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ABSTRACT
Executive control (EC) emerges in the first year of life, with the ability to inhibit prepotent responses (inhibitory control [IC]) and
to flexibly readapt (cognitive flexibility [CF]) steadily improving. Simultaneously, electrophysiological brain activity undergoes
profound reconfiguration, which has been linked to individual variability in EC. However, most studies exploring this relationship
have used relative/absolute power and tasks that combine different executive processes. In addition, brain activity conflates
aperiodic and oscillatory activity, which hinders the interpretation of the relationship between power and cognition. In the current
study, we used the Early Childhood Inhibitory Touchscreen Task (ECITT) to examine the development of EC skills from 9 to 16
months in a longitudinal sample, and related performance of the task to resting-state EEG (rs-EEG) power, separating oscillatory
and aperiodic activity. Our results showed improvement in IC but not in CF with age. In addition, alpha and theta oscillatory
activity were concurrent (9-mo.) and longitudinal predictors of CF in toddlerhood, whereas the aperiodic exponent of the EEG
signal did not contribute to EC. These findings demonstrate the relevance of oscillatory brain activity for cognitive development
and provide an early brain marker for the early development of EC.

1 Introduction

One of the most notable human capacities is the ability to
consciously adjust behavior to achieve goals. Executive con-
trol (EC) refers to a form of action selection and monitoring
that involves attention-based goal-directed bias over habitual
responses (Botvinick et al. 2001; Rueda, Moyano, and Rico-Picó
2021). When the context is stable it is very useful to develop

response tendencies that minimize the cognitive resources
needed for response selection. However, if conditions change,
attention is necessary to detect the change, inhibit the action
tendency, and adjust the response to the new situation. Thus,
attention, inhibitory control (IC), and switching are key EC
processes. Importantly, EC is central to cognitive and socio-
emotional adjustment, and difficulties with these functions have
been associated with poorer outcomes in diverse life domains,
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Summary
∙ Inhibitory control improves from infancy and toddlerhood
evaluated with a protocol that isolates it from memory
processes.

∙ Theta peak frequency was a positive concurrent predictor
of cognitive flexibility in infants.

∙ Larger alpha and theta oscillatory power at 9 months of
age positively predicted cognitive flexibility at 16 months
of age.
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such as academic performance along development (Rueda,
Checa, and Rothbart 2010), and wealth and health levels in
adulthood (Moffitt et al. 2011).

Previous research suggests that the developmental foundation of
EC occurs during the first year of life (Diamond 2013; Fiske and
Holmboe 2019;Holmboe et al., 2018;Hendry et al. 2016).However,
some of the tasks employed to measure IC in infants and toddlers
present some limitations (Holmboe et al. 2021). Classic EC
paradigms, such as the Go/No-Go task, require understanding
verbal instructions and/or rely on several cognitive processes
(Conejero and Rueda 2017; Holmboe et al. 2021). For instance,
widespread research based on the A-not-B task suggests an
improvement in IC capacity in the first 2 years of life (Clearfield
et al. 2006; Diamond 1990, 1985; Holmboe et al. 2018; Johansson,
Forssman, and Bohlin 2014); however, this improvement in the
performance may be driven by age-related changes in working
memory (WM) capacity given its necessity of retaining the
location and implement it to current behavior (Holmboe 2021).

To overcome these limitations, Holmboe et al. (2021) recently
developed the “Early Childhood Inhibitory Touchscreen Task”
(ECITT). This task was inspired by the rationale behind the A-
not-B and Go/No-Go paradigms. In this task, infants are taught
to press a target button on a tablet screen to obtain a positive
reward. The target button appears most of the time on one side of
the screen (prepotent location) and occasionally on the other side
(inhibitory location). Thus, infants must override their tendency
to touch the prepotent side when the target appears on the less
frequent side (IC). In addition, cognitive flexibility (CF) can be
measured by assessing the impact of switching the location of the
target with respect to the previous trial. Besides, the ECITT does
not require verbal instructions or memorization of the location,
thus providing a clean measure of EC processes based on a
response-reward contingency rationale. There is evidence that
infants as young as 10 months can perform this task, showing a
significant improvement of EC in the transition between infancy
and toddlerhood (Hendry et al. 2022; Holmboe et al. 2021). In

the original study presenting the ECITT task, 3-year-old children
demonstrated superior accuracy in inhibitory trials compared
to a 2-year-old group. Furthermore, this improvement was also
observed between 18- and 21-month-old children relative to 2-
year-old subjects (Holmboe et al. 2021). In a subsequent study,
Hendry and colleagues (2022) identified an enhancement in
switching capacity between 10 and 16 months of age, although
the age-related change was not statistically significant in the IC
composite score.

The improvement in EC occurs alongside the maturation of the
frontal brain regions (Bell and Cuevas 2012; Cuevas and Bell 2022;
Diamond 2013; Fiske and Holmboe 2019). To study this relation-
ship, most experiments have employed EEG recordings at rest
(rs-EEG) because of their adaptability and ease of use in infants
(Saby and Marshall 2012). The gold standard measure of rs-EEG
in developmental samples is the absolute or relative power of
canonical bands such as theta (3–6 Hz) and alpha (6–9 Hz).
Longitudinal studies have shown a profound reconfiguration of
these measurements in the first years of life (e.g., an increase in
alpha power), highlighting the potential of EEG to capture brain
maturation (Anderson and Perone 2018; Stroganova, Orekhova,
and Posikera 1999). More importantly, individual differences in
relative power have been associated with EC development during
infancy (Bell and Cuevas 2016). For example, larger frontal alpha
power at rest is related to better attention and EC skills (Bell 2001;
Bell and Fox 1997, 1992; Whedon, Perry, and Bell 2020; Wolfe and
Bell 2004). In addition, infants’ theta modulation at rest or its
values in evoked paradigms suggests that it is related to high-
order cognition (Begus, Southgate, and Gliga 2015, Braithwaite
et al. 2020; Conejero et al. 2016).

