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Abstract
Fairness in artificial intelligence has emerged as a critical ethical concern, with most research focusing on classification
tasks despite the prevalence of regression problems in real-world applications. We address this gap by presenting a general
procedure for measuring fairness in regression problems, focusing on statistical parity as a fairness metric. Through extensive
experimental analysis, we evaluate how different methodological choices, such as discretization methods, algorithm selection,
and parameter optimization, impact fairness outcomes in regression tasks. Our primary contribution is a systematic framework
that helps practitioners assess and compare fairness across various approaches to solving regression problems, providing clear
guidelines for selecting appropriate strategies based on specific problem requirements. The results demonstrate the importance
of carefully considering procedural decisions when evaluating fairness in regression contexts, as these choices influence both
model performance and fairness outcomes.

Keywords Fair AI · Regression · Statistical parity · Fairness metrics · Bias in AI · Multiobjective optimization

1 Introduction

Artificial intelligence (AI) techniques are being widely
applied, with individuals either interacting directly with AI
systems or being affected by AI-embedded decision-making
processes [1]. While many AI applications focus on classifi-
cation tasks, there is a significant class of problems requiring
continuous or ordinal outputs, regression problems, that
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present unique challenges for ensuring fairness and non-
discrimination.

Ensuring fair and non-discriminatory AI decisions is cru-
cial, as it represents one of the fundamental rights recognized
by theEuropeanUnion.Algorithmic decision systems (ADS)
carry known risks of discrimination [2], which can mani-
fest as either intentional or unintentional injustice resulting
from human prejudice and stereotyping based on sensitive
attributes [3]. Notable instances of AI applications failing
to make fair decisions [4, 5] highlight the critical need for
robust fairness measures and mitigation strategies.

Most fair AI research concentrates on fairness metrics for
machine learning classification tasks. In classification tasks,
the goal of machine learning is to correctly assign prede-
fined categories or labels to input data, based on patterns and
relationships identified from training examples. For example,
the compas case [6], which predicts a recidivism risk score
between 1 and 10, has been addressed as a binary classifi-
cation problem: low risk vs. medium–high risk, with scores
from1 to 4 classified as low risk; this is an example of an ordi-
nal classification task where the order of the labels matters.
These kinds of problem have also been classified as ordinal
regression. Some problems require a real value, rather than a
label, to be assigned to the input data. These are called regres-
sion problems. For example, for the Law School Admission
Council dataset [7], the prediction outcome is the Under-
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graduate Grade Point Average of law students, a continuous
variable also called ‘target variable.’ A regression problem
can be addressed as a classification problem by finding a
good way to discretize the target variable.

Despite the abundance of regression problems in real-
world applications, there exists no in-depth analysis com-
paring classification and regression fairness measures when
applied to regression problems. The common practice of con-
verting regression problems into classification tasks through
discretization lacks a thorough analysis of its consequences
for fairness. Additionally, the influence of methodological
choices, such as discretization methods and model selection,
on fairness outcomes remains understudied.

This paper addresses these critical gaps by introducing
a general procedure for assessing fairness in regression
problems. The proposed procedure is supported by an experi-
mental analysis that focuses on evaluating fairness supported
by multiple hypotheses.

• H1: Fairness is sensitive to different discretization meth-
ods/thresholds. We will investigate how the selection of
different discretizationmethods or thresholds affects fair-
ness when the original regression problem is transformed
into a classification task.

• H2: Different fairness results can be obtained using dif-
ferent methods to solve the same problem. We will
measure fairness using the definition of SP for classifica-
tion and regression to check how the selection of different
methods to solve the problem affects fairness.

• H3: hyper-parameter optimization can lead to different
fairness values when using the same method to solve the
problem. We present a study of hyper-parameter opti-
mization based on the proposal made by Valdivia et al
[8] specifically for regression problems.

• H4: Using measures designed for classification allows
for the detection of unfairness in regression problems.
We will explore the adaptation of classification metrics
for regression scenarios, shedding light on the advantages
and drawbacks.

• H5: The solution using regression techniques is better
when continuous output is needed. We present a compar-
ison of the solutions using classification and regression
techniques, highlighting the differences in fairness and
error.

Our experimental analysis is focused on statistical parity
(SP). SP is a fairness metric that quantify whether differ-
ent groups (e.g., based on gender or race) receive similar
treatment in decision-making processes, evaluating the broad
view of equality of opportunity [9]. We also contribute a
state-of-the-art review of SPmetrics for regression problems,
offering practitioners clear guidelines for selecting appropri-
ate fairness measures based on problem characteristics.

This paper is organized as follows. The related work,
found in Sect. 2, provides a study of SPdefinitions,with a par-
ticular focus on definitions for regression problems, as well
as guidelines for their application based on the characteris-
tics of the problem. Section3 introduces a methodological
framework for evaluating fairness in regression tasks.

In Sect. 4, we propose a general procedure for quantifying
SP in regression tasks and evaluate it bymeasuring SP inmul-
tiple datasets. The evaluation of H1 is detailed in Sect. 4.2.
Section4.3 presents the analysis of the SP measure for clas-
sification tasks, also evaluating the hypotheses H2 and H4.
Section4.4 provides an analysis of a definition of the SPmea-
sure specifically designed for regression tasks and compares
the metric using different methods (H2). The study of hyper-
parameter optimization to evaluateH3 is covered in Sect. 4.5,
which also highlights the selection of regression techniques
H5 when continuous output is required. The results are dis-
cussed in Sect. 5, and the conclusions and future work are
presented in Sect. 6.

2 Related work

In this section, we present different definitions of fairness
metrics specifically for statistical parity in classification and
regression. We aim to provide a revision of the fairness met-
rics proposed for the regression setting, specifying which of
them can be applied taking into account the problem spec-
ifications. We highlight some existing tools that implement
these metrics and an approach in hyper-parameter optimiza-
tion focused on fairness.

2.1 Fairness and statistical parity in classification

Several literature reviews have been carried out on differ-
ent aspects of fair AI [3, 10]. Fairness notions have been
divided mostly into two different groups: individual and
group fairness. Individual fairness is the requirement that
models assign similar predictions to similar individuals [11].
Group fairness is the requirement that models assign similar
predictions to different groups. Subgroup fairness studied by
Mehrabi et al [12] as another category that aims to obtain the
best properties of the group and individual notions of fair-
ness. Authors like Verma and Rubin [13] make a distinction
about counterfactual fairness (defined by Kusner et al [14])
as a way of interpreting sources of bias using causal graphs.

We here focus on group fairness and we are using some
concepts in this context that need to be defined:

• protected attribute (PA): an attribute that divides the
population into groups (such as gender and race). The
algorithm outcomes should preserve parity taking this

123



International Journal of Data Science and Analytics

attribute into account. In the compas example, this
attribute is the race.

• privileged value (PV ): a value of a PA, indicating a group
that has been in systematic advantage (historically). In
the same way, unprivileged values imply the group in
a systematic disadvantage (UV ). The compas example
considers the African-American group to be at historical
disadvantage.

• favorable label (FL): a label for an outcome that provides
an advantage to the recipient. Following the example of
compas, the favorable label corresponds to attaining a low
risk of recidivism score. The classification task involves
only two distinct labels, whereas in the original problem,
the values of a low risk range from 1 to 4, inclusively.

SPhas beendefinedbyCalders et al [15] as: The likelihood
of a positive outcome (FL) should be the same regardless of
whether the person is in the protected group (whether the
person has a PV or aUV in PA). This measure represents the
independence criteria defined by Barocas et al [9].

