
Academic Editors: Christian Vollaire

and Mengchu Zhou

Received: 9 November 2024

Revised: 22 January 2025

Accepted: 28 January 2025

Published: 30 January 2025

Citation: Aquino-Brítez, S.;

García-Sánchez, P.; Ortiz, A.;

Aquino-Brítez, D. Towards an Energy

Consumption Index for Deep Learning

Models: A Comparative Analysis of

Architectures, GPUs, and Measurement

Tools. Sensors 2025, 25, 846. https://

doi.org/10.3390/s25030846

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Towards an Energy Consumption Index for Deep Learning
Models: A Comparative Analysis of Architectures, GPUs, and
Measurement Tools
Sergio Aquino-Brítez 1,* , Pablo García-Sánchez 1 , Andrés Ortiz 2 and Diego Aquino-Brítez 1

1 Department of Computer Engineering, Automation and Robotics, CITIC-UGR, University of Granada,
18014 Granada, Spain; pablogarcia@ugr.es (P.G.-S.); diegoaquino@correo.ugr.es (D.A.-B.)

2 Department of Communications Engineering, University of Málaga, 29071 Málaga, Spain; aortiz@ic.uma.es
* Correspondence: sergioaquino@correo.ugr.es

Abstract: The growing global demand for computational resources, particularly in Artificial
Intelligence (AI) applications, raises increasing concerns about energy consumption and
its environmental impact. This study introduces a newly developed energy consumption
index that evaluates the energy efficiency of Deep Learning (DL) models, providing a
standardized and adaptable approach for various models. Convolutional neural networks,
including both classical and modern architectures, serve as the primary case study to
demonstrate the applicability of the index. Furthermore, the inclusion of the Swin Trans-
former, a state-of-the-art and modern non-convolutional model, highlights the adaptability
of the framework to diverse architectural paradigms. This study analyzes the energy
consumption during both training and inference of representative DL architectures, in-
cluding AlexNet, ResNet18, VGG16, EfficientNet-B3, ConvNeXt-T, and Swin Transformer,
trained on the Imagenette dataset using TITAN XP and GTX 1080 GPUs. Energy measure-
ments are obtained using sensor-based tools, including OpenZmeter (v2) with integrated
electrical sensors. Additionally, software-based tools such as CarbonTracker (v1.2.5) and
CodeCarbon (v2.4.1) retrieve energy consumption data from computational component
sensors. The results reveal significant differences in energy efficiency across architectures
and GPUs, providing insights into the trade-offs between model performance and energy
use. By offering a flexible framework for comparing energy efficiency across DL models,
this study advances sustainability in AI systems, supporting accurate and standardized
energy evaluations applicable to various computational settings.

Keywords: green computing; energy efficiency; machine learning; deep learning;
convolutional neural network

1. Introduction
Since the mid-20th century, global electricity demand has significantly increased,

mainly driven by the use of fossil fuels, which contribute to greenhouse gas emissions and
intensify environmental challenges on a global scale [1]. In response to these challenges,
the Paris Agreement, established in 2015, aims to reduce these emissions and promote the
transition to cleaner energy sources [2].

Technological advancements, particularly in Information and Communication Tech-
nologies (ICTs), play a key role in improving energy efficiency within the electrical sector.
These technologies enable scalable and reliable communication infrastructures that support
the integration of renewable energy sources, optimize demand response, and enhance the

Sensors 2025, 25, 846 https://doi.org/10.3390/s25030846

https://doi.org/10.3390/s25030846
https://doi.org/10.3390/s25030846
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0003-5597-0389
https://orcid.org/0000-0003-4644-2894
https://orcid.org/0000-0003-2690-1926
https://orcid.org/0000-0002-7506-7547
https://doi.org/10.3390/s25030846
https://www.mdpi.com/article/10.3390/s25030846?type=check_update&version=1

Sensors 2025, 25, 846 2 of 30

security and reliability of smart grids [3]. However, these advancements in ICT also bring
new challenges [4]; for instance, the growth of Machine Learning (ML) and real-time data
processing has led to an increased demand for computational resources, which in turn
contributes to higher global energy consumption and associated environmental impacts.

ML algorithms, widely adopted to solve complex problems, require substantial com-
putational resources, resulting in high energy consumption. This is mainly due to the
complexity of ML architectures and the size of the datasets used during training, which
extends the time and energy needed to achieve optimal performance [5]. Specifically,
this growing demand for computational power is particularly noticeable in data centers,
which have experienced an increase in electricity consumption [6]. Data centers handle
key processes such as the training and inference of Artificial Intelligence (AI) algorithms,
and their continuous expansion increases the energy footprint, raising concerns about the
sustainability and efficiency of these systems [7].

In this research, we conduct an analysis of data collected separately during the train-
ing and inference phases of DL models, including classical and modern Convolutional
Neural Networks (CNNs) [8], as well as the Swin Transformer [9] (Swin-T), to evaluate
both their energy consumption and performance. Our analysis considers energy consump-
tion during the training phase, where model parameters are optimized using input data
through an iterative process, and the inference phase, where trained models process input
data to generate predictions [8]. Energy consumption is measured using both hardware
(OpenZmeter [10] v2) and software (CarbonTracker [11] v1.2.5 and CodeCarbon [12] v2.4.1)
meters, ensuring an accurate assessment of the energy efficiency of DL models, defined as
the ratio between performance and energy consumption. Furthermore, we validate several
software-based energy meters to verify their accuracy. Proper calibration of these tools is
crucial to ensuring data precision and optimizing energy usage in AI-driven environments.

In the context of related research, several studies have addressed the challenge of
improving energy efficiency in computational systems, focusing on optimizing resources
across a wide range of applications, from personal devices to supercomputers [13]. The
methods used have varied, including improvements to specific algorithms, changes in hard-
ware architectures [14], and programming techniques to reduce energy consumption [15].
Areas such as AI [16], data processing, and cloud computing (CC) [6] have received consid-
erable attention, underscoring the importance of energy efficiency in high-demand contexts.

Despite recent advances, research faces ongoing challenges, such as the increasing
complexity of computational models and the sustained growth in energy consumption [17].
Accurate measurement of energy consumption is key to identifying optimization opportu-
nities, which has driven the development of specialized tools [15]. As research progresses,
there is a trend toward using ML algorithms to predict and manage energy consumption,
highlighting the need for new methodologies in this field [18].

Accurate tools for measuring energy consumption are essential for assessing the de-
mands of hardware components such as processors, graphics cards, and other fundamental
elements [19]. Recent studies emphasize the need to improve the accuracy and reliability of
these tools through calibration processes and comparative analysis [20]. Energy consump-
tion measurement tools exist in both hardware- and software-based forms; hardware tools
provide direct, computational component-level measurements [21], while software-based
tools enable analysis across different system layers.

MLPerf is a benchmarking suite designed to evaluate the performance of ML systems
in training and inference tasks [22,23]. It covers domains such as vision, language, com-
merce, and reinforcement learning, evaluating tasks like classification, object detection,
recommendation systems, speech recognition, and translation [22]. It allows performance
comparisons across environments such as data centers, mobile devices, edge systems,

Sensors 2025, 25, 846 3 of 30

and resource-constrained platforms (TinyML) [23]. The evaluation framework focuses on
metrics such as training time, latency, and throughput under controlled conditions [24].
While it includes the option to report energy consumption metrics, these are not part of its
primary evaluations and remain complementary within the MLPerf framework [23].

In this context, studies using software and hardware measurements reveal that hard-
ware components, especially in data-center environments, exhibit unique energy profiles.
Components like the CPU, memory, and storage display consumption patterns that vary
with activity levels, enabling reductions of up to 40% from theoretical peak consumption
through targeted optimization [25]. On the other hand, choices in software design, such as
programming language selection, also have a significant impact on energy consumption
and CO2 emissions [26]. Studies classify programming languages by their energy effi-
ciency, generally indicating that faster languages tend to consume less energy. For example,
Python, as an interpreted language, often requires more energy and has longer execution
times due to line-by-line interpretation. In contrast, compiled languages like C are typically
more efficient, as they translate directly into machine instructions, optimizing both speed
and energy use [27].

Consequently, programming languages play a key role in energy efficiency. Low-level
languages allow for greater control over system resources, facilitating specific optimizations
that reduce energy use. In contrast, high-level languages, due to their level of abstraction,
can introduce computational overhead that increases energy demands [28,29]. Research
has shown that language choice can significantly influence energy consumption, execution
time, and memory usage, depending on the application and hardware used [28]. In certain
cases, languages with slower execution times achieve greater energy efficiency through
better memory management, reducing redundant operations and enabling the compiler to
optimize resource use [28].

The aforementioned research highlights the fundamental role of software, specifically
the choice of programming language, in the energy efficiency of computational systems.
However, with the increasing use of ML models, these challenges have expanded, as
large-scale models require substantial computational resources and, consequently, result in
significant energy consumption. The development of more energy-efficient technologies is
no longer limited to hardware or programming language choices but also extends to the
optimization of ML algorithms and architectures [30], which now account for a considerable
portion of energy usage in high-performance systems [31].

The increasing environmental impact associated with large-scale training and inference
stages of ML models, particularly in Deep Learning (DL), highlights the need for precise
energy efficiency strategies. Such training and inferences demand substantial energy,
which in turn contributes significantly to carbon emissions. This scenario requires the
development of rigorous methodologies designed to both assess and mitigate these impacts
effectively [32]. Key factors influencing energy consumption, including server location,
training duration, and hardware configuration, have been identified across multiple studies,
leading to the creation of tools that allow precise estimation and reduction in carbon
emissions linked to ML training [20]. A range of approaches have been proposed to
quantify energy use within ML applications [33], with comprehensive literature reviews
cataloging the latest methodologies and specialized tools designed to track energy metrics
throughout the stages of model training and execution [34].

In this context, measuring CNN energy consumption has become crucial. CNNs are
widely used for their effectiveness, but require substantial computational resources, partic-
ularly during training and inference, making their energy efficiency a key concern to reduce
environmental impact [35]. Studies show that CNN energy efficiency can vary widely

Sensors 2025, 25, 846 4 of 30

depending on specific DL frameworks and hardware configurations, such as PyTorch [36]
and TensorFlow [37], which influence both performance and energy demands.

Optimization techniques for CNNs are essential to improve energy efficiency while
preserving model performance. Techniques like energy-aware pruning and Neural Ar-
chitecture Search (NAS) enable CNNs to reduce energy usage without compromising
accuracy [38]. Similarly, hyperparameter optimization and evolutionary algorithms have
yielded energy-efficient CNN models by reducing computational demands [38,39]. Frame-
works such as NeuralPower [40] enable precise energy consumption predictions, facilitating
informed deployment decisions across different hardware platforms to optimize power
efficiency. Additional approaches in CNN design further contribute to sustainable ML
practices. For instance, energy-efficient methods in CNN layers help reduce power require-
ments, providing an efficient approach to feature extraction, while memory-optimized
systems like EDEN [41] significantly lower energy consumption during inference, which is
particularly beneficial for edge and mobile platforms [18]. Recent developments include
lightweight architectures like the SCIFE block, which enhance information flow while re-
ducing computational costs [42], and specialized hardware architectures like Morph-GCNX,
which implement dynamic partitioning and optimization to improve energy efficiency in
Graph Convolutional Networks (GCNs) [43]. The evolution of optimizers, from stochastic
gradient descent to adaptive methods like Adam and SAM, has further contributed to
balancing convergence speed with generalization, reducing the energy demands of training
DL models [44].

Despite advances in measuring and optimizing ML models’ energy consumption,
a key challenge persists: the lack of standardized metrics for consistently evaluating
energy efficiency and carbon emissions. This standardization gap hinders objective and
comparative assessments of environmental impact, complicating study comparability, and
limiting the calibration of energy measurement tools [45]. Various metrics have been
proposed, including floating-point operations (FPOs) [30], electricity consumption in kWh,
CO2eq emissions, and execution time. However, each presents limitations: FPO, while
useful for assessing computational load, does not reliably indicate actual energy use due
to hardware variability and concurrent CPU/GPU usage [30]; kWh consumption and
CO2eq emissions, though essential for environmental impact, often fail to capture efficiency
differences across hardware and architectures [20,46,47]. Developing standards is crucial to
consistently assess AI’s environmental impact and enhance energy efficiency.

Finally, this research proposes an efficiency index that integrates DL model perfor-
mance with energy consumption measured separately during the training and inference
stages, offering a unified criterion to evaluate both accuracy and sustainability. In this work,
the proposed index is applied to DL models, including CNNs, transformer-based models,
and hybrid networks, as use cases in multiclass classification problems. While the focus is
on these specific architectures, the index demonstrates adaptability to a broader range of
DL models. By combining the Kappa Index with the energy consumption measured sepa-
rately during these stages, the Kappa–Energy Index ensures a precise evaluation of model
performance, helping to avoid overestimations, especially in computationally intensive
tasks. A higher Kappa–Energy Index indicates more efficiency, guiding architecture selection
by balancing model accuracy and energy usage.