One limitation of using absolute/relative power is that it conflates
narrow and broadband activity (Donoghue et al. 2020; Ostlund
et al. 2022). When the EEG signal is analyzed in terms of
power, most of the energy follows a power-law decaying curve
(aperiodic), whereas only the peaks of energy above this curve
represent oscillatory activity (Voytek and Knight 2015). When
these components have been isolated, aperiodic activity is the
most important predictor of several band ratios (e.g., theta/beta),
except for the alpha band (Donoghue, Dominguez, and Voytek
2020; Rico-Picó et al. 2023). In addition, the aperiodic curve
flattens throughout the lifespan (Cellier et al. 2021; McSweeney
et al. 2021; Rico-Picó et al. 2023; Schaworonkow and Voytek 2021),
and only the alpha band exhibits the same trajectory of oscillatory
(vs. relative) power (Rico-Picó et al. 2023; Schaworonkow and
Voytek 2021). Thus, previous results may have been misled by co-
occurring aperiodic maturation, particularly in the theta band,
which is influenced by the aperiodic exponent (Donoghue et al.
2020). Furthermore, recent studies have linked disorders that
compromise EC to the aperiodic components of the EEG signal
highlighting its relevance in cognitive processes (Karalunas et al.
2021; Shuffrey et al. 2022).

In the case of the ECITT task, a recent fNIRS (functional near-
infrared spectroscopy) study corroborated the involvement of
frontal areas by recording brain activity while children performed
a blocked version of this task (Fiske et al. 2022). In this version,
the control (only prepotent trials) and experimental (50% of
inhibitory trials) blockswere alternately presented. In the original
study, 10-months infants exhibited increased brain activity in
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frontal areas during the experimental blocks (Fiske et al. 2022),
which occurred in more widespread brain areas at 16-months of
age (Fiske et al. 2024). However, how fine-grained ECITT indices
are related to frontal rs-EEG has not been addressed, particularly
focusing on the distinction between aperiodic and oscillatory
components. Our study aimed to fill this gap in the literature, and
our goals were twofold: (1) to investigate the early development of
EC from 9 to 18months of age and (2) to examine the contribution
of aperiodic and oscillatory power to individual differences in the
ECITT task performance and development over that age range.

Given previous results with the ECITT (Hendry et al. 2022)
and the A-not-B task (e.g., Clearfield et al. 2006), we predicted
a general improvement in infant performance on the ECITT
task during the transition from infancy to toddlerhood. In addi-
tion, we predicted that a flatter aperiodic exponent and higher
alpha power would be significantly related to EC development.
However, as theta power ratios are highly related to aperiodic
activity (Rico-Picó et al. 2023), we anticipated that the association
between theta power and EC might disappear when controlling
for the aperiodic exponent.

2 Method

2.1 Participants

Families were recruited from hospitals and nurseries at the
Virgen de las Nieves Hospital and in the metropolitan area
of Granada City (Spain) via informative rounds conducted by
the study researchers and advertising. If families showed a
willingness to be further contacted, parents/legal guardians were
called when the babies were 6 months old to schedule a session.
Infantswere followedup at 9 and 16–18months. The current study
only included data from the second and third follow-up sessions,
as ECITT was not administered at 6 months of age. Prematurely
and/or lowweight at birth infants (<37weeks of gestation;<2.5 kg
of weight), and those at risk for neurodevelopmental disorders
were excluded from the final sample (n = 18; Figure S1). All
families received vouchers from a local toy store to compensate
for their participation in each session.

Eighty-seven 9-month-old infants participated in the 9-month-
old session, of which 24 were excluded due to insufficient valid
data (see Section 2.2.1.3) and three due to technical issues (valid
n = 60, 68.97% retention rate). In session 2, at 16–18 months
of age, 75 children completed the ECITT task, of which seven
were excluded because they had insufficient valid data and three
due to technical difficulties (n = 65, 86.67% retention rate). This
exclusion rate aligns with previous ECITT studies (e.g., Hendry
et al. 2022 excluded approximately 22% of 10-month-old infants).
Infants were required to have valid data in at least one session
andwere permitted to havemissing data in the other session to be
included in the analysis. Seventy-four infants met this criterion:
34 had valid data in both sessions, while 23 and 17 had valid data
only at the 9-month and 16-month sessions, respectively (Table 1
and Figure S1).

To investigate the relationship between EEG and the ECITT
task, valid data from both protocols were required. This analysis
examined the concurrent relationship between brain function

TABLE 1 Demographic information about the sample included in
the behavioral analysis.

Session Sex N
Session age
(days)

Income to
needs

9-mo. F 26 284.65 (9.41) 1.36 (0.65)
M 31 285.22 (7.66) 1.4 (0.77)

16-mo. F 25 514.79 (22.89) 1.36 (0.65)
M 26 522.75 (25.82) 1.4 (0.77)

Note: This table presents information of infants who had valid data and were
included in the linear mixed models exploring the development of EC with
the ECITT task. Given that we estimated missing data, the number of infants
included in the models was 74. This table shows theM (SD).

and behavioral performance (e.g., both EEG and ECITT at 9),
as well as whether EEG at 9 months could predict ECITT
performance at 16 months (longitudinal analysis). From the 60
infants with valid ECITT data at 9 months, 17 declined to wear
the net, and 6 were excluded due to insufficient epochs (see
Section 2.2.2.2), resulting in 35 participants included in the final
analysis. At 16 months of age session, 35 infants had both valid
data in the ECITT task and the EEG (27 infants declined to
wear the net, and one infant did not meet the minimum number
of epochs required). Finally, for the longitudinal analysis, 35
infants out of 65 had both valid EEG data in the EEG at 9
months and ECITT at 16 months of age (excluded due to lack
of EEG n = 28, excluded to insufficient EEG clean epochs n =
2). The demographic details of the final sample are presented
in Table 2. The exclusion rate aligns with previous EEG studies,
where approximately 50% of participants are discarded when
combining behavior andneuroimaging in very young populations
(e.g., Braithwaite et al. 2020).

