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a  b  s  t  r  a  c  t

Place  preference  induction  by  intracerebral  electrical  stimulation  was initially  shown  by  Olds and  Milner.
It has  since  proven  possible  to  induce  concurrent  stimulation-induced  place  preference  (cCPP)  after  elec-
trical  stimulation  of the  lateral  hypothalamus  (LH)  and,  more  recently,  of  the external  lateral  parabrachial
nucleus  (LPBe).  The  objective  of  this  experimental  study  was  to  examine  whether  the  rewarding  effects
of  electrical  stimulation  of  the LH  and  LPBe  involve  the activation  of  similar  opioid  systems  in an  alter-
native  cCPP  task.  Administration  of the  opioid  antagonist  naloxone  (4 mg/kg)  blocked  the conditioned
place  preference  effect  induced  after  LPBe  but not  after  LH stimulation  (at 4 or  10  mg/kg). These results
are interpreted  in  relation  to the  presence  of  multiple  reward  systems  that  might  anatomically  and
neurochemically  differ  with  respect  to the  involvement  of the opioid  system.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Since the original study by Olds and Milner (1954) [1],  intrac-
erebral electrical stimulation has been a procedure of choice for
the study of brain reward mechanisms [2–7]. Researchers have
generally adopted an operant methodology, but reward can also
be assessed in laboratory animals by tasks such as conditioned
place preference (CPP) ([8–10], for a review). Thus, CPP tasks are
frequently used to study the reinforcing effects of natural stimuli,
including foods and drinks [11–14] and drugs of abuse [10,15–19].

Many of the anatomical regions identified by rewarding elec-
trical stimulation may  form part of a general reward system
localized around the medial forebrain bundle (MFB), especially
the lateral hypothalamus (LH) [2,4,6,20–24]. However, it was
recently demonstrated that electrical stimulation of the external
lateral parabrachial nucleus (LPBe) can also generate preferences
for associated environmental stimuli in both gustatory and place
discrimination tasks [25–27].  The LPBe has been related to the
processing of natural rewarding substances and other substances
for which preference has been acquired by learning [28–32].  This
subnucleus also participates in the processing of substances, such
as fenfluramine [33–36], amphetamines, cocaine [37], and opiates
[38–40]. In this context, recent studies in our laboratory indicated
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the likely involvement of the endogenous opioid system in the
reward induced by electrical stimulation of the LPBe [25].

Intracranial self-stimulation (ICSS) behavior induced in the MFB
has been related to dopaminergic ([6], for a review [23,41–46])
and opioid systems [41,47]. With regard to the opioid system, con-
troversial results have been obtained by studies using antagonists
such as naloxone in operant tasks ([47], for a review [48–50]).
Some authors found that naloxone does not alter the rate of lever-
pressing in ICSS when electrodes are located in the MFB-LH area,
except at very high doses ([51,52], cited by [47]), whereas others,
using various opioid antagonists, reported that opioid systems can
play a significant role in modulating ICSS behavior [53–57].

The objective of this study was to examine the effect of nalox-
one administration in an alternative, place discrimination test
[8,9,18,58,59]. This concurrent stimulation-induced place prefer-
ence task (cCPP) was  induced by electrical stimulation of the
LH and LPBe, two brain regions with opioid neurotransmitters
[38–41,47,60,61]. Similar to standard CPP, this procedure is also
a rate-free learning procedure, but it is more potent in producing
place conditioning effects [18,58,59].  The primary reinforcement
measure is the time spent in the positive chamber, preventing any
influence on behavior from variables other than reward [8,9,58].
However, unlike the standard CPP procedure, the concurrent
task appears to be initially based more on motivation than on
learning.

We carried out a cCPP test using rectangular mazes formed by
two lateral compartments communicated by a small central space;
the animals received concurrent electrical stimulation whenever
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they voluntarily entered one of the two main compartments, pre-
viously selected at random by the experimenter. Under these
conditions, animals were subjected to two behavioral tests, receiv-
ing i.p. administration of distilled water in the first and 4 mg/kg
naloxone in the second. When this dose did not block preference
behavior, a dose of 10 mg/kg naloxone was injected in a subsequent
test.

2. Materials and methods

2.1. Subjects and surgery

Sixty male Wistar rats (weight 295–425 g at beginning of experiment) were
used in this study. They were individually housed in cages with free access to water
and food (Panlab, Barcelona, Spain) for one week before the surgery. The room was
maintained on a 12-h light/12-h dark cycle at 23 ± 2 ◦C. All behavioral and sur-
gical procedures and pharmacological techniques complied with the animal care
guidelines established by Spanish Royal Law (1201/2005) and European Community
Council Directive (86/609/EEC).