The main contributions of this paper are as follows:

1. Proposal of an energy consumption index to standardize the evaluation of energy
efficiency in DL models during training and inference stages, offering a metric for
objective comparisons across architectures.

2. Development of a combined methodology that uses both hardware and soft-
ware energy meters to accurately measure energy consumption during the train-

Sensors 2025, 25, 846 5 of 30

ing and inference stages of DL models, enabling a precise evaluation of the
energy-performance trade-off.

3. Analysis of the impact of heterogeneous hardware on the energy consumption and
performance of DL models, examining how differences in hardware architectures affect
the energy efficiency during both the training and inference stages of these models.

4. Validation and calibration of software energy meters to ensure accuracy in the assess-
ment of the energy consumption during training and inference of DL models, aiming
to achieve precise energy consumption measurements through software meters.

Section 2 describes the dataset, algorithms, and methodologies. Section 3 presents the
experimental results. Section 4 discusses the results and findings. Section 5 concludes the
study and outlines future research directions.

2. Materials and Methods
This section describes the dataset used in this research. We detail the dataset char-

acteristics, the DL architectures used for multiclass classification problems, the hardware
infrastructure, the tools and libraries employed, and the metrics applied to evaluate the
performance of the DL models in the training and inference stages.

2.1. Data Description

This research used the Imagenette dataset, a 10-class subset of Imagenet [48] with
13,394 images, organized into 9469 training and 3925 testing images, stored in separate fold-
ers. Imagenette is a competitive dataset [49], enabling faster experimentation by reducing
the time needed for the full Imagenet. Table 1 shows more details about this dataset.

Table 1. Number of samples of each class.

Classes Train Test Total

Cassette player 993 357 1350
Tench 963 387 1350
Garbage truck 961 389 1350
Parachute 960 390 1350
French horn 956 394 1350
English springer 955 395 1350
Golf ball 951 399 1350
Church 941 409 1350
Gas pump 931 419 1350
Chain saw 858 386 1244

Total 9469 3925 13,394

Figure 1 displays sample images from the Imagenette dataset, a subset of ImageNet,
designed for efficient DL model testing in image classification tasks. It includes 10 differ-
ent categories, allowing researchers to accelerate experimentation while preserving the
complexity required for model evaluation.

2.2. Convolutional Neural Networks

CNNs are a subcategory of DL networks specifically engineered to process multidi-
mensional structured data arrays, including spatial and temporal data. These models are
particularly effective for tasks such as image recognition, object detection, and time series
forecasting, where the data exhibit spatial hierarchies or temporal dependencies [16]. CNN
architectures are multilayered, allowing for hierarchical feature learning. The foundational
layer of CNNs is the convolutional layer [8], where the convolution operation, denoted
as (f ∗ g)(x), between two functions f (x) and g(x), produces a third function s(x). Here,

Sensors 2025, 25, 846 6 of 30

f (x) corresponds to the input, g(x) to the filter, and s(x) to the feature maps obtained by
convolving f (x) and g(x), as defined in Equation (1).

s(x) = (f ∗ g)(x) =
n

∑
i=1

f (i) · g(x − i) (1)

where x is a discrete variable representing arrays of numbers, and n corresponds to the
filter size.

Cassette player Tench Garbage truck Parachute French horn

English
springer

Golf ball Church Gas pump Chain saw

Figure 1. Images from the Imagenette dataset, a subset of ImageNet, showcasing 10 categories.

2.3. Transformer-Based Neural Networks

Transformers are a subcategory of DL networks designed to process sequential and
structured data using the self-attention mechanism, which captures relationships between
elements in a sequence independently of their position [50]. These multilayer architectures
combine attention and feedforward layers to generate hierarchical representations [51]. The
attention computation is based on the representations Query (Q), Key (K), and Value (V), as
defined in Equation (2):

Attention(Q, K, V) = Softmax
(

QKT
√

dk

)
V (2)

where dk is the dimension of the keys. Transformers process all elements in parallel and
use positional encoding to incorporate order information into the sequence, allowing them
to capture both local and global relationships efficiently.

2.4. Implemented Deep Learning Architectures

This section outlines the DL architectures used in this study: AlexNet [52], VGG16 [53],
ResNet18 [54], EfficientNet-B3 [55], Swin-T [9], and ConvNeXt-T [56]. These architec-
tures are selected for their contributions to advancing DL and their effectiveness in
image classification.

Convolutional Neural Networks, including both classical architectures such as
AlexNet and VGG16, and modern architectures such as ResNet18 and EfficientNet-B3,
serve as the primary case study. AlexNet set a benchmark by winning the 2012 ImageNet
competition, demonstrating CNN capabilities, while VGG16, introduced in 2014, improved
classification performance through a deeper architecture. ResNet, introduced in 2015, revo-
lutionized DL with residual connections, enabling the training of much deeper networks
and improving image recognition accuracy. EfficientNet-B3, introduced in 2019, employed
a compound scaling method to balance depth, width, and resolution.

Sensors 2025, 25, 846 7 of 30

Additionally, the inclusion of Swin-T, introduced in 2021, brought transformer-
based innovations to computer vision by combining hierarchical self-attention mecha-
nisms with the ability to capture both local and global features efficiently. ConvNeXt-T,
introduced in 2022, draws inspiration from CNN while incorporating elements from
transformer-based models.

These six networks have been pivotal for computer vision. AlexNet pioneered GPU-
based training and dropout regularization, with approximately 60 million parameters.
VGG16 achieved high performance with its simple yet deep structure, consisting of about
138 million parameters. ResNet allowed for deeper architectures with innovative resid-
ual connections and has 11 million parameters. EfficientNet-B3 employed compound
scaling to balance depth, width, and resolution, with approximately 12 million param-
eters. Swin-T leverages hierarchical transformers with around 28.2 million parameters,
while ConvNeXt-T, with 28.6 million parameters, bridges the gap between CNNs and
transformer-based innovations. These qualities make them suitable for assessing perfor-
mance and energy consumption in DL applications, leading to their selection for this study.
Table 2 summarizes the number of parameters [57] and creation year of the evaluated
DL architectures.

Table 2. Number of parameters and year of creation for the evaluated Neural Network Architectures.

Architecture Number of Parameters Year of Creation

AlexNet [52] 61,100,840 2012
VGG16 [53] 138,357,544 2014

ResNet18 [54] 11,689,512 2015
EfficientNet-B3 [55] 12,233,232 2019

Swin-T [9] 28,288,354 2021
ConvNeXt-T [56] 28,589,128 2022

The next sections detail these architectures.

2.4.1. AlexNet

AlexNet, proposed by Alex Krizhevsky et al. in [52], was developed to address large-
scale image classification tasks, solidifying its impact by securing first place in the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) in 2012, a significant milestone in the
evolution of DL.

The architecture of AlexNet consists of five convolutional layers that employ convo-
lutional filters to hierarchically extract features from the input images. Several of these
layers are followed by pooling operations, a sampling technique that selects representative
values within specific regions of the feature map. This process retains essential information
while effectively reducing spatial dimensionality and computational demands. The final
three layers include two fully connected layers followed by an output layer, which is also
fully connected and responsible for performing the final classification. The architecture of
AlexNet is shown in Figure 2a.

2.4.2. VGG16

VGG16 [53] is a CNN architecture widely used in computer vision, particularly for
image classification tasks. The architecture consists of 16 weight layers, organized in a
sequence of convolutional, pooling, and fully connected layers. The main characteristic of
VGG16 is its use of 3 × 3 convolutional filters with a stride of 1 and padding of 1 across
all convolutional layers, enabling the model to capture spatial patterns at a consistent
scale. This design choice reduces the number of parameters and improves the model’s
generalization capability without compromising detailed feature extraction. Compared

Sensors 2025, 25, 846 8 of 30

with earlier architectures with larger filters, VGG16 employs smaller filters at deeper layers,
achieving higher model expressiveness.

Figure 2. Comparison of different deep learning architectures: (a) AlexNet, (b) VGG16, (c) ResNet18,
(d) EfficientNet-B3, (e) Swin-T, (f) ConvNeXt-T.

Max-pooling layers with 2 × 2 filters and a stride of 2 pixels are applied after each
convolutional block to reduce the spatial resolution of the feature maps. This pooling
process not only helps manage data complexity but also introduces invariance to small
spatial variations, a key factor in computer vision tasks. The fully connected layers at
the end of the network consolidate the features extracted across previous layers, allowing
for accurate classification at the output layer. The architecture of VGG16 is presented in
Figure 2b.

2.4.3. ResNet18

Residual Networks (ResNets) [54] introduce a critical architectural enhancement
through residual connections, which effectively address the vanishing gradient problem
inherent in Deep Neural Networks (DNNs). These residual connections, also referred to
as skip connections, enable identity mappings that allow information to bypass one or
more layers, ensuring that gradients can flow uninterrupted across multiple layers during
backpropagation. This architecture allows ResNets to train networks of considerable depth
without degradation, as gradients can propagate more effectively, thus mitigating the issues
of gradient vanishing or explosion.

Each residual block in ResNet typically consists of two or three convolutional layers
followed by batch normalization and ReLU activation, with the output added element-
wise to the input via the residual connection. The ResNet family includes variants such
as ResNet18, ResNet34, and ResNet50, where the number signifies the total depth in
terms of convolutional layers, with deeper versions (e.g., ResNet152) leveraging addi-
tional residual blocks to achieve greater model capacity while maintaining manageable
computational demand.

Sensors 2025, 25, 846 9 of 30

In this research, ResNet18 is selected, featuring 18 layers. The architecture incorpo-
rates skip connections that allow gradients to flow more easily during backpropagation,
enhancing its performance in DL tasks. The architecture is shown in Figure 2c.

2.4.4. EfficientNet-B3

EfficientNet-B3 [55] is a CNN architecture used for image classification tasks. The
architecture combines convolutional layers, MBConv blocks, and fully connected layers.
MBConv blocks employ inverted residual convolutions with skip connections, reducing
dimensionality while optimizing resource usage. Additionally, the Swish activation func-
tion is utilized, which improves gradient propagation compared with traditional activation
functions like ReLU.

The EfficientNet-B3 model applies compound scaling, which uniformly adjusts the
depth, width, and resolution of the network to maximize performance across various re-
source configurations. Initial layers extract general features through standard convolutions,
while MBConv blocks focus on specific patterns at greater depths. A global average pooling
(GAP) layer reduces the number of parameters before the fully connected layers. The
architecture of EfficientNet-B3 is presented in Figure 2d.

2.4.5. Swin-T

The Swin Transformer [9] is a state-of-the-art architecture that leverages transformer-
based innovations. Unlike traditional CNNs, Swin-T employs a hierarchical structure
with Shifted Window Attention, which divides images into non-overlapping windows and
computes self-attention within each window. This mechanism enables Swin-T to capture
local and global dependencies while maintaining scalability to higher image resolutions.

The hierarchical nature of Swin-T allows the model to progressively aggregate infor-
mation at different scales, similar to the pooling operations in CNNs. At each stage, feature
maps are downsampled, enabling Swin-T to learn multilevel representations.

Each stage in Swin-T consists of Swin Transformer Blocks, where the combination
of MultiHead Self-Attention (MHSA) and MultiLayer Perceptrons (MLPs) ensures robust
feature extraction. The residual connections in these blocks further enhance gradient flow
during backpropagation. The architecture of Swin-T is shown in Figure 2e.

2.4.6. ConvNeXt-T

ConvNeXt-T [56] is a hybrid convolutional architecture inspired by both traditional
CNNs and modern transformer-based models. It reimagines the standard convolutional
block by integrating features such as depthwise separable convolutions, Layer Normaliza-
tion, and inverted bottleneck designs.

The architecture of ConvNeXt-T replaces batch normalization with Layer Normaliza-
tion, optimizing gradient flow and reducing memory overhead. Additionally, ConvNeXt-T
introduces Large Kernel Convolutions to better capture long-range dependencies, bridg-
ing the gap between the local receptive fields of CNNs and the global feature extraction
capabilities of transformers. These design choices improve its ability to generalize across
diverse datasets.

The architecture comprises four stages, each consisting of ConvNeXt blocks. These
blocks leverage a combination of depthwise and pointwise convolutions to reduce the number
of parameters. The final stage consolidates features for classification through a GAP layer
followed by fully connected layers. The architecture of ConvNeXt-T is shown in Figure 2f.