In the binary classification setting, where the objective is
to predict a binary label (FL or not), SP can be computed
taking into account the true positive1 (TP) and the false posi-
tive2 (FP) values of the predicted outcome. Themathematical
definition of this metric can be found in Eq.1 whereU and P
are the total number of outcomes for each group of PA while
the values Utp and Ptp are the TP for each group and Ufp and
Pfp are the FP in each group of PA.

SPC =
(
Utp + Ufp

)

U
−

(
Ptp + Pfp

)

P
(1)

2.2 Statistical parity in regression

In the regression setting, the objective is to predict an ordinal
or continuous outcome. Therefore, to apply the definition
SPC to a regression problem, the outcome should be dis-
cretized to obtain a binary variable. This will transform the
original problem into a binary classification task. The risk of
trying to solve regression problems as classification tasks has
been widely studied [16], highlighting the risks associated
with the enforcement of labels or categories in continuous
or ordinal variables. Therefore, to apply the fairness metrics
designed for classification problems to regression problems,
the favorable label FL and the unfavorable label are a set of
values grouped by a label instead of a single value.

One way to calculate two groups is to divide the output
based on a threshold. The phenomenon of incompatibility
between threshold policies and fairness measures has been

1 True positive (TP): The predicted and the actual outcome are in a
positive class.
2 False positive (FP): A positive outcome is predicted as negative.

Table 1 Statistical parity definitions for regression problems

Approach References Cat Cont

Pearson correlation [19] �
Mann–Whitney U test [20] �
Kolmogorov–Smirnov test [21, 22] �
Distance of the average outcomes [23–25] �
Area under the curve [25] �
Mutual information [26–28] � �
Pairwise [29] � �

[30] �

The approach to implement the measure, the references in which the
measure was proposed and whether the measure can handle categorical
(Cat) and/or continuous (Cont) protected attributes

considered by CorbettDavies et al [17] as differences in the
base rate between groups that directly affect fairness mea-
sures. The same phenomenon has been studied in the fairness
literature as impossibility results [18] but also in statistics as
the problem of inframarginality [17].

The issues encountered with thresholds also arise when,
rather than binary protected attributes, the problem involves
continuous protected attributes like age, which are frequently
grouped to assess fairness. The interpretations of PA and
PV are adapted to this context to consider a group of val-
ues delimited by thresholds.

Another approach to assess fairness in regression prob-
lems involves using measures specifically designed for this
context. Numerous suggestions have been made to mea-
sure independence criteria, particularly with respect to SP
in regression problems. A summary of the SP measures in
the regression settings is provided in Table 1.

Bias control in linear regression has been studied by
Calders et al [25]. The authors presented two measures to
quantify bias based on mean predictions and area under the
curve (AUC). Themetrics: group fairness in expectation [24]
and the definition of SP by Yan et al [23], can be considered
similar to the mean prediction metric proposed by Calders et
al [25] since they use the distance of the average outcomes
to calculate the differences between groups. The mathemat-
ical definition of this metric can be observed in 2 where ŷu
and ŷp are the predicted outcomes for the unprivileged and
privileged groups and the values nyu and nyp represent the
number of elements in each group.

SPR =
∑

(ŷu)

nyu
−

∑
(ŷp)

nyp
(2)

Statistic tests have been proposed to be used in fair-
ness. [20] proposed a method for fair regression using the
Mann–Whitney U statistic [31]. In [21], the authors use the
Kolmogorov–Smirnov (K–S) statistic to compute SP. The
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proposal of Chzhen et al [22] is similar to this one; they use
the total variation distance tomeasure SP and change it to use
the K–S distance as a constraint imposed to obtain the opti-
mal fair regression function due to the computational cost.
These definitions have a stronger statistical justification in
terms of independence.

Steinberg et al [26, 27] used mutual information (MI) to
introduce approximations of the independence, separation,
and sufficiency group fairness criteria for regression models.
Moreover, SP defined by Yan et al [28] uses MI to calculate
unfairness. The use of correlation is proposed by Komiyama
et al [19] to reduce bias in regression problems; this approach
is valid for handling continuous PA.

Different pairwise fairness metrics have been proposed
by Narasimhan et al [29] to be used specifically for ranking
problems (mainly used in recommendation problems) and
have been extended to be used in regression problems. The
metrics are defined on the basis of the comparison of pairs of
examples. They proposed that a regressor satisfies SP if the
distribution of the outcomes is equal for the privileged and
unprivileged groups. The proposed measures handle binary
and continuous PA. Following a similar approach, [30] has
proposed a version of SP for ordinal regression tasks.

It is worth mentioning that along with SP the concept
of disparate impact [15] also represents the independence
criteria. In 2021, the 2021/144 law was approved to regu-
late locally with respect to automated employment decision
tools in New York City [32]. The law requires a bias audit on
an automated employment decision tool before using it. In
the text, the proposed measures for regression problems are
based on the average of the outcomes and the average of the
outcomes below the median of the distribution. The authors
[33] performed an extensive analysis of the metrics included
in the law and proposed two metrics derived from the bina-
rization of the outcome based on one or multiple thresholds.
The first metric works by summarizing data across various
proportional thresholds, using an approach that calculates
AUC. The second measure is proposed as the likelihood of
getting fair binary data when selecting a threshold at ran-
dom. Both proposals correspond to the concept of disparate
impact, also considered a measure of independence, so we
do not include them in the table; nevertheless, it is important
to note that they can be considered similar to the proposals
measuring average results and AUC differences [23–25].

The selection of the measure to be applied can be made
taking into account the type ofPA in the problem to be solved,
as well as the output of the problem itself. In our case, we
will use themeasure based on the distance of the average out-
comes (Eq.2) because wewill evaluate binaryPA and ordinal
and continuous outputs. However, when faced with contin-
uous PA, measures based on correlation, MI, and pairwise
should be considered [19, 26–29]. In addition, when solving

ranking problems, pairwise measures should be more suit-
able [29, 30].

2.3 Tools and hyper-parameter optimization

There are several tools that are mainly focused on classi-
fication problems. The AI Fairness 360 (AIF360) toolkit
proposed by Bellamy et al [34] presents more than 70 fair-
ness metrics for classification tasks. The Fairlearn project
[35] provides three algorithms to mitigate unfairness, two of
which could be used to solve regression problems. There are
also fairness auditing tools such asAequitas [36] andFairML
[37]. The lack of regressionmetrics in these tools is disadvan-
tageous for practitioners who need to use metrics designed
specifically for regression tasks.

After selecting a metric to serve as the fairness indica-
tor for a model, the process of choosing the final model
involves a careful consideration of both the algorithm and its
hyper-parameters. This selection process inherently involves
navigating the trade-offs between fairness and accuracy. The
methodology proposed by Valdivia et al [8] offers a compre-
hensive approach to evaluating variousmodels by fine-tuning
hyper-parameters through multiobjective optimization in the
classification setting. This approach aims to find a range of
solutions that balance fairness and error, allowing practi-
tioners to make informed decisions based on their specific
requirements. While initially developed for classification
tasks, this methodology is versatile and applicable to vari-
ous machine learning contexts. In our work, we extend this
approach to the regression setting, integrating it into a general
procedure for model selection. This extension demonstrates
the importance of considering fairness–accuracy trade-offs
across different types of machine learning problem, not just
in classification tasks.