Chronic implant surgery was performed under general anesthesia (sodium
pentothal, 50 mg/kg, B. Braun Medical S.A. Barcelona, Spain) using a stereotaxic
instrument (Model 51.600, Stoelting Co., USA), as previously described [25].

For the lateral hypothalamus electrical stimulation group (LH-S), 23 animals
were implanted with a monopolar 00 stainless steel electrode insulated except at the
tip  (Coordinates: AP = +5.8; V = +2.8 and L = ±1.8 according to the atlas of De Groot
[62])  to obtain self-stimulating animals [27,63], while 7 animals were implanted
only with the reference electrode and served as a neurologically intact control group
(LH-C).

For  the external lateral parabrachial stimulation group (LPBe-S), 23 animals
were implanted with a monopolar electrode in the LPBe (Coordinates: AP = −0.16;
V = 3.0 and L = ±2.5 according to the atlas of Paxinos and Watson [64], and 7 animals
served as an unimplanted neurologically intact control group (LPBe-C).

There were two types of control group for each brain area (LH and LPBe): (a)
a  neurologically intact control group of animals with no implantation of intracere-
bral electrode (LH-C and LPBe-C); and (b) a control group of implanted animals for
each  brain area, in which animals only received electric stimulation during the ini-
tial  shaping phase and showed no reward behaviors (LH-I and LPBe-I). From this
moment onwards, none of these animals received intracerebral electric stimulation
during the cCPP trial. Because no significant differences were found between the
two  types of control groups (a and b), their results were pooled.

2.2. Apparatus

Electrical stimulation was delivered by a CS-20 stimulator connected to an ISU-
165  isolation unit (both from Cibertec, Madrid, Spain), monitoring the current on
an  oscilloscope (Model HM 507, Hameg Instruments, Frankfurt, Germany). Aversive
electrical stimulation was avoided by establishing an optimal current intensity for
each animal in each group before the experimental test and maintaining this value
throughout the experiment. Determination of the current intensity was  based on
behavioral criteria. Thus, the optimal intensity was ascertained by increasing the
current until a behaviorally observable level of response was achieved without pro-
ducing escape behaviors, jumping, or vocal reactions. We applied a current range
of 70–115 �A in the LPBe-S group (mean of 86.05 �A) and 320–470 �A in the LH-S
group (mean of 412 �A) with rectangular cathodic pulses at 66.6 Hz and 0.1 ms  pulse
duration.

The self-stimulation procedure to test the rewarding effect of electrical stimula-
tion in the LH and LPBe was  conducted in a 50 cm × 55 cm × 60 cm Plexiglas chamber
with a lever mounted on the front wall and connected to a stimulator, oscilloscope,
and lever-press counter [25–27,63].  For ICSS shaping, the mean current intensity in
LH  animals was 550 �A, with rectangular cathodic pulses of 0.1 ms  duration. Train
duration was  0.25 s for each lever press. An ICSS curve was obtained for each animal
by  modifying the frequency, as can be observed in Fig. 5.

The cCPP test was conducted in two different rectangular mazes. Maze 1 con-
sisted of a 50 cm × 25 cm × 30 cm rectangular maze in which the walls of the two
lateral compartments were painted with black and white 1-cm-wide stripes that
were vertical in one compartment and horizontal in the other. The floor was  syn-
thetic cork painted with black and white stripes in one compartment and brown cork
in  the other. The floor of the central area (8 × 25 cm2) was  white methacrylate, and
the walls were a natural-wood color. Maze 2 consisted of a 70 cm × 15 cm × 15 cm
rectangular maze with black methacrylate walls, with a round hole in one end-wall
and  a square hole in the other. The floor was made of cork with transversal or longi-
tudinal incisions, respectively. The central area (10 × 15 cm2) had a metal grille floor
and the walls were white.

2.3. Behavioral procedures

2.3.1. Intracranial self-stimulation (ICSS) behavior
A  standard operant procedure [25,27,63] was used to screen the rewarding effect

of  electrical stimulation of the LH in a Skinner box (see above). After a shaping phase,

Fig. 1. Representative image of the localization of the electrode tip in LPBe stimu-
lated and LPBe control implanted animals (LPBe-S and LPBe-I).

and  as a screening test, a rate–frequency curve was obtained for each LH-S animal,
as  previously reported [27]. As in previous studies, LPBe-S animals failed to learn a
lever press task to induce electrical self-stimulation (see Section 4). A larger number
of  trials or different stimulation parameters from those habitually used in this type
of  test may  perhaps be needed for this response to be observed.

