alignment. The fusion process consisted of the following steps:

1. Temporal alignment: All signals were resampled to a fixed frequency using linear
interpolation.

2. Normalization: The pressure sensor values were normalized using min-max scaling.
3. Feature concatenation: The computed features from both sensor modalities were

merged into a single feature vector per time window, which was then input into the
deep learning model.

The resulting feature vector includes pressure metrics and inertial metrics, ensuring
that the model can learn from both pressure and inertial data in a unified representation,
capturing complementary aspects of skiing movements.

The initial stage of the model consists of four one-dimensional convolutional layers
(Conv1D) with 16, 32, 64, and 128 filters, respectively, and kernel sizes of 2 and 3. The use
of small kernels enables the model to efficiently capture local patterns in the sensor data,
which is essential for detecting fine-grained spatial features indicative of specific activities
or gear types. The progression from fewer to more filters in successive layers allows for the
extraction of increasingly abstract features. The ReLU (Rectified Linear Unit) activation
function is employed in these layers due to its ability to introduce non-linearity, enabling
the model to learn more complex patterns in the data. To mitigate overfitting, dropout
regularization is applied after the second and fourth convolutional layers at a rate of 0.25.
This ensures that the model does not overly rely on any specific feature and enhances its
generalization ability to unseen data.

The extracted spatial features are then passed into a stacked LSTM layer configuration
designed to model temporal dependencies in the sensor data. The first LSTM layer outputs a
sequence, allowing the model to maintain a representation of the entire input sequence over
time. The second LSTM layer, also with 256 units, aggregates these temporal representations
into a single, fixed-length output. This is crucial for capturing long-term dependencies in
the data, which is particularly important for tasks that involve recognizing the evolution of
a skier’s movements over time. Dropout regularization (0.25) is applied again to prevent
overfitting and avoid reliance on any single time step.

The output from the LSTM layers is then processed through a series of fully connected
(dense) layers with 2048 and 1024 units, respectively. These layers serve to further refine the
learned features, combining them into higher-level representations that enable the model
to make the final classification decision. The use of ReLU activation in these layers ensures
that non-linear relationships between features are captured. Finally, the model outputs
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probabilities for the three target classes via a softmax activation function in the final layer.
This enables multi-class classification by assigning a probability distribution across the
three possible classes for each input sample.

The model was trained using the categorical cross-entropy loss function and optimized
with RMSprop. Training was performed over 50 epochs with a batch size of 64, and early
stopping based on validation loss was implemented to prevent overfitting [6,39].

The framework for this model is implemented using the Keras library 2.13.1 in
Python 3.9.13 (main, 25 August 2022, 23:51:50) [MSC v.1916 64 bit (AMD64)], with Ten-
sorFlow 2.13.0 as the backend. This setup allows for efficient training and testing of the
model across different sensor configurations. The evaluation of the model is completed
using confusion matrices and classification reports, which help to assess the performance
of the model on validation data. Data collection corresponds to 44.66 min of recorded data
from the four participants (A, B, C, and D) described in Section 2.1.

The proposed model advances upon prior approaches by achieving a weighted average
accuracy of up to 99%, surpassing existing state-of-the-art gear classification models that
rely on individual sensor modalities [6,30,38,39]. This improvement is largely due to
the optimized feature fusion, where the integration of pressure and inertial sensor data
enhances classification robustness, outperforming unimodal approaches that use only a
single sensor type. An ablation study was also conducted to assess the contribution of each
sensor type (see Section 3). The results showed that the combined configuration of four
pressure sensors (4P) and an accelerometer–gyroscope module (AGM) achieved superior
performance compared to the individual sensor modalities.

3. Results
An extensive evaluation of our deep learning model’s performance using data collected

from four participants with different sensor combinations was performed to assess its
ability to distinguish between different skiing techniques. The different configurations
were evaluated to assess the improvement in accuracy with the increase in the number
of sensors involved in the deep learning model. This is achieved through the parameter
precision per gear and the weighted average accuracy (WAA). In addition, to evaluate the
performance of the combinations, the training time and the confusion matrix—used to
evaluate the performance of a classification model—were assessed. The matrix provides a
detailed breakdown of the model’s predictions compared to the actual gears. WAA and
training time were obtained by calculating the average number of epochs per configuration.
Although this will be discussed in detail in the following sections, a summary of these two
parameters for all sensor combinations is presented in Table 1.

Table 1. Weighted average accuracy and average time per epoch for all sensor combinations. The
average training time data in seconds is rounded to a single significant digit.

