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Introduction

The insular cortex (IC) is a heterogeneous brain area that 
receives visceral sensory and exteroceptive information and 
has been related to various behavioral, sensory, regulatory, 
and adaptive functions (Cechetto and Saper 1987; Cubero 
and Puerto 2000; Sewards 2004; Contreras et al. 2007). For 
example, it participates in the processing (Hanamori et al. 
1998; Ito 1998; Inui et al. 2003) and control (Burkey et al. 
1996; Duncan et al. 1998) of innocuous and nociceptive 
somatosensory stimuli and the affective components that 
accompany them (Peyron et al. 2000; Jasmin et al. 2004).

The IC is also involved in learning related to the reward 
value of food (De Couteau et al. 1997; Ragozzino and 
Kesner 1999; Balleine and Dickinson 2000) and in the 
innate and acquired hedonic evaluation of gustatory stim-
uli (Yamamoto et al. 1989; Kiefer and Orr 1992; Sewards 
2004). Previous studies by our group demonstrated that 
electrical stimulation of the posterior IC induces preference 
for associated gustatory stimuli in discriminative learning 
tasks (Cubero and Puerto 2000).

The IC is interconnected with the parabrachial com-
plex, an important relay in the processing of visceral sen-
sory information (Fulwiler and Saper 1984; De Lacalle and 
Saper 2000). Electrical stimulation of the external lateral 
parabrachial subnucleus (LPBe) induces preferences for 
associated stimuli in taste discrimination learning and con-
ditioned place preference (CPP) tasks (Simón et al. 2007, 
2008). These place preferences can be blocked by admin-
istering naloxone, an opioid antagonist (Simón et al. 2007, 
2011). Numerous opioid receptors have been identified in 
the IC (Mansour et al. 1994; Svingos et al. 1995; Izenwasser  
et al. 1999), and this region has been related to the pro-
cessing of drugs of abuse, such as morphine (Mackey et al. 
1986), amphetamines (Porrino and Lyons 2000; Contreras 
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et al. 2007), cocaine (Wang et al. 1999; Bonson et al. 2002), 
and marihuana (Mathew et al. 1997).

With this background, the aim of this study was to deter-
mine whether the reinforcing effect of electrical stimulation 
of the posterior IC is specific to gustatory stimuli, given its 
visceral character (Cubero and Puerto 2000), or can also be 
obtained with other types of stimulus or task (Spiteri et al. 
2000). For this purpose, we used concurrent conditioned 
place preference (cCPP) tasks in two mazes that differed 
in dimensions, texture, and spatial orientation. The hypoth-
esis was that the rewarding effect of this electrical stimula-
tion would remain consistent in the different experimental 
settings.

Furthermore, given the presence of opioid systems in the 
IC (Mansour et al. 1994; Svingos et al. 1995; Izenwasser 
et al. 1999), a second experiment was designed to verify 
whether the reinforcing effect of stimulation can be medi-
ated by opioid mechanisms and, as in the parabrachial com-
plex, can be blocked by administering naloxone, an opioid 
antagonist.

Methods

Subjects and surgical procedure

Male Wistar rats from the breeding colony at the University 
of Granada, weighing 280–360 g at baseline, were used in 
this study. Animals were housed in individual methacrylate 
cages with water and food ad libitum (Food, A-04, Panlab 
Diets SL, Barcelona, Spain). The laboratory was maintained 
at 20–24 °C with a 12:12 h light/dark cycle. All experimen-
tal procedures were conducted during light periods with 
white noise.

The animals remained under these conditions for an 
adaptation period of at least 7 days before the surgery. All 
behavioral procedures and surgical techniques complied 
with Spanish legislation [Royal Law (1201/2005)] and 
European Community Council Directive (86/609/EEC).