2.5. Performance Evaluation Metrics

This section details the metrics used to evaluate the performance of the predictive models
and the units of measurement used to record energy consumption during model training.

Sensors 2025, 25, 846 10 of 30

2.5.1. Model Performance Evaluation

The Kappa Index [58], or Cohen’s Kappa, is used in this work as it evaluates the
agreement between the model’s predictions and the actual labels, applicable in both binary
and multiclass classification problems. Unlike accuracy, Kappa Index adjusts its values by
considering the agreement that could occur by chance, offering a more precise evaluation
of the model’s performance. It is defined as

k =
p0 − pc

1 − pc
(3)

where p0 is the proportion of observed agreements and pc is the proportion of agreements
expected by chance. The index ranges from −1 to 1, with 1 indicating perfect agreement, 0
representing agreement equivalent to chance, and negative values suggesting worse-than-
chance performance.

2.5.2. Measuring Energy Consumption

Energy consumption is measured in kilowatt-hours (kWh) [59], which represents the
use of 1 kilowatt of power over 1 h. In joules (J), 1 kWh corresponds precisely to 3,600,000 J,
calculated as 1 kilowatt (1000 watts) sustained over 3600 s. The kWh is a standard unit
commonly used to quantify electrical energy consumption across various contexts [13,33].
It is defined as

kWh = P × t (4)

where P is the power in kilowatts (kW) and t is the time in hours (h).

2.5.3. DL Model Performance over Energy Consumption

The Kappa–Energy Index (KEI), proposed in this research, specifies the relation between
model performance and energy consumption during the training or inference of DL models.
It is defined as

Kappa–Energy Index =
Kappa Index

Energy Consumption
(5)

where the Kappa Index, denoted as k in Equation (3), represents the model’s perfor-
mance, and the Energy Consumption, denoted as kWh in Equation (4), represents the
kilowatt-hours used during model training or inference. It should be noted that the KEI in-
dex is applicable to larger systems, including data center servers, future GPU architectures,
and ML servers, provided that tools are available to measure energy consumption relevant
to the object of study. Furthermore, the index can be extended to distributed environments
by aggregating energy data from multiple nodes or GPUs, facilitating the evaluation of
energy efficiency in complex computational systems.

The Kappa Index is selected over other metrics, such as accuracy, due to its robustness
and interpretative advantages. Unlike simple accuracy, the Kappa Index accounts for chance
agreement, enhancing reliability in performance assessment. It is especially useful for
imbalanced classes, providing a conservative performance measure. Additionally, Table 3
presents the interpretation of the Kappa Index on a standardized scale, with established
benchmarks that categorize levels of agreement [60].

It is important to indicate that a higher KEI index reflects greater energy efficiency. In
summary, a higher index indicates DL models achieving a better trade-off between their
performance and energy consumption.

Sensors 2025, 25, 846 11 of 30

Table 3. Cohen’s Kappa Agreement Levels.

Kappa Statistic Agreement Levels

k < 0 No agreement
0.01 ≤ k ≤ 0.20 Slight
0.21 ≤ k ≤ 0.40 Fair
0.41 ≤ k ≤ 0.60 Moderate
0.61 ≤ k ≤ 0.80 Substantial
0.81 ≤ k ≤ 1.00 Almost perfect

2.5.4. Measuring CO2 Emissions

CO2 emissions are measured in kilograms of CO2 equivalents (CO2eq), which rep-
resent the amount of carbon dioxide released based on the energy consumption of the
computational infrastructure [61]. The calculation of CO2 emissions is performed by mul-
tiplying the carbon intensity of electricity (C, in grams of CO2 per kilowatt-hour) by the
energy consumed (E, in kilowatt-hours). It is important to indicate that CodeCarbon
CO2 emissions calculation is described in Section 2.6. In this way, providing an accurate
calculation of the total CO2 emissions in kilograms of CO2 equivalents (CO2eq):

CO2eq = C × E (6)

where C is the carbon intensity and E is the energy consumed in kilowatt-hours.

2.6. Energy Consumption Meters

This section outlines the sensor-based tools used to analyze the energy consumption of
the algorithms, ensuring precise and reliable measurements. Energy data are collected using
hardware and software tools: OpenZmeter (oZm) [10], a hardware-based device equipped
with integrated electrical sensors to directly measure consumption, and software-based
tools such as CodeCarbon [61] and Carbontracker [11], which retrieve energy consumption
data from computational component sensors. OpenZmeter is chosen for its ability to
measure energy consumption and its cost. It supports autonomous operation and cloud
communication for energy monitoring [12]. On the other hand, the CodeCarbon library
is chosen for its capability to measure energy consumption and calculate CO2 emissions
accurately [32]. Finally, Carbontracker estimates CO2 emissions and energy consumption,
with results aligning with wattmeter measurements across various infrastructures [32]. A
more detailed description of each energy meter is provided in the following sections.

• OpenZmeter [10] is a low-cost, open-source, intelligent hardware energy meter and
power quality analyzer. It measures reactive, active, and apparent energy, frequency,
Root Mean Square (RMS) voltage, RMS current, power factor, phase angle, voltage
events, harmonics up to the 50th order, and total harmonic distortion (THD). It records
energy consumption in kilowatt-hours (kWh). The device includes a web interface and
an API for integration. It can be installed in electrical distribution panels and features
Ethernet, Wi-Fi, and 4G connectivity. Additionally, it offers remote monitoring and
real-time alerts. Figure 3 shows the OpenZmeter diagram.

Sensors 2025, 25, 846 12 of 30

Figure 3. Schematic diagram of the OpenZmeter. It includes an ARM board, AC/DC converter,
LiPo battery, and sensors to measure electrical parameters from the power source to the load. Image
adapted from [10].

• CodeCarbon [61] is an open-source tool to measure and reduce software programs’
carbon footprint. It tracks energy consumption in kilowatt-hours (kWh) during
code execution, accounting for hardware and data center location to calculate CO2

emissions. Carbon intensity can vary hourly and adapt to users’ location when real-
time data from sources like the CO2 Signal API are accessible. For cloud computing,
CodeCarbon uses Google Cloud Platform data (Mountain View, CA, USA), although
Amazon (Seattle, WA, USA) and Microsoft (Redmond, WA, USA) do not provide
specific carbon details for their data centers. For private infrastructures, CodeCarbon
draws from “Our World in Data” when available or defaults to the energy mix of the
user’s country from “globalpetrolprices.com” adjusting carbon intensity accordingly.
When specific data are absent, a global average of 475 gCO2/kWh, based on the
International Energy Agency (IEA), is applied. The tool also offers an Application
Programming Interface (API) and Python libraries to integrate carbon monitoring
into projects, along with reports and visualizations that consider data center locations.
Energy consumption measurement focuses on key system components, specifically
the GPU, RAM, and CPU. However, the tool does not account for other elements,
such as storage, network, or peripherals, which leads to underestimations of total
consumption. Figure 4 shows the CodeCarbon diagram.

Figure 4. CodeCarbon [61] energy measurement process. Energy consumption (E, in kWh) is
estimated using RAM (3 W/8 GB), CPU (Intel-RAPL), and GPU (Nvml). Carbon intensity (C, in
kgCO2eq/kWh) integrates data from cloud providers, country energy mixes, and world averages to
compute CO2eq.

Sensors 2025, 25, 846 13 of 30

• Carbontracker [11] is an open-source software tool for energy management in the
training of DL models, allowing users to track and predict energy consumption and
carbon emissions. It facilitates the adjustment of epochs to monitor consumption
and can track the entire training process to provide accurate estimates. Noteworthy
research utilizing Carbontracker includes a study cited in [62], which discusses how
combining federated learning with transfer learning can enhance the classification
of medical images in an energy-efficient and privacy-preserving manner. Another
investigation [63] examines the relationship between the quality of generative audio
models and their energy consumption. Figure 5 shows the Carbontracker diagram.

Hardware Monitoring

CPU SOURCES GPU (NVIDIA)

ET: Total Energy Consumption (kWh) [Tracking | Prediction]

Intel RAPL

CO Intensity

Great Britain

Regional APIs

C: Carbon Intensity

CO eq = C x E

CPU RAM

Power

readings

Energy

Counters

Energy

Consumption

Energy

Consumption

NVML TDP

Power

samples

Power

Limits

Energy

Consumption

Energy

Consumption

(CPU + RAM) Consumption GPU - Energy Consumption

Power Usage Effectiveness: ET x 1.58

E: Final Energy Calculation (kWh)

Carbon

Intensity API

Denmark

Energi Data

Service

Other

Regions

Default

Values

EU-28

Average

2017

Average

Values

2

2

Figure 5. Carbontracker [11] process for estimating energy consumption (E, kWh) using CPU (Intel
RAPL), GPU (Nvml, TDP), and RAM data, adjusted by PUE. Carbon intensity (C, kgCO2eq/kWh) is
obtained from regional APIs. Final emissions (CO2eq) are calculated as CO2eq = C × E.

Table 4 provides a comparative overview of three tools used for tracking energy and
carbon footprints in DL workflows: OpenZmeter, CodeCarbon, and Carbontracker. The
tools differ in type, energy measurement, carbon tracking, and features. Each addresses
specific aspects of monitoring energy use during model training and inference.

Table 4. Comparison of OpenZmeter, CodeCarbon, and Carbontracker.

Feature OpenZmeter CodeCarbon Carbontracker

Type Hardware and software Software Software

Energy Measurement Reactive, active, apparent, RMS
voltage/current, etc. kWh during code execution kWh during DL training

Carbon Emission Tracking No Yes (based on hardware
and location) Yes

Connectivity Ethernet, Wi-Fi, 4G API, Python libraries Python libraries
Integration Web interface, API API, Python libraries API, Python libraries

Focus Energy and Power
Quality Analysis

Carbon footprint reduction in
software execution

Energy management in
DL training

Advanced Features Real-time alerts, power
quality analysis

Reports, geographical data
center insights

Dynamic adjustment of
training epochs

2.7. Computational Resources

The experiments being conducted in this research are performed using the cluster
of the Biomedical Signal Processing, Computational Intelligence, and Communications
Security (BIOSIP) research group at the University of Málaga, Spain. Exclusive access to
the required computational resources is provided to ensure the successful execution of
the experiments.

Table 5 details the architecture of the node used for the experiments. This setup
includes the hardware components and software tools required to control the experimental
environment, ensuring accurate energy measurements and reproducible results.

Sensors 2025, 25, 846 14 of 30

Table 5. Summary of Hardware and Software Configuration.

Category Specifications

Hardware
Architecture x86_64
Processors 2× Intel Xeon E5-2640 v4 @ 2.40 GHz, 10 cores each, 90 W TDP each
RAM 126 GB
GPUs 3× NVIDIA GTX 1080 Ti, 250 W TDP, 3584 CUDA cores, 11 GB each

1× NVIDIA TITAN Xp, 250 W TDP, 3840 CUDA cores, 12 GB
Power Meters OpenZmeter

Software
Operating System Ubuntu 24.04 LTS
Python Version 3.10.14
Pytorch Version 2.5.1
CodeCarbon Version 2.4.1
Carbontracker Version 1.2.5

2.8. Experimental Setup

This section outlines the experiments that evaluate the energy consumption during the
training of various DL architectures, as well as the inference stages of previously trained
DL models. The architectures selected for evaluation include AlexNet, VGG16, ResNet18,
EfficientNet-B3, Swin-T, and ConvNeXt-T, chosen for their relevance in the current research
on DL Architectures. Energy consumption is measured using the OpenZmeter, a hard-
ware energy meter used as reference, along with two software tools, Carbontracker and
CodeCarbon, which record energy usage every 15 s, while the hardware meter collects data
every second. Both software tools also provide CO2 emission estimates, either through
predefined indices or by accessing renewable energy databases. In this study, the CO2

calculations are based on data specific to Andalucía, Spain, obtained solely through these
software measurement tools.

In the experimental training setup, each DL architecture is trained up to 90 epochs,
with a batch size of 64, and a learning rate of 0.001. These hyperparameters [8] are selected
to perform comparable evaluations across different architectures, enabling an objective
analysis of their energy demands. The corresponding values for each hyperparameter are
detailed in Table 6.

Table 6. Training Setup Specifications.

Category Specifications

Number of epochs 90
Batch size 64
Optimizer Stochastic Gradient Descent (SGD)
Learning rate 0.001
Momentum 0.9
Weight decay 0.0001

The training is performed using two GPU models, the TITAN Xp and the GTX 1080,
with each architecture being trained individually on a single GPU. The dataset used is
Imagenette, split into 70% for training and 30% for testing. The training set is further
divided into 80% for training and 20% for validation. The test set is used to evaluate the
final performance of the models. Each experiment is repeated 15 times to ensure statistical
validity, with an estimated training time limit of 20 min for each network, and a seed value
of 1 is used to ensure consistent initial conditions across all runs.