2.3.2. Concurrent stimulation-induced place preference (cCPP) in the two mazes:
effect of naloxone administration
2.3.2.1. First test: cCPP in maze 1. Twenty minutes before each session, the animals
received an s.c. injection of distilled water (vehicle for naloxone) and underwent
two 10-min sessions of cCPP in maze 1′ separated by an interval of 24 h. During each
session, the LH or LPBe was  electrically stimulated concurrently with the voluntary
stay of the animal in one of the two  lateral compartments of the maze, which was
previously selected at random and maintained for both sessions. The total time that
each  animal remained in the stimulated compartment was recorded. Animals were
classified according to the results of their second cCPP trial into one of the three
subgroups (positive, negative or neutral) as described above [25–27].

All electrically stimulated (LH-S, LPBe-S) and control (LH-C, LPBE-C) animals
underwent a concurrent CPP task and were then classified into three subgroups
(positive, negative and neutral) according to behavioral criteria used in previous
studies, assigning animals remaining in stimulated compartment for >50% of the
session time to a ‘positive’ group, those remaining for <30% of the time to a ‘negative’
group’, and those remaining for 30–50% of session time (i.e., showing no preference)
to  a ‘neutral group’ [25–27].

2.3.2.2. Second test: naloxone injection and cCPP in maze 2. On  the next day, all ani-
mals received an s.c. injection (4 mg/ml/kg) of naloxone (Naloxone Hydrochloride,
Lab Sigma, St. Louis, USA) at 20 min  before a 10-min cCPP session in maze 2. Maze
2  contained different internal sensory cues, and the orientation was changed from
the  previous N–S to E–W.

When the dose of 4 mg/kg naloxone did not interrupt the preference condition-
ing in a stimulated group, a third cCPP session was conducted 24 h later, after the
s.c. injection of 10 mg/kg naloxone.

The behavioral procedures and substance administration were identical for ani-
mals in the control groups, except that they received no brain stimulation.

2.4. Histology

After concluding the behavioral experiments, all animals were deeply anes-
thetized and intracardially perfused with isotonic saline and 4% formaldehyde
solution. Placement of the electrical stimulation electrode was verified after an elec-
trolytic lesion (0.5 mA of cathodic current for 10 s.). Brains were removed, stored in
paraformaldehyde, and sectioned. Sections were then mounted, stained with Cresyl
violet, and verified under light microscope (see Figs. 1 and 2).

2.5.  Statistical analysis

Statistica 5.0 (Statsoft. Inc., OK) and SPSS 15 software were used for the statistical
analysis. The behavior of animals in cCPP trials and the effect of naloxone administra-
tion were analyzed by means of a mixed two-factor ANOVA (Group × Drug). Analyses
included the LH- and LPBe-stimulated groups, their respective implanted control
groups, and two intact groups (one with implantation of the reference electrode),
using direct data on the length of stay in the stimulated compartment.
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Fig. 2. Representative image of the localization of the electrode tip in lateral
hypothalamus of stimulated and control implanted animals (LH-S and LH-I).

Because the 4 mg/kg naloxone dose failed to block place conditioning in the LH-S
group, these animals and their respective controls received a dose of 10 mg/kg in a
second experiment, and another ANOVA (Group × Drug) was performed to analyze
this  effect.

3. Results

Six of the twenty-three animals implanted with an electrode
in the lateral hypothalamus were excluded during the experimen-
tal phase because the implant became detached. After the shaping
process, 10 animals of this group developed ICSS (LH-S group) and
the other 7 were used as implanted control group (LH-I Group). We
also used a neurologically intact group with 7 control animals with
a reference electrode alone (LH-C Group), although 1 of these was
excluded because the implant became detached.

One animal in the lateral parabrachial external stimulated
group (LPBe-S) did not survive the surgery. The remaining ani-
mals were classified according to the above-reported behavioral
criteria [25–27],  assigning 12 to the positive group (LPBe-S(+)), 6
to the negative group (LPBe-S(−)), and 4 to the neutral group (used
as implanted control group [LPBe-I]). Another intact control group
was formed by 7 animals (LPBe-C).