3 General procedure tomeasure fairness in
regression problems

In this section, we present a general procedure for mea-
suring fairness in regression problems. Taking into account
that regression problems have also been solved as classifica-
tion problems and classification metrics have been applied
to measure fairness, we propose the procedure in Fig. 1 to
measure fairness in regression problems.

Before applying the methodology illustrated in Fig. 1, it
is necessary to select the concept of fairness that should be
used and the metrics defined to measure it. This methodol-
ogy is applicable to different notions of fairness and, thus, is
reusable. The results will be different solutions to the same
problem that can be selected to be used in terms of fairness
according to the most suitable metric value.
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Fig. 1 General procedure to
measure fairness in regression
problems
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The methodology aims to enhance the existing work-
flow for model selection in machine learning, particularly in
terms of fairness and especially for regression problems. The
methodology entails twomain branches inwhich a regression
problem can be solved as is or as a classification task. The
gray areawith dashed line borders in Fig. 1 corresponds to the
procedure for computing fairness in classification problems.

The first step in deciding to solve a regression problem as
a binary classification task is discretizing of the output. This
is an important step that will be discussed in Sect. 4.2 since
it could lead to solving a different problem, and the outputs
cannot always be attributed back to the continuous output;
this is not always necessary depending on the problem, but
must be consideredwhenmaking adecision about themethod
to be used to solve it.

The process of model selection encompasses the steps of
method selection and hyper-parameter tuning. In the con-
ventional machine learning process of selecting a model, it
is common practice to experiment with various methods to
identify the one that yields superior solutions based on a spe-
cific metric. Similarly, the hyper-parameters’ optimization
of the chosen method is a standard practice aligned with the
same objective.

Algorithm selection can consider the desired interpretabil-
ity of solutions, but it is also crucial to consider the trade-off
between the error and the fairness measure values. In this
sense, a multiobjective optimization approach is useful since
it provides a range of different solutions, and the decision
of which one will be used is completely in the hands of
practitioners; this approach is applied in the hyper-parameter
tuning step.

Finally, several comparisons can be made between the
classification and regression metrics. Those comparisons
enhance the opportunity for practitioners to understand the
fairness in their models and choose the model with the best

trade-off between error and fairness or the one more suitable
in terms of fairness.

4 Experimental analysis

The experimental analysis presented in this section uses
11 datasets, different methods, the definitions of SP pre-
sented in Eq.1 and Eq.2 to compute fairness in classification
and regression solutions, respectively, as well as the hyper-
parameter optimization procedure to analyze the hypothesis
presented in Sect. 1 and instantiate the general procedure pro-
posed in this work.

Section 4.1.1 details the datasets used in the experiments.
The algorithms and metrics used are described in Sect. 4.1.2.
The remaining experimental analysis aims to support the
hypothesis outlined in the introduction of this paper. Table
2 provides a detailed overview of the subsequent sections
and the specific hypotheses each addresses along with an
overview of the methodology used. The complete methodol-
ogy is elaborated in each corresponding section.

Section 4.2 discusses the importance of choosing the
correct discretization threshold or method to convert the con-
tinuous or ordinal output to binary in terms of fairness. This
section focuses on H1 and implements the Apply threshold
step of the proposed procedure.

In Sects. 4.3 and 4.4, we investigate the metrics SPC and
SPR. This includes a comparison of different methods to
solve the same problem, highlighting the differences in fair-
ness when using these metrics. We also explore H2 and the
step ofmethod selection. Section 4.3 also exploresH4, using
the SPC metric to determine whether there is a difference in
fairness when solving a problem as a regression task versus a
classification task.This is doneby converting the output into a
binary variable using a threshold. This experiment will com-
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Table 2 Mapping of hypotheses to experimental methodologies and the corresponding sections in which they are analyzed

Hypothesis Description Section Methodology

H1 Fairness sensitivity to discretization methods 4.2 Comparison of SP values for different discretization
methods

H2 Fairness differences using different methods 4.3, 4.4 Comparison of SP measures for classification and
regression methods

H3 Impact of hyper-parameter optimization on fairness 4.5 Multiobjective optimization of fairness and error

H4 Effectiveness of classification measures for
regression problems

4.3 Comparison of SPC for classification and regression
solutions

H5 Superiority of regression techniques for continuous
output

4.5 Comparison of error and fairness trade-offs for
classification and regression techniques

pare the results of the Apply the classification metrics steps
of the proposed procedure.

Section 4.4 provides a detailed analysis of the metric SPR,
which is specifically designed for regression tasks. It com-
pares the results of the apply regression metrics step for
the regression branch and contrasts it with the classifica-
tion metric SPC. This comparison highlights the differences,
advantages, and limitations of the regression metric studied.

Section 4.5 discusses the impact of parameter tuning on
the fairness computation. It studies the H3 and the hyper-
parameter tuning step of the general procedure in terms of
fairness. In addition, this analysis allows us to explore the
advantages of using a metric designed for the regression set-
ting (H5) and to compare the results of both branches for
the apply classification metrics and apply regression metrics
steps.

4.1 Experimental setup

This section provides an overview of the datasets and algo-
rithms used in the experiments. We begin by discussing
the 11 datasets used, with five representing ordinal regres-
sion problems and the remaining six representing continuous
regression problems. The same problem will be examined
from both a binary classification and regression perspective.
We also detail the characteristics of each dataset and the fac-
tors considered when discretizing the output into a binary
problem. Lastly, we introduce the methods and metrics used
in the experiments.

4.1.1 Datasets

Various datasets were collected from research articles that
focus on fairness in regression, considering the analysis in
[38] which enumerates various alternatives for each type of
problem. Table 3 presents the available datasets for regres-
sion problems together with their respective references and
main characteristics. These characteristics include binary
protected attributes (PA), the variable to predict, privileged

and unprivileged values (PV /UV ), and FL favorable labels.
The privileged values (PV ) are highlighted in bold for each
dataset.

These datasets encompass various regression tasks with
ordinal and continuous output (Output Type). The column
Variable to Predict (VtP in Table 3) contains the name of the
target variable; we also specify the range of the values of this
variable in the column Range. Additionally, we provide a
threshold column (T) that contains a value used to transform
these problems into binary classification tasks; these values
were taken from previous studies using the same problems.
For a more detailed description of each dataset and the pre-
processing steps applied to them, see appendix in Sect.C; this
explanation also includes a compilation of previous works
using the same datasets.

For each dataset listed in Table 3, we employ regression
techniques to predict ordinal or continuous output. Fur-
thermore, we have transformed each problem into a binary
classification task using the threshold column in Table 3. We
will also solve this classification task by predicting the binary
output.

In the regression problem, the target variable is the original
numerical value (found in the column Variable to Predict).
In the binary classification task, the target variable assumes
two values for each dataset. One value corresponds to the
favorable label, as described in the column FL in Table 3.
The other value represents the complementary set of these
favorable label values.

