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Consistent rewarding or aversive effects of the electrical
stimulation of the lateral parabrachial complex
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bstract

Electrical stimulation of the external lateral parabrachial subnucleus (LPBe) may induce rewarding or aversive behaviors in animals subjected to
wo different learning discrimination tasks. Statistical analysis found no significant differences between the group receiving electrical stimulation
f the brain and the non-stimulated control group. However, rewarding or aversive behaviors were consistent and positively correlated between the
wo discrimination tasks in the stimulated group.

Thus, these tests differed in the gustatory stimuli used, in the right/left position of stimulation-associated/non-associated flavors, and in the
D
 Page in which experiments were performed. This behavioral consistency and corresponding correlation were not observed in the non-stimulated

ontrol group. These results suggest the existence of aversive and reward systems that are differentiated but anatomically very close. Therefore,
he activation of aversive or rewarding systems may depend on the precise location of the electrode implanted in the LPBe of each animal.

2008 Elsevier B.V. All rights reserved.
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. Introduction

The external lateral parabrachial subnucleus (LPBe) is at the
entral lateral end of the parabrachial complex and has been
mplicated in the processing of visceral and gustatory informa-
ion [1,2]. The LPBe receives gustatory information through
he rostral nucleus of the solitary tract (NST) [2–4], whereas it
eceives both vagal and visceral information [5] by means of its
onnections with the caudal NTS and area postrema (AP) [1,6,7].

The LPBe has been related to taste aversion learning
nduced by aversive agents (e.g., abdominal irritants, body
otation, or copper sulfate) or even by drugs of abuse (e.g.,
ocaine, amphetamines, or morphine) [8–12], mostly when these
ustatory–visceral stimuli are contiguously presented [9,13].
urthermore, this LPBe subnucleus has also been related to

he spino(trigemino) pontoamygdaloid system and would be
U
N

C
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nvolved in the transmission of nociceptive information and in
he affective-emotional, autonomic, and visceral processing of
hese negative events [14–24].

∗ Corresponding author. Tel.: +34 958 243770; fax: +34 958 246239.
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The LPBe may also participate in the processing of reward-
ng substances. Thus, the intraduodenal injection of glucose
25] or intragastric administration of lactose or sucrose, among
thers, generates C-Fos immunoreactivity in this area [11,12].
oreover, lesions in this parabrachial subnucleus block taste

references induced by the intragastric administration of reward-
ng food [26]. In this regard, some substances related to food
ntake and nutritional metabolism may exert their functions
hrough this region, as in the case of cholecystokinin (CCK)
27,28], galanin, neuropeptide Y [29–31], and leptin [32].
he same has been found for certain drugs that increase the
edonic value of intake, e.g., benzodiazepines [33]; agents
hat reduce food intake, e.g., fenfluramine [27,34–36]; and
ntimetabolic substances, e.g., mercaptoacetate, 2.5-anhydro-
-mannitol, methyl palmoxirate [37–40,75].

Finally, it has been demonstrated that some drugs of abuse
mplicated in the reduction or increase of food intake [41–44],
.g., amphetamines [10] or opiates [10,27,35,45,46], may also
e processed via the LPBe. In relation to the opiate system,
aversive effects of the electrical stimulation of the lateral parabrachial

t has been shown that the number of opiate receptors of this 55

arabrachial area can be modified by food restriction [47] and, 56

onversely, that drug manipulation of opiate receptors in this 57

rea can modulate intake [48,49]. 58
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Taken together, the above data suggest that the LPBe nucleus
ay be related to both aversive and rewarding motivational

rocesses. For this reason, we expected that LPBe electrical
timulation, an appropriate procedure for inducing prefer-
nce/rewarding or aversive behaviors [50–52], might generate
hese appetitive and/or aversive responses in a random but con-
istent manner. These results might also serve as a behavioral
riterion to identify the aversive or rewarding effects of LPBe
lectrical stimulation, especially the latter (preferences), given
hat lever-press self-stimulation has not been obtained with these
nimals [53], or at least not as readily as in the lateral hypothala-
us, for example [54]. Therefore, in this study, it was decided to

se two different learning discriminative tasks by which the ani-
als could associate a stimulus with its rewarding or aversive

onsequences [26,51,52,55–59]. Furthermore, the two flavors
resented, the right/left position of the stimulation-associated
avor, and the cages used by each animal were modified in these

ests. According to our hypothesis, the animals would still prefer
r avoid, in each individual case, the stimulus associated with
ntracerebral electrical stimulation, despite the modifications
ntroduced and possible interferences among tasks, although
lobal differences might not be found between stimulated and
on-stimulated groups.