Figure 6 shows the experimental setup designed to evaluate the performance and
energy consumption of the evaluated DL architectures. Energy consumption and CO2

Sensors 2025, 25, 846 15 of 30

emissions are monitored using tools such as OpenZmeter, CodeCarbon, and Carbontracker,
while the models are trained on the Imagenette dataset using GPUs.

Figure 6. Experimental framework for evaluating the performance and energy consumption of
AlexNet, VGG16, ResNet18, EfficientNet-B3, Swin-T, and ConvNeXt-T measured with OpenZmeter,
CodeCarbon and Carbontracker.

Algorithm 1 presents the pseudo-code for evaluating model performance and
energy consumption.

Algorithm 1: Pseudo-code for Performance and Energy Evaluation
Input parameters: architecture, gpu_id, epochs, batch_size, learning_rate, seed,
dataset, energy_meter, time;

Initialize the model(architecture);
Load and preprocess(dataset);
Create data loaders with the specified batch_size;
Initialize the energy measurement tool (energy_meter);
Start the energy measurement process;
Set the estimate maximum training time (time);
Set the random seed (seed);
Assign model and data to the selected GPU (gpu_id);
Initialize the optimizer with the specified learning rate (learning_rate);
while current epoch < epochs and elapsed time < time do

Train model on training data;
Evaluate model on validation data;

end
Stop the energy measurement process;
Collect and log energy consumption data;
Load the test dataset;
Test the model on the test data;
while testing is not complete do

Make predictions on the test data;
end
Compute and output performance metrics;
Generate a report with performance and energy consumption;
Result: Final model performance and energy consumption report;

Sensors 2025, 25, 846 16 of 30

Finally, for the experimental inference setup, each previously generated DL model is
evaluated on the same GPU used during its initial training. The dataset used consists of
10 classes, each containing 100 images. The complete inference process is repeated 15 times
for each model, using the same dataset each time.

3. Results
In this section, we present the results obtained from the comparison of energy con-

sumption measurement tools, including software and hardware energy meters, evaluating
their precision and consistency in various hardware environments. The experiments are
conducted using various GPUs, focusing on energy consumption during the training and
inference phases of the selected DL models. Then, we evaluate the proposed Kappa–Energy
Index, which relates the achieved Kappa Index of the DL models to their energy consump-
tion in kWh. Finally, the results are subjected to statistical validation at each stage that
requires it.

3.1. Energy Consumption and Meter Precision in DL Models Training Experiments

The experimental results for energy consumption and CO2 emissions during the
training of various DL models on different GPUs are analyzed and presented. Energy meter
tools are used to conduct a comparative analysis of energy consumption, execution times,
and CO2 emission estimates, allowing for an assessment of the accuracy of software energy
measurements compared with a hardware meter, which is used as a reference. Additionally,
the section titled Active Power Consumption During DL Models Training provides detailed
real-time active power consumption profiles for each architecture.

Figure 7 presents the energy consumption in kilowatt-hours (kWh) for each DL model
implemented and trained on both GPUs. Measurements from OpenZmeter, CodeCar-
bon, and Carbontracker are compared to highlight differences in their recorded values.
OpenZmeter consistently provides energy consumption measurements across both GPUs
used. While overall energy consumption is comparable among the DL models, it is noted
that the TITAN Xp GPU consumes more energy than the GTX 1080 Ti, particularly for
models such as VGG16, ResNet18, EfficientNet-B3, Swin-T, and ConvNeXt-T.

0
.1

0
6
2

0
.1

2
7
3

0
.1

3
1

4

0
.1

3
3
2

0
.1

3
1
8

0
.1

3
1
9

0
.1

0
6
3

0
.1

2
4
7

0
.1

2
1
0

0
.1

2
4
7

0
.1

2
3
8

0
.1

2
2

5

AlexNet

VGG16

ResNet18

EfficientNet-B3

Swin-T

ConvNeXt-T

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0
.0

9
0
7

0
.1

1
4
9

0
.1

1
6
0

0
.1

1
5
4

0
.1

1
7
0

0
.1

1
5
5

0
.0

9
2
1

0
.1

1
2

6

0
.1

1
0

2

0
.1

1
1
0

0
.1

1
1

2

0
.1

1
0
7

AlexNet

VGG16

ResNet18

EfficientNet-B3

Swin-T

ConvNeXt-T

0
.1

2
1
8

0
.1

5
0

9

0
.1

5
4
5

0
.1

5
4

2

0
.1

5
5

1

0
.1

5
3
7

0
.1

2
4

1

0
.1

4
9
2

0
.1

4
5
0

0
.1

4
5

2

0
.1

4
6

9

0
.1

4
5
4

AlexNet

VGG16

ResNet18

EfficientNet-B3

Swin-T

ConvNeXt-T

TITAN Xp GTX 1080 Ti

E
n

e
rg

y
 C

o
n

s
u

m
e

d
 (

k
W

h
)

OpenZmeter CodeCarbon CarbonTracker

Figure 7. Energy consumption (kWh) during the training of AlexNet, VGG16, ResNet18, EfficientNet-
B3, Swin-T, and ConvNeXt-T on GPUs TITAN Xp and GTX 1080 Ti. The graph compares the
results from three energy measurement tools: OpenZmeter (energy meter reference), CodeCarbon,
and Carbontracker.

Sensors 2025, 25, 846 17 of 30

In comparison, CodeCarbon reports lower energy consumption values. However,
despite these underestimations, its measurement trends are closely aligned with those of
OpenZmeter, indicating similar consumption trends across GPUs. In contrast, Carbon-
tracker records higher consumption values across all models, with notable discrepancies
in the training of VGG16, ResNet18, EfficientNet-B3, Swin-T, and ConvNeXt-T, where it
measures significantly higher energy use than OpenZmeter and CodeCarbon.

A consistent trend is observed where the GTX 1080 Ti exhibits lower energy con-
sumption compared with the TITAN Xp in all DL models evaluated. This pattern is
particularly evident in measurements from OpenZmeter and CodeCarbon, which show
minimal variability in the energy consumption differences between GPUs. Carbontracker,
while following a similar pattern, reports significantly higher consumption values overall,
amplifying the observed gap between the TITAN Xp and GTX 1080 Ti.

In parallel, Figure 8 examines another aspect of energy consumption measurement:
the execution times (s) during the training of the six DL models on the two GPUs. Small
variations are observed in the training times recorded by each measurement tool (OpenZme-
ter, CodeCarbon, and Carbontracker). Although these discrepancies are limited to a few
seconds and remain consistent, they are likely due to differences in the starting and ending
points of the recording process used by each tool. The results indicate that execution
times across both GPUs and measurement tools are consistent, with minimal differences
observed for most architectures. For AlexNet and VGG16, times are nearly identical on the
TITAN Xp and GTX 1080 Ti, reflecting similar processing capabilities. ResNet18 execution
times are consistent across GPUs and tools. EfficientNet-B3 shows the lowest times on the
GTX 1080 Ti, while on the TITAN Xp, times are comparable to other architectures. Swin-T
demonstrates a slight increase in execution times on the GTX 1080 Ti compared with the
TITAN Xp across all tools, with minimal variation. Conversely, ConvNeXt-T records the
longest execution times among all models, with a more pronounced difference between the
TITAN Xp and GTX 1080 Ti, particularly when measured by OpenZmeter.

1198 1199 11981200 1201 1200

OpenZmeter CodeCarbon CarbonTracker

500

1000

1500

1197 1197 11971191 1192 1191

OpenZmeter CodeCarbon CarbonTracker

1200 1201 12011201 1201 1201

OpenZmeter CodeCarbon CarbonTracker

1183 1183 11831199 1199 1199

OpenZmeter CodeCarbon CarbonTracker

500

1000

1500

1201 1201 12011206 1206 1206

OpenZmeter CodeCarbon CarbonTracker

1259 1259 1259

1384 1385 1385

OpenZmeter CodeCarbon CarbonTracker

TITAN Xp GTX 1080 Ti

E
x
e
c
u
ti
o
n
 T

im
e
s
 (

s
)

E
x
e
c
u
ti
o
n
 T

im
e
s
 (

s
)

AlexNet VGG16 ResNet18

EfficientNet-B3 Swin-T ConvNeXt-T

Figure 8. Average Execution times (s) during the training of AlexNet, VGG16, ResNet18, EfficientNet-
B3, Swin-T, and ConvNeXt-T on GPUs TITAN Xp and GTX 1080 Ti. The graph compares the
results from three energy measurement tools: OpenZmeter (energy meter reference), CodeCarbon,
and Carbontracker.

Table 7 presents a detailed analysis of energy consumption and execution times for
six DL models on two GPUs: TITAN Xp GPU and GTX 1080 Ti GPU. This analysis compares
energy consumption results obtained through three measurement tools: OpenZmeter,

Sensors 2025, 25, 846 18 of 30

CodeCarbon, and Carbontracker. Execution time and energy consumption values are
presented as averages and standard deviations, allowing for an assessment of both central
tendency and variability in performance.

The results indicate consistency in execution times across architectures for each GPU.
However, differences in energy consumption estimates reveal the influence of the measure-
ment tool on reported efficiency values. The comparison of OpenZmeter with CodeCarbon
and Carbontracker enables the evaluation of the accuracy of software energy measurements.
The low p-values demonstrate that the discrepancies among the tools are statistically signif-
icant, which confirms that each tool produces distinct energy consumption estimates under
the same conditions.

Despite these differences, when observing the average energy consumption values for
the architectures AlexNet, VGG16, ResNet18, EfficientNet-B3, Swin-T, and ConvNeXt-T,
it is noted that CodeCarbon, although underestimating energy consumption compared
with OpenZmeter, tends to be closer to the reference values. This suggests that Code-
Carbon provides a more reliable estimate in terms of trends. On the other hand, Carbon-
tracker demonstrates a systematic tendency to overestimate energy consumption across all
architectures analyzed.

Table 7. Energy consumption results and statistical validation using different hardware configurations.

GPU Energy Meter Architecture
Execution Times (s) Energy Consumed (kWh)

p-Values
Average Std. Dev. Average Std. Dev.

TITAN Xp

OpenZmeter
(reference meter)

AlexNet 1198 4 0.1062 0.0005 -
VGG16 1197 3 0.1319 0.0010 -

ResNet18 1200 4 0.1332 0.0007 -
EfficientNet-B3 1183 5 0.1314 0.0018 -

Swin-T 1201 4 0.1318 0.0020 -
ConvNeXt-T 1259 2 0.1273 0.0014 -

CodeCarbon
(evaluated meter)

AlexNet 1199 4 0.0907 0.0003 p < 2.96 × 10−6

VGG16 1197 3 0.1155 0.0005 p < 2.94 × 10−6

ResNet18 1201 4 0.1154 0.0005 p < 2.98 × 10−6

EfficientNet-B3 1183 5 0.1160 0.0003 p < 2.64 × 10−6

Swin-T 1201 5 0.1170 0.0002 p < 2.86 × 10−6

ConvNeXt-T 1259 1 0.1149 0.0002 p < 2.95 × 10−6

Carbontracker
(evaluated meter)

AlexNet 1198 4 0.1218 0.0037 p < 3.04 × 10−6

VGG16 1197 3 0.1537 0.0020 p < 2.98 × 10−6

ResNet18 1201 4 0.1542 0.0025 p < 3.02 × 10−6

EfficientNet-B3 1183 5 0.1545 0.0016 p < 3.01 × 10−6

Swin-T 1201 5 0.1551 0.0019 p < 2.97 × 10−6

ConvNeXt-T 1259 2 0.1509 0.0018 p < 3.05 × 10−6

GTX 1080 Ti

OpenZmeter
(reference meter)

AlexNet 1200 3 0.1063 0.0011 -
VGG16 1191 3 0.1225 0.0013 -

ResNet18 1201 5 0.1247 0.0004 -
EfficientNet-B3 1199 7 0.1210 0.0018 -

Swin-T 1206 3 0.1238 0.0033 -
ConvNeXt-T 1384 2 0.1247 0.0021 -

CodeCarbon
(evaluated meter)

AlexNet 1201 4 0.0921 0.0007 p < 3.04 × 10−6

VGG16 1192 3 0.1107 0.0003 p < 4.51 × 10−6

ResNet18 1201 5 0.1110 0.0003 p < 6.56 × 10−6

EfficientNet-B3 1199 7 0.1102 0.0003 p < 2.95 × 10−6

Swin-T 1206 3 0.1112 0.0001 p < 1.33 × 10−6

ConvNeXt-T 1385 2 0.1126 0.0010 p < 3.00 × 10−6

Carbontracker
(evaluated meter)

AlexNet 1200 3 0.1241 0.0042 p < 3.04 × 10−6

VGG16 1191 3 0.1454 0.0024 p < 3.04 × 10−6

ResNet18 1201 5 0.1452 0.0042 p < 2.98 × 10−6

EfficientNet-B3 1199 7 0.1450 0.0027 p < 3.02 × 10−6

Swin-T 1206 3 0.1469 0.0020 p < 1.46 × 10−6

ConvNeXt-T 1385 2 0.1492 0.0021 p < 3.04 × 10−6

Note: CodeCarbon and Carbontracker are the evaluated meters, while OpenZmeter is the reference energy meter.