Animals were implanted with a stainless steel grounded 
monopolar electrode (00) (as in Hawkins et al. 1983; Simón 
et al. 2011) in the IC [coordinates: AP = +8.16; L = +5.9; 
V = +2.4; (Paxinos and Watson 1998)] using a stereotaxic 
apparatus (Stoelting Co. Stereotaxic 51600, USA) under 
general anesthesia (Sodium Pentothal, 50 mg/kg, B. Braun 
Medical SA Barcelona, Spain). As prophylactic measures, 
povidone iodine (Betadine, Asta Médica, Madrid, Spain) 
was applied around the implant and 0.1 cc penicillin (Peni-
level, Laboratorio Level, S.A., Barcelona, Spain) was intra-
muscularly injected. There was a post-surgery recovery 
period of at least 10 days.

Experiment 1 used 29 male Wistar rats that were ran-
domly assigned to an implanted group for intracranial 

electrode stimulation in posterior IC (n = 19) or an intact 
control group (n = 10). Experiment 2 used 19 male Wistar 
rats randomly assigned to a stimulated group (n = 14) or 
non-stimulated control group (n = 5).

Equipment

For the electrical stimulation, a continuous current of 
66.6 Hz and 0.1 ms pulse duration was supplied by a CS-20 
stimulator (Cibertec, Madrid, Spain) connected to an ISU 
165 isolation unit (Cibertec, Madrid, Spain) and HM 404-2 
oscilloscope (HAMEG Instrument GMBH, Frankfurt,  
Germany). In order to avoid reaching aversive thresholds, 
an optimal current intensity was established for each animal 
(between 100 and 600 μA). The current was increased until 
a behaviorally observable level of response was achieved 
without producing escape behaviors, involuntary move-
ments, or vocal reactions (Tehovnik 1996). These levels 
were further reduced by 25 % during the behavioral proce-
dure to avoid any potential undesirable effect.

The following two mazes were used (Simón et al. 2007):
Model 1: Rectangular maze (50 × 25 × 30 cm) oriented 

North–South, in which the walls of the two lateral compart-
ments were painted with black and white 1-cm wide stripes 
that were vertical in one compartment and horizontal in 
the other. In one compartment, the floor was synthetic cork 
painted with black and white stripes and in the other it was 
brown cork. The floor of the central area (8 × 25 cm2) was 
white methacrylate, and the walls were a natural wood color.

Model 2: Rectangular maze (70 × 15 × 15 cm) oriented 
East–West, in which the walls of the two lateral compart-
ments were made of black methacrylate, with a round hole 
in one end wall and a square hole in the other. The floor 
was made of cork with transverse or longitudinal incisions, 
respectively. The central area (10 ×  15  cm2) had a metal 
grill floor and the walls were white.

Behavioral procedures

Experiment 1: Concurrent CPP in two different mazes

Phase 1: cCPP in model 1 maze

The cCPP task commenced at 48  h after establishing the 
individual optimal electrical current. After placing each 
animal in the center of the maze, the voluntary stay of the 
animal in one of the two compartments was accompanied 
by the corresponding intracranial electrical stimulation 
(half of the animals received stimulation in one side of the 
maze and the rest in the other), and the stay time in each 
area was recorded. The place in which the animals received 
stimulation was distributed at random. Each session lasted 
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for 10 min. The neurologically intact animals underwent the 
same procedure without stimulation.

This process was conducted in two sessions on consecu-
tive days, but results on the second day alone were consid-
ered for the learning and preference index.

Phase 2: cCPP in model 2 maze

In this phase, we repeated the same conditioning process 
but used a second maze with a new spatial orientation. As in 
the previous phase, the place in which the animals received 
stimulation was distributed at random.

Phase 3: Induction of intracranial electrical  
self-stimulation

Animals implanted in posterior IC underwent a standard 
experimental procedure of intracranial electrical self-
stimulation (Hawkins et al. 1983; Simón et al. 2009, 
2011) in a transparent Plexiglas cage (50 × 55 × 60 cm) 
with a lever press on the front wall, which acted as stimu-
lator switch and was also connected to a pulse counter 
and corresponding oscilloscope. Pressing of this lever 
triggered a train of cathodic rectangular pulses of 250 ms, 
with a frequency of 66.6 Hz and pulse duration of 0.1 ms. 
Current intensities used were always below the threshold 
at which detectable motor or behavioral alterations might 
appear.

