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Learned preferences induced by electrical stimulation of a
food-related area of the parabrachial complex: Effects of naloxone
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Electrical stimulation of the External Lateral Parabrachial Subnucleus (LPBe), a food-related area, induced behavioral preferences for
associated stimuli in a taste discrimination learning task. Although this stimulation appeared to be ineffective to elicit standard lever press
self-stimulation, it induced place preference for one of two training compartments of a rectangular maze in which animals (adult male
Wistar rats) received concurrent electrical brain stimulation. In subjects that consistently showed a preference behavior in different trials,
administration of the opioid antagonist naloxone (4 mg/ml/kg) blocked concurrent learning when the test was made in a new maze but
not in the same maze in which animals had learned the task. These results are discussed in terms of the possible participation of the LPBe
subnucleus in different natural and artificial brain reward systems.
� 2006 Elsevier Inc. All rights reserved.
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E1. Introduction

Various studies have demonstrated involvement of the
Parabrachial Complex in several ‘‘motivated behaviors’’
(Le Magnen, 1992; Ritter, Calingasan, Hutton, & Dinh,
1992b). Thus, the external lateral subnucleus (LPBe),
found at the dorsolateral end of this anatomical complex
(Fulwiler & Saper, 1984; Herbert & Bellintani-Guardia,
1995), is involved in both gustatory information, from
the rostral nucleus of the solitary tract (NST), and visceral
information, from the caudal NST and Area Postrema
(AP) (De Lacalle & Saper, 2000; Halsell & Travers, 1997;
Karimnamazi, Travers, & Travers, 2002; Papas & Fergu-
son, 1990).

Based on the study of the sensory information received
by the LPBe, several authors have implicated this subnucle-
us in taste aversion learning, especially after the adminis-
tration of copper sulfate, morphine, amphetamines or
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cocaine, among other drugs (Sakai & Yamamoto, 1997),
and particularly in tasks requiring a neural processing of
visceral information (Mediavilla, Molina, & Puerto,
2000a, 2005). However, the LPBe has also been related to
reward mechanisms. Thus, duodenal loading with glucose
(Wang, Cardin, Martinez, Tache, & Lloyd, 1999) and gas-
tric loading with ethanol, lactose, or sucrose (Yamamoto &
Sawa, 2000a, 2000b) elicited c-fos-like immunoreactivity in
its lateral end. Conversely, lesions to this lateral end of the
parabrachial area attenuated over-ingestion of highly pal-
atable food produced by AP lesions (Edwards & Ritter,
1989) and blocked taste preferences induced by administra-
tion of rewarding foods (Zafra, Simon, Molina, & Puerto,
2002). Likewise, it has been proposed that the LPBe may
be associated with the effects of various endogenous
intake-related substances, such as cholecystokinin (CCK)
(Li & Rowland, 1995; Trifunovic & Reilly, 2001), or leptin
(Elias et al., 2000).

Finally, it has been shown that a number of drugs that
are rewarding and/or related to food intake control
may be processed via the LPBe, e.g., fenfluramine (Li &
rences induced by electrical stimulation of a ..., Neurobiology of
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Rowland, 1995; Li, Spector, & Rowland, 1994; Simansky
& Nicklous, 2002; Trifunovic & Reilly, 2001), ampheta-
mines (Sakai & Yamamoto, 1997), and opiates (Chamber-
lin, Mansour, Watson, & Saper, 1999; Ding, Kaneko,
Nomura, & Mizuno, 1996; Gutstein, Thome, Fine, Wat-
son, & Akil, 1998). In fact, it has been shown that the latter
receptors can be modulated by food restriction (Wolinsky,
Carr, Hiller, & Simon, 1996). These studies suggest that,
besides its known involvement in the aversive system, the
LPBe may be involved in motivational systems related to
the processing of positive, appetizing, or rewarding stimuli
(Agüero, Arnedo, Gallo, & Puerto, 1993a, 1993b; Media-
villa et al., 2000a; Reilly, 1999; Sakai & Yamamoto,
1997, 1998; Swank & Bernstein, 1994; Yamamoto, Shim-
ura, Sakai, & Ozaki, 1994).

Therefore, we hypothesized that intracerebral electrical
stimulation, a technique that has proven to be an effective
substitute for noxious or rewarding stimuli in taste discrim-
ination tasks (Agüero, Arnedo, Gallo, & Puerto, 1993b;
Cubero & Puerto, 2000; Gallo, Arnedo, Agüero, & Puerto,
1988), could also act in the LPBe as a rewarding stimulus in
both taste discrimination tasks and in conditioned place
preference tasks.