Overall, these results highlight the importance of validating software-based energy
measurement tools against reference meters like OpenZmeter, particularly in scenarios
where accuracy is critical. Additionally, architectural characteristics, as seen in ResNet18,

Sensors 2025, 25, 846 19 of 30

EfficientNet-B3, Swin-T, and ConvNeXt-T, play a significant role in energy consumption,
exceeding the values recorded for AlexNet and VGG16.

In this regard, CodeCarbon offers an additional feature for measuring CO2 emis-
sions, which complements the energy consumption analysis. This feature provides a more
comprehensive view of the environmental impact of DL models training by including
greenhouse gas estimates. Quantifying CO2 emissions helps assess the energy cost in terms
of electricity use and supports evaluations of sustainability and environmental impact.

Therefore, Figure 9 presents CO2 emissions (in kilograms) for the six DL models
during experimental runs conducted on the TITAN Xp and GTX 1080 Ti GPUs. For
AlexNet, emissions are the lowest among the architectures, with both GPUs producing
nearly identical emissions, indicating no difference in CO2 emissions between the TITAN
Xp and GTX 1080 Ti for this architecture. In VGG16, CO2 emissions increase compared
with AlexNet, with the TITAN Xp producing approximately 5% more CO2 than the GTX
1080 Ti. Although this difference is minor, the emissions for both GPUs remain close for
this architecture. A similar pattern is observed in ResNet18, with the TITAN Xp again
emitting around 5% more CO2 than the GTX 1080 Ti. In EfficientNet-B3, the CO2 emissions
on the TITAN Xp are approximately 5% higher than on the GTX 1080 Ti, slightly exceeding
the approximately 5% observed for ResNet18. This corresponds to a 21% greater relative
difference for EfficientNet-B3 compared with ResNet18. In Swin-T, CO2 emissions increase
further, with the TITAN Xp emitting approximately 5% more CO2 than the GTX 1080
Ti. However, the overall emissions for both GPUs remain close, reflecting a consistent
trend across architectures. Finally, ConvNeXt-T shows the highest emissions among all
architectures, with the GTX 1080 Ti producing slightly higher CO2 emissions compared
with the TITAN Xp. The difference, while minor, highlights the greater computational
demand of this model. Overall, emissions from the two GPUs are almost equivalent, with
the GTX 1080 Ti producing less CO2 in the more complex architectures.

0.0176

0.0244

0.0224

0.0254

0.0224 0.0222

0.0178

0.0245

0.0214

0.0242

0.0215 0.0210

AlexNet VGG16 ResNet18 EfficientNet-B3 Swin-T ConvNeXt-T
0.000

0.005

0.010

0.015

0.020

0.025

TITAN Xp GTX 1080 Ti

C
O
₂

E
m

is
s
io

n
s
 (

k
g
)

Figure 9. CO2 Emissions during the training of AlexNet, VGG16, ResNet18, EfficientNet-B3, Swin-T,
and ConvNeXt-T on GPUs TITAN Xp and GTX 1080 Ti; results obtained using CodeCarbon.

Active Power Consumption During DL Models Training

In this section, we analyze the active power consumption during the training of the
six evaluated DL Models. Figures 10 and 11 show the measurements obtained using
the OpenZmeter hardware meter, showing the active power (W) over time (s) for the
two used GPUs.

Figure 10 presents the results of power consumption during training on the TITAN Xp
GPU. The six graphs correspond to each DL Models: (a) AlexNet, (b) VGG16, (c) ResNet18,
(d) EfficientNet-B3, (e) Swin-T, and (f) ConvNeXt-T.

Sensors 2025, 25, 846 20 of 30

(a) AlexNet (b) VGG16 (c) ResNet18

(d) EfficientNet-B3 (e) Swin-T (f) ConvNeXt-T

Figure 10. Active power consumption during the training of DL models on TITAN Xp
using OpenZmeter. The solid lines show the average active power consumption over time, while the
shaded areas indicate the variability of the data at each time point.

Figure 11 presents the active power consumption of the same DL models trained on
a GTX 1080 Ti GPU. As in the previous figure, the graphs are organized as (a) AlexNet,
(b) VGG16, (c) ResNet18, (d) EfficientNet-B3, (e) Swin-T, and (f) ConvNeXt-T.

(a) AlexNet (b) VGG16 (c) ResNet18

(d) EfficientNet-B3 (e) Swin-T (f) ConvNeXt-T

Figure 11. Active power consumption during the training of DL Models on GTX 1080 Ti
using OpenZmeter. The solid lines show the average active power consumption over time, while the
shaded areas indicate the variability of the data at each time point.

As a result, Figures 10 and 11 show that despite the different GPUs used, each DL
model demonstrates a distinct energy consumption profile during the training process.
While the choice of GPU affects the absolute consumption values, the patterns of energy
utilization over time are influenced by the structure and design of each DL model.

Sensors 2025, 25, 846 21 of 30

3.2. Evaluation of Kappa–Energy Index for DL Models Training and Inference

In this section, the Kappa–Energy Index is used to evaluate the training and inference of
DL Models on different GPUs.

3.2.1. Evaluation of Kappa–Energy Index for DL Models Training

In the context of DL models training analysis, Figure 12 presents the Kappa–Energy Index
for DL models on two GPUs, comparing OpenZmeter with CodeCarbon. The Kappa–Energy
Index represents the energy efficiency of each model-GPU combination, where higher values
indicate greater efficiency. This comparison reveals variations in Kappa Index values between
the hardware and software energy meters across the models and GPUs.

1.2310

5.5221

4.13054.2472

6.0518 5.9745

1.2831

4.5020

6.3721
6.12486.1571

3.9313

AlexNet VGG16 ResNet18 EfficientNet-B3 Swin-T ConvNeXt-T

2

4

6

8

7.0860

6.2552

6.8960

4.6530
4.8502

1.3638

4.3768

1.4210

7.1064

6.7250

4.9819

7.1505

AlexNet VGG16 ResNet18 EfficientNet-B3 Swin-T ConvNeXt-T

TITAN Xp GTX 1080 Ti

K
a

p
p

a
-E

n
e

rg
y
 I

n
d

e
x

OpenZmeter CodeCarbon

Figure 12. Kappa–Energy Index for AlexNet, VGG16, ResNet18, EfficientNet-B3, Swin-T, and
ConvNeXt-T on TITAN Xp and GTX 1080 Ti GPUs, comparing OpenZmeter (hardware reference
meter) and CodeCarbon (software meter) results.

The GTX 1080 Ti consistently achieves higher Kappa–Energy Index values than the
TITAN Xp across all evaluated architectures, indicating better energy efficiency for this
GPU. Among the architectures, VGG16 exhibits the lowest index values compared with
ResNet18 and EfficientNet-B3, reflecting its higher energy demands and architectural
complexity. ResNet18 achieves the highest index values across all measurements, particu-
larly on the GTX 1080 Ti, while EfficientNet-B3 shows comparable values, highlighting its
energy-efficient design. Swin-T exhibits intermediate Kappa–Energy Index values, with the
GTX 1080 Ti consistently outperforming the TITAN Xp. In contrast, ConvNeXt-T shows
the lowest index values among all architectures, regardless of the GPU, emphasizing its
higher energy demands due to its complexity.

Table 8 compares the Kappa–Energy Index for DL models on two GPUs (TITAN Xp and
GTX 1080 Ti) using OpenZmeter and CodeCarbon. The values for the Kappa Index, energy
consumption in kWh, and the Kappa–Energy Index are presented as averages and standard
deviations, providing a detailed view of the efficiency of each energy meter. The results
show that, similar to Section 3.1, CodeCarbon tends to underestimate energy consumption
compared with OpenZmeter, resulting in a higher Kappa–Energy Index, especially on the
GTX 1080 Ti. These differences are statistically significant (p < 3.07 × 10−6), highlighting
variations in energy measurements between software and hardware energy meters in
DL models.

The Kruskal–Wallis test, using OpenZmeter measurements (Table 8), compares the
Kappa–Energy Index of the six architectures on both GPUs. For both GPUs, a (p < 1 × 10−7)
is observed, indicating significant differences between architectures. The post hoc anal-
ysis with Dunn’s test confirms significant differences between specific pairs, such as
AlexNet vs. VGG16, ResNet18 vs. VGG16, and Swin-T vs. ConvNeXt-T, with Bonferroni-
adjusted p-values below 0.05 on both GPUs (Table 9). This analysis corroborates that
AlexNet and ResNet18 are the most energy-efficient architectures across both GPUs, while
ConvNeXt-T consistently ranks as the least efficient.

Sensors 2025, 25, 846 22 of 30

On the TITAN Xp, AlexNet demonstrates a 42.41% energy efficiency advantage over
VGG16 and a marginal 1.24% gain over ResNet18, with no statistically significant difference
between AlexNet and ResNet18. EfficientNet-B3 follows closely, showing competitive effi-
ciency compared with the top models. Swin-T exhibits moderate efficiency, outperforming
VGG16 but lagging behind AlexNet and ResNet18 by 23.56%. ConvNeXt-T is significantly
less efficient, with a p < 0.05 indicating substantial differences from all other models.

Table 8. Training Kappa–Energy Index results and statistical validation.

GPU Energy Meter Architecture
Kappa Energy Consumed (kWh) Kappa–Energy Index

p-Values
Average Std. Dev. Average Std. Dev. Average Std. Dev.

TITAN Xp

OpenZmeter

AlexNet 0.6427 0.0032 0.1062 0.0005 6.0518 0.0483 -
VGG16 0.5602 0.0000 0.1319 0.0010 4.2472 0.0339 -

ResNet18 0.7958 0.0023 0.1332 0.0007 5.9745 0.0281 -
EfficientNet-B3 0.7256 0.0000 0.1314 0.0018 5.5221 0.0772 -

Swin-T 0.5444 0.0000 0.1318 0.0020 4.1305 0.0601 -
ConvNeXt-T 0.1567 0.0000 0.1273 0.0014 1.2310 0.0133 -

CodeCarbon

AlexNet 0.6427 0.0032 0.0907 0.0003 7.0860 0.0528 p < 3.07 × 10−6

VGG16 0.5602 0.0000 0.1155 0.0005 4.8502 0.0207 p < 3.07 × 10−6

ResNet18 0.7958 0.0023 0.1154 0.0005 6.8960 0.0273 p < 3.07 × 10−6

EfficientNet-B3 0.7256 0.0000 0.1160 0.0003 6.2552 0.0149 p < 3.07 × 10−6

Swin-T 0.5444 0.0000 0.1170 0.0002 4.6530 0.0103 p < 3.07 × 10−6

ConvNeXt-T 0.1567 0.0000 0.1149 0.0002 1.3638 0.0031 p < 3.07 × 10−6

GTX 1080 Ti

OpenZmeter

AlexNet 0.6545 0.0012 0.1063 0.0011 6.1571 0.0694 -
VGG16 0.5515 0.0000 0.1225 0.0013 4.5020 0.0479 -

ResNet18 0.7946 0.0031 0.1247 0.0004 6.3721 0.0361 -
EfficientNet-B3 0.7411 0.0000 0.1210 0.0018 6.1248 0.0682 -

Swin-T 0.4867 0.0000 0.1238 0.0033 3.9313 0.1005 -
ConvNeXt-T 0.1600 0.0000 0.1247 0.0021 1.2831 0.0219 -

CodeCarbon

AlexNet 0.6545 0.0012 0.0921 0.0007 7.1064 0.0595 p < 3.07 × 10−6

VGG16 0.5515 0.0000 0.1107 0.0003 4.9819 0.0156 p < 3.07 × 10−6

ResNet18 0.7937 0.0024 0.1110 0.0003 7.1505 0.0363 p < 3.07 × 10−6

EfficientNet-B3 0.7411 0.0000 0.1102 0.0003 6.7250 0.0156 p < 3.07 × 10−6

Swin-T 0.4867 0.0000 0.1112 0.0001 4.3768 0.0042 p < 3.07 × 10−6

ConvNeXt-T 0.1600 0.0000 0.1126 0.0010 1.4210 0.0219 p < 3.07 × 10−6

Table 9. Post Hoc Analysis: Dunn’s Test Results for DL Models on Different GPU Models.