Weighted Avg Accuracy Avg (t/epoch) (s)

Pressure Sensors Inertial Sensors Inertial Sensors

1 m 5 m H BT None A AG AGM None A AG AGM

0P -- 0.97 0.98 0.99 2 3 5

2P
× × 0.95 0.97 0.98 0.98 1 2 6 8
× × 0.94 0.96 0.98 0.97 1 2 5 11

× × 0.95 0.96 0.98 0.98 1 3 4 11

3P × × × 0.94 0.97 0.97 0.97 2 3 7 14

4P × × × × 0.95 0.97 0.97 0.98 3 5 8 17
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Finally, to discuss the contribution of different types of sensors to the learning process,
the time required to achieve a WAA higher than 90% was calculated for some selected
configurations: 4P, AGM, 4P + AGM, and 2P.1m5m + A, as illustrated in Figure 4. More
details will be provided in the following sections.
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3.1. Classification Using Pressure Sensors

As aforementioned, the average time per epoch and the final WAA achieved are
summarized in Table 1. Remarkably, only two pressure sensors achieved a WAA of
94%, which increased up to 95% when data from the fifth metatarsal was included. This
highlights the significant contribution of the fifth metatarsal to accurate gear classification.
In fact, from the configuration 2P.1mH, the WAA did not increase when the heel and/or
big toe sensor was included in the dataset for training the model.

Regarding the time per epoch, the 4P configuration is the slowest (see Table 1). As
expected, the training time increases as the number of pressure sensors increases.

The 2P.1m5m and 3P.1m5mH configurations were previously evaluated in two sub-
jects [39], obtaining a WAA of 83% and 92%, respectively. In the current work, the WAA
has been improved for both configurations due to the inclusion of two new subjects in the
dataset, increasing up to 95% and 94%, respectively.

On the other hand, when comparing the 2P.1m5m configuration with the 4P config-
uration, the precision of the G2L gear was higher in all four 4P configurations than in
the 2P.1m5m configuration, while the other two gears maintained similar accuracy (see
Tables 2 and 3). Therefore, the use of the 4P combination with additional pressure sensors
proves to be more suitable for gear detection, as expected. In fact, the confusion matrix
presented in Figure 5 demonstrates high precision and recall values, indicating that the
model effectively distinguishes between various skiing techniques. The precision for the
“G2R” and “G3” techniques is particularly notable, which suggests that false positives are
minimal in these categories.



Sensors 2025, 25, 1500 12 of 17

Table 2. Performance evaluation of the model using two pressure sensor data (2P.1m5m).

Precision Recall F1-Score Support

G2R 0.97 0.95 0.96 2933
G3 0.98 0.91 0.95 2106

G2L 0.89 0.96 0.93 2799

WAA 0.95 0.94 0.94 7838

Table 3. Performance evaluation of the model using four pressure sensor data.

Precision Recall F1-Score Support

G2R 0.94 0.96 0.95 2933
G3 0.97 0.98 0.98 2106

G2L 0.96 0.93 0.94 2799

WAA 0.95 0.95 0.95 7838
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Figure 5. Confusion matrix for gear classification: (a) Using two pressure sensors on the first and
fifth metatarsals (2P.1m5m); and (b) including all four pressure sensors (4P).

To evaluate the learning speed, the evolution of the WAA is displayed in Figure 4 for
the four-pressure sensor (4P) configuration. The level of WAA (over 90%) was achieved
in less than 13 epochs in 15 s, demonstrating the good performance of the deep learning
models. In fact, in the first epoch, the WAA was 48%; however, it increased quickly,
achieving 72% in the 10th epoch, and 92% in the 13th epoch.

3.2. Classification Using Inertial Sensors

During the training phase, using only the inertial sensors in the AGM configuration,
there was notable progress, although the initial validation accuracy was lower, at 45% in
the first epoch (after 32 s, see Figure 4). Similar to the pressure sensor experiment, the
model’s performance improved over time. By the third epoch, the validation accuracy
had increased to 74%. By the final epoch, it reached 99%, demonstrating that while the
inertial sensors alone were effective, their performance was slightly higher compared to
the pressure sensors (see Table 1 and the confusion matrix in Figure 6). Each epoch took
an average of 5 s to complete, resulting in a total training time of approximately 230 s, as
shown in Figure 4. The confusion matrices revealed that although the model using all
the pressure sensors (4P) without inertial sensors performed well (Figure 5b and Table 3),
there was a slight decrease in precision and recall compared to the configuration using only
inertial sensors (AGM), as seen in Figure 6 and Table 4. Nonetheless, the model achieved
high accuracy and F1 scores across all evaluated categories.
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Table 4. Performance evaluation of the model using inertial sensor data.