Equation 3 illustrates the conversion process from the vari-
able to predict (VtP) to the binary output using a threshold
(column T in Table 3). Section 4.2 is dedicated to a discus-
sion of the implications of selecting different thresholds or
discretization methods in terms of fairness.

binary output =
{
1 i f VtP ≥ T
0 i f VtP < T

(3)
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Table 3 Datasets description: the Output Type, the name used for iden-
tify the dataset (Dataset), the protected attribute (PA), the privileged
(PV) and unprivileged values (UV) of the PA, the variable to predict

(VtP), the range of that variable in the dataset (Range), the values of the
favorable label (FL), the threshold used to obtain a binary classification
problem (T), and the reference of each dataset (Ref)

Output type Dataset PA PV / UV VtP Range FL T Refs

Ordinal wine Color Red - 1 / White - 0 Quality {3, ..., 8} {6, 7, 8} 6 [39]

compas Race White - 1 / AA - 0 Recidivism {1, ..., 10} {1, 2, 3, 4} 5 [6]

singles Gender Male - 1 / Female - 0 Income {1, ..., 9} {5, 6, 7, 8, 9} 5 [40]

obesity Gender Male - 1 / Female - 0 Obesity {0, ..., 5} {0, 1, 2, 3} 4 [41]

drugs Gender Female - 1 / Male - 0 Coke Recency {0, ..., 6} {0, 1, 2} 3 [42]

Continuous insurance Gender Male - 1 / Female - 0 Charges {11K, ..., 64K} {≤ 40K} 40K [43]

parkinson Gender Male - 1 / Female - 0 UPDRS score {7, ..., 55} {< 17.1} 17.1 [44]

older-adults Gender Male - 1 / Female - 0 Mistakes {1, ..., 27} {< 8} 8 [45]

crime Race White - 1 / Other - 0 % Crimes {0, ..., 1} {< 0.15} 0.15 [46]

lsac Race White - 1 / Other - 0 ugpa1 {1, ..., 5} {≥ 3.2} 3.2 [7]

student Gender Female - 1 / Male - 0 Final Grade {0, ..., 19} {≥ 12} 12 [47]

1 Undergraduate Grade Score Average

4.1.2 Methods andmetrics

To solve the classification and regression tasks, we use sev-
eral algorithms. We use the algorithm Logistic regression
(LogR) implemented in Scikit-learn [48] to predict binary
outcomes. We implemented a variant of the ordinal classifi-
cation method (OrdR) proposed by Frank and Hall [49] to
predict ordinal variables where the order of the values holds
significance (the tasks with output type equal to ordinal in
Table 3). For problemswith continuous output, we employed
Linear Regression (LinR), also implemented in Scikit-learn.
We will call this set of methods Linear.

We are also applying another set of tree-based methods
to solve classification and regression problems. Specifically,
Classification Tree and Regression Tree (CT and RT, respec-
tively) are also implemented in Scikit-learn. We call this set
of methods Tree.

Fairnessmeasurement ismade taking into account the def-
initions of SPC and SPR that can be found in Eqs. 1 and 2
respectively. The results will present the mean value of the
metric derived from a tenfold cross-validation experiment
for each dataset, unless otherwise specified. An exception
is made for the older-adults dataset, due to its size, which
employs a threefold cross-validation procedure.

The methods and metrics used in this study are not part
of the contribution of the article. They are well known and
we are using them to instantiate the methodological choices
of the general procedure to measure fairness in regression
problems proposed in Sect. 3 and to support the study of the
hypothesis presented in Sect. 1.

4.2 Analysis of binary discretizationmethods in
regression problems in terms of fairness

To solve a problem with continuous or ordinal output, such
as a binary classification problem, a threshold or method is
used to convert the output. The use of a threshold is problem-
specific and is sometimes already known (the examination is
approvedwhen the score is higher than a certain value), while
it can be calculated or suggested by experts in other cases.

Table 4 shows the differences in SP when different
thresholds are selected for the same problem. The result
corresponds to a single run of a CT for each dataset. We
have selected the mean, the median, the division made using
theK-means algorithm implemented in Scikit-learnwith two
groups, and the threshold used in our experimentation. The
selection of the threshold for our experimentation is taken
from studies that have used the same dataset; an explanation
of these sources can be found in Appendix C.

From the results of Table 4 we can observe that, in sev-
eral cases, the K-means threshold deviates significantly from
the others. For instance, the value in compas, older-adults,
drugs, lsac, and parkinson datasets is the only positive in
comparison with the other threshold values, contrasting with
negative values. This could indicate different group repre-
sentations under the K-means threshold. In most datasets,
the mean and median values are similar, suggesting a consis-
tent level of disparity between datasets. In many datasets, the
expert-defined threshold (ours) yields values close to other
thresholds, indicating a consensus on the level of parity. In
bold, the SP values that are closer to zero for each dataset.

Figure 2 shows the numeric thresholds for two datasets.
The objective of the drug consumption problem is to predict
the recency in time intervals of cocaine use in this case from
0 (never used) to 6 (used yesterday). The thresholds are 0
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Table 4 SPC metric computed for different discretization methods

Discretization Methods

Dataset Mean Median K-Means Ours

wine −0.114 −0.065 −0.114 −0.114

compas −0.307 −0.307 0.312 −0.307

singles −0.112 −0.112 −0.115 −0.115

obesity 0.083 0.028 −0.083 0.028

drugs −0.05 −0.181 0.05 −0.101

insurance 0.095 0.05 0.118 0.033

parkinson −0.132 −0.065 0.091 −0.101

crime −0.632 −0.491 −0.512 −0.467

older-adults −0.333 −0.583 0.389 −0.611

lsac −0.107 −0.107 0.097 −0.117

student −0.006 0.025 0.006 −0.006

The values closest to zero are highlighted in bold for each dataset

(median), 1.2 (mean), and 3 (ours). The SP value for themean
shows no discrimination betweenmales or females, while the
SP for themedian (has consumed or not) or our threshold (has
consumed in the last year) shows slight differences in SP. At
the same time,we can say that the problems to be solvedwhen
using the median (have used drugs or not) and the problem
of predicting the recency of the use are completely different.

The objective of the crime dataset is to predict the per-
centage of crime in an area. Our threshold and the median
coincide at 0.15 while the mean is at 0.23. Both values indi-
cate discrimination. (The protected attribute in this case is
the race of the population in the area.) The mean SP value
reported when using the mean is higher.

We have studied how discretization affects fairness (H1),
the results show that the measures are different when select-

ing different methods and the selection of the criteria is
problem-specific. Different thresholds effectively create dif-
ferent problems to solve. This means that fairness must be
interpreted differently for each threshold choice. The case
of the drug dataset is a clear example of that. Furthermore,
analyzing the distribution of the data helps to understand the
differences between the groups that could affect the fairness
measures.

4.3 Analysis of the SPmeasure for classification
tasks

This set of experiments involves the comparison of the SPC
metric (Eq.1). We solve each problem using a classification
technique and a regression technique and then compute the
metrics to compare whether there are differences in fairness
associated with how the problem is solved. The comparison
steps are described in Table 5. We omitted the step of hyper-
parameter tuning, and we are running all the experiments
with the default parameters inScikit-learn for all themethods.

The results of the SPC measure for all datasets are shown
in Fig. 3. We implemented two sets of experiments with dif-
ferent techniques with the objective of comparing the results
in terms of fairness (Linear and Tree). The set of experiments
Linear appears in Fig. 3a. We used LogR for problems with
binary outcomes and OrdR or LinR for ordinal or continuous
output. The set of experiments using CT or RT (Tree) appears
in Fig. 3b.