The question arises whether the reinforcing effect of
LPBe electrical stimulation is specific to a taste discrimina-
tion task or might be extended to other types of task in
which, for example, there is a predominance of place cues
(Bardo & Bevins, 2000; Tzschentke, 1998), characteristic
of Conditioned Place Preference (CPP) paradigms, which
have proven an adequate procedure for research into brain
reward systems (Schechter & Calcagnetti, 1998; Shippen-
berg & Elmer, 1998; Spiteri, Le Pape, & Agmo, 2000). In
this context, opiates have been implicated in hedonic and
rewarding aspects of natural (e.g., food intake) (Carr &
Papadouka, 1994; Le Magnen, 1992; Papadouka & Carr,
1994) and artificial (e.g., drugs of abuse or brain self-stim-
ulation) (Bielajew, Diotte, & Milairessis, 2003; De Vries &
Shippenberg, 2002; Fernandez-Espejo, 2002; Shippenberg
& Elmer, 1998; Spanagel, Herz, & Shippenberg, 1992)
substances/procedures. Given the presence of opiate mech-
anisms in the LPBe (Carr, Aleman, Bak, & Simon, 1991;
Chamberlin et al., 1999; Engströn et al., 2001; Gutstein
et al., 1998; Moufid-Bellancourt, Razafimanalina, & Vel-
ley, 1996; Wolinsky et al., 1996), the present study was
designed to investigate the possibility of blocking the
rewarding effects of LPBe electrical stimulation by admin-
istration of an antagonist of the opiate system, i.e.,
naloxone.

2. Materials and methods
169
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175
176
2.1. Subjects and surgery

Male Wistar rats from the breeding colony at the University of Grana-
da, weighing between 270 and 360 g at the time of surgery, were used in
this study. Upon their arrival at the lab, animals were housed individually
in 30 · 15 · 30 cm cages. The room was maintained on a 12-h light/12-h
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dark cycle at 22–24 �C. All behavioral procedures and surgical or pharma-
cological techniques were conducted in agreement with the animal care
guidelines established by the Spanish Royal Law, 223/1988.

Animals were implanted with a monopolar electrode (diameter of
approximately 200 lm) in the LPBe [Coordinates: AP = �0.16; V = 3.0;
L = ±2.5; Paxinos and Watson (1996)]. Different modalities of control
groups were used in each experiment, with similar results.

-Experiment 1 used 14 animals with electrode implanted in the LPBe
and 10 animals (controls) with electrode implanted 0.6 mm above the
LPBe.

-Experiment 2 used 33 animals with electrode implanted in the LPBe
and seven animals (controls) with electrode placed over the cranial surface
and around four small jewelry screws without penetrating the brain.

-Experiment 3 used 36 animals with electrode implanted in the LPBe;
28 of these were used as stimulated group and eight as non-stimulated
group (controls).

Surgery was carried out under general anesthesia with sodium pento-
thal (50 mg/kg B. Braun Medical S.A. Barcelona. Spain). Once anesthe-
tized, the animals were placed in a stereotaxic device (Stoelting Co.
Stereotaxic 51600, USA) and a small trephine hole was drilled to allow
chronic implantation of active electrodes (Hawkins, Roll, Puerto, & Yeo-
mans, 1983). Electrodes were lowered in the LPBe nucleus and fixed to the
skull with acrylic dental resin (S.R. Denture Base, Quick 3/60, Ivoclar.
Liechtenstein). Current return was by a stainless steel wire (0.9 mm)
wrapped around four anchoring screws placed in the skull. In order to
avoid risk of infection, subjects were given an intramuscular (i.m.) 0.1-
cc. dose of penicillin (250,000 IU/ml Benzetacil 6-3-3, Antibióticos Farma
S.A., Madrid, Spain) and an antiseptic solution was applied locally on the
implant (Betadine, Asta Médica, Madrid, Spain).

After the surgery, animals were returned to their cages where they
stayed for at least 7–10 days of recovery with water and food ad libitum
(Laboratory Food, A-04 Rat-mouse maintenance, Panlab Diets S.L., Bar-
celona, Spain).

2.2. Apparatus

Electrical stimulation was supplied (Experiments 1 and 2) via an
LI12100 stimulator (Letica, Barcelona, Spain) and CS-20 stimulator
(Cibertec, Madrid, Spain) (Experiment 3) connected to an ISU isolation
unit 165 (Cibertec, Madrid, Spain). Cathodal rectangular pulses
(66.6 Hz, 0.1 ms) were applied to the LPBe at a current below the
threshold for producing undesired behavioral effects (Gallistel & Karras,
1984). The stimulation process was monitored with a DM63 oscillo-
scope (Textronic Ltd, London, UK), which allowed constant visualization
of the electrical pulses administered to animals during experimental
sessions.

In Experiment 1, the same cages in which animals were housed on their
arrival at the laboratory (home cages) were used as training chamber. The
sides of the cages were black and opaque; the front and back panels were
transparent. The front side had two 1.6 cm holes at the same distance from
the center and edges and at the same height above the floor of the cage.
Through those orifices, the animal had access to spouts attached to cylin-
drical graduated burettes for delivery of flavors and water (See Fig. 1 in
Mediavilla, Molina, & Puerto, 2005).