Experiment 2: Concurrent CPP in different mazes: effects 
of naloxone

Phase 1: cCPP in model 1 maze

Following the same behavioral procedure as in the first 
phase of experiment 1, the animals were now subjected to 
two cCPP sessions in model 1 maze (Simón et al. 2007). In 
this case, and applying the behavioral criteria (see Results) 
established in previous experiments (Simón et al. 2007, 
2009, 2011), the animals that showed no preference for 
either compartment after the two initial sessions were con-
sidered as the “neutral” control group and received no fur-
ther electrical stimulation in subsequent phases. The place 
in which the animals received stimulation was established 
at random.

Phase 2: Naloxone administration and cCPP  
in model 1 maze

At 48 h after ending phase 1, all animals received a subcu-
taneous (sc) injection of naloxone (4 mg/ml/kg) (Naloxone 
Hydrochloride, Lab Sigma, St Louis, USA) at 20 min before 
undergoing a new cCPP session.

Phase 3: Naloxone administration and cCPP  
in model 2 maze

At 48 h after ending phase 2, all animals received a new sc 
injection of naloxone (4 mg/ml/kg) at 20 min before a new 
cCPP session but in Model 2 maze, which has a different 
space orientation (from N–S to E–W), in order to examine 
the possible effect on learning of the previous phases of the 
experiment. In this phase, as in phase 1, the place in which 
the animals received stimulation was established at random.

Phase 4: cCpp in model 2 maze

At 48 h after ending phase 3, the animals underwent a fur-
ther cCPP session in Model 2 maze but without naloxone 
administration.

Phase 5: Induction of intracranial electrical  
self-stimulation

At 48  h after ending phase 4, the IC-implanted animals 
underwent a standard operant procedure of intracranial elec-
trical self-stimulation similar to that reported in experiment 
1 (phase 3).

Histology

After the behavioral tests, the animals were anesthetized 
and a small electrolytic lesion was made (0.3 mA/5 s), fol-
lowed by intracardiac perfusion of isotonic saline and 10 % 
formaldehyde solution. Brains were extracted and kept in 
10  % formaldehyde until sectioned in 60-micron coronal 
slices. These were stained with Cresyl Violet, examined 
under a stereoscopic magnifying glass, and photographed 
(VMZ-4F magnifying glass and PM-6 camera, Olympus, 
Tokyo, Japan) (see Fig. 1).

Statistical analysis

Statistical version 6.0 (Statsoft Inc, OK) was used for the 
statistical analyses. Pearson’s correlation was used to ana-
lyze differential data from experiment 1 (difference between 
stay time in electrical stimulated compartment and stay 
time in non-stimulated compartment, expressed in seconds) 
obtained on the second cCPP day in Model 1 and Model 
2 mazes. For experiment 2 data, Pearson’s correlation was 
used to classify the animals as a function of their behavio-
ral effects (behavioral consistency of the electrical stimula-
tion), and one-way ANOVA was then used to analyze the 
effects of stimulation and naloxone administration in the 
different groups and mazes. Finally, we used a two-factor 
mixed ANOVA (group × substance), with group (positive, 
negative, control) as between-group factor and substance 
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(naloxone vs. no naloxone) as repeated measure in order 
to reduce the number of animals required for this experi-
ment. Specifically, two-way mixed ANOVAs were used to 
compare the effects of learning retention and naloxone in 
each maze [group × substance in maze 1; group × maze 
(under effects of naloxone) and group × substance in maze 
2]. After each ANOVA, the Newman–Keuls test was applied 
for post hoc comparisons.

Results

Experiment 1: Concurrent conditioned place preference

In the IC-implanted group, a positive correlation was found 
between the concurrent conditioned place preference in the 
first and second mazes (r =  0.531; p  <  .019) (see Fig.  2 
left). In the intact control group, an alternating or indiffer-
ent behavior was observed, with no significant correlation 
between the data obtained in the two mazes (r = −0.619; 
p < .6408) (see Fig. 2 right).