Based on the Wilcoxon test (0.5), no significant differ-
ences were observed between SPC solving problems as a
classification or regression task in the cases analyzed using
the setup Linear or Tree. However, the use of different
techniques to solve the same problem can affect fairness
performance, with less biased results obtained when using

(a) drugs (Mean = 1.2, Median = 0, Ours = 3) (b) crime (Mean = 0 .23, Median = 0 .15, Ours = 0 .15)

Fig. 2 Visualization of different thresholds for drug and crime datasets
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Table 5 Steps to compare
fairness metrics designed for
classification solving the
regression problem as a
classification or a regression
task

Classification setting Regression setting

• Transform into a binary classification
task by applying a threshold

• Apply the regression method

• Apply the classification method • Transform the output to binary by
applying a threshold

• Compute fairness metric (SPC) • Compute fairness metric (SPC)

The results of the Classification Setting can be observed in Fig. 3 as SP_binary while the Regression Setting
values are show as SP_continuous

(a) SPC values for LogR (SP binary) or OrdR/LinR
(SP continuous)

(b) SPC values for CT (SP binary) or RT
(SP continuous)

Fig. 3 SPC values using different methods. The light gray horizontal
shadow shows the range in which the metric values are considered fair.
SP_binary correspond to the values of SPC when the problem is solved
as a binary classification. SP_continuous represent the values of SPC

when the problem is solved as a regression task. The annotation of each
bar represents the SPC|Accuracy. The accuracy of the solution for the
problems solved as regression tasks are computed after transforming
the output to binary by applying the threshold specified in Table 3

Decision Trees. These findings corroborate H2 from the
introduction section.

The SPC metric remains valid in two scenarios: when
applied to classification tasks directly (SP_ binary) and when
applied to regression tasks after converting their output to
binary (SP_continuous). The solutions do not differ from
each other in terms of fairness (except for the older-adults
dataset). This study supports H4; classification metrics can

be effectively used to find unfairness by being aware that the
solved problem is different once a discretization procedure
has been used to obtain a binary classification problem.

The analysis of the point (ormethod) to convert to a binary
classification is problem-specific, as we check in Sect. 4.2, so
the advantage of using this methodological choice seems to
be the simplification of the problem and the use of measures
that are better studied and already implemented in tools like
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Table 6 SPR values for Linear and Tree methods in comparison with SPC for the Regression Setting values, including mean squared error (MSE)

Linear Tree

Dataset MSE SPR SPC MSE SPR SPC

The lowest values are the FL compas 0.061 0.213 −0.364 (U) 0.041 0.183 −0.304 (U)

crime 0.020 0.298 −0.450 (U) 0.000 0.307 −0.455 (U)

drugs 0.068 0.121 −0.121 (U) 0.000 0.077 −0.123 (U)

insurance 0.010 −0.025 0.002 (F) 0.000 −0.019 0.023 (F)

obesity 0.002 −0.028 −0.014 (F) 0.000 −0.029 −0.015 (F)

older-adults 0.108 0.241 −0.500 (U) 0.000 0.186 −0.221 (U)

parkinson 0.042 0.047 −0.016 (F) 0.000 0.044 −0.078 (F)

The highest values are the FL lsac 0.025 −0.081 −0.572 (U) 0.002 −0.082 −0.215 (U)

singles 0.104 −0.112 −0.147 (U) 0.004 −0.087 −0.103 (U)

student 0.022 −0.040 −0.146 (U) 0.000 −0.044 −0.139 (U)

wine 0.025 −0.055 −0.224 (U) 0.000 −0.048 −0.131 (U)

In bold, the SPR values closest to zero for each dataset

AIF360. However, this could lead to an oversimplification of
the problem; there is a clear boundary, for example, when a
student is considered approved or not even when the grades
can be close, there is a norm to fix the boundaries; how-
ever, there is not a big difference between a recidivism score
between 4 or 5 and the first is considered low risk while the
second is considered high risk in binary classification.

4.4 Analysis of the SPmeasure for regression tasks

The objective of this experiment is the verification and anal-
ysis of fairness with themeasure SPR designed for regression
tasks.

SPR is computed as the distance between the average
predicted outcome between the unprivileged and privileged
groups.When thismeasure is negative, it means that the aver-
age predicted outcome for the privileged value is higher than
the average predicted outcome for the unprivileged group.
Optimal fairness is approached as SPR tends toward zero,
reflecting the minimal disparity between the predicted out-
comes of the groups.

The analysis of this measure depends on what is consid-
ered a positive outcome in the original problem. For compas,
obesity, drugs, insurance, parkinson, older-adults, and crime,
theFL of the output is the smallest, so a positive value of SPR
indicates that the average predicted outcome for the unpriv-
ileged group is higher, therefore unfair for this group. (The
opposite is considered when FL has the highest values.) The
output is considered close to fair when the values are close
to zero. However, the threshold at which a value is explicitly
regarded as ‘fair’ has not been defined.

Table 6 shows the results of the SPR and the SPC measures
calculated in the previous section using theLinear algorithms
and the Tree algorithms (specifically using the Regression
Setting ofTable 5). The values of theSPC measure aremarked

as Unfair (U) or Fair (F) according to the bounds of the mea-
sure considered fair in the interval [−0.1, 0.1].

The table has a separation of the datasets according to the
interpretation of SPR in the upper part, which contains the
datasets where FL has the lowest values. At the bottom of
the table are the datasets with the highest FL. We normalized
the output values before computing the measure for better
understanding.

There are differences between the SPR measure when
using the Linear or Tree methods, the Tree method is lower
than the Linear method in 7 of the 11 datasets. The less
biased values (i.e., the values closer to zero) of the measure
for each dataset are marked in bold in Table 6. These differ-
ences are not significant (Wilcoxon’s p-value of 0.38). These
results also support the analysis of the differences in fairness
when using differentmethods (H2) evenwhen the differences
between the results of the settings Tree and Linear are not
statistically significant.

Values SPR demonstrate unfairness to the unprivileged
group for all datasets except obesity and insurance. However,
the reported values are close to zero, which shows less bias.
The results of measuring SPC in these datasets by converting
the output to binary are fair (F) for the methods Linear and
Tree.

Bothmodels (Tree and Linear) show a strong positive bias
for the cases of compas, crime and older-adults, indicating
that the unprivileged group is consistently predicted to have
higher outcomes. The values for the drugs dataset also show
bias even when they are not as high as the previous ones.
The values for parkinson, obesity, and insurance are closer
to zero, indicating less bias; the SPC for these datasets are
Fair (F).

For the datasets inwhich theoutput is favorablewhen it has
higher values, the biases are not high, but can be appreciated
in singles and lsac. The values for student andwine are closer
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Fig. 4 Absolute value of SPR
for each dataset. The values U
(unfair) and F (fair) indicates if
the results of the SPC metric.
The gray band highlights
inconsistencies in comparison to
the SPC metric

Table 7 Steps to compare
fairness metrics designed for
regression solving the regression
problem as a classification or a
regression task

Classification setting Regression setting

• Transform into a binary classification task by applying
a threshold

• Apply the regression method

• Apply the classification method

• Transform the output back to continuous

• Compute fairness metric (SP) • Compute fairness metric (SP)

The Classification Setting results can be observed as the CT values in Figs. 5b and 5d, while the Regression
Setting results are the RT values in the same figures

to zero; nevertheless, when the SPC measure is computed, the
predictions are considered unfair.

Calculating the absolute value for SPR will give us an
order of the datasets from lowest to highest bias (see Fig. 4).
Themain issuewhen using this measure is the lack of general
boundaries to specify which intervals can be considered fair.
Notice the cases parkinson (considered fair in SPC) compared
to student or wine (considered unfair in SPC); these datasets
have similar values in SPR.

This analysis contributes to understanding SP when
defined as Eq.2; other definitions of this criteria require
a similar analysis. However, the absence of clear fairness
boundaries makes it difficult to compare the results across
different problems.