An unbiased, counterbalanced concurrent CPP procedure was used for
Experiments 2 and 3. Animals were concurrently stimulated in one of two
distinct open compartments of a rectangular maze that differed in color,
texture, and wall drawings. These training compartments were separated
by a narrow neutral area on which the animal was placed at the start of
each test session.

Two different models of maze were utilized:
Model 1: Rectangular maze (50 · 25 · 30 cm), in which the walls of the

two lateral compartments were painted with black and white 1-cm wide
stripes that were vertical in one compartment and horizontal in the other.
In one compartment, the floor was synthetic cork painted with black and
white stripes and in the other it was brown cork. The floor of the central
area (8 · 25 cm2) was white methacrylate, and the walls were a natural-
wood color.
rences induced by electrical stimulation of a ..., Neurobiology of
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Model 2: Rectangular maze (70 · 15 · 15 cm.), in which the walls of
the two lateral compartments were made of black methacrylate, with a
round hole in one end-wall and a square hole in the other. The floor
was made of cork with transverse or longitudinal incisions, respectively.
The central area (10 · 15 cm2) had a metal grille floor and the walls were
white.

2.3. Behavioral procedures
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2.3.1. Experiment 1: conditioned taste preference

After the recovery period, all animals (parabrachial and control
groups) were subjected to a two-day pre-training period during which they
had access to water for only 7 min per day. Water was offered via a burette
placed alternatively in the left or right hole on the front panel of the cage.
Once the water was withdrawn, the animals had access to 15 g of food.

The experimental phase consisted of a taste discriminating learning
task (see Fig. 1) similar to one previously used by Cubero and Puerto
(2000).

On Day 1, animals were presented with only one of two possible fla-
vored solutions for 7 min: 0.5% Strawberry (S) or Coconut (C) extracts
diluted in water (McCormick & Co. Inc. San Francisco, CA). Immediately
after removal of the burette, electrodes in the animals were connected to
the stimulator for 15 min, using leads of sufficient length to permit free-
dom of movement. Half of the animals of both parabrachial and control
groups (the latter implanted with electrode at different vertical coordinate)
were electrically stimulated (paired-condition) and the other half were con-
nected for an identical period but without current administration
(unpaired condition). Every day, animals had access to 15 g of food at
the end of the experimental session.

On Day 2, 24 h later, the second flavored solution was presented and
the procedure described above for day 1 was repeated. The sequence of
experimental conditions was properly balanced in such a way that all ani-
mals experienced both flavored solutions but only one of the solutions had
been paired with IC electrical stimulation (paired condition). The experi-
mental conditions for Day 1 were repeated on Day 3, and the conditions
for Day 2 were repeated on Day 4.

A two-bottle free choice test was conducted on day 5 by placing two
burettes in the cage simultaneously, each containing one of the two fla-
vored solutions previously used during the training sessions. During this
phase, animals were allowed to freely drink the flavored solution for
7 min and the total amount ingested was recorded; they were connected
to the stimulator throughout but no current was administered.

2.3.1.1. Brain self-stimulation test. A standard operant procedure described
elsewhere (Cubero & Puerto, 2000; Garcia, Simon, & Puerto, 2002; Haw-
kins et al., 1983; Simon, 2003) was used to explore LPBe involvement in
electrical self-stimulation. The self-stimulation tests were conducted in a
Plexiglas chamber (50 · 55 · 60 cm) with a lever mounted on the front
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Fig. 1. Diagram showing the balanced experimental conditions used in
Experiment 1.
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wall connected to a stimulator and a pulse counter (lever presses). Each
bar press triggered a 250 ms train of cathodal rectangular pulses of
66.6 Hz and 0.1 ms duration at the same currents as used in the previous
phase, below the threshold for producing undesired behavioral effects.

2.3.2. Experiment 2: concurrent CPP (cCPP)

After the recovery period, an exploratory test was carried out in the
home cages in order to establish optimal stimulation parameters. Current
intensity ranged from 55 to 92 lA. After 48 h, the cCPP was started in
Model 1 maze (described in the Section 2.2). Each animal was subjected
to two 10-min sessions of cCPP on consecutive days. During these ses-
sions, electrical stimulation of the LPBe was administered concurrently
with the voluntary stay of the animal in one of the two lateral compart-
ments of the maze, randomly selected prior to the session. The time that
each animal stayed in the stimulated compartment was recorded for each
session. The process was identical for the animals in the control group
except that they did not receive brain stimulation.