. Materials and methods

.1. Subjects

Thirty-one male Wistar rats (255–315 g each at time of surgery) from
he University of Granada animalarium were used in this study. They were
andomly assigned to one of two groups: (a) ES-LPBe: intermittent (30′′
n/30′′ off) (n = 10) or continuous (n = 12) electrical stimulation and (b) US-
ontrol: unstimulated control (n = 9). In the former group, the total duration
f stimulation at each session was 15′ in all cases. Since no significant dif-
erences were found between the two subgroups, the results were analyzed
ogether.

On arrival at the laboratory, animals were individually housed in
0 cm × 15 cm × 30 cm methacrylate cages that served as training chambers.
he room temperature was maintained between 21 and 24 ◦C, and light–dark
eriods lasted 12 h each, with lights on at 8:30 a.m. All experimental and test
U
N

C
O

R
R

E
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rocedures were conducted during the light phase.
Subjects were allowed a 5-day adaptation period during which they remained

n their home cage with food and water available ad libitum. All behavioral
rocedures and surgical techniques were conducted in agreement with animal
are guidelines established by Spanish Royal Law 23/1988.

b
(
b
f
r

able 1
ehavioral procedure

andom distribution

Day l Day 2

hase I
Group A 50% of animals Strawberry L + St. (15 min) Coconut R + No
Group B 50% of animals Strawberry L + Non-St. (15 min) Coconut R + St.

hase II
Group A 50% of animals Lemon L. + St. (15 min) Vanilla R + Non
Group B 50% of animals Lemon L + Non-St. (15 min) Vanilla R + St. (

iagram of the balanced experimental conditions used in the two phases of this exper
nd vanilla and lemon in the second phase. The unstimulated control animals (US-c
on-“stimulation”, although control animals never received electrical stimulation.
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.2. Surgery

Under general anesthesia (sodium pentothal, 50 mg/kg., B. Braun Medi-
al S.A. Barcelona, Spain), the ES-LPBe group was stereotaxically implanted
Stoelting Co. Stereotaxic 51600, USA) with a 00 stainless steel electrode aimed
t the LPBe {Coordinates: AP = −0.16; V = 3; L = ±2.5; [76]}. After surgery,
ubjects were returned to their home cages where they stayed for at least 7 days
f recovery with water and food ad libitum.

Animals from the US-control group had similar periods of adaptation and
ecovery but did not undergo surgical intervention.

.3. Apparatus

As mentioned above, experimental procedures were conducted in the same
ethacrylate chambers that served as home cages. The front part of each cage

ad two 1.6-cm holes, each at the same distance from the center and sides and
t the same height from the floor. Through those orifices, the animal had access
o spouts attached to graduated burettes in which the flavors were offered.

Electrical stimulation was delivered using a LI12100 stimulator (Letica,
arcelona, Spain). At a current selected to be below the threshold for produc-

ng undesired behavioral effects [60], 66.6 Hz, 0.1 ms, 57–115 �A, cathodal
ectangular pulses were applied to the LPBe. The stimulation process was moni-
ored with a DM63 oscilloscope (Textronic Ltd., London, U.K.), which allowed
onstant visualization of the electrical pulses administered to animals during
xperimental sessions.

.4. Behavioral procedure

.4.1. Pretraining
During two pretraining sessions, all animals were water deprived for 23 h

0 min and allowed to drink tap water for 10 min from graduated burettes. The
osition of the burettes was alternated across sessions to avoid development of
ositional preferences. Once the water was withdrawn, animals had access to
5 g of food.