4.5 Analysis of the hyper-parameter optimization

The hyper-parameter optimization implementation from [8]
has been adapted to incorporate regression analysis3. The
experimentation uses the Tree methods, specifically the CT

3 The complete implementation can be found in Github (last date
accessed: December 11, 2023).

and RT algorithms, to minimize error and SP. The objectives
of the classification problems were to optimize the combina-
tion of Geometric Mean and SPC. For regression problems,
the objectives were the mean squared error (MSE) and SPR
were the target. The multiobjective optimization resulted in
multiple models, each offering different trade-offs between
fairness and error due to varying combinations of the algo-
rithm’s hyper-parameters.

To obtain the SPC measure with the RT result, we convert
the output to binary to compute the objectives for the clas-
sification setting; this is the same procedure described in 5
(Regression Setting). On the other hand, to obtain the SPR
measure from theCT results, we use the predicted probability
result from the CT to transform the output back to continuous
to compute the objectives for the regression setting. Table 7
shows this procedure in the column Classification setting.

The multiobjective algorithm gives as a result several
outputs with different trade-offs between fairness and error
measures; a common way of presenting these results is using
a Pareto diagram. Figure5 shows the Pareto fronts of the
solutions obtained in two of all datasets studied.

Figure 5a and 5c shows the average Pareto that can be
obtained using the geometric mean as accuracy and the met-
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(a) The Pareto front of the CT dominates the Pareto
front of the RT, indicating better performance in terms
of error-fairness trade-offs. The plot highlights how
lower error values are achieved at the expense of fairness
in the RT, with the error increasing past a threshold
of 0.03. Conversely, the CT achieves lower error values
with a trade-off in fairness, with the error beginning to
increase around a fairness value of 0.01.

(b) The RT solutions consistently outperform those of
the CT in terms of error minimization. However, the CT
finds more fair solutions by compromising on error. This
diagram illustrates the trade-off between fairness and
error, where the CT sacrifices error for better fairness,
and the RT optimizes error with a decrease in fairness.

(c) The CT Pareto front outperforms the RT by offering
a broader range of solutions that balance fairness and
error. However, the trade-off becomes apparent as the
CT reaches higher fairness solutions at the expense of
increased error, demonstrating the challenge of finding
an optimal balance between these two metrics.

(d) The RT dominates the CT in terms of performance,
offering solutions with lower error values. While the
CT achieves better fairness, it does so at the expense
of error, making its solutions less competitive. This
diagram clearly shows the trade-off where the RT pri-
oritizes error minimization, and the CT sacrifices error
to improve fairness.

Fig. 5 Average Pareto set for CT (yellow) and RT (purple), depicting the trade-offs between error and fairness across multiple scenarios. Each plot
shows how different algorithms achieve varying levels of fairness and error, illustrating the challenge of balancing these two objectives in practical
applications
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ric SPC as objectives when solving the problem with a CT
(yellow) or a RT (purple). Using the RT algorithm while
optimizing SPC shows poorer performance, CT solutions
dominate the RT, and in the case of the lsac datasets, the
solutions are less fair than CT solutions. Calculating SPC in
these examples is performed using the procedure in Table 5.

Figure 5b and 5d shows the Paretos that optimize MSE
and SPR. The results clearly show that the solutions using
CT can reach the fairest results with the cost of error; never-
theless, those Paretos (purple) are dominated by the solutions
of RT. The steps described in 7 are used in these examples to
calculate SPR.

The comparison betweenwhich solution of the RT ismore
equitable (using SPC or SPR) is challenging due to the dif-
ference between the definitions. When a continuous output
is needed, calculating fairness using the measure SPC has
the same limitations to solving the problem as a classifica-
tion task; even when the problem is solved as a continuous
one, the measure is computed using a threshold that strictly
divides the solutions into favorable or unfavorable sets.

The goal of these experiments is not to give the best solu-
tions to the problems but to explore the consequences of
different methodological choices. These experiments show
the wide range of solutions that can be obtained using the
same method (H3). It also seems plausible that the solutions
using regression techniques are better when continuous out-
put is needed (H5), not only because it is not always possible
to cast the solutions back to continuous using probabilities,
because not all algorithms bring this possibility, but also
because the error when doing this is higher, as can be checked
in the Paretos shown in Fig. 5.

5 Discussion

In this section, we critically examine the principal findings
derived from the investigation concerning the hypothesis pre-
sented in the introduction of this study. The discussion further
clarifies both the theoretical and practical implications of
these findings.

Our study shows that the choice of discretization proce-
dure affects the fairness results (H1). When transforming
regression problems into binary classification tasks, different
discretization techniques lead to varying fairness outcomes,
as demonstrated by the SPC metric across datasets.

We compared fairness metrics in two scenarios: when
problems are solved as classification tasks (using thresh-
olds) and when they are solved as regression tasks. While we
found no significant differences in fairness between these
approaches, the specific technique chosen may influence
fairness results (H2). Our study of statistical parity in both
classification and regression tasks shows that the choice of
solution method affects the fairness outcomes.

In this work, the importance of the selection of hyper-
parameters is also studied for regression tasks (H3), high-
lighting the different trade-offs between fairness and error
that can be obtained using a multiobjective approach. Mul-
tiobjective optimization produces diverse solutions, demon-
strating its effectiveness in improving fairness.

Fairness metrics designed for classification applied to
regression problems after converting the output to classes are
valid (H4).Nevertheless, the analysis of the point (ormethod)
tomake this conversion is problem-specific. It is necessary to
use specific error measures for the regression task to have an
overall view of the solution, as is checked in Sect. 4.5. The
analysis shows that the solutions using regression-specific
techniques seem more suitable when continuous output is
required (H5).

The analysis we performed also reveals the complexities
involved in interpreting and defining fairness also for regres-
sion tasks, especially considering different datasets. We
found that similar statistical parity values in the regression
metrics were interpreted differently when using classifica-
tion metrics for the same problem. Regression problems lack
clear thresholds to determine what constitutes a fair value.
This makes it difficult to assess solution fairness and can
lead to varying interpretation. The use of a multiobjective
approach can help clarify how fair the solution is.

5.1 Theoretical and practical implications

Our study contributes to the theoretical understanding of fair-
ness inmachine learning, particularly in regression tasks. The
key theoretical implications include:

• Fairness metrics in regression: We demonstrate the
adaptability of classification-based fairness measures to
regression tasks, highlighting the need for careful inter-
pretation of the implication of the results.

• Discretization impact:We establish the sensitivity of fair-
ness measures to discretization methods, emphasizing
how problem formulation affects fairness outcomes.

• Method selection: We show that the choice of machine
learning method significantly impacts fairness in regres-
sion tasks, extending beyond accuracy considerations.

• Hyper-parameter optimization: We extend multiobjec-
tive optimization to regression tasks, providing a frame-
work for balancing fairness and accuracy.

• Continuous vs. discretized assessment: We contribute to
understanding how fairness assessments differ between
continuous and discretized outputs, crucial for evaluation
frameworks.

The framework and findings presented in this study have
several practical implications for machine learning practi-
tioners.
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Table 8 Summary of Hypotheses and Key Findings

Hypothesis Description Key result

H1 Fairness sensitivity to discretization methods Different discretization techniques can significantly impact fairness
outcomes in regression problems

H2 Fairness differences using different methods The choice of machine learning method can influence fairness results,
even when fairness metrics show no significant differences

H3 Impact of hyper-parameter optimization on fairness Multiobjective optimization reveals diverse solutions with different
trade-offs between fairness and error

H4 Effectiveness of classification measures for
regression problems

Classification fairness metrics can be validly applied to regression
problems after output conversion, but interpretation requires a
problem-specific analysis

H5 Superiority of regression techniques for continuous
output

Regression-specific techniques seems more suitable when continuous
output is required, offering better performance

• Our general procedure provides a structured approach for
practitioners to assess and improve fairness in regression
problems, offering clear decision points throughout the
machine learning pipeline.We enable them tomakemore
informed decisions when building and deploying models
in real-world applications by highlighting the impact of
various methodological choices on fairness and model
performance.