Participants’ demographic information was informed by parents
via an online questionnaire that was sent following the first
session. Families were asked about ethnicity, language spoken
at home, income, education, and occupation. In this study, all
infants were Hispanic, white, and monolingual. Seventy-three
percent of families reported an overall household income above
the poverty level according to the Spanish National Institute of
Statistics (M = 1.38 times the poverty line income). Most parents
possessed either a bachelor’s degree or postgraduate education
(mothers: 71.18%, fathers: 53.02%), while the rest had achieved
at least secondary education, except for one father who had not
completed basic schooling. With respect to occupation, 32.35% of
mothers and 7.35% of fathers were unemployed, with themajority
employed in administration, teaching, and management (see
Supporting Material S1. Demographic description of the sample
for more details).

2.2 General Procedure

The research presented in this paper is part of a larger lon-
gitudinal study that encompasses a wider set of tasks than
those presented here. Before performing the ECITT task in both
the 9- and 16-month sessions, participants conducted different
eye-tracking protocols that took about 10–15 min, and only in
the 16-month-old session the ECITT was followed by a spatial
reasoning task. The rs-EEG protocol was always conducted at
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TABLE 2 Descriptive statistics of the sample included in the linear regression models predicting ECITT performance based on rs-EEG.

n (female) Session age Valid trials

rs-EEG

Clean epochs R2

Concurrent 9-mo. 37 (15) 284.67
(10.16)

18.84 (3.27) 15.40 (9.26) 0.98
(0.01)

16-mo. 37 (21) 513.40
(20.51)

29.63 (2.53) 15.35 (9.51) 0.99
(0.01)

Longitudinal — 35 (18) 9-mo.: 283.66
(10.68)

16-mo.:
28.07 (4.92)

9-mo.:
12.69 (6.98)

9-mo.:
98 (0.01)

16-mo.:
515.25 (21.78)

Note:This table presents the data of infantswhohad valid data for both the rs-EEGandECITT tasks. Being included in the behavioral analysiswas not a requirement
for inclusion in the relational analysis. Thus, the sample varied slightly between the participants in both analyses. Session age (days). The valid trials corresponded
to the ECITT task. R2 represents the fit of power spectrum decomposition. This table presents the information for when the EEG and ECITT were collected in the
same wave (concurrent) and in the longitudinal analysis predicting ECITT performance at 16-months. based on EEG data at 9-months. Data are presented as M
(SD).
Abbreviations: rs-EEG = resting-state EEG.

the end of the session immediately after the participants were
presented with an event-related protocol lasting approximately
7 min. In all procedures, the tasks were video recorded, and
the infants were seated on their caregiver’s lap. Parents were
instructed to remain silent and not interact with their children
during the task.

2.2.1 ECITT

2.2.1.1 Apparatus. The stimuli were presented on an Apple
iPad tablet (screen:9.7 inches; 2048 × 1536 pixels). The software of
the ECITTwas programmed by Henrik Dvergsdal (for details, see
Holmboe et al. 2021) and it is available online (see: https://ecitt.
app).

2.2.1.2 Protocol. We followed the standard ECITT protocol
described by Hendry et al. (2022). The session started with a
Familiarization Phase to allow them to interact with the tablet. In
this phase, the experimenter encouraged the infants to touch the
butterfly displayed on the tablet screen. If the child did not touch
it, the experimenter modeled the action and provided positive
feedbackwhen the child imitated her/him. Afterward, the infants
completed a Practice Block in which a centrally positioned blue
button with a “smiley face” (target button) appeared on the
screen, and the experimenter prompted the infant to touch it. A
short animation with music was presented as positive feedback
after the infant tapped the button. This step was used to create an
association between the target and the positive feedback. Once
the infant demonstrated competence in touching the button, the
Experimental Task was initiated. During the experimental trials
(Figure 1), two blue buttons, one empty (blank button), and one
with the “smile face” on it, were displayed on the sides (right or
left) of the screen. The experimenter gently encouraged the infant
to touch the target by saying ‘Can you touch the smiley face?’
Correct touches were immediately followed by child-friendly
feedback (a short cartoon animation with music), whereas the
stimuli remained unchanged following incorrect, or off-button
touches.

FIGURE 1 Schematic representation of the experimental trial
sequence in the ECITT task. ECITT = Early Childhood Inhibitory
Touchscreen Task.

2.2.1.3 ECITT Variables. Each infant performed a single
block of 32 experimental trials. The target button appeared more
frequently on one side of the screen (75% prepotent location) and
less frequently on the opposite side (25% inhibitory location). The
prepotent locationwas counterbalanced between participants but
was the same for each infant in the two longitudinal sessions
(at 9 and 16 months of age). The experimental block began
with at least three consecutive prepotent trials to establish an
initial tendency. The trial selection was then pseudo-randomized,
allowing a maximum of five prepotent trials in a row and a
maximum of two consecutive inhibitory trials.

Infant behavior was video recorded and subsequently reviewed
by a trained researcher. In this post-hoc evaluation of the task,
the researchers excluded invalid trials and determined the trial
validity and accuracy. Trials with at least one of the following
conditions were marked as invalid: (a) the infant responded
without visual focus on the device, (b) the infant touched the
screen with both hands, (c) reaction time was below 300 ms, (d)
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there was parental indication of the correct answer. To assess the
reliability of the post-hoc codification, another reviewer codified
a subset of the videos (N = 50) at ages 9 and 16 months for
both accuracy and validity. Then, we calculated Cohen’s Kappa
reliability (R, psych package). This analysis demonstrated good
intercoder reliability at 9-month-old (n trials = 1373, k accuracy
= 0.85, k validity = 0.80) and 16-month-old (n trials = 1515, k
accuracy = 0.90, k validity = 0.84) sessions. Based on the codified
values, infants were excluded if they did not reach 60% accuracy
in prepotent trials, had fewer than two inhibitory trials, or did not
complete at least 50% of the trials. Our final sample for behavioral
analysis included infants with valid data in the two sessions or
who had one session with valid data, and the other was missing
(9-months session:M valid trials= 18.74; SD valid trials= 3.61; 16-
months session:M valid trials= 28.59; SD valid trials= 4.3; Table 1
and Supporting Material for further details of the socioeconomic
status of the sample).