Animals that remained in the compartment in which they were stimu-
lated for more than 50% of the session time were assigned to a ‘‘positive
group’’ and those remaining for less than 30% of the time were assigned
to a ‘‘negative group’’. Finally, a ‘‘neutral group’’ was formed by animals
that alternated between compartments during each session or showed no
preference for the stimulated compartment (30–50% of session time).

After each session, animals were returned to their home cages and had
ad libitum access to food and water.

2.3.3. Experiment 3: cCPP in different mazes: Effects of naloxone

administration

After the recovery period, animals were subjected to an exploratory
test to establish the current intensity to be used in each animal (similar
to the test described in Experiment 2), obtaining a value of 70–150 lA.
The 3-phase experiment was then performed.

2.3.3.1. First phase: cCPP in rectangular maze. Two experimental sessions
were carried out using the ‘Model 1’ maze (see Section 2.2), following the
same behavioral procedure as described in Experiment 2. In this case,
however, animals showing no preference for either compartment after
the two initial sessions (following the criteria of the previous experiment)
were considered ‘neutral’ and formed a control group, receiving no further
electrical stimulation in subsequent phases.

2.3.3.2. Second phase: naloxone injection and cCPP in Model 1 maze. All
animals received a subcutaneous (s.c.) injection (4 mg/ml/kg) of naloxone
(Naloxone Hydrochloride, Lab. Sigma, St. Louis, USA) at 48 h after the
end of the previous phase. Then, after a 20-min interval, they all under-
went a further CPP session.

2.3.3.3. Third phase: naloxone injection and cCPP in Model 2 maze. At 48 h
after the end of the second phase, animals underwent a further cCPP ses-
sion but in Model 2 maze (see Section 2.2) to examine the possible effect on
learning of the previous phases of the experiment. Twenty minutes before
the beginning of the sessions, animals received a new s.c. injection of nal-
oxone (4 mg/ml/kg) in Model 2 maze. In this maze, both the internal sen-
sory clues and the orientation of the rectangular maze were modified (from
N–S to E–W).

2.4. Histology

At the end of each experiment, animals were deeply anesthetized with
an overdose of sodium pentothal and intracardially perfused with isotonic
saline and 4% formaldehyde. Correct placement of electrodes into the
LPBe was verified by a small electrolytic lesion with 0.3 mA of cathodic
current for 5 s. Brains were removed and stored in paraformaldehyde
for at least 1 week before their subsequent lamination in 50-l sections
(1320M microtome-freezer, Leitz, Wetzlar, Germany; Vibroslice 752M
vibratome, Campden Instruments, Loughborough, UK). Sections were
mounted, stained with cresyl violet, and photographed (VMZ-4F stereo-
scopic magnifying glass and PM-6 camera, Olympus, Tokyo, Japan).
rences induced by electrical stimulation of a ..., Neurobiology of

Admin
Note
Replace 'Right' for 'Left'

Admin
Note
Replace Left for Right

Admin
Note
Replace R for L

Admin
Note
Replace L for R



283

284

285
286
287
288
289
290
291
292
293
294
295

296
297
298
299

300

301

302
303
304
305

4 M.J. Simon et al. / Neurobiology of Learning and Memory xxx (2006) xxx–xxx

YNLME 5121 No. of Pages 11, Model 5+

17 October 2006 Disk Used Jayalakshmi (CE) / Karthikeyan (TE)
ARTICLE IN PRESS
Results of the histological study are depicted in Figs. 2A and B.

2.5. Statistical analysis

The Statistica 5.1 program (Statsoft Inc., OK) was used for the statis-
tical analyses. In Experiment 1, intakes in the two-bottle test for the LPBe-
stimulated and control groups were analyzed using repeated measures
analysis of variance (ANOVA). In Experiment 2, the Pearson correlation
coefficient was used for the time spent by animals in the ‘stimulated com-
partment’ during each of the two conditioning trials. In the first part of the
third experiment, Pearson correlation was used to classify the animals as a
function of behavioral effects (behavioral consistency with electrical stim-
ulation), and one-way ANOVA was then used to analyze the effects of
stimulation and naloxone administration on the different groups. Finally,
two-way mixed ANOVA tests were used to compare the effects of learning
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R
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Fig. 2. (A) Localization of end of electrode in an Experimental G

Please cite this article in press as: Simon, M. J. et al., Learned prefe
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retention and naloxone in different mazes, (Group · Substance in maze 1;
Group · Maze—under effects of naloxone—and Group · Substance in
maze 2). After each ANOVA, the Newman–Keuls Test was used for
post-hoc comparisons.
F

3. Results

3.1. Experiment 1: taste discrimination learning

Two of the 14 animals in the LPBe-stimulated
group were excluded from the statistic analysis because
the implant became detached during the behavioral
procedure.
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roup animal (2X). (B) Magnification of the same area (4X).
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One-way ANOVA for stimulated group and control
group results showed that LPBe-stimulated animals pre-
ferred the flavor related to the stimulation
[F(1, 11) = 11.33, p < .006] (see Fig. 3a), whereas the con-
trol group showed no significant differences in intake
[F(1, 9) = 0.007, p < .935 ] (Fig. 3b). See also Table 1.