• The proposed framework can serve as a practical tool for
auditing existing regressionmodels for fairness, allowing
organizations to identify and mitigate potential biases in
their systems.

• Our comparison of different fairness metrics helps prac-
titioners choose appropriate measures for their specific
regression tasks, considering the strengths and limita-
tions of each approach.

By implementing these methodological choices and con-
sidering their impacts, practitioners can significantly improve
the fairness of their regression models in real-world applica-
tions.

6 Conclusions and future work

Our investigation makes different contributions to the under-
standing of fairness inML pipelines, particularly focusing on
the impact of methodological choices on regression tasks.
We presented a general procedure for measuring fairness
in regression tasks, and we revised different definitions of
statistical parity in the regression setting. Our method is
instantiated using two distinct definitions of statistical parity
for both classification and regression tasks. These definitions
were used to carry out extensive experimentation of all the
steps of the procedure, providing insights into each alterna-
tive option at each step and highlighting how every decision
affects fairness.

This work advances the field by introducing a struc-
tured framework for evaluating fairness in regression tasks,
facilitates informed decision-making by researchers and
practitioners within the ML pipeline and lays the ground-
work for creating fairer AI systems in regression contexts.

We offer a novel comparison between fairness measures
designed for regression problems and those designed for
classification tasks, specifically for statistical parity. Table 8
presents a summary of the conclusions drawn from the exper-
imental analysis, disaggregated by each hypothesis explored.

We presented a review of several measures of statistical
parity for regression problems. This review highlights the
diversity of approaches to quantifying fairness in regression
tasks and highlights the need for rigorous assessment when
selecting fairness metrics. This variability emphasizes the
importance of understanding each metric’s assumptions and
limitations. As the field of fairness in regression evolves,
further research is needed to develop more robust and widely
applicable fairness metrics for continuous and ordinal output
spaces. One limitation of our study that future research could
address is the exploration of continuous protected attributes.

Our investigation highlights a significant limitation in the
current state of fairness metrics for regression tasks: the
absence of clear intervals or boundaries within which a mea-
sure can be considered fair. This limitation leads to ambiguity
in interpreting results and assessing the fairness of regression
models. Future work should focus on establishing statisti-
cally grounded thresholds for fairness in continuous output
spaces, potentially through extensive empirical studies across
diverse datasets or theoretical frameworks that consider the
nature of regression problems. Furthermore, the formulation
of standardized guidelines for the interpretation of fairness
metricswithin regression contextswould significantly advan-
tage both practitioners and researchers.

Future research directions arising from this work are
diverse. Firstly, the proposed general procedure for mea-
suring fairness in regression problems can be instantiated
with other fairness criteria to study the differences between
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dissimilar definitions of fairness in the regression setting.
This could include exploring group fairness notions beyond
statistical parity, such as equal opportunity or predictive par-
ity in regression contexts, and developing more robust and
widely applicable fairness metrics for continuous and ordi-
nal output spaces. Secondly, given the insufficient researchon
continuous protected attributes, an analysis of metrics is nec-
essary to quantify unfairnesswhen such attributes are present.
Third, defining clearer fairness bounds for regression tasks is
crucial; this could involve developing statistical methods to
establish meaningful thresholds for fairness metrics in con-
tinuous output spaces, addressing the current lack of clear
intervals for fair results interpretation. In addition, there is a
need for new tools and visualization techniques specifically
designed tomeasure and interpret fairness in continuous data,
which couldgreatly aid practitioners in assessing andmitigat-
ing bias in regression models. Finally, given the diversity of
approaches to quantifying fairness in regression tasks high-
lighted in our review, it is necessary to develop guidelines
to select appropriate fairness metrics based on specific char-
acteristics and assumptions of the problem. These directions
aim to address the current limitations in fairness assessment
for regression tasks and contribute to the evolving field of
fair machine learning in continuous output spaces.

A Detailed comparison of statistical parity
measures for classification and regression
approaches across different methods

The experimental results comparing Linear and Tree-based
methods across both binary classification and continu-
ous/ordinal regression tasks are presented in Table 9, and this
table is a complementary material for the results presented in
Sect. 4.3 and Sect. 4.4. For each dataset, we report four met-
rics: accuracy (Acc) and statistical parity for classification
(SPC), alongside mean squared error (MSE) and statistical
parity for regression (SPC). The analysis encompasses the 11
datasets studied. For both Linear and Tree-based approaches,
we evaluate their performance when solving the problem as
a binary classification task versus treating it as a continu-
ous/ordinal prediction problem. This comparison allows us
to assess not only the predictive performance through tradi-
tional metrics (Acc, MSE) but also the fairness implications
through statistical parity measures (SPC, SPR ). Notably, the
Tree-based methods generally achieve higher accuracy and
lowerMSE compared to Linear approaches, while exhibiting
varying patterns in fairness metrics across different datasets.

It is important to note that these results are presented
to illustrate methodological choices in fairness assessment
rather than to establish performance benchmarks. All algo-
rithms were executed using their default parameters without
any hyper-parameter tuning or optimization leaving the anal- Ta
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Fig. 6 Statistical parity values
across nine equally spaced
thresholds for each dataset. The
x-axis represents different
threshold steps
(STEP1–STEP9), while the
y-axis shows the corresponding
SP values. Each line represents a
different dataset

ysis of the impact of hyper-parameter tuning for Sect. 4.5.
This deliberate choice allows us to focus on comparing the
fundamental differences between classification and regres-
sion approaches to fairness measurement, rather than on
achieving optimal performance. The reported values should
therefore be interpreted as indicative of general patterns and
relationships between different fairness metrics and problem
formulations, rather than as definitive performance bench-
marks. This approach aligns with our primary objective of
understanding how different methodological choices in solv-
ing regression problems affect fairness measurements, rather
than determining which algorithm performs best for each
specific dataset.

B Additional analysis of threshold selection
impact on statistical parity

To complement the threshold selection analysis presented
in Sect. 4.2, we conducted an extended examination of how
different numerical thresholds affect statistical parity (SP)
across all datasets. Figure6 shows the variation in SP val-
ues across nine equally spaced thresholds (STEP1–STEP9)
derived from the range of each dataset’s output variable.
The results reveal distinct patterns in how threshold selec-
tion impacts fairness measurements:

Datasets such as insurance, parkinson, and student demon-
strate relatively stable SP values across different thresholds,
suggesting that fairness assessments for these problems are
somewhat robust to threshold selection. In contrast, crime
and older-adults show high threshold sensitivity, with SP val-
ues varying substantially (e.g., older-adults ranges from +0.2
to −0.7).

The visible variations in some datasets highlight how
threshold selection can fundamentally alter fairness assess-
ments. These findings provide additional support for our
approach of prioritizing theoretically grounded, domain-
specific thresholds over purely numerical thresholds in
fairness assessments.

C Description of the datasets

Table 10 presents a summary of the characteristics of the
datasets used in this study, including the output type (Out-
put), the dataset name (Dataset), the protected attribute (PA),
and the value to predict (VtP). The source of the original
data is also cited (Ref). Additionally, the table provides the
number of instances (# Instances) and attributes (#Attributes)
post-preprocessing. The subsequent sections elaborate on the
preprocessing steps for each dataset (if any), as well as pre-
vious studies that have employed these datasets.