Similar to previous studies with very young participants (e.g.,
Hendry et al. 2022), we did not consider infants’ RT given that
babies often behave erratically between trials while performing
the task. Thus, task performance wasmeasured as the percentage
of correct valid answers under three conditions: prepotent non-
switch (PNS), prepotent switch (PS), and inhibitory switch (IS).
The PNS trials were those in which the target appeared at a
prepotent location, as in the previous trial. In the PS trials,
the target appeared at the prepotent location but followed a
presentation in the inhibitory location. In the IS trials, the target
appeared at the inhibitory location following the presentation
at the prepotent location. Unlike previous studies using the
ECITT, we decided to consider sequential changes in the target
location to disentangle IC from response-switching costs, an
effect related to CF and control (Koch, Frings, and Schuch
2018). We also computed two general indices of performance
in the task: the Inhibitory Effect (PS Accuracy—IS Accuracy)
and the Switching Effect (PNS Accuracy—PS Accuracy). The
Inhibitory Effect measures the cost of accuracy owing to failures
to inhibit touching the prepotent location, whereas the Switching
Effect reflects the general costs of changing from one location to
another. Note that the performance indices in our study vary from
those used in previous studies on the ECITT (e.g., Hendry et al.
2022).We provide the behavioral results using these indices in the
Supporting Results section.

2.2.2 Electroencephalography Recording at Rest

2.2.2.1 Apparatus andProtocol. We recorded EEG activity
at rest in both 9- and 16-month-old sessions. The resting protocol
consisted of 4 min of recording, divided into two blocks. In the
first block, the experimenter blew soap bubbles in front of the
infants. In the second block, a video featuring geometrical shapes
and music was presented on a computer screen. This approach
was implemented to increase the likelihood of obtaining a valid
EEG record by extending the overall duration of the protocol
and mitigating boredom and fussiness in infants. In 9-month-
old session, 31.82% (SD = 33.73%) of epochs corresponded to the
video block, while the percentage in 16-month-old session was
36.87% (SD = 32.87%). Notice that the oscillatory and aperiodic
parameters of the EEG power were correlated at both ages (9-mo.:
n = 36, all rs > 0.42, all ps-FDR-corrected < 0.024; 16-mo.: n = 29, all rs

> 0.38, all ps-FDR-corrected < 0.044) indicating that the brain activity
registered under the resting protocol is similar in both blocks.

The EEG signal was recorded with a 128-channel geodesic net
(EGI Geodesic Sensor Net, Eugene, OR, USA) using the EGI
software Net Station 4.3 with a digitalization rate of 1000 Hz.
The online signal was recorded with reference to the Cz electrode
and filtered with elliptical low-pass (100 Hz) and high-pass
(0.1 Hz) hardware filters. The session was videotaped, and an
experimenter coded the infants’ behavior to discard moments
with parental interruptions and/or the baby’s fussiness.

2.2.2.2 EEG Processing. To process the EEG signal, we
followed the preprocessing steps presented by Rico-Picó et al.
(2023), which combined the MADE (Debnath et al. 2020) and
APICE (Fló et al. 2022) pipelines in EEGlab. The signal was
filtered (FIR; 0.2–48 Hz), and boundary electrodes (n = 20) were
excluded from further processing because they were excessively
noisy (Figure 2). Then, global bad channels were detected using
the EEGlab plug-in FASTER (Nolan, Whelan, and Reilly 2010)
and removed from the dataset. Next, we created a copy of the
dataset and computed an independent component analysis (ICA;
high pass filtered to 1 Hz; segmented into 1s epochs; threshold =
±1000 µV; detect activity between 20 and 30Hz). Bad components
were detected with the adjusted ADJUST (Leach et al. 2020),
which were copied into the original dataset and removed from
the recording. Over the continuum, we detected the “transient
bad moments” with an adaptive threshold based on the power
spectrum, amplitude, and variance of the signal. These moments
were targeted using principal component analysis (PCA); if they
lasted less than 100 ms, the pipeline removed the components
containing up to 0.90 of the variances. Then, the signal was
divided into 5 s epochs (50% overlapping), and we redefined the
“transient bad moments.” If more than 30% of the signal was
noisy within one epoch, it was removed. Otherwise, the channels
of bad moments were interpolated within the epoch. Finally,
the global bad channels excluded by FASTER were reintroduced
using spherical interpolation, and the signal was re-referenced
to the average. Over the remaining epochs, we applied a ±110
µV voltage threshold, and in the case of 20% of the channels
surpassing it, the epoch was discarded. Finally, the experimenter
visually inspected the segments and removed the bad segments if
necessary.

The inclusion threshold based on the number of epochs was
determined by the reliability of the oscillatory and aperiodic
parameters (see Supporting Material). To this end, we calculated
Spearman-Brown split-half reliability from 2 to 20 epochs in
1 epoch increments across 5000 iterations (see Troller-Renfree
et al. 2021). This procedure was conducted for each variable
in its corresponding electrode region and separately for each
session. Generally, theta peak frequency demonstrated the lowest
reliability, while the aperiodic components exhibited the highest.
Furthermore, this analysis indicated that 25s of data was suffi-
cient to yield excellent reliability values (rsb > 0.8), except for
alpha and theta peak frequency, which attained only a substantial
reliability value (rsb > 0.7). Thus, we excluded infants with
less than 25s (i.e., 5 epochs) of valid data (concurrent analysis:
9-month-old n = 6, 16-month-old. n = 1; cross-sessions analysis:
n = 2), missing data in the EEG (vs. ECITT task; concurrent
analysis: 9-month-old n = 17, 16-mo. n = 27; cross-sessions
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FIGURE 2 The EEG layout employed in this study (left) and power spectrum fit the Specparam toolbox. The first column represents the absolute
power and aperiodic background curve, whereas the second column displays the oscillatory power spectrum after subtracting the aperiodic activity.
Note: Layout colors represent excluded electrodes (red), occipital-parietal (pink), and frontal (yellow) clusters. The lines in the graphs represent the mean and the
shaded lines correspond to twice the standard error.

analysis: n = 28), or with more than 10 global electrodes detected
by FASTER (n = 0). Females had more epochs before the
preprocessing at 9-months than males (all ts > 16, all ps < 0.001),
while males had longer recordings at 16-months (t = 25, p <

0.001). However, groups did not differ in cleaned epoch number
according to either the age (all ts < 1.05) or sex (t = 1.10) variables
(see Table 2 for further details).