3.1.1. Intracranial self-stimulation of the LPBe

The animals in this experiment and the following exper-
iments failed to learn a lever press task to induce electrical
self-stimulation, as also reported in other brain areas
(Hawkins et al., 1983). In fact, the animals showed avoid-
ance behaviors when the current parameters were similar in
intensity to those usually applied in the stimulation of
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331
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Fig. 3. (a) (upper) Mean intake in c.c. of flavors by experimental LPBe-
stimulated animals with and without stimulation in Experiment 1
[F(1,11) = 11.33, p < .006**]. (b) (lower) Mean intake in c.c. of flavors
by control animals with and without stimulation [F(1,9) = 0.007, p < .935]
in the same experiment.

Table 1
Amount (in c.c.) of the two taste stimuli, associated (Flavor + St column)
and not associated (Flavor + Non St. column) with electrical stimulation
of LPBe, ingested by the LPBE- stimulated group in Experiment 1

IPBe stimulated group

Rat Flavor + SL r.t Flavor + Hon-SL r.t

1 15.5 1.3
2 8.0 5.2
3 5.7 8.1
4 9.7 8.7
5 8.9 6.7
6 12.3 0.2
7 5.0 8.7
8 9.9 0.4
9 10.5 1.9

10 12.5 1.0
11 9.8 1.0
12 8.0 1.0

Please cite this article in press as: Simon, M. J. et al., Learned prefe
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other brain areas, e.g., lateral hypothalamus (Simon,
2003). It is possible that this reward effect in the parabra-
chial area requires a greater effort or a different procedure
from that habitually used and employed in this article (i.e.,
lever press self-stimulation).

3.2. Experiment 2: conditioned place preference

During the behavioral process, 6 out of the 33 animals in
the LPBe-implanted group and 2 out of the 7 animals in the
control group were excluded because of detachment of the
implant. Their data were not included in the statistical
analysis.

Comparison of the performance of each experimental
animal between the two conditioning sessions showed a sig-
nificant correlation between the two days [r = .8710,
p < .001] (Fig. 4, upper), indicating consistent preference
or rejection behavior for the stimulated compartment. In
contrast, animals in the ‘non-stimulated control’ group
alternated randomly between the two compartments of
the maze [r = �.2931, p < .632] (Fig. 4, lower), showing
no preference for either.
E
D

Fig. 4. (a) (upper) Correlation for the time spent by experimental animals
in the stimulation compartment at each of the two conditioning sessions.
(b) (lower) Correlation for the time spent by the control animals without
stimulation in one of the two randomly selected compartments at each of
the two conditioning sessions (Experiment 2).
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Fig. 6. Correlation for the time spent by animals of Experiment 3 in the
stimulation compartment at each of the two conditioning sessions.
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According to the previously established behavioral crite-
ria, out of the 27 LPBe-stimulated animals, 6 were assigned
to the ‘positive group’, 12 to the ‘negative group’ and 9 to
the ‘neutral group’. The values obtained in the sham
implant control group (N = 5), which showed random
behavior, also fulfilled the criteria of the ‘neutral group’.

K-Means clustering results reflected the groupings
established according to the behavioral criteria, except
for slight variations of 1–2 animals in the composition of
the groups, and places the ‘non-stimulated’ Control group
within cluster 2 of animals without a defined preference.
The same results were obtained from the one-way ANOVA
used to study the effect between implanted and control
groups [F(2,24) = 73.351, p < .001] and from the planned
comparisons (See Fig. 5):

½F ð1; 24ÞPositive�negative ¼ 28:602 p < :001;

F ð1; 24Þpositive�neutral ¼ 140:121 p < :001;

F ð1; 24Þnegative�neutral ¼ 26:922 p < :001�:

After an interval, the animals in the experimental group
were individually subjected to a standard lever-press elec-
trical self-stimulation procedure similar to that described
in Experiment 1. The results of this test were negative, as
in the previous experiment.

3.3. Experiment 3: cCPP in different mazes. Effects of

naloxone infusion and learning retention

3.3.1. First Phase: cCPP in Model 1 maze

In this experiment, performances of each animal in the
two conditioning sessions were significantly correlated
[r = .8063, p < .001] (See Fig. 6).