C.1 Wine

The objective of this problem is to predict the quality of
the wine considering the color as PA, white wines being the
privileged value. The quality of the wines is between 3 and
9, we removed the lines with the highest quality (9) since
the color of the wines within this category was only white.
The final dataset contains a total of 6492 rows described by
14 attributes; white wines represent 75% of the dataset. It
was included in the analysis due to the nature of the ordinal
regression problem. Moreover, some authors also use this
dataset for fairness analysis, as appears in [20, 25].
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Table 10 Summary of datasets
characteristics

Output type Dataset PA VtP # Instances # Attributes Refs

Ordinal wine Color Quality 6,492 13 [39]

compas Race Recidivism 5,278 9 [6]

singles Gender Income 2,813 13 [40]

obesity Gender Obesity 2,111 23 [41]

drugs Gender Coke Recency 1,885 13 [42]

Continuous insurance Gender Charges 1,338 9 [43]

parkinson Gender UPDRS score 5,875 19 [44]

older-adults Gender Mistakes 70 16 [45]

crime Race % Crimes 1,993 98 [46]

lsac Race ugpa 20,715 7 [7]

student Gender Final Grade 649 39 [47]

C.2 Compas

Compas software has been used by judges to decide whether
to reease an offender or not. Analysis in [6] shows that the
software results are biased against black defendants. This
study uses the same dataset that the authors published in their
study [50]. [51] argue that similar precision can be obtained
with a reduced set of attributes compared to the 137 attributes
used by compas applying a more interpretable solution, such
as a linear classifier.

We have considered the same attributes as taken into
account by Angwin et al [6]. Compas scores for each defen-
dant ranged from 1 to 10, with 10 being the highest risk.
Analyzing the risk of criminal recidivism has been reduced
to a classification task with two or three classes instead of
solving a problem as an ordinal regression task, which is the
nature of the problem with scores between 1 and 10.

We have solved two different problems: binary clas-
sification and ordinal regression. The target variable for
the regression problem was the original numeric scale,
while in binary classification, the target variable will take
two values. The original analysis was performed taking
into account three values representing the target variable
{Low,Medium, High}, and in this paper we are combining
{Medium, High} to obtain the High class.

The PA considered in this study is race and the privileged
value 1 represents Caucasians, the group with a systematic
advantage compared to African-Americans represented by
the value 0. The objective is to predict the score; this value
is between 1 and 10 and is considered high for values in
the interval [5, 10]. In this way, the favorable label in the
binary classification problem will be 0 representing the val-
ues between [1, 4], both included. This is a well-studied
problem that appears in several studies [19, 24, 52–54] that
always solve the classification problem.

C.3 Singles

This dataset was extracted from the marketing dataset [40].
We have used the same preprocessing steps as the authors in
[55]. First, the data are filtered, keeping only the data from
single individuals. The PA is gender, and the objective is
to predict the annual income of the individuals taking into
account a total of 12 attributes. The total number of individ-
uals in the analysis is 2813, 49% represented by females. The
income to be predicted is on a scale from 1 to 9.

C.4 Obesity

This dataset contains a total of 2111 recordswith 22 attributes
of different people and their level of obesity, which is the
target variable to predict. The gender is considered PA, the
dataset contains a 49% of females. We follow the same pre-
processing presented by Do et al [56] by combining obesity
types two and three into one category to finally have an obe-
sity scale from 1 to 5.

C.5 Drugs

The drugs dataset is the result of a poll in which individuals
answered the last time they consumed drugs. For each drug,
they selected one answer: Never used the drug, used it more
than a decade ago, or in the last decade, year, month, week,
or day.We have performed the same preprocessing presented
by Do et al [56] but considering the recency of Coke con-
sumption as the value to be predicted (from 0 to 6 according
to the answer, the value 0 corresponds to individuals who had
never used the drug). We selected the gender as PA, the 50%
of the individuals are male. The final dataset contains 1885
records with 12 attributes.
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C.6 Insurance

This dataset contains records of patients that indicate sev-
eral characteristics, such as sex, BMI, whether the patient
is a smoker or not, and the total annual medical expenses
charged to these individuals. The objective is to predict med-
ical expenses, which is a continuous variable, we use the
gender as PA. We followed the same preprocessing as the
authors [53]without subsampling the data. To simulate a real-
world unfair scenario, the authors took imbalanced samples,
but we keep all the data. The final dataset is made up of 1,338
records with 8 explanatory variables. There are 50% males
in the data.

C.7 Parkinson

The parkinson telemonitoring dataset contains records from
42peoplewith early-stageparkinson’s disease.These records
describe, among other attributes, 16 biomedical voice mea-
sures, and each row corresponds to one recording of one
of these individuals. The objective is to predict the unified
parkinson’s disease rating scale (UPDR) score. As [56] we
have removed unnecessary columns such as the subject num-
ber and ‘motor UPDRS’ which is another indicator that can
be considered to be predicted and has a close relationship
with ‘total UPDR.’ The gender was considered PA and in the
final data we have 68% of females from 5875 records with
18 attributes.

C.8 Older-adults

This dataset was collected to measure the relationship
between physical fitness and cognitive performance in older
adults. The data contains some physical characteristics of the
individuals such as height and weight and also some physical
activity tests such as a 6-minutewalk test and bicep curls. The
objective is to predict the number of mistakes made on the
StroopTask, taking those attributes into account. As appears
in [23], gender was considered as the PA. There are a total of
70 individuals (and rows) in the dataset, 42 of themare female
who represent 60% of the data. The number of explanatory
variables is 15.

C.9 Crime

This dataset includes a total of 122 variables related to
crime in communities in the USA. The attribute to be pre-
dicted is the violent crimes per population. The variables
‘racepctblack,’ ‘racePctWhite,’ ‘racePctAsian’ and ‘racePc-
tHisp’ contain the percentage of the population belonging to
each racial group, and we assign the racial group with the
highest percentage of the population in each community. We

have grouped the rest of the racial groups into a single group
considered to be of unprivileged value.

At the preprocessing stage, we also removed all the miss-
ing values and some variables not useful for the analysis
as the country, state, and the fold; so, the final number of
exploratory variables is 97 and the number of cases is 1993.
The white group represents 78.8% of the population. This
dataset is one of the most used among the papers studied [19,
21, 22, 25, 26, 29, 52–54, 56].

C.10 Lsac

The law school admission council (lsac) dataset is a well-
studied problem that appears in several of the articles
reviewed [19, 21, 22, 26, 29, 52, 56]. The outcome to pre-
dict in this study is the Undergraduate Grade Point Average
(ugpa) of students during law school, which is a continuous
variable. We consider the race of students to be a sensitive
factor, being white is the privileged attribute, and for the
unprivileged attribute, we grouped the values Asian, black,
hisp, and other. The final dataset contains 20715 records with
6 attributes. The white race is represented by 83% of the
cases.

C.11 Student

The student performance dataset contains the student
achievement in secondary education of two Portuguese
schools.Data attributes include student grades, demographic,
social, and school-related characteristics. We have removed
the variables G1 and G2 strongly related to the continuous
variable to predict G3, as well as the school attribute. The
gender was selected as PA. The final data have 649 records
with 38 explanatory variables. Females are the 60% of these
data. This dataset is analyzed in different studies [22, 56].
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