GPU Comparison AlexNet VGG16 ResNet18 EfficientNet-B3 Swin-T ConvNeXt-T

TITAN Xp

AlexNet - 5.85 × 10−5 - 3.50 × 10−2 9.07 × 10−9 1.26 × 10−13

VGG16 5.85 × 10−5 - 1.75 × 10−2 - - 2.49 × 10−2

ResNet18 - 1.75 × 10−2 - - 2.16 × 10−5 2.46 × 10−9

EfficientNet-B3 3.50 × 10−2 - - - 2.49 × 10−2 3.57 × 10−5

Swin-T 9.07 × 10−9 - 2.16 × 10−5 2.49 × 10−2 - -
ConvNeXt-T 1.26 × 10−13 2.49 × 10−2 2.46 × 10−9 3.57 × 10−5 - -

GTX 1080 Ti

AlexNet - 1.34 × 10−1 4.08 × 10−1 - 1.09 × 10−3 2.91 × 10−7

VGG16 1.34 × 10−1 - 2.11 × 10−5 4.08 × 10−1 - 4.03 × 10−2

ResNet18 4.08 × 10−1 2.11 × 10−5 - 1.34 × 10−1 1.64 × 10−8 7.57 × 10−14

EfficientNet-B3 - 4.08 × 10−1 1.34 × 10−1 - 5.27 × 10−3 2.83 × 10−6

Swin-T 1.09 × 10−3 - 1.64 × 10−8 5.27 × 10−3 - -
ConvNeXt-T 2.91 × 10−7 4.03 × 10−2 7.57 × 10−14 2.83 × 10−6 - -

Note: Bonferroni-adjusted p-values (p < 0.05) for both GPUs.

On the GTX 1080 Ti, ResNet18 emerges as the most efficient model, achieving a 41.60%
energy efficiency improvement over VGG16 and a 4.06% advantage over EfficientNet-B3.
AlexNet ranks second, trailing ResNet18 by only 3.50% but maintaining a significant lead
over VGG16. Swin-T demonstrates moderate performance, outperforming ConvNeXt-T
but remaining significantly less efficient than the top three architectures. ConvNeXt-T again
ranks as the least efficient, with Dunn’s test confirming significant differences (p < 0.05)
from higher-performing models.

Sensors 2025, 25, 846 23 of 30

Figure 13 shows the energy consumption by component (RAM, CPU, and GPU) during
the training of the DL models AlexNet, VGG16, ResNet18, EfficientNet-B3, Swin-T, and
ConvNeXt-T on two different GPUs: TITAN Xp and GTX 1080 Ti. The stacked bars represent
the percentage contribution of each component to the total energy consumption (in kWh)
for each model and GPU combination. These results, obtained using CodeCarbon, indicate
that the GPU accounts for the majority of energy consumption, contributing approximately
61–73%, depending on the DL model and GPU.

TITAN Xp

AlexNet

GTX 1080 Ti

AlexNet

TITAN Xp

VGG16

GTX 1080 Ti

VGG16

TITAN Xp

ResNet18

GTX 1080 Ti

ResNet18

TITAN Xp

EfficientNet-B3

GTX 1080 Ti

EfficientNet-B3

TITAN Xp

Swin-T

GTX 1080 Ti

Swin-T

TITAN Xp

ConvNeXt-T

GTX 1080 Ti

ConvNeXt-T

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

RAM CPU GPU

E
n

e
rg

y
 C

o
n

s
u

m
e

d
 (

k
W

h
)

0.0907 0.0921

0.1155
0.1107

0.1154
0.1110

0.1160
0.1102

0.1170
0.1112

0.1149 0.1126

Figure 13. Energy consumption by component (RAM, CPU, GPU) during the training of AlexNet,
VGG16, ResNet18, EfficientNet-B3, Swin-T, and ConvNeXt-T on TITAN Xp and GTX 1080 Ti GPUs.
The results are obtained using CodeCarbon.

The CPU contributes 14–22%, while the RAM accounts for 13–17% of the total energy
consumption across all models. The TITAN Xp shows slightly higher total energy consump-
tion compared with the GTX 1080 Ti for most models, with the highest values recorded for
Swin-T (0.1170 kWh) and EfficientNet-B3 (0.1160 kWh).

While ConvNeXt-T does not show the highest total energy consumption (0.1149 kWh
on TITAN Xp and 0.1126 kWh on GTX 1080 Ti), its distribution highlights a larger contribu-
tion from CPU and RAM compared with other models. Swin-T exhibits the highest total
energy consumption on the TITAN Xp, while ConvNeXt-T shows the highest consumption
on the GTX 1080 Ti. EfficientNet-B3 follows closely in both cases. AlexNet has the lowest
total energy consumption across both GPUs. Variations in energy consumption are pri-
marily due to the computational demands of each model and the GPUs’ workload, which
consistently dominates the energy profile.

3.2.2. Evaluation of Kappa–Energy Index for DL Models Inference

The following analysis presents the inference process used to assess the energy effi-
ciency of six selected DL models on two GPUs (TITAN Xp and GTX 1080 Ti). The dataset
consists of 10 classes, each containing 100 images, with inference performed 15 times on the
same GPU where each model is initially generated. Table 10 summarizes the results of the
Kappa–Energy Index across different DL architectures. It includes execution time in seconds,
the Kappa Index value, energy consumption in kWh using OpenZmeter, and the average
Kappa–Energy Index with its corresponding standard deviation for each architecture and
GPU combination.

Statistical analysis is conducted using the Kruskal–Wallis test to determine significant
differences in KEI across architectures for both GPUs (p < 0.0001). Pairwise comparisons
with Dunn’s post hoc analysis reveal significant differences between several architectures.
ResNet18 achieves the highest KEI on the TITAN Xp, while VGG16 and ConvNeXt-T
record the lowest values. No significant difference is observed between Swin-T and VGG16.
AlexNet and EfficientNet-B3 exhibit moderate KEI values, with no significant differences
detected between them. On the GTX 1080 Ti, ResNet18 once again achieves the highest

Sensors 2025, 25, 846 24 of 30

KEI, while VGG16 and ConvNeXt-T maintain the lowest values. Swin-T achieves better
KEI than VGG16 and ConvNeXt-T but remains below AlexNet and EfficientNet-B3. These
results confirm that ResNet18 demonstrates the highest energy efficiency during inference
on both GPUs, whereas VGG16 and ConvNeXt-T show the least efficiency.

Table 10. Inference Kappa–Energy Index results and statistical validation (OpenZmeter).

GPU Architecture Execution Times (s) Kappa Energy Consumed (kWh)
Kappa–Energy Index

Average Std. Dev.

TITAN Xp

AlexNet 8.6000 0.6600 0.00060 1100.0000 117.4749
VGG16 11.8000 0.5589 0.00090 621.0000 53.3947

ResNet18 8.4667 0.8089 0.00060 1348.1667 152.5554
EfficientNet-B3 8.6667 0.7256 0.00070 1036.5714 87.6063

Swin-T 10.6000 0.5444 0.00080 680.5000 50.2012
ConvNeXt-T 10.7333 0.1567 0.00090 174.1111 14.2351

GTX 1080 Ti

AlexNet 8.0000 0.6744 0.00060 1124.0000 102.8994
VGG16 12.0667 0.5633 0.00100 563.3000 32.3208

ResNet18 7.8000 0.8156 0.00050 1631.2000 140.3914
EfficientNet-B3 9.1333 0.7411 0.00070 1058.7143 90.5074

Swin-T 10.8000 0.4867 0.00090 540.7778 30.9418
ConvNeXt-T 11.2000 0.1600 0.00090 177.7778 9.4729

Figure 14 shows the distribution of energy consumption across different hardware
components (RAM, CPU, and GPU) during the inference of the six evaluated DL models
on two GPU models: TITAN Xp and GTX 1080 Ti. The measurements, obtained using
CodeCarbon, indicate each component’s contribution to the total energy consumed. As
observed, the GPU consistently accounts for the largest share of energy usage, followed by
the CPU and RAM.

TITAN Xp

AlexNet

GTX 1080 Ti

AlexNet

TITAN Xp

VGG16

GTX 1080 Ti

VGG16

TITAN Xp

ResNet18

GTX 1080 Ti

ResNet18

TITAN Xp

EfficientNet-B3

GTX 1080 Ti

EfficientNet-B3

TITAN Xp

Swin-T

GTX 1080 Ti

Swin-T

TITAN Xp

ConvNeXt-T

GTX 1080 Ti

ConvNeXt-T

0.0002

0.0004

0.0006

0.0008

0.0000

0.0010

RAM CPU GPU

E
n

e
rg

y
 C

o
n

s
u

m
e

d
 (

k
W

h
)

0.00050
0.00048

0.00079
0.00082

0.00051

0.00045

0.00058
0.00060

0.00073
0.00076 0.00078 0.00080

Figure 14. Energy consumption by component (RAM, CPU, GPU) during the inference of AlexNet,
VGG16, ResNet18, EfficientNet-B3, Swin-T, and ConvNeXt-T on TITAN Xp and GTX 1080 Ti GPUs.
The results are obtained using CodeCarbon.

The GPU contributes 49–59% of the total energy consumption during inference, slightly
lower than in the training phase due to reduced computational intensity. The CPU ac-
counts for 21–26%, while the RAM contributes 20–25%, consistently remaining the least
demanding component. The TITAN Xp shows slightly higher energy consumption across
all components compared with the GTX 1080 Ti, as observed in models like AlexNet, where
the TITAN Xp’s GPU accounts for 50% of the total energy consumption versus 49% on the
GTX 1080 Ti.

AlexNet exhibits the lowest total energy consumption during inference, consistent with
its simpler architecture. VGG16 and EfficientNet-B3 follow, with higher energy demands
and similar energy distribution patterns across components. ResNet18 demonstrates
increased energy demand due to its greater complexity. Swin-T and ConvNeXt-T further
highlight this trend, with GPUs contributing 58–59% of the total energy consumption across

Sensors 2025, 25, 846 25 of 30

both GPUs. ConvNeXt-T shows the highest GPU contribution on the GTX 1080 Ti, while
Swin-T exhibits the highest overall energy consumption on the TITAN Xp. CPU and RAM
contributions remain consistent, with CPUs accounting for 21% and RAM for 20%.

3.3. Evaluation of Hyperparameter Influence and Energy Scaling per CUDA Core

The scalability and adaptability of the Kappa–Energy Index require an evaluation of
its sensitivity to hyperparameters and hardware configurations. This section specifically
examines the effect of batch size, a key hyperparameter, on energy consumption and
model performance. To provide a hardware-agnostic perspective, energy consumption is
normalized per CUDA core by dividing the NVML-measured energy consumption by the
number of CUDA cores in each GPU. This normalization facilitates a detailed comparison
of energy efficiency across architectures and hardware configurations.

Table 11 presents the results of the training phase, focusing on the Kappa–Energy Index
and energy consumption metrics for different architectures and batch sizes on the TITAN
Xp and GTX 1080 Ti GPUs. The analysis reveals that smaller batch sizes consistently yield
higher energy efficiency compared with larger batch sizes across all architectures. For
instance, on the TITAN Xp, AlexNet’s Kappa–Energy Index drops by approximately 14.2%
when the batch size increases from 32 to 64. Similarly, VGG16, ResNet18, and EfficientNet-
B3 exhibit reductions in energy efficiency of about 8.2%, 5.2%, and 6.2%, respectively,
highlighting the additional energy cost of larger batch sizes. Swin-T follows a comparable
trend, with a decrease of around 17.8%, while ConvNeXt-T shows a smaller decline of
roughly 1.0%.

Table 11. Hyperparameter Influence on Energy Efficiency and CUDA Core Energy Scaling Analysis.