After two CPP sessions in the maze and applying the
same behavioral criterion as in the previous experiment,
three groups of animals were formed as a function of the
time they stayed in the stimulated compartment: ‘positive
group’ comprised 13 animals, ‘negative group’ 15 animals,
and ‘neutral group’ 8 animals. Two animals in the ‘nega-
tive’ implanted group and one in the ‘positive’ group were
excluded from the results analysis due to detachment of the
U
N

C
O

Fig. 5. Duration of stay (in seconds) by experimental groups of
Experiment 2 in the compartment associated with electrical stimulation
of the LPBe (mean of two spatial learning tests). The asterisks (***)
indicate significant (p < .001) differences among groups.
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Oimplant. The average stay times (maximum of 10’) in the
stimulated area during the two conditioning sessions were:
Xpositive = 414.42 s., Xnegative = 81.05 s. and
Xcontrol = 286.75 s.

3.3.2. Second phase: cCPP in Model 1 maze. Effect of

naloxone administration

As expected, the one-way ANOVA showed significant
differences between the groups established according to
behavioral criteria [F(2,33) = 83.0808, p < .001] (See
Fig. 7), considering as learning index the average length
of stay of animals in the compartment associated with stim-
ulation in the two conditioning trials.

However, after administration of naloxone, the two-way
mixed ANOVA (Group x substance) showed no main effect
of substance [F(1,33) = 2,9121 p < .0973] or Group x sub-
stance interaction [F(2, 33) = 0,2131 p < .8091], although
the main group effect was significant [F(2,33) = 54.3002,
p < .001] (See also Fig. 9, behavioral effects in Model 1
maze: No-Nx vs. Nx). Thus, under these circumstances,
naloxone did not block the preferences/aversions induced
by electrical stimulation of the LPBe.

Analysis of the main effect, group factor, by post-hoc
comparisons showed significant differences among all
groups (Newman–Keuls test, p < .001).
Fig. 7. Duration of stay (in seconds) by experimental groups of
Experiment 3, following the behavioral criterion established in Experiment
2, in the compartment associated with electrical stimulation of the LPBe in
Model 1 maze. The asterisks (***) indicate significant (p < .001) differ-
ences among groups.
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3.3.3. Third Phase: cCPP in Model 2 maze. Effect of

naloxone administration

One-way ANOVA analysis of the conditioning results in
Model 2 maze confirmed (Fig. 8) that naloxone blocked
differences among the groups [F(2,33) = 1.0754
p < .3528], a result that has been replicated in follow-up
experiments undertaken in our laboratory regardless of
the type of maze used (manuscript in preparation).

Comparison of the effects of naloxone administration
between Model 2 and Model 1 mazes by means of a two-
way mixed ANOVA (Group x Maze) showed a significant
effect of the interaction [F(2,33) = 7.6367 p < .0018] (See
also Fig. 9: effects of naloxone in Model 1 vs. Model 2
mazes).

Post-hoc comparisons showed significant differences in
the positive group as a function of the maze used (Model
1 vs. Model 2, p < .0459), although no differences were
observed in the remaining groups (negative group,
p < .2274; control group p < 0.8173).

After an interval, all animals were individually subjected
to a standard lever-press electrical self-stimulation proce-
dure, using the current parameters established in phase 1.
The results of this test were negative, as in the previous
experiments.
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Fig. 8. Duration of stay (in seconds) by groups of Experiment 3 in the
Model 2 maze compartment associated with electrical stimulation of LPBe
after naloxone administration (no significant differences among groups,
p > .01).

Fig. 9. Duration of stay (in seconds) by groups of Experiment 3 in the
compartment associated with electrical stimulation of the LPBe before
naloxone administration in Model 1 maze and after naloxone adminis-
tration in Model 1 and Model 2 mazes.
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4. Discussion

Results of these experiments show that LPBe stimula-
tion can induce preference for an associated stimulus in
both taste discrimination learning tasks and cCPP.

Thus, in Experiment 1, in an implicit taste discrimina-
tion task (Mediavilla et al., 2000a, 2005; Simon, 2003), ani-
mals preferred the flavor associated with LPBe electrical
stimulation to the flavor that had not been associated with
this stimulation. This effect appears to be specific to electri-
cal stimulation of the LPBe, since it was not observed in
control animals. However, the effect was not universal,
since some of the LPBe-stimulated animals showed a pref-
erence for the alternative ‘neutral’ taste stimulus. This find-
ing was confirmed in subsequent experiments using a
different behavioral procedure, cCPP (see below).

The present results suggest the LPBe may be involved in
reward processes and form part of some rewarding systems.
This possibility is compatible with previous observations of
c-fos immunoreactivity in the LPBe after intragastric admin-
istration of nutrients, e.g., lactose, sucrose, glucose, maltose
or polycose (Wang et al., 1999; Yamamoto & Sawa, 2000a),
or appetitive substances, e.g., saccharin (Yamamoto &
Sawa, 2000b; Yamamoto et al., 1994). Conversely, specific
lesions of the LPBe or general lesions of the parabrachial
area, including the external lateral subnucleus, eliminated
preference for palatable food (Edwards & Ritter, 1989) or
taste stimuli associated with intragastric administration of
rewarding predigested food (Zafra et al., 2002).