2.2.2.3 EEG Power Computation. We obtained the ape-
riodic and oscillatory parameters using the Specparam tool-
box (Donoghue, Haller et al. 2020; https://pypi.org/project/
specparam/) through a MATLAB wrapper (https://github.com/
bfbarry/EEGLAB-specparam). This toolbox models the results
of an FFT (1–20 Hz) provided by the pop_spectopo function
into aperiodic and oscillatory power. It considers the power
at each frequency (P(f)) as a combination of aperiodic (L(f))
and oscillatory (G; Σn Gn (f)) activities. The aperiodic curve is
defined as L(f) = 𝑏—log[fx] where 𝑏 is a constant offset and 𝜒

is the exponent of the decaying curve, while the oscillatory (G)
peaks are modeled as Gaussian curves. The specparam fitting
parameters were similar to the ones employed in previous infants
studies (peak width limits: [2.5–12 Hz]; maximum number of
peaks: 5; aperiodic mode: fixed; peak threshold: 2; see Rico-Picó
et al. 2023; Schaworonkow and Voytek 2021). To ensure reliability
of the results, we excluded channels with fit values below R2 =
0.95. Infants had to have at least 50% of electrodes surpassing
that threshold per ROI to be included in the analysis (excluded
n = 0; electrodes excludedM9-mo. = 4.2%,M16-mo. = 2.1%; Table S2;
Figure S3). In the ROIs included in the analysis (see Figure 2), the
parieto-occipital clusters had a better fit than the frontal area (all

ts > 7.04, all ps < 0.001) but without differences between parietal
and occipital areas (t < 1). At 9 months of age, the goodness of
fit was lower than in 16-month-old session (all ts > 4.17, all ps <
001), and females had larger fit values than males independent of
session (all ts > 5.2, all ps < 001).

We computed the oscillatory power in two frequency bands:
theta and alpha. Alpha and theta frequency ranges were centered
on the infants’ individual alpha (IAF) and theta (ITF) peak
frequencies over the parieto-occipital (Figure 2) clusters. We
selected this ROI and adapted the frequency ranges because
the parieto-occipital area shows larger reconfiguration in infants
when exposed to resting conditions and the peak frequency
steadily increases in the first years of life (Marshall, Bar-Haim,
andFox 2002; Freschl et al. 2022; Rico-Picó et al. 2023; Stroganova,
Orekhova, and Posikera 1999). Given the age of the infants
included in the study, we determined that an oscillatory peak
provided by specparam toolbox was an alpha peak if it was over
the 6–9 Hz interval, while we considered 2.5–5.5 Hz range to
determine if a participant had a theta peak. After obtaining the
IAF and ITF, we constructed a frequency range considering the
bandwidth for alpha and theta peaks by (e.g., IAF ± (Band-
Widthalpha/2)). To obtain the oscillatory power, we subtracted the
aperiodic background curve from the absolute power for each
frequency band. We also considered the aperiodic exponent, IAF,
and ITF in the analysis. Oscillatory power and exponent were
computed over the frontal ROI, whereas the IAF and ITF were
extracted from the parieto-occipital cluster. Each measurement
was calculated per electrode and then averaged over the cluster,
excluding the electrodes with goodness of fit R2 < 0.95.
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2.3 Analysis Plan

2.3.1 Behavioral Change and Stability

We used linear mixed models to analyze age-related changes in
ECITT performance. The models for the accuracy values of PNS,
PS, and IS included Age, Type of Trial, and their interaction
as fixed effects in a single model, whereas the models of the
composite indices were computed independently for each vari-
able. We tested two random structures in the models (intercept
vs. intercept + slope per participant). When a random slope
was introduced, the resulting models were singular. Therefore,
all reported analyses included only random intercepts per par-
ticipant. We employed the approximations of Satterthwaite and
Nakagawa’s et al. (Nakagawa, Johnson, and Schielzeth 2017) R2 to
compute the degrees of freedom and the effect size of the model,
respectively. When the residuals were non-normally distributed,
we employed Tucker ladder transformation and used the model
in the first step. To compute individuals’ longitudinal stability
in the performance of the task, we conducted linear regressions
including 9-month-old performance as a predictor. We accounted
for the missing values with maximum likelihood estimation to
minimize the loss of statistical power in the following cases: (1)
the participant experienced technical problems, andwe could not
conduct the ECITT task; (2) the participant did not attend one
of the experimental sessions (Enders 2013; Graham 2009; Matta,
Flournoy, and Byrne 2018). Little’s MCAR test determined that
missing data were missing completely at random (X2 = 0.69, p =
0.708). Additional analyses also showed that the socioeconomic
status of the family did not vary among infants with and without
complete data (9-month-old: t (58) = 1.1, p = 0.136; 16-month-old:
t (58) = −0.603, p = 0.274).

2.3.2 EEG and ECITT Relationship

The R package glmulti (Calcagno and Mazancourt 2010) was
used to study the relationship between ECITT performance and
functional brain power. This package conducts linear regressions
by creating all the possible combinations given the matrix of
independent variables and finds the one that fits the best to
predict the dependent variable. The model selection in this
package is based on AICc, thus correcting the number of
independent variables. We examined concurrent (e.g., 9-months
EEG predicting 9-months ECITT) and cross-session (9-months
EEG predicting 16-months ECITT) relationships between brain
and behavior. If the residuals were non-normally distributed,
we transformed the independent variable based on the Tucker
ladder and re-ran the models from the first step. As we found
differences between sex and brain areas in the goodness of fit of
the electrodes, we included sex and goodness of fit in the final
model to control for those variables.