The results of the first ANOVA (which included all groups and
the dose of 4 mg/kg naloxone) showed significant effects of Group
[6,46) = 6.125, p < 0.001**], DRUG [F(1,46) = 4.090, p < 0.049*], and
Group × Drug interaction [F(6,46) = 7.674, p < 0.001**] (Fig. 3).

In the planned comparisons of results after vehicle administra-
tion, no differences were found among the control groups (LH-I,
LPBe-I, LH-C, and LPBe-C) [F(1,46) = 759, p < 0.7840] or between the
LH-S and LPBe-S(+) groups [F(1,46) = 1.2342, p < 0.2723]. Significant
differences were observed between the LPBe-S(+) and LPBe-S(−)
groups [F(1,46) = 50.1267, p < 0.001**], between pooled data for
the LH-S and LPBe-S(+) groups and for the four control groups
[F(1,46) = 20.1221, p < 0.001**], and between the LPBe-S(−) group
and the control groups [F(1,46) = 11.2442, p < 0.001**].

In comparisons between the effects of naloxone and vehi-
cle,  significant differences were observed in the LPBe-S(+)
group [F(1,46) = 48.4830, p < 0.001**] and LPBe-S(−) group
[(F(1,46) = 5.1946, p < 0.027*] but not in the LH-S group
[F(1,46) = 0.1094, p < 0.7422] or in the pooled control group
[F(1,46) = 0.7529, p < 0.3900].

In the comparison of the behavior of groups after the admin-
istration of 4 mg/kg naloxone, no differences were found among

Fig. 3. Rewarding effects of the electrical stimulation of the animals with an elec-
trode implanted in the lateral hypothalamus and their controls (LH-S, LH-I and LH-C)
and of the animals with an electrode implanted in the LPBe and their controls (LPBe-
S(+), LPBe-S(−) , LPBe-I and LPBe-C) in a concurrent CPP task. Effects of administration
of  the opiate antagonist naloxone.

the four control groups [F(1,46) = 0.2212, p < 0.6403], between
the LPBe-S(+) group and pooled control group [F(1,46) = 3.7915,
p < 0.0576], or between the LPBe-S(−) group and pooled con-
trol group [F(1,46) = 1.1454, p < 0.2900]. No difference was  now
found between the LPBe-S(+) and LPBe-S(−) groups [F(1,46) = 0.4091,
p < 0.5255], but the difference between the LH-S group and pooled
control group persisted [F(1,46) = 149.8915, p < 0.001**].

The second ANOVA on the effect of the naloxone dose (4 mg/kg
versus 10 mg/kg) in the LH-S and corresponding control animals
[LH-I and LH-C] showed that it did not differ from the effect
of the vehicle administration in the three groups considered
in combination (LH-S, LH-I, LH-C) [F(1,20) = 0.3997, p < 0.5353]
or separately [LH-S group: F(1,20) = 0.0314, p < 0.8609; LH-I
group: F(1,20) = 0.0663, p < 0.7993; LH-C group: F(1,20) = 0.8787,
p < 0.3594] (see Fig. 4).

4. Discussion

This study confirms that electrical stimulation of the LPBe can
induce preferences (or aversions) in a cCPP task, finding a consistent
result between trials and across different tasks, as previously shown
[25–27]. LH-stimulated animals, unlike parabrachial-stimulated
animals, have a great facility to learn operant self-stimulation
behaviors [27] and show clear behavioral preferences in a simi-
lar cCPP test [18,27,65].  However, in contrast to our observations

Fig. 4. Electrical stimulation of the lateral hypothalamus in a concurrent CPP task
and effect of the administration of 4.0 and 10.0 mg/kg of the opiate antagonist
naloxone.
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Fig. 5. Rate–frequency curve for LH-S animals (n = 10). The X axis shows the current
interpulse interval followed by the frequency in parentheses. The Y axis shows the
mean lever press rate for each frequency during a 5-min recording period.

in the LPBe-stimulated group, the administration of 4 mg/kg nalox-
one to LH-stimulated animals did not block stimulation-associated
place preferences.

The contrast between the rewarding effects of LPBe electri-
cal stimulation in a rate-free cCPP paradigm and their apparent
absence in operant ICSS tasks [27] (and present results) may  con-
stitute a similar effect to that observed in other studies. Thus, Cazala
et al. [66] observed higher ICSS rates in LH-stimulated than in
septum medial- or septum lateral-stimulated animals, which was
explained in terms of a dissociation between ‘reward’ and ‘learn-
ing’ processes. Moreover, the activation of distinct thalamic regions
allows ‘rewarding’ and ‘facilitating’ aspects of learning to be differ-
entiated [67,68].