The involvement of the LPBe in reward processes could
be related either to a reduction in states of need and/or to a
specific modification in the hedonic value of the taste stim-
uli (Berridge, 2003; Le Magnen, 1992). In fact, the LPBe
constitutes one of the main central relays in the processing
of taste and visceral cues (De Lacalle & Saper, 2000; Fulw-
iler & Saper, 1984; Halsell & Travers, 1997; Karimnamazi
et al., 2002). With regard to the former possibility, LPBe
electrical stimulation may have acted as an adequate sub-
stitute for visceral stimuli and/or the consequences of their
rewarding motivational effects (Cubero & Puerto, 2000). In
fact, the LPBe is strategically placed to receive peripheral
information related to intake (Calingasan & Ritter, 1993;
Ritter, Dinh, & Friedman, 1994; Wang et al., 1999;
Yamamoto & Sawa, 2000a, 2000b). It can therefore be
hypothesized that the electrical stimulation might have
generated preferences for the associated stimulus, similar
to the rapid rewarding effect induced by the intragastric
loading of some nutritive substances (Puerto, Deutsch,
Molina, & Roll, 1976). In this regard, electrical stimulation
of afferent branches of the vagus nerve has been shown to
induce c-fos immunoreactivity at the lateral end of the
LPBe (Gieroba & Blessing, 1994; Saleh & Cechetto,
1993). It has also been verified that the presence of nutri-
ents in the intestine combined with the release of hormones
such as CCK generates signals that are processed via the
vagal pathway (Ritter, Brenner, & Yox, 1992a) as well as
by the LPBe (Li & Rowland, 1995).
rences induced by electrical stimulation of a ..., Neurobiology of
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However, it could also be interpreted from the present
data that intracerebral electrical stimulation might have
specifically modified the hedonic-motivational value of
the flavor stimulus intake. Thus, neurons sensitive to the
motivational and orosensorial properties of gustatory stim-
uli have been identified in the LPBe (Halsell & Frank, 1992;
Halsell & Travers, 1997; Karimnamazi et al., 1992; Sew-
ards, 2004; Yamamoto et al., 1994). Moreover, general
lesions of the lateral area of the parabrachial nucleus,
which includes the LPBe, attenuated the over-ingestion of
appetizing taste stimulus produced by removal of the Area
Postrema (Edwards & Ritter, 1989). This suggests the
LPBe may be an important modulating structure in the
hedonic evaluation of certain ‘innately preferred’ taste
stimuli. In this sense, drugs such as midazolam, which
increase intake by modifying its hedonic component (Treit
& Berridge, 1990; Berridge & Peciña, 1995), may specifical-
ly act on the lateral parabrachial area (Söderpalm & Ber-
ridge, 2000).

Experiment 2 in the present study shows that electrical
stimulation of the LPBe can also induce preference behav-
iors when associated with environmental cues in a CPP
paradigm, probably a classical conditioning procedure in
which motivational consequences or a reinforcer (e.g., mor-
phine) are associated with environmental cues (Bardo &
Bevins, 2000; Tzschentke, 1998). In contrast, non-stimu-
lated controls alternated between the two compartments
of the maze, showing no preferences or consistent behav-
iors. At any rate, these data suggest that the rewarding
effect obtained might not be specific to a single sensory
modality, although the present experiments do not allow
definitive conclusions to be drawn in this respect. Once
again, it could be interpreted from these results that intra-
cerebral electrical stimulation might have acted as an ade-
quate substitute for visceral stimulus and/or their
motivational consequences. In this regard, it has been
shown that place preferences can be induced when water
intake or intragastric infusion of sucrose or water occurs
immediately before confinement of animals in a specific
compartment of a T-maze (Arnold & Agmo, 1999). In rela-
tion to the parabrachial Area, some researchers found that
lesions to the dorsolateral end (which includes the LPBe)
blocked aversive spatial conditioning induced by peripheral
administration of morphine (Bechara, Martin, Pridgar, &
Vanderkooy, 1993). However, we have found no published
data relating the LPBe to the rewarding effect of drugs of
abuse. Furthermore, we cannot rule out the possibility that
electrical stimulation of the LPBe affected specific sensorial
and/or motivational cells of the gustatory system, causing
them to have a rewarding taste experience in a specific area
of the maze (Experiment 2).