GPU Architecture Batch Size Kappa Energy Consumed Kappa-Energy Energy Consumed Energy-Cuda
Average (Global, kWh) ∗ Index (Global) (NVML, kWh) † Core (NVML) †

TITAN Xp

AlexNet 32 0.7756 0.1100 7.0509 0.0600 1.5625 × 10−5

64 0.6427 0.1062 6.0518 0.0548 1.4271 × 10−5

VGG16 32 0.6244 0.1349 4.6286 0.0862 2.2448 × 10−5

64 0.5602 0.1319 4.2472 0.0836 2.1771 × 10−5

ResNet18 32 0.8417 0.1335 6.3049 0.0818 2.1302 × 10−5

64 0.7958 0.1332 5.9745 0.0795 2.0703 × 10−5

EfficientNet-B3 32 0.7763 0.1319 5.8855 0.0851 2.2161 × 10−5

64 0.7256 0.1314 5.5221 0.0840 2.1875 × 10−5

Swin-T 32 0.6411 0.1276 5.0243 0.0820 2.1354 × 10−5

64 0.5444 0.1318 4.1305 0.0846 2.2031 × 10−5

ConvNeXt-T 32 0.1633 0.1314 1.2428 0.0825 2.1484 × 10−5

64 0.1567 0.1273 1.2310 0.0793 2.0651 × 10−5

GTX 1080 Ti

AlexNet 32 0.7867 0.1064 7.3938 0.0580 1.6183 × 10−5

64 0.6545 0.1063 6.1571 0.0560 1.5625 × 10−5

VGG16 32 0.6411 0.1242 5.1618 0.0813 2.2684 × 10−5

64 0.5515 0.1225 4.5020 0.0789 2.2015 × 10−5

ResNet18 32 0.8375 0.1172 7.1459 0.0706 1.9699 × 10−5

64 0.7946 0.1247 6.3721 0.0755 2.1066 × 10−5

EfficientNet-B3 32 0.7444 0.1180 6.3085 0.0756 2.1094 × 10−5

64 0.7411 0.1210 6.1248 0.0776 2.1652 × 10−5

Swin-T 32 0.5882 0.1237 4.7551 0.0801 2.2349 × 10−5

64 0.4867 0.1238 3.9313 0.0784 2.1875 × 10−5

ConvNeXt-T 32 0.1744 0.1168 1.4932 0.0711 1.9838 × 10−5

64 0.1600 0.1247 1.2831 0.0752 2.0982 × 10−5

∗ Measurement includes the entire system (CPU, GPU, RAM, etc.). † Measurement specific to the GPU
using NVML.

Sensors 2025, 25, 846 26 of 30

The results on the GTX 1080 Ti are consistent with those on the TITAN Xp, where larger
batch sizes decrease energy efficiency for all architectures. While AlexNet and VGG16
experience the most significant reductions, ResNet18 shows better stability with a smaller
decrease in its Kappa–Energy Index. Swin-T and ConvNeXt-T follow this pattern, with
Swin-T showing a noticeable reduction, and ConvNeXt-T exhibiting a moderate decline as
batch size increases.

The Energy Consumed per CUDA Core metric further highlights the hardware-specific
effects of batch size and architecture on energy efficiency. On the TITAN Xp, AlexNet’s
energy consumption per CUDA core decreases slightly with larger batch sizes, consistent
with trends observed for other architectures, including VGG16 and ResNet18. Swin-T
and ConvNeXt-T also exhibit small changes, with Swin-T showing a slight increase and
ConvNeXt-T demonstrating minimal fluctuations. On the GTX 1080 Ti, energy consump-
tion per CUDA core is generally higher, with VGG16 and EfficientNet-B3 showing the
most notable increases. Swin-T and ConvNeXt-T follow a similar trend, with ConvNeXt-T
showing a moderate increase, while Swin-T exhibits a slight decrease. ResNet18, how-
ever, demonstrates better scalability on both GPUs, maintaining relatively stable energy
consumption per CUDA core as batch size grows.

4. Discussion
The experimental results obtained in our study reveal significant differences between

hardware and software energy meters in DL models. The validation of energy measurement
tools is one of the aspects addressed in this research, emphasizing the need for accurate
calibration for reliable assessments. Hardware-based tools, such as OpenZmeter, provide
high-precision component-level measurements and serve as benchmarks for validating
software tools. Notably, software tools displayed up to a 10% variability in energy estimates,
underscoring the importance of calibration to align with hardware standards.

The findings confirm the GPUs dominant role in energy consumption during both the
training and inference phases. While AlexNet exhibits the lowest energy usage due to its
simpler architecture, more complex models like VGG16 and EfficientNet-B3 demand signif-
icantly higher resources. This aligns with prior studies on the impact of model complexity
on energy consumption [39]. However, the observed trade-offs between performance and
energy usage highlight the critical role of hardware efficiency in optimizing Deep Learning
workflows. Notably, the GTX 1080 Ti consistently demonstrates not only lower energy
consumption but also higher Kappa and Kappa–Energy Index (KEI) values across most
architectures when compared with the TITAN Xp. Swin-T and ConvNeXt-T further extend
this analysis by illustrating the energy demands of emerging architectures, with ConvNeXt-
T showing a slightly higher GPU dependency. In this regard, the growing complexity
of balancing accuracy and energy efficiency in state-of-the-art models is illustrated by
the findings.

The Kappa–Energy Index emerges as a pivotal metric for evaluating energy-performance
trade-offs, providing a comprehensive view of model efficiency. ResNet18 consistently
achieves the highest KEI scores across both GPUs, reflecting its ability to balance computa-
tional demands with accuracy. EfficientNet-B3 and AlexNet also demonstrate favorable KEI
results, further validating the metric’s applicability. Statistical significance tests (p < 0.001)
confirm the robustness of these findings, offering a reliable framework for guiding ar-
chitecture selection in energy-critical applications. The comparability of KEI values for
Swin-T and ConvNeXt-T with EfficientNet-B3 suggests that emerging architectures are
viable candidates for energy-sensitive deployments.

Finally, batch size analysis reveals a pronounced effect on energy efficiency, with
smaller batch sizes consistently yielding higher efficiency across all architectures. ResNet18

Sensors 2025, 25, 846 27 of 30

and EfficientNet-B3 show statistically significant improvements in energy efficiency with
smaller batches (p < 0.01). These results emphasize the importance of hyperparameter
optimization in reducing computational costs while maintaining performance. This finding
aligns with previous research [32], highlighting batch size as a critical factor in deep
learning optimization.

5. Conclusions
This study introduces the Kappa–Energy Index as a novel metric for evaluating the

trade-off between energy efficiency and model performance in DL architectures. The results
demonstrate the utility of this index across various scenarios, highlighting its adaptability
to both training and inference phases. During training, AlexNet and ResNet18 exhibit
superior KEI values, reflecting their balance between computational efficiency and accuracy,
particularly when measured using OpenZmeter. EfficientNet-B3 follows closely, reinforcing
its energy-efficient design, while VGG16 consistently shows lower efficiency, illustrating
the impact of model complexity on energy demands.

In inference, the KEI values further emphasize the dominance of architectures like
ResNet18 and EfficientNet-B3 in achieving optimal performance with reduced energy costs.
The GTX 1080 Ti consistently outperforms the TITAN Xp in energy efficiency across all mod-
els, reaffirming the influence of hardware optimization on energy consumption. Swin-T
and ConvNeXt-T, representing modern architectures, show competitive KEI values, indi-
cating their potential for energy-sensitive deployments, albeit with increased complexity
compared with classical architectures.

The validation of energy measurement tools reveals discrepancies between hardware-
based and software-based meters. OpenZmeter serves as a reliable reference, while Code-
Carbon and Carbontracker exhibit tendencies to under- or overestimate energy consump-
tion. The results highlight the critical role of calibration and validation in order to ensure
accurate energy assessments, particularly when comparing diverse architectures and hard-
ware setups.

Future work should extend the application of the KEI metric to a broader range of DL
models, including Recurrent Neural Networks and Generative Adversarial Networks, and
explore its relevance in other domains such as natural language processing and time series
analysis. Furthermore, the integration of KEI with real-time energy monitoring systems
could facilitate dynamic adjustments in computational resource allocation, advancing the
sustainability of AI workflows. In this way, our approach underscores the importance of
standardized energy metrics in driving innovation and environmental responsibility within
the field of machine learning.

Author Contributions: Conceptualization, P.G.-S. and A.O.; methodology, S.A.-B., A.O., P.G.-S.
and D.A.-B.; software, S.A.-B. and D.A.-B.; validation, S.A.-B. and D.A.-B.; writing—review and
editing, P.G.-S. and A.O.; supervision, P.G.-S. and A.O.; project administration, P.G.-S. and A.O.;
funding acquisition, P.G.-S. and A.O. All authors have read and agreed to the published version of
the manuscript.

Funding: This research has been funded by the Ministerio Español de Ciencia e Innovación un-
der project numbers PID2023-147409NB-C21, PID2020-115570GB-C22 and PID2022-137461NB-C32
funded by MICIU/AEI/10.13039/501100011033 and by ERDF/EU, as well as TIC251-G-FEDER and
C-ING-027-UGR23 projects, funded by ERDF/EU.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Sensors 2025, 25, 846 28 of 30

Data Availability Statement: Data are contained within the article. Additional details and datasets
can be found at the following GitHub repository: https://github.com/seriab/Deep-Learning-Energy-
Consumption-Index.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Foster, S.; Elzinga, D. The Role of Fossil Fuels in a Sustainable Energy System. 2023. Available online: https://www.un.org/es/

chronicle/article/el-papel-de-los-combustibles-fosiles-en-un-sistema-energetico-sostenible (accessed on 29 November 2023).
2. United Nations Framework Convention on Climate Change. Paris agreement. In Proceedings of the Report of the Conference of the

Parties to the United Nations Framework Convention on Climate Change (21st Session, 2015: Paris); United Nations: Bonn, Germany,
2015; Volume 4, p. 2017. Available online: https://unfccc.int/sites/default/files/resource/parisagreement_publication.pdf
(accessed on 5 August 2024)

3. Yan, Y.; Qian, Y.; Sharif, H.; Tipper, D. A Survey on Smart Grid Communication Infrastructures: Motivations, Requirements and
Challenges. IEEE Commun. Surv. Tutor. 2013, 15, 5–20. [CrossRef]

4. Prieto, A.; Prieto, B. Las Tecnologías de la Información y de las Comunicaciones como parte del problema y de la solución del
consumo energético. Actas XXIX Jorn. Sobre Ense Nanza Univ. Inform. 2023, 8, 9–23.

5. Kuo, C.C.J.; Madni, A.M. Green learning: Introduction, examples and outlook. J. Vis. Commun. Image Represent. 2023, 90, 103685.
[CrossRef]

6. Cheng, H.; Liu, B.; Lin, W.; Ma, Z.; Li, K.; Hsu, C.H. A survey of energy-saving technologies in cloud data centers. J. Supercomput.
2021, 77, 13385–13420. [CrossRef]

7. Mehonic, A.; Kenyon, A.J. Brain-inspired computing needs a master plan. Nature 2022, 604, 255–260. [CrossRef]
8. Goodfellow, I. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
9. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using

Shifted Windows. arXiv 2021, arXiv:2103.14030.
10. Viciana, E.; Alcayde, A.; Montoya, F.G.; Baños, R.; Arrabal-Campos, F.M.; Zapata-Sierra, A.; Manzano-Agugliaro, F. OpenZmeter:

An efficient low-cost energy smart meter and power quality analyzer. Sustainability 2018, 10, 4038. [CrossRef]
11. Anthony, L.F.W.; Kanding, B.; Selvan, R. Carbontracker: Tracking and Predicting the Carbon Footprint of Training Deep Learning

Models. arXiv 2020, arXiv:2007.03051.
12. Montoya, F.G.; Baños, R.; Alcayde, A.; Arrabal, F. Efficient open-source power quality analyser and smart meter. In Proceedings

of the 25th International Conference on Electricity Distribution (CIRED), Madrid, Spain, 3–6 June 2019.
13. Prieto, B.; Escobar, J.J.; Gómez-López, J.C.; Díaz, A.F.; Lampert, T. Energy Efficiency of Personal Computers: A Comparative

Analysis. Sustainability 2022, 14, 12829. [CrossRef]
14. Lannelongue, L.; Grealey, J.; Inouye, M. Green algorithms: Quantifying the carbon footprint of computation. Adv. Sci. 2021,

8, 2100707. [CrossRef]
15. García-Martín, E.; Lavesson, N.; Grahn, H.; Casalicchio, E.; Boeva, V. How to measure energy consumption in machine learning

algorithms. In Proceedings of the ECML PKDD 2018 Workshops: Nemesis 2018, UrbReas 2018, SoGood 2018, IWAISe 2018, and
Green Data Mining 2018, Dublin, Ireland, 10–14 September 2018; Proceedings 18; Springer: Cham, Switzerland, 2019; pp. 243–255.

16. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
17. de Vries, A. The growing energy footprint of artificial intelligence. Joule 2023, 7, 2191–2194. [CrossRef]
18. Meng, F.; Wang, X.; Shao, F.; Wang, D.; Hua, X. Energy-Efficient Gabor Kernels in Neural Networks with Genetic Algorithm

Training Method. Electronics 2019, 8, 105. [CrossRef]
19. Gordillo, A.; Calero, C.; Moraga, M.Á.; García, F.; Fernandes, J.P.; Abreu, R.; Saraiva, J. Programming languages ranking based on

energy measurements. Softw. Qual. J. 2024, 32, 1539–1580. [CrossRef]
20. Lacoste, A.; Luccioni, A.; Schmidt, V.; Dandres, T. Quantifying the Carbon Emissions of Machine Learning. arXiv 2019,

arXiv:1910.09700.
21. Díaz, A.F.; Prieto, B.; Escobar, J.J.; Lampert, T. Vampire: A smart energy meter for synchronous monitoring in a distributed

computer system. J. Parallel Distrib. Comput. 2024, 184, 104794. [CrossRef]
22. Mattson, P.; Cheng, C.; Diamos, G.; Coleman, C.; Micikevicius, P.; Patterson, D.; Tang, H.; Wei, G.Y.; Bailis, P.; Bittorf, V.; et al.