The experiment began after the 2-day pretraining period and comprised two
hases separated by a 14-day interval. In each phase, animals underwent a dis-
riminative learning task. The gustatory stimuli used were strawberry ‘S’ and
oconut ‘C’ for phase I and lemon ‘L’ and vanilla ‘V’ for phase II (0.5% diluted in
ater, McCormick & Co. Inc. San Francisco, CA), which were always presented

n the same right/left position.
In each phase, four learning sessions were performed in which the two dif-

erent gustatory stimuli were offered on alternate days. For half of the animals,
ntake of one flavor (for 7 min) was immediately followed by 15 min of electrical
timulation of the LPBe, whereas intake of the other flavor was not followed
aversive effects of the electrical stimulation of the lateral parabrachial

y stimulation. For the remaining animals, the opposite process was carried out 140

for details, see Table 1). On day 5, a two-bottle free-choice test was conducted 141

y placing both burettes in the cage simultaneously. Animals were allowed to 142

reely drink the flavored solutions for 7 min and the total amount ingested was 143

ecorded. 144

Day 3 Day 4 Test

n-St. (15 min) =1st day =2nd day Strawberry L, coconut R (7 min)
(15 min) =1st day =2nd day Strawberry L, coconut R (7 min)

-St. (15 min) *0 Day =2nd day Lemon L, vanilla R (7 min)
15 min) *# Day =2nd day Lemon L, vanilla R (7 min)

iment. Strawberry and coconut were used as gustatory stimuli in the first phase
ontrol) were also assigned one flavor with sham stimulation and another with

dx.doi.org/10.1016/j.bbr.2008.02.036
Usuario
Tachado

Usuario
Texto de reemplazo
=1st day

Usuario
Tachado

Usuario
Texto de reemplazo
=1st day

Usuario
Comentario en el texto
Insert this row between Phase I and Phase II. Delete it from this position.


Usuario
Cuadro de texto
Phase I

Usuario
Tachado

Usuario
Comentario en el texto
Add in this row the following text: Day 1, Day 2, Day 3, Day 4, Test,  (as the same as the first line, but replacing the term 'Phase I' by Phase II).
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Table 2
Design of positions occupied by experimental and control animals

Phase 1
Subject 1 2 3 4 5 6 7 8
Position Cage 1 Cage 2 Cage 3 Cage 4

Phase II
Subject 4 3 8 7 2 1 6 5

Cage 3 Cage 4

P and II of the experiment. This procedure (amplified) was used for the 18 animals in
t

145
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A148

m149

e150

w151
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w154

s155

r156

w157

S158

s159

F160

2161

162

163

e164

165

f166

F
i
r

Position Cage 1 Cage 2

rocedure for the distribution of the animals in different cages during phases I
he ES-LPBe group and the 9 in the US-control group.

In the case of the unstimulated control group (US-control), intake of the two
ustatory stimuli was never followed by brain electrical stimulation.

In the interval between phases, animals received food and water ad libitum.
t the start of the second phase, conditions of the new discrimination test were
odified with regard to the gustatory stimuli used, the right/left position of the

lectrical stimulation-associated stimulus, and the cage in which experiments
ere conducted (Table 2).

.5. Histology

After conclusion of the experiment, all animals were deeply anesthetized
ith an overdose of sodium pentothal and intracardially perfused with isotonic

aline and 4% paraformaldehyde. Electrolytic lesions (0.5 mA of cathodic cur-
ent for 5 s) were made to verify placement of electrodes in the LPBe. Their brains
ere removed, stored in paraformaldehyde, and laminated in 50-� sections.
ections were mounted, stained with cresyl violet, and photographed (VMZ-4F
tereoscopic magnifying glass and PM-6 camera, Olympus, Tokyo, Japan) (see
igs. 1 and 2).

.6. Data analysis
U
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Statistica 6.0 software (Statsoft Inc., OK) was used for the statistical analysis.
A mixed bifactorial (group × flavor) ANOVA was used to analyze differ-

nces between stimulated and control groups.
To demonstrate the intra-subject consistency of data, comparisons were per-

ormed using correlation coefficients of the differential data (difference between

ig. 1. Histological preparation stained with cresyl violet, showing the local-
zation (as small lesion) of the area occupied by the end of the electrode,
epresentative of observations in the animals in this experiment.