Results obtained in Experiment 3 demonstrate that
administration of the opiate antagonist naloxone blocked
the rewarding consequences of stimulation when the acqui-
sition process was carried out in a new maze, but not when
the effects of this substance were evaluated in the same con-
text in which the learning took place. These findings are
Please cite this article in press as: Simon, M. J. et al., Learned prefe
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compatible with those obtained after intervention in the
vagal-LPBe-cerebellum axis in taste aversion learning tasks
(Mediavilla, Molina, & Puerto, 2000b). This blocking effect
of naloxone seems to be more powerful than that observed
in self-stimulation induced in the ventral tegmental area
(Bielajew et al., 2003). However, we have been unable to
induce this behavior, at least not as readily as in other areas
such as the lateral hypothalamus (Hawkins et al., 1983;
Simon, 2003).

Several studies have shown that opiate substances may
play an important role in intake, probably by potentiation
of the hedonic value of nutrients or by reducing feelings of
‘discomfort’ produced by homeostatic imbalance (Carr,
2002; Le Magnen, 1992). Some authors have even pointed
out that the hedonic value of food could be increased when
it is associated with the elimination of homeostatic imbal-
ance (Carr, 2002; Le Magnen, 1992). Concerning the first
possibility, the activation of l and j opiate receptors of this
parabrachial area (Chamberlin et al., 1999; Gutstein et al.,
1998; Mansour, Fox, Akil, & Watson, 1995) appear to
mediate some of the effects related to modification of the
hedonic value of gustatory stimuli (Carr et al., 1991; Mou-
fid-Bellancourt et al., 1996; Wilson, Nicklous, Aloyo, &
Simansky, 2003). These explanatory proposals suggest that
LPBe electrical stimulation may have acted on an intake-
related opiate mechanism (Carr et al., 1991; Carr & Papa-
douka, 1994; Papadouka & Carr, 1994) or even on a gen-
eral rewarding mechanism that would critically include a
brainstem opioid system, since some studies reported that
c-fos immunoreactivity is elicited in the LPBe by certain
opioid drugs, e.g., morphine, and by amphetamines,
cocaine, or ethanol (Grabus, Glowa, & Riley, 2004; Sakai
& Yamamoto, 1997; Yamamoto & Sawa, 2000a, 2000b).
In fact, various authors have suggested that different
rewarding modalities (homeostatic, abuse substances, elec-
trical stimulation, etc.) may be neurobiologically related in
some way (Berman, Devi, & Carr, 1994; Fernandez-Espejo,
2002; Kelley & Berridge, 2002; Wolinsky et al., 1996).

On the other hand, the association of flavors with met-
abolic benefits is not limited to the reduction of natural
states of need, e.g., hunger or thirst, and can also be
extended to unnatural states of discomfort (withdrawal
syndrome) produced by the absence of drugs in addicts
(Parker, Failor, & Weidman, 1973; Yeomans, 2000). In this
context, it has been reported that this parabrachial region
may be a relay area of the spinoparabrachial nociceptive
pathway involved in the affective-emotional, autonomic
and visceral component of pain (Bernard, Carroué, & Bes-
son, 1991; Bernard, Dallel, Raboisson, Villanueva, & Le
Bars, 1995; Bernard, Huang, & Besson, 1994; Bester, Mat-
sumoto, Besson, & Bernard, 1997; Gauriau & Bernard,
2002; Huang, Besson, & Bernard, 1993; Jasmin, Burkey,
Card, & Basbaum, 1997; Saper, 1995). This may explain
the avoidance behavior of some of our animals, probably
because the implanted electrodes may have affected the
nociceptive neurons of this pathway in these animals.
These results are also in agreement with recent evidence
rences induced by electrical stimulation of a ..., Neurobiology of
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published by our laboratory that LPBe lesions block con-
current gustatory aversive learning, an implicit learning
that requires rapid visceral processing (Mediavilla et al.,
2000a, 2005).

Finally, the present results are compatible with the prop-
osition that this same structure may be involved in both
positive and negative motivational processes (Reynolds &
Berridge, 2002; Salamone, 1994; Yamamoto et al., 1994).
Thus, it has been demonstrated that there are opiate sys-
tems with opposed effects, mediated by the l and j recep-
tors, respectively, which may regulate the action of the
mesolimbic dopaminergic system (Spanagel et al., 1992).
Furthermore, differential chemical stimulation of l and j
receptors of the lateral parabrachial nucleus was shown
to induce preferences and aversions as a function of the
systems activated (Moufid-Bellancourt et al., 1996).

In conclusion, this experimental series showed that elec-
trical stimulation of the LPBe generates preferences for
stimuli with which it is contiguously or concurrently asso-
ciated. This stimulation may act as a substitute of biologi-
cal processes that have yet to be determined. These
rewarding effects are blocked by naloxone administration
when the tasks involve a new learning but not when they
are carried out in the maze in which preferences were
acquired. Therefore, the LPBe, which has been proposed
as a region on which rewarding or food intake-related
drugs may act, is also involved in the processing of natural
food rewards, and, as demonstrated here, in the induction
of artificial rewards induced by electrical brain stimulation
via opioid neurochemical mechanisms.
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