Mlperf training benchmark. Proc. Mach. Learn. Syst. 2020, 2, 336–349.
23. Reddi, V.J.; Cheng, C.; Kanter, D.; Mattson, P.; Schmuelling, G.; Wu, C.J.; Anderson, B.; Breughe, M.; Charlebois, M.; Chou, W.; et al.

Mlperf inference benchmark. In Proceedings of the 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), Valencia, Spain, 30 May–3 June 2020; pp. 446–459.

https://github.com/seriab/Deep-Learning-Energy-Consumption-Index
https://github.com/seriab/Deep-Learning-Energy-Consumption-Index
https://www.un.org/es/chronicle/article/el-papel-de-los-combustibles-fosiles-en-un-sistema-energetico-sostenible
https://www.un.org/es/chronicle/article/el-papel-de-los-combustibles-fosiles-en-un-sistema-energetico-sostenible
https://unfccc.int/sites/default/files/resource/parisagreement_publication.pdf
http://doi.org/10.1109/SURV.2012.021312.00034
http://dx.doi.org/10.1016/j.jvcir.2022.103685
http://dx.doi.org/10.1007/s11227-021-03805-5
http://dx.doi.org/10.1038/s41586-021-04362-w
http://dx.doi.org/10.3390/su10114038
http://dx.doi.org/10.3390/su141912829
http://dx.doi.org/10.1002/advs.202100707
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1016/j.joule.2023.09.004
http://dx.doi.org/10.3390/electronics8010105
http://dx.doi.org/10.1007/s11219-024-09690-4
http://dx.doi.org/10.1016/j.jpdc.2023.104794

Sensors 2025, 25, 846 29 of 30

24. Mattson, P.; Reddi, V.J.; Cheng, C.; Coleman, C.; Diamos, G.; Kanter, D.; Micikevicius, P.; Patterson, D.; Schmuelling, G.;
Tang, H.; et al. MLPerf: An Industry Standard Benchmark Suite for Machine Learning Performance. IEEE Micro 2020, 40, 8–16.
[CrossRef]

25. Fan, X.; Weber, W.D.; Barroso, L.A. Power provisioning for a warehouse-sized computer. ACM SIGARCH Comput. Archit. News
2007, 35, 13–23. [CrossRef]

26. Jain, D.; Shukla, R.K.; Tomar, M.S.; Sharma, P. A Study of the Impact of Programming Language Selection on CO2 emission—A
Green IT Initiative. In Proceedings of the 2nd International Conference on Data, Engineering and Applications (IDEA), Bhopal,
India, 28–29 February 2020; pp. 1–5.

27. Couto, M.; Pereira, R.; Ribeiro, F.; Rua, R.; Saraiva, J. Towards a green ranking for programming languages. In Proceedings of the
21st Brazilian Symposium on Programming Languages, Fortaleza, CE, Brazil, 21–22 September 2017; pp. 1–8.

28. Pereira, R.; Couto, M.; Ribeiro, F.; Rua, R.; Cunha, J.; Fernandes, J.P.; Saraiva, J. Energy efficiency across programming languages:
How do energy, time, and memory relate? In Proceedings of the 10th ACM SIGPLAN International Conference on Software
Language Engineering, SLE 2017, Vancouver, BC, Canada, 23–24 October 2017; pp. 256–267. [CrossRef]

29. Alizadeh, N.; Castor, F. Green AI: A Preliminary Empirical Study on Energy Consumption in DL Models Across Different Runtime
Infrastructures. In Proceedings of the IEEE/ACM 3rd International Conference on AI Engineering—Software Engineering for AI,
CAIN 2024, Lisbon, Portugal, 14–15 April 2024; Volume 3, pp. 134–139. [CrossRef]

30. Henderson, P.; Hu, J.; Romoff, J.; Brunskill, E.; Jurafsky, D.; Pineau, J. Towards the systematic reporting of the energy and carbon
footprints of machine learning. J. Mach. Learn. Res. 2020, 21, 1–43.

31. Bharany, S.; Sharma, S.; Khalaf, O.I.; Abdulsahib, G.M.; Al Humaimeedy, A.S.; Aldhyani, T.H.; Maashi, M.; Alkahtani, H.
A systematic survey on energy-efficient techniques in sustainable cloud computing. Sustainability 2022, 14, 6256. [CrossRef]

32. Bouza, L.; Bugeau, A.; Lannelongue, L. How to estimate carbon footprint when training deep learning models? A guide and
review. Environ. Res. Commun. 2023, 5, 115014. [CrossRef] [PubMed]

33. Escobar, J.J.; Rodríguez, F.; Prieto, B.; Kimovski, D.; Ortiz, A.; Damas, M. A distributed and energy-efficient KNN for EEG
classification with dynamic money-saving policy in heterogeneous clusters. Computing 2023, 105, 2487–2510. [CrossRef]

34. García-Martín, E.; Rodrigues, C.F.; Riley, G.; Grahn, H. Estimation of energy consumption in machine learning. J. Parallel Distrib.
Comput. 2019, 134, 75–88. [CrossRef]

35. Bhuiyan, M. Carbon Footprint Measurement and Mitigation Using AI. SSRN Electronic Journal. 2024. Available online:
https://ssrn.com/abstract=4746446 (accessed on 9 October 2024).

36. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:
An imperative style, high-performance deep learning library. In Proceedings of the Advances in Neural Information Processing
Systems 32, Vancouver, BC, Canada, 8–14 December 2019.

37. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems; Tensorflow: Mountain View, CA, USA, 2015.

38. Young, S.R.; Devineni, P.; Parsa, M.; Johnston, J.T.; Kay, B.; Patton, R.M.; Schuman, C.D.; Rose, D.C.; Potok, T.E. Evolving Energy
Efficient Convolutional Neural Networks. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data),
Los Angeles, CA, USA, 9–12 December 2019; pp. 4479–4485. [CrossRef]

39. Aquino Brítez, D.; Ortiz, A.; Ortega Lopera, J.; Escobar Pérez, J.J.; Formoso, M.; Gan, J.Q.; Escobar Pérez, J.J. Optimization of
Deep Architectures for EEG Signal Classification: An AutoML Approach Using Evolutionary Algorithms. Sensors 2021, 21, 2096.
[CrossRef] [PubMed]

40. Cai, E.; Juan, D.C.; Stamoulis, D.; Marculescu, D. NeuralPower: Predict and Deploy Energy-Efficient Convolutional Neural
Networks. arXiv 2017, arXiv:1710.05420.

41. Koppula, S.; Orosa, L.; Yağlıkçı, A.G.; Azizi, R.; Shahroodi, T.; Kanellopoulos, K.; Mutlu, O. EDEN: Enabling Energy-Efficient,
High-Performance Deep Neural Network Inference Using Approximate DRAM. arXiv 2019, arXiv:1910.05340.

42. Bao, Z.; Yang, S.; Huang, Z.; Zhou, M.; Chen, Y. A Lightweight Block with Information Flow Enhancement for Convolutional
Neural Networks. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 3570–3584. [CrossRef]

43. Wang, K.; Zheng, H.; Li, J.; Louri, A. Morph-GCNX: A Universal Architecture for High-Performance and Energy-Efficient Graph
Convolutional Network Acceleration. IEEE Trans. Sustain. Comput. 2024, 9, 115–127. [CrossRef]

44. Wen, X.; Zhou, M. Evolution and Role of Optimizers in Training Deep Learning Models. IEEE/CAA J. Autom. Sin. 2024,
11, 2039–2042. [CrossRef]

45. Xu, J.; Zhou, W.; Fu, Z.; Zhou, H.; Li, L. A survey on green deep learning. arXiv 2021, arXiv:2111.05193.
46. Kaack, L.H.; Donti, P.L.; Strubell, E.; Kamiya, G.; Creutzig, F.; Rolnick, D. Aligning artificial intelligence with climate change

mitigation. Nat. Clim. Change 2022, 12, 518–527. [CrossRef]
47. Patterson, D.; Gonzalez, J.; Le, Q.; Liang, C.; Munguia, L.M.; Rothchild, D.; So, D.; Texier, M.; Dean, J. Carbon emissions and large

neural network training. arXiv 2021, arXiv:2104.10350.

http://dx.doi.org/10.1109/MM.2020.2974843
http://dx.doi.org/10.1145/1273440.1250665
http://dx.doi.org/10.1145/3136014.3136031
http://dx.doi.org/10.1145/3644815.3644967
http://dx.doi.org/10.3390/su14106256
http://dx.doi.org/10.1088/2515-7620/acf81b
http://www.ncbi.nlm.nih.gov/pubmed/38022395
http://dx.doi.org/10.1007/s00607-023-01193-7
http://dx.doi.org/10.1016/j.jpdc.2019.07.007
https://ssrn.com/abstract=4746446
http://dx.doi.org/10.1109/BigData47090.2019.9006239
http://dx.doi.org/10.3390/s21062096
http://www.ncbi.nlm.nih.gov/pubmed/33802684
http://dx.doi.org/10.1109/TCSVT.2023.3237615
http://dx.doi.org/10.1109/TSUSC.2023.3313880
http://dx.doi.org/10.1109/JAS.2024.124806
http://dx.doi.org/10.1038/s41558-022-01377-7

Sensors 2025, 25, 846 30 of 30

48. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [CrossRef]

49. Samad, S.A.; Gitanjali, J. Augmenting DenseNet: Leveraging Multi-Scale Skip Connections for Effective Early-Layer Information
Incorporation. IEEE Access 2024, 12, 141344–141360. [CrossRef]

50. Vaswani, A. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems 30, Long Beach,
CA, USA, 4–9 December 2017.

51. Turner, R.E. An introduction to transformers. arXiv 2023, arXiv:2304.10557.
52. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of

the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Pereira, F., Burges, C., Bottou, L.,
Weinberger, K., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; Volume 25.

53. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
54. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
55. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2020, arXiv:1905.11946.
56. Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 11976–11986.
57. PyTorch. Torchvision Models. 2024 Available online: https://pytorch.org/vision/main/models (accessed on 6 December 2024).
58. Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]
59. Bird, J. Electrical and Electronic Principles and Technology; Routledge: London, UK, 2017.
60. Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [CrossRef]
61. Courty, B.; Schmidt, V.; Luccioni, S.; Goyal-Kamal; MarionCoutarel; Feld, B.; Lecourt, J.; LiamConnell.; Saboni, A.; Inimaz.; et al.

mlco2/codecarbon: v2.4.1. 2024. Available online: https://zenodo.org/records/11171501 (accessed on 17 June 2024).
62. Ahmed, M.S.; Giordano, S. Federated Transfer Learning for Energy Efficient Privacy-preserving Medical Image Classification.

In Proceedings of the 2022 IEEE International Conference on E-health Networking, Application & Services (HealthCom), Genoa,
Italy, 17–19 October 2022; pp. 240–245. [CrossRef]

63. Douwes, C.; Esling, P.; Briot, J.P. Energy consumption of deep generative audio models. arXiv 2021, arXiv:2107.02621.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/ACCESS.2024.3460830
https://pytorch.org/vision/main/models
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.2307/2529310
https://zenodo.org/records/11171501
http://dx.doi.org/10.1109/HealthCom54947.2022.9982789

	Introduction
	Materials and Methods
	Data Description
	Convolutional Neural Networks
	Transformer-Based Neural Networks
	Implemented Deep Learning Architectures
	AlexNet
	VGG16
	ResNet18
	EfficientNet-B3
	Swin-T
	ConvNeXt-T

	Performance Evaluation Metrics
	Model Performance Evaluation
	Measuring Energy Consumption
	DL Model Performance over Energy Consumption
	Measuring CO2 Emissions

	Energy Consumption Meters
	Computational Resources
	Experimental Setup

	Results
	Energy Consumption and Meter Precision in DL Models Training Experiments
	Evaluation of Kappa–Energy Index for DL Models Training and Inference
	Evaluation of Kappa–Energy Index for DL Models Training
	Evaluation of Kappa–Energy Index for DL Models Inference

	Evaluation of Hyperparameter Influence and Energy Scaling per CUDA Core

	Discussion
	Conclusions
	References