3 Results

3.1 Age-Related Change and Individual Stability
of IC

The general accuracy of the ECITT in the direct indexes (i.e., PS,
PNS, and IS; marginal R2 = 0.32, conditional R2 = 0.41; Figure 3

FIGURE 3 Accuracy development in the ECITT task for each
variable: PNS, PS, and IS. Each dot represents a participant, whereas
the red and gray lines indicate the average and individual trajectories,
respectively. IS = inhibitory switch, PNS = prepotent non-switch, PS =
prepotent switch.

TABLE 3 Descriptive statistics of the ECITT task.

Session N

Accuracy
(% correct) Inhibition

effect
Switching
effectIS PNS PS

9-mo. 57 0.44
(0.28)

0.83
(0.11)

0.68
(0.22)

0.24
(0.33)

0.15
(0.17)

16-mo. 51 0.56
(0.34)

0.91
(0.15)

0.73
(0.23)

0.17
(0.38)

0.18
(0.21)

Note: The sample included in the linear mixed model was n = 74, considering
missing data. The table displays theM (SD) accuracy and computed indexes of
performance.

and Table 3) increased between 9-months and 16-months sessions
(β = 0.16, t (331.11) = 3.09, p = 0.003, 95% CI = [0.06–0.27]).
Post-hoc pairwise comparisons corrected by Holm-Bonferroni
revealed that infants had greater accuracy in the PNS trials than
in the IS and PS trials (all zs > 5.82, all ps < 0.001). Also, they
were more accurate in the PS trials than in the IS trials (z =
7.21, p < 0.001). Type × Age interaction was not significant (t <
2). However, it is possible that some of these trajectories were
significant, whereas others may have failed to reach significance.
To explore this assumption, we analyzed the development of each
trial type. Accuracy increased in the PNS (marginal R2 = 0.09,
conditional R2 = 0.35; β = 0.11, t (123) = 3.50, p < 0.001, 95% CI
= [0.05–0.17]) and IS (marginal R2 = 0.05, conditional R2 = 0.37; β
= 0.18, t (63.52) = 2.77, p = 0.007, 95% CI = [0.05–0.30]) but not
in the PS trials (marginal R2 = 0.02, conditional R2 = 0.11; t <
2). Regarding the indexes computed, neither the Switching Effect
(marginalR2 < 0.01, conditionalR2 = 0.14; t< 1) nor the Inhibitory
Effect (marginal R2 < 0.01, conditional R2 = 0.01; t = 1) changed
between sessions (Figure S4).

Regarding stability, we found that only IS accuracy was related
between the two sessions (adj R2 = 0.16; β= 0.40, F (1,73)= 2.74, p
< 0.01, 95%CI= [0.13 0.80]), with no other significant relationship
(all F < 1; see Table S3).
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FIGURE 4 Regression lines of the significant regression models
linking behavior and EEG activity concurrently at 9-mo. (A) and
longitudinally from EEG at 9-mo. to behavior at 16-mo. (B). EEG =
electroencephalography, PNS = prepotent non-switch, PS = prepotent
switch.

3.2 Electrophysiological Correlates of EC

Concurrent EEG activity at 9 months was a significant predictor
of ECITT performance in the PS (adj. R2 = 0.21, F (4,31) = 3.286,
p = 0.023) and PNS (adj. R2 = 0.22, F (2, 32) = 4.19, p = 0.013)
trials (Figure 4A), but it was not associated with IS accuracy (F <

2). PS accuracy was positively predicted by ITF (β = 0.41, t (31) =
2.27, p = 0.011) and the model included alpha power, but it was
not significant (t < 2). PNS accuracy was related to ITF (β = 0.41,
t (32) = 2.71, p = 0.030).

With respect to concurrent regressions at 16 months, neither the
PNS nor the IS accuracy fittest model included any independent
variables. In addition, PS at 16 months was not related to
concurrent EEG activity (F < 1).

In the longitudinal analysis, PS accuracy at 16-months of age was
significantly predicted by the EEG at 9-months session (adjusted.
R2 = 0.50, F (4, 30)= 9.75, p< 0.001; Figure 4B) by alpha (β= 0.55,
t (30) = 4.49, p < 0.001) and theta oscillatory power (β = 0.42, t
(30) = 3.43, p = 0.002). However, IS and PNS (all Fs < 2) at the 16-
month session were not significantly predicted by EEG activity at
9 months. See Table 4 for further details on the models. A more
detailed description of EEG activity can be found in Figures S5
and S6, and Table S4.

4 Discussion

The main goal of the current research was to study the devel-
opment of EC from infancy to toddlerhood and examine its

relationship with oscillatory/aperiodic brain activity at rest in a
longitudinal sample of 9 to 16–18 month-old babies. We evaluated
infants’ EC bymeans of their performance of the ECITT protocol,
which had been previously demonstrated to be appropriate for
babies as young as 10 months of age (Fiske et al. 2022; Holmboe
et al. 2021; Hendry et al. 2022). Importantly, in the current
study, we showed that ECITT is also feasible in 9-months old
infants. Overall, our results indicate that there is a significant
development of inhibitory skills in the transition from infancy
to toddlerhood, despite a persistent difficulty switching attention
from one target location to another on a trial-by-trial basis.
Moreover, we found that faster theta peak frequency (ITF)
significantly predicted performance of PS and PNS trials at 9
months of age, whereas both theta and alpha oscillatory power at
9-months were significant longitudinal predictors of infants’ CF
at 16 months of age.

4.1 EC Development

Unlike prior studies using the ECITT (Holmboe et al. 2021;
Hendry et al. 2022; Fiske et al. 2022; Lui et al. 2021), we separately
analyzed prepotent trials based on whether they were preceded
by a change in the target location (PS vs. PNS trials). At both 9
and 16 months of age, participants experienced greater difficulty
touching the target button on the prepotent location when it was
previously displayed at the non-prepotent location compared to
repeating the prepotent location. This switching cost implies that
infants must adjust their attention to the target’s location on a
trial-by-trial basis in order to respond successfully. In fact, infants
who were better able to switch between prepotent and inhibitory
trials (in both directions) also made fewer errors in the A-not-B
task in other studies (Hendry et al. 2022). This result demonstrates
a significant cost of adjusting the location of attention on a trial-
by-trial basis in the performance of tasks in which the spatial
location is a relevant feature of the target. Additionally, over and
above the switching cost, we found that responses to IS trials were
the most challenging for infants of both ages. IS trials require
withholding a strong response prepotency toward the prepotent
location of the target (bear in mind that IS trials were preceded
by PNS trials ∼83% of the time), in addition to effective switching
of attention to the opposite location. Therefore, ECITT provides a
measure of both CF and IC, which can be dissociated in terms of
behavioral accuracy.