As shown at other brain sites and following the behav-
ioral criteria established in previous studies (Simón et al. 
2007, 2009, 2011), animals remaining >50 % of total time 
in the stimulated compartment were classified as “positive” 
(7 animals), those remaining there for <30 % of total time as 
“negative” (6 animals) and those remaining for 30–50 % of 
total time or showing an alternating behavior between ses-
sions as “neutral” (6 animals). Mean stay times in the stimu-
lated area (over a maximum of 10  min) for these groups 
during both learning sessions in both mazes were 480.786 s 
for the positive group; 57.5  s for the negative group, and 
271.333 s for the neutral group.

Intracranial electrical self-stimulation of posterior IC

The intracranial electrical self-stimulation test in both 
experiments showed that IC-electrically stimulated animals 
fail to learn the lever-press task (Cubero and Puerto 2000), 
unlike animals stimulated in some other brain regions, such 
as the lateral hypothalamus (Hawkins et al. 1983; Simón 
et al. 2009, 2011). It is possible that the induction of IC 

Fig. 1   Coronal section of the 
brain of a representative animal 
from the “positive” group, con-
firming the localization of the 
electrode in the posterior insular 
cortex. AAV anterior amyg-
daloid area, ventral part, PIC 
posterior insular cortex, CPu 
Caudate-Putamen, S2 second-
ary somatosensory cortex, VP 
ventral pallidum

Fig. 2   Correlation of differential values (time in compartment asso-
ciated with electrical stimulation of the posterior insular cortex—time 
in the non-stimulated compartment, expressed in seconds) obtained 

in the IC-stimulated animals (left graph) and in the non-stimulated 
intact control group (right graph) on the second day of concurrent 
conditioned place preference in Model 1 and Model 2 mazes
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self-stimulation may require greater experimental effort or 
different rewarding brain self-stimulation procedures.

Experiment 2: cCPP in different mazes: effects of naloxone 
administration and learning retention

Phase 1: cCPP in Model 1 maze

The performance of the electrically stimulated animals 
during the two conditioning sessions showed a significant 
correlation between them (r = 0.871, p < .001). Applying 
the above-reported behavioral criteria (Simón et al. 2007, 
2009, 2011) to the data obtained in the cCPP sessions, three 
animal groups were formed according to their mean stay 
time in the stimulated compartment: positive group (n = 7) 
539.35 s; negative group (n = 7) 91.86 s; and neutral group 
(n =  5) 193.3  s. As shown in Fig.  3, the mean length of 
stay in the stimulation-associated compartment in the two 
CPP sessions (learning index) showed significant differ-
ences among the three groups (F(2, 16) = 151.46, one-way 
ANOVA; p < .001).

Phase 2: Effect of naloxone on cCPP in model 1 maze

After naloxone administration, two-way mixed ANOVA 
showed no main effect of substance (F(1, 16)  =  0.072, 

p < .792) or of group x substance interaction (F(2, 16) = 1.381, 
p  <  .2796), while the main group effect was significant  
(F(2, 16) = 35.68, p < .001). Post hoc comparative analysis of 
the main effect, group factor, showed significant differences 
among the groups (Newman–Keuls test, p < .05).

Phase 3: Effect of naloxone on cCPP in the model 2 maze

After naloxone administration, one-way ANOVA showed no 
difference among groups (F(2, 16) = 1.119, p < .35). Compar-
ison between these results and those obtained after naloxone 
administration in the Model 1 maze, using a two-way mixed 
ANOVA (group × maze), showed a significant effect of the 
interaction (F(2, 16) = 7.667, p < .0046) (see Fig. 4). Post hoc 
comparisons showed significant differences in the positive 
group as a function of the maze used (Model 1 vs. Model 
2, p = .015), although no such differences were observed in 
the other groups (negative group, p = .2823; neutral group, 
p = .6204).