Fig. 2. Map of the localization of electrode tip in some experimental group
animals (diamond, animal 1; inverted triangle, animal 2; four-point star, animal 6;
fi
a

i 167

o 168

f 169

fl 170

w 171

s 172

173

i 174

w 175

d 176

a 177

3 178

g 179

3

s

ve-point star, animal 8; square, animal 13; rounded square, animal 16; triangle,
nimal 17).

ntake of electrical LPBe stimulation-associated flavor [Flavor + St.] and intake
f the flavor not associated with this stimulation [Flavor + Non-St.]) obtained
or each animal in phases I and II tests. In the US-control group, one of the
avors was randomly selected before each learning phase to be sham-associated
ith the electrical LPBe stimulation (animals in this group never received this

timulation).
Classification and selection criteria can be developed from these data accord-

ng to the behavior of these animals. Thus, animals were grouped into: those
ith a >50% consumption of the stimulation-associated flavor in the two tests,
esignated “positive” group, those with <30% consumption of the stimulation-
ssociated flavor in the two tests, designated “negative” group; and those with
0–50% consumption of this flavor in one or both phases, designated “neutral”
roup.
aversive effects of the electrical stimulation of the lateral parabrachial

. Results 180

Three animals in the ES-LPBe group were excluded from the 181

tatistical analysis because the implant became detached during 182

dx.doi.org/10.1016/j.bbr.2008.02.036
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Fig. 4. Correlation matrix for the data of each ES-LPBE subject in phases I and
II of the experiment (r = 0.7050, p > 0.001**). The area between the two curves
represents the estimated surface area predicted to contain these data points from
the performance of each subject in the two phases of the experiment, with a
confidence interval of 95%.
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he behavioral procedure. Another subject of this same group
as excluded for showing circling behavior.
There was wide intersubject variability in the intake of one

r other flavor (Flavor + St. or Flavor + Non-St.) by animals in
oth groups (ES-LPBe and US-control), and the mixed bifac-
orial (group × flavor) ANOVA found no differences in phase

between groups [F(1,25) = 0.2230 p < 0.6408] in either fla-
or intake [F(1,25) = 0.2490 p < 0.6221] or interaction of the
wo factors [F(1,25) = 0.2724 p < 0.6063). Similar results were
ound for phase II [group: F(1,25) = 1.0083 p < 0.3249; fla-
or: F(1,25) = 2.0877 p < 0.1609; interaction: F(1,25) = 0.0010
< 0.9748] (Fig. 3).

However, the comparison using Pearson correlation coef-
cient data for each animal in phases I and II showed a
ignificant correlation (r = 0.70508; p > 0.001**) for the intake
f stimulation-associated flavor values in both phases by the
S-LPBe group (Fig. 4). This was not the case for the US-
ontrol group, in which the correlation was not significant
r = −0.07176; p < 0.8544) (Fig. 5). When the criteria pro-
osed above were applied to the 18 animals in the ES-LPBe
roup, 6 were assigned to the “positive” group (preference
or stimulation-associated flavor) [mean current intensity of
7.1 �A], 7 to the “negative” group (aversion to stimulation-
ssociated flavor) [mean intensity of 81.5 �A], and 5 to the
neutral” group [mean = 100 �A]. Hence, whereas 72% of ani-
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als in the stimulated group were consistent in their behavior,
nly two members of the “US-control” group showed a repeated
reference for one of the gustatory stimuli presented, while the

ig. 3. Mean intake (in cc) by ES-LPBe (above) and US-control (below) of
he flavor associated with electrical stimulation of the LPBe and the flavor not
ssociated with this stimulation (Flavor + St., Flavor + Non-St.) during phases I
nd II of the experimental procedure in this experimental series.
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ig. 5. Correlation matrix for the data of each subject of the US-control group
n phases I and II of the experiment (r = −0.0717, p < 0.8544).

emaining 7 [77.7%] met the criterion established for the neutral
roup.

. Discussion

The results of this experiment show that LPBe stimulation
ay induce preferences or aversions towards associated stim-

li in discrimination learning tasks. Analysis of the preferences
hown for the flavor associated with the electrical brain stim-
lation in each task showed no significant results. However,
significant correlation was found between data obtained in

he two tests by the stimulated animals [ES-LPBe] but not by
he control animals [US-control]. This finding suggests that

ost animals in the stimulated group developed a preference
or either the electrical stimulation-associated flavor or for the
ther one – and only a minority showed alternating behavior.
ence, this effect was consistent in the majority of the electri-
aversive effects of the electrical stimulation of the lateral parabrachial

ally stimulated animals, despite modifications introduced into 226

he two discrimination learning tasks with regard to the gustatory 227

timuli presented, the left/right localization of the stimulation- 228

ssociated flavor, and the experimental cage used, with the 229
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onsequent egocentric and allocentric re-organization that these
ests might have required. Therefore, these data appear to indi-
ate that the effect is consistent within an individual but not
mong individuals.