It has also been observed that the presence of the opioid system
can promote ICSS behavior in some brain regions [41,47] but not
in others, including the lateral part of the parabrachial complex
[27,69,70], where moderate amounts of mu  and kappa receptors
have been detected [38–40,60,61,71].

The LPBe region has been related to the processing of natural
rewarding substances and others that acquired rewarding value
after a learning process [29–31].  It also participates in the pro-
cessing of visceral and gustative information that is qualitatively
and evolutionarily characterized by the induction of a ‘positive
marker’, such as food intake [72–77].  In addition, this pontine
region has been implicated in the processing of drugs of abuse,
such as amphetamines, cocaine, or opiates [37,78], whose capac-
ity to induce positive affective states may  explain the facility with
which the animals establish associative learning [6,18].

Schneider et al. [79] recently demonstrated that naloxone can
block the rewarding effect of appetitive nutrients in a dose-
dependent manner in tasks involving the hedonic and motivational
aspects of behavior but not in tasks requiring a progressive increase
in the number of responses to obtain reward (progressive ratio
paradigm). Although we cannot provide supporting data, our
results may  point to a similar phenomenon, i.e., two brain regions
with distinct hedonic impacts, in which the rewarding effect of
electrical stimulation can be blocked by naloxone in the LPBe but
not in the LH, an essential region for the induction of operant ICSS
behaviors.

The above data may  also be compatible with the finding that
naloxone blocks ‘reward’ but not ‘motivation’ in an operant run-
way model of heroin-seeking behavior [80]. This opiate antagonist
may  also be more specifically related to ‘hedonic impact’ or ‘posi-
tive affective states’ rather than to ‘incentive salience’ or ‘seeking’
effects [6,80],  with the former being considered more characteristic
of reward “liking” than reward “wanting” [81].

In the same line, Wassum et al. [82] administered nalox-
one in different brain regions and were able to dissociate opioid
mechanisms responsible for processing the reward value of nutri-
tive stimuli (palatability) in nucleus accumbens shell and ventral
pallidum from incentive mechanisms that could be blocked by
administering the antagonist in the basolateral amygdala [82].

In our study, blocking by naloxone of the opioid system in
the LH did not interrupt the place preference induced by elec-
trical stimulation of this area, although the rewarding power
of LPBe and LH stimulation appears to be similar (Fig. 1). It
could be hypothesized that the naloxone dose applied was too
low to have the desired effect in the LH-stimulated group, but
this is ruled out by our finding that a higher dose (10 mg/kg)
also failed to reverse the preference effect in the LH animals,
especially given that the lower dose (4 mg/kg) was adequate to
block place preference in the LPBe-stimulated animals. In gen-
eral, the doses used in this experiment are within the range
considered by other authors. Using operant tasks, Cazala and
David [54], observed that the s.c. injection of 10 mg/kg nalox-
one significantly increased the approximation latency to initiate
a continuous electrical stimulation in the lateral hypothalamus in
a shuttle box, while Bielajew et al. [53] administered doses of 10
and 20 mg/kg naloxone and reported a dose-dependent shift in
rate–frequency curves to the right, for reward, in ventral tegmental
area self-stimulation, although this behavior was  not completely
blocked.

Easterling and Holtzman [55] demonstrated that the adminis-
tration of morphine raises the titration point for operant behavior
in ICSS, although this effect progressively decreases over time. Nal-
trexone administration initially reduces the titration point, but this
effect is also less effective with the passage of time [55–57]. Accord-
ingly, it is possible that the opioid system, acting through forebrain
regions, may  in some way modulate the processing of the ‘hedo-
nic’ component, although opioid antagonists did not completely
block this operant behavior. However, the results of our experi-
ment are closer to reports that the administration of morphine or
mu receptor-specific agonists in the LH does not appear to have a
major effect on CPP tasks [83,84].

In conclusion, the results of our study suggest that electri-
cal stimulation of the lateral hypothalamus and external lateral
parabrachial nucleus may  have activated different components
of the rewarding system, which can be differentiated at behav-
ioral, anatomical, and neurochemical levels. Hence, some authors
have proposed that ICSS of the LH can simultaneously activate
ascendant and descendent pathways of the ‘brain reward system’,
whereas natural reward can only recruit some branches originat-
ing in posterior regions [3,85].  Further investigation is required to
establish whether LPBe stimulation can be included in the latter
category.
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