Age-related changes in task performance revealed different devel-
opmental trajectories for inhibition and switching flexibility.
Developmental changes were observed in PNS trials, suggesting
that building a prepotent tendency improves with age. We also
observed an improvement in the accuracy of IS trials with age,
despite the lack of change in the performance of PS trials.
This pattern of results suggests that the observed change in IS
with age can be attributed exclusively to the enhancement of
IC skills, while the response adjustment cost for changing the
spatial location of the target remains of a similar magnitude in
this protocol. Indeed, we observed similar age-related changes
(better inhibition and accuracy in the non-switch trials at 16
months) when computing the indices in the ECITT task, as in
previous studies (Supporting Results). This pattern reveals an
additional dissociation between the flexibility of attention and
IC, which is corroborated by its differential association with
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brain oscillatory activity. However, this differed from previous
experiments studying development from 10 to 16 months of life
(Hendry et al. 2022), whichmight be attributed to the wider range
of age explored in this study.

Finally, in line with the results of Hendry et al. (2022), we
found significant individual stability in the performance of the
IS trials. Performance in IS trials at 9 months was positively
correlated with the performance of the same trials at 16 months
of age. This was significant even after controlling for PS and PNS
accuracy, although both significantly contributed to predicting
IS performance (Table S5). This result suggests that the building
blocks of EC (inhibition and switching) emerge in infancy and are
likely to be based on brain mechanisms that, although very likely
to be subject to both environmental and constitutional variables,
show a certain degree of developmental stability in this early
maturational period (Bornstein 2014; Conejero et al. 2023; Hendry
et al. 2016).

4.2 Brain Oscillatory Activity and EC
Development

Although other studies have shown a relationship between
frontal activity and aspects of infants’ cognition, our study is the
first to dissociate between oscillatory and aperiodic components
during EEG recording at rest and to associate this brain activity
with performance on the ECITT task. Our results revealed
specific concurrent and longitudinal associations between task
performance and frontal oscillatory power and ITF; however, we
did not find significant relationship with the aperiodic exponent
component. This finding highlights the relevance of oscillatory
brain activity when predicting high-order cognitive development,
in agreement with prior findings (e.g., Broomell, Savla, Bell 2019;
Broomell et al. 2021).

Oscillatory power of the theta band at 9-months was a positive
predictor of the PS trials at 16-months, and ITF was a concurrent
predictor in the PNS and PS trials at 9-months of age. This is con-
sistent with results from previous studies that found theta to be a
predictor of cognitive skills in infancy and childhood/adulthood
(Braithwaite et al. 2020; Perone, Palanisamy, and Carlson 2018)
and the involvement of ITF in cognitive control (Senoussi et al.
2022). Regarding to oscillatory power, the studies of Jones et al.
(2020) and Braithwaite et al. (2020) found better non-verbal cog-
nitive abilities in infants who showed greater theta power incre-
ment in a resting state protocol severalmonths before. In contrast,
previous studies had found a negative relationship between theta
power and intelligence in adulthood (Tan et al. 2023), and dura-
tion of attention and executive function in infancy and early child-
hood (Perone, Palanisamy, and Carlson 2018; Perone and Gart-
stein 2019). Thus, the findings regarding theta activity are mixed
depending on the approach used to compute power. Studies that
found a negative relationship used relative power ratios, while
others used power variation. As theta relative power and other
derivatives (e.g., theta/beta ratio) are influenced by the aperiodic
exponent (Donoghue, Dominguez, and Voytek 2020; Rico-Picó
et al. 2023), a negative relationship between theta and cognitive
capacities may occur due to age-related flattening of the back-
ground curve (e.g., Schaworonkow and Voytek 2021; Cellier et al.
2021; Rico-Picó et al. 2023). Indeed, a steeper background curve

(i.e., a larger exponent) has been associated with attention deficit,
hyperactivity risk, and poorer executive functions in an autism
risk sample of infants (Begum-Ali et al. 2022; Carter Leno et al.
2022; Karalunas et al. 2021). In the current study, theta oscillatory
power was isolated from aperiodic background activity, which
may be more similar to the evoked and modulation paradigms.
Therefore, our results are consistentwith the involvement of theta
oscillations as amarker of cognitive control (Cavanagh and Frank
2014; Conejero et al. 2016; Köster et al. 2021).

Regarding alpha oscillatory power, we found a positive longitu-
dinal relationship with PS accuracy. This is consistent with the
results of previous studies that found an association between
frontal alpha power and performance in the A-not-B task
(Broomell et al. 2021) and other EF experimental procedures
(Hofstee et al. 2022), which makes alpha key to the development
of EC (Cuevas and Bell 2022). In fact, alpha has been consistently
related to top-down processes involved in visuospatial attention,
cognitive control, and brain communication (Clayton et al. 2018;
Fries 2015; Klimesch, Sauseng, and Hanslmayr 2007).

Previous studies have reported early developmental trajectories
of alpha and theta oscillatory activity. They have shown a steady
increase in both IAF and ITF (e.g., Marshall, Bar-Haim, and
Fox 2002). Although alpha oscillatory power increases with age,
theta oscillatory power presents an inverted “u” shaped trajectory
(Rico-Picó et al. 2023; Schaworonkow and Voytek 2021). Given
these trajectories, our regression models indicated that more
mature patterns of brain oscillatory activity at 9 months in alpha
and theta rhythms are linked to better EC functioning. This
suggests that the presence of such oscillatory activity may be
necessary for the emergence of EC at the end of the first year of
life. Furthermore, our results indicated that the alpha and theta
bands were longitudinal co-predictors of performance in PS trials
in toddlerhood. In PS trials, infants must suppress the tendency
to repeat responding on the same side as the previous trial, in
addition to disengaging their attentional focus from the previous
location and reorienting to the new one. Thus, alpha and theta
bands may jointly contribute to infants’ performance in attention
switching and behavioral suppression. For instance, a study with
adults attributed reactive (vs. proactive) cognitive control to theta
(vs. alpha) bands (Clements et al. 2021). This makes it feasible
that both bands support differential although contributive roles
to infant cognition (see Saby and Marshall 2012; Cuevas and Bell
2022).