Precision Recall F1-Score Support

G2R 1.00 0.98 0.99 2933
G3 0.98 0.99 0.98 2106

G2L 0.98 0.99 0.99 2799

WAA 0.99 0.99 0.99 7838

The classification using only inertial sensors showed the surprising result that the
WAA obtained was the highest among all configurations studied (see Table 1). In fact, the
maximum values were obtained when no pressure sensors were considered. This result
indicates that the machine learning model obtains very useful information during the fly
phase, which was not considered in cases where only pressure sensors were included in
the model. The main disadvantage of the inertial sensors is the longer time needed to learn
compared to the pressure sensors, as illustrated in Figure 4. This is likely due to the higher
complexity of the data reported by the inertial sensors. This increased complexity requires
additional resources because of the high computational demands.

3.3. Classification with Combined Pressure and Inertial Sensors

The 4P + AGM configuration resulted in a notable performance enhancement. In
Figure 4, it can be observed that the validation accuracy started at 40% in the first epoch,
but the accuracy steadily increased, reaching 84% by the seventh epoch. In the final
epoch, the model achieved an impressive validation accuracy of 98%, reflecting a slight
improvement in the performance with respect to the results using only the pressure sensors
(95%), as seen in Table 1. Each epoch required an average of 17 s, resulting in a total training
time of approximately 850 s (14 min). The confusion matrices (Figure 7a, Tables 1 and 5)
for the combined sensor data demonstrate the model’s superior performance compared to
the use of pressure sensors (4P), although slightly lower than the WAA obtained when all
inertial sensors (AGM) were used.

To reduce the number of sensors, the performance of the simpler 2P.1m.5m + A config-
uration was analyzed and compared with that of the more comprehensive combination,
as shown in Figure 7b. The WAA obtained was 97% and higher than 96% for the three
gears studied (see Table 6), with an average time per epoch of 2 s, which is an important
time reduction from the use of only inertial sensors (5 s). In this simplified configuration, if
improved accuracy is desired, an increase in the number of users should be implemented.
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Table 5. Performance evaluation of the model, including all sensors (4P + AGM).

Precision Recall F1-Score Support

G2R 0.97 1.00 0.98 2933
G3 0.99 0.96 0.98 2106

G2L 0.98 0.97 0.98 2799

WAA 0.98 0.98 0.98 7838

Table 6. Performance evaluation of the model for the 2P.1m5m + A configuration.

Precision Recall F1-Score Support

G2R 0.96 0.98 0.97 2933
G3 0.99 0.97 0.98 2106

G2L 0.97 0.96 0.97 2799

WAA 0.97 0.97 0.97 7838

The evolution of the WAA is displayed in Figure 4, along with the other three main
configurations. The configuration that took less time to achieve 90% of WAA was the 4P
(15 s), followed by the 2P.1m.5m + A (33 s). The configuration with all sensors (4P + AGM)
required more time (221 s) to learn due to the large quantity and complexity of the data.
The configuration with only inertial sensors was the combination with a higher final WAA.

Finally, after analyzing the different classifications with various sensor combinations,
it can be concluded that the accuracy obtained—whether using only pressure sensors, only
inertial units, or a combination of both—ranges from 94% to 99%, as observed in Table 1.
The lowest accuracy is found in the combination of 2P and 3P, while the highest is achieved
with 0P + AGM.

4. Conclusions
The results presented in this study demonstrate the promising performance of both

the deep learning model and the sensor configurations, which include pressure and iner-
tial sensors for gear classification in cross-country skiing. The highest average accuracy
achieved was 99% using the inertial-only sensor configuration; however, the training time
for this setup was approximately 14 min. This time can be significantly reduced by using
pressure sensors. For example, the 2P.1m5m + A combination reduced the learning time to
less than 3 min (170 s), while still achieving a high final WAA of 98%.
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The configuration with the lowest learning time was the one with only the pressure
sensors, which only took 50 s to complete and resulted in a WAA of 95%. Therefore, a
balance must be considered between training time and WAA. The deep learning model
performed exceptionally well across all configurations, with the minimum WAA observed
at 94% when using only two pressure sensors. This versatility allows the system to be
tailored to meet specific requirements, whether prioritizing maximum accuracy or reducing
computational demands and training time.

This wearable system, coupled with the advanced deep learning model presented in
this study, provides a powerful and non-invasive solution for studying and classifying
gears in cross-country skiing. Its minimal disruption to athletes makes it an ideal tool
for performance analysis, technique optimization, and equipment development in cross-
country skiing. The flexibility in sensor configurations further enhances its potential for a
wide range of applications, contributing to the evolution of athlete training.
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