The lateral end of the parabrachial nucleus, which includes
he LPBe, receives visceral information from the caudal NTS
nd area postrema [1,2,6] and gustatory information from its
onnections with the rostral NTS [2,7]. This sensory informa-
ion can be rewarding or aversive. Thus, it has been reported that
he LPBe appears to participate in the development of learned
references and aversions [9,26]. In this context, electrical stim-
lation of the LPBe can act as an adequate stimulus to induce one
r other biological process (positive or negative reinforcement),
s also found in other brain regions [50–52,61].

Previously published data have shown that a single anatomi-
al structure can be the substrate for both appetitive and aversive
otivational processes [62–65]: The same can be observed with

ome substances (e.g., corticotropin-releasing factor or � ago-
ists), whose rewarding or aversive effects may depend on the
ose, the experimental situation, or the anatomic localization
f the neurochemical systems involved [66,67]. In the present
tudy, however, while the stimulated anatomical area appeared
o be critical, no differences were found in preference/aversion
ehavior as a function of the electrical current parameters used.

In other words, it appears possible that the electrical stim-
lation of the LPBe could have affected positive or negative
ells according to the precise localization of the electrode. This
ould modify the quality of the associated stimulus and would
ean that the stimulus, initially neutral, acquires appetitive or

versive motivational properties. This interpretation is compat-
ble with the identification in this LPBe area of cells that react
o the hedonic properties of different gustatory stimuli [4], and
f mutually inhibitory interactions between activity patterns of
edonic-positive and hedonic-negative cells [2,7,68,69].

Furthermore, various authors have detected C-Fos immu-
oreactivity in the LPBe after the intragastric administration
f nutrients and of chemical substances that generate learned
references (e.g., glucose, sucrose, lactose, maltose, poly-
ose) [12,25] or aversions (e.g., cocaine, morphine, metham-
hetamine, hypertonic saline, LiCl, copper sulfate) [10,11].

The present observation of animals that found electrical
timulation of the LPBe to be aversive is also consistent
ith reports by other authors that the administration of some

mmune system-activating toxic agents (bacterial lipopolysac-
haride) can produce immunoreactivity in the external part of
he LPBe [70]. This aversive effect can also be explained as

consequence of the activation of an important relay of the
pino-parabrachial pathway in the LPBe, whose participation
n the processing of noxious information is well documented
14–24].

Finally, various authors have demonstrated that the behav-
oral effect of opiates may depend on the type of receptor on
hich they act. Thus, agonists of � and � receptors usually gen-
U
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rate reinforcement, whereas substances that act on � receptors
o not favor its self-administration and may also induce aversive
ehaviors [71,72]. Some of these receptor types, i.e., � and �,
ave been identified in the LPBe [47]. It is likely that the elec-
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rical stimulation could have produced an activation of some or
ther receptors, generating positive or negative effects or even
oth simultaneously, which would explain the behavior of the
neutral” animals. Indeed, this explanation is compatible with
ata reported by Moufid-Bellancourt et al. [71], who achieved
oth rewarding and aversive effects from the intraparabrachial
nfusion of � and � agonists, respectively. Moreover, it can-
ot be ruled out that the electrical stimulation of the LPBe
ight also have activated a motivational system associated with

eficit/satiation states [64] or brain reward.
To summarize, the present results show that electrical stimu-

ation of the LPBe can generate, in different animals, consistent
references or aversions to gustatory stimuli with which it is
ssociated. These results may possibly depend on slight varia-
ions in the position of the end of the electrode, differentially
ctivating some of the motivational subsystems present in this
egion. These different reward/aversion mechanisms could be
natomically very close together, allowing the establishment
f learned associations between a stimulus and its positive or
egative consequences, analogous to observations in humans
64,73,74].
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