In our study, we did not find a significant contribution of the
aperiodic exponent to ECITTperformance. This is consistentwith
a recent study that found that children who scored lower on
the Behavioral Inhibition Questionnaire had the same exponent
values as their peers (Ostlund et al. 2022). However, previous
studies have reported the contribution of aperiodic activity to
cognition in offline and online paradigms in developmental
and adult samples (e.g., Donoghue et al. 2020; Karalunas et al.
2021). For instance, a recent study by Carter Leno et al. (2022)
found an interaction between the aperiodic exponent and EC to
predict autistic traits. Therefore, despite the lack of a relationship
between aperiodic activity and behavior in our study, aperiodic
activitymay be relevant to the development of particular cognitive
skills, and more studies are needed to fully understand its
relationship with infant behavior.
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Finally, our results revealed longitudinal and concurrent associ-
ations between brain oscillatory activity and task performance at
9 months but not at 16 months of age. There is good evidence
that rs-EEG can be a predictor of later behavior (Brito et al. 2016;
Jones et al. 2020; Whedon, Perry, and Bell 2020). However, some
studies have found concurrent, but not longitudinal, relationships
between rs-EEG and behavior (Leno et al. 2021). Thus, it is
important to consider the time points of the measurements when
examining the factors that impact the change and stability of
the measures. In this sense, introducing trajectories or individual
slopes (see Whedon, Perry, and Bell 2020, for example) provides
valuable information about how the state of maturation at a
particular time point predicts developmental changes in cognitive
skills that might reconcile the literature.

4.3 Strengths, Limitations, and Future
Directions

The current study presents some strengths that are worth
mentioning. Firstly, the longitudinal design facilitated the explo-
ration of longitudinal variation and stability of the cognitive
skills targeted by the ECITT task. Additionally, it enabled the
investigation of both concurrent and longitudinal (EEG at 9-
months, and ECITT at 16-months sessions) relationships between
resting-state brain activity and individual differences in the
performance of the ECITT task. Secondly, the utilization of
the ECITT task yielded behavioral EC markers that are less
dependent onmemory processes compared to previous tasks such
as the A-not-B (Holmboe et al. 2021). Moreover, the decomposi-
tion of EEG activity into aperiodic and oscillatory components
provided a more precise measurement of power-spectrum. Con-
sequently, this approach addressed the potential influence of
aperiodic activity on previously reported correlations between
alpha/theta power and individual differences in infants’ cognitive
capacity.

However, some limitations are present in this research. The
current study was limited by its relatively modest sample size.
Thiswas in part due to theCOVID-19 pandemic,which forced lab-
oratories to interrupt activity for a period of several months. This
negatively impacted the attrition rate of families and enforced
us to widen the age window for the 16-month-old session.
However, despite the modest sample size, our findings are in line
with those of Hendry et al. (2020), with similar performances
observed in prior studies. Furthermore, we did not find any
significant correlations between age in days and performance
on the ECITT task in the 16–18-month-old session (Table S6).
Thus, age variability did not appear to affect our results in the
16-months-old session.

Although one of the main advantages of ECITT is that it allows
the administration of a greater number of trials than other
infant-appropriate EC tasks (e.g., the A-not-B task), the ECITT
version still presents a limited number of trials. In addition,
the probability of occurrence of a non-switch inhibitory trial is
low (∼13%). New variations of ECITT, increasing the number
of trials, and including switch and non-switch inhibitory trials
in an equivalent proportion will help to further dissociate the
contribution of CF and IC processes in the performance of this
task.

Regarding the electrophysiological measurement, we computed
the oscillatory power, isolating it from the aperiodic background
curve. We based our preprocessing on the assumption that the
signal is stationary. However, narrowband activity can appear
as a transient burst that may not generate a peak over the
aperiodic power-spectrum curve (Rayson et al. 2022; Zich et al.
2020). Therefore, extracting the properties of transient burstsmay
benefit the study of other bands that present evoked patterns,
such as beta, and dissociate between burst and rhythmic activity.
Future studies could potentially investigate brain activity using
electroencephalography (EEG) while infants perform the ECITT
task. This approach would enable the examination of induced
brain activity in aperiodic parameters and theta and alpha bands
by directly comparing neural responses of infants’ brains during
inhibitory versus prepotent trials. Such research would extend
the previous findings of Fiske et al. (2022, 2024), which utilized
fNIRS to demonstrate the recruitment of frontal brain areas when
infants face conditions involving IC.

5 Conclusion

We present evidence of the early emergence of EC processes at
the end of the first year of life. Our results indicate that, between
infancy and toddlerhood, IC skills improve when using a newly
developed task (ECITT) that permits a more fine-grained mea-
surement of EC (i.e., IC and CF) than previously used measures
(A-not-B task and parent-reported questionnaires). This is in
line with recent research (Hendry et al. 2022) and supports the
feasibility of theECITTwith an independent longitudinal sample.
In addition, we found that frontal rs-EEG oscillatory power in the
alpha and theta bands were concurrent (ITF at 9 months) and
longitudinal predictors of children’s EC skills. This contributes
to the understanding of the relationship between intrinsic brain
function and EC. Other studies have reported a link between
brain activity at rest with intelligence (Braithwaite et al. 2020),
academic performance (Whedon, Perry, and Bell 2020), and even
social adjustment (Caporaso, Boseovski, Marcovitch 2019; Flem-
ing et al. 2020). Thus, investigating both neural and behavioral
indicators might help identify potential predictors of children’s
individual differences from early developmental stages.
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