Phase 4: cCPP in model 2 maze

One-way ANOVA showed intergroup differences after IC 
stimulations (F(2, 16)  =  18.683, p  <  .001), as in phase 1. 
Two-way mixed ANOVA (group × substance) results for 
the effect of naloxone administration vs. no naloxone on 

Fig. 3   Duration of stay (in sec-
onds) by experimental groups of 
experiment 2, in the compart-
ment associated with electrical 
stimulation of the insular cortex 
(mean of two spatial learning 
tests) in Model 1 maze, follow-
ing the behavioral criteria estab-
lished in experiment 1. Asterisks 
indicate significant (p < .01) 
differences among groups

Fig. 4   Duration of stay  
(in seconds) by groups of exper-
iment 2 in Model 1 and Model 
2 maze compartment associated 
with electrical stimulation of 
the insular cortex after naloxone 
administration
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the cCPP in Model 2 maze showed no main group effect 
(F(2, 16) = 2.467, p < .116) but a significant main effect of 
substance (F(1, 16) = 11.463, p <  .01) and a group ×  sub-
stance interaction (F(2, 16) = 11.846, p < .001) (see Fig. 5). 
Post hoc comparisons showed significant differences in the 
positive group as a function of naloxone administration (Nx 
vs. No Nx, p = .00065), although no such differences were 
observed in the other groups (negative group, p =  .3958; 
neutral group, p = .228).

Discussion

In this study, electrical stimulation of the posterior IC 
induced place-associated reinforcing effects in different ani-
mals that were consistently rewarding (“positive” group) or 
aversive (“negative group”) or were inconsistent (“neutral 
group)” and led to alternating place preference behavior, as 
previously reported for the parabrachial complex (Simón  
et al. 2007, 2008, 2009).

These effects appear to be produced by the electrical 
stimulation of this cortical region, given that the neurologi-
cally intact animal groups showed no consistent preference 
behaviors for any area of the mazes. Moreover, the place 
preference effect of IC activation appears to be independent 
of specific internal (different mazes) or external (different 
spatial orientations) cues of the task and independent of the 
sensory qualities of the associated stimulus, that is, gusta-
tory (Cubero and Puerto 2000) or environmental (present 
data).

The hedonic representation of different somatosensory 
and gustatory stimuli has been localized in the posterior 
IC (Sewards and Sewards 2001; Sewards, 2004), where it 
is likely to converge with visceral information (Cechetto 
and Saper 1987; Hanamori et al. 1998; Ogawa and Wang 
2002) that may be processed through its interconnections 
with the parabrachial complex (Fulwiler and Saper 1984; 
De Lacalle and Saper 2000; Jasmin et al. 2004). Thus, 

electrical stimulation of the vagus nerve (Ito 1998) or esoph-
agus (Hecht et al. 1999) produces activation of the IC, and 
conversely, electrical stimulation of the IC induces changes 
in contraction and gastric tone amplitude (Aleksandrov  
et al. 1996). Stimulation of the posterior IC may activate 
a rewarding visceral system, developing preference behav-
iors similar to those produced by the association of a gusta-
tory stimulus with the metabolic benefits of a food product 
(Puerto et al. 1976). In other words, electrical stimulation of 
the LPBe nucleus and IC may act as an effective substitute 
for a visceral stimulus and/or its motivational consequences 
in reinforcing gustatory or place discrimination learning 
tests (Cubero and Puerto 2000; Simón et al. 2007, 2008).

Alternatively, the preference behaviors observed may 
have been due to activation by the electrical stimulation of 
some of the neural circuits involved in incentive attribu-
tion processes. The IC is involved not only in processing 
information on the reward value of food (De Couteau et al. 
1997; Ragozzino and Kesner 1999; Balleine and Dickinson 
2000), but also in tasks related to the anticipation of future 
reward (Schoenbaum et al. 1998; Kirsch et al. 2003) and to 
expected changes in its magnitude (Gallagher et al. 1999; 
Gottfried et al. 2003; Kirsch et al. 2003).

The above theoretical proposals may also be applicable 
to our “negative” experimental group, which tended to avoid 
areas associated with electrical stimulation of the IC. Electri-
cal stimulation may act as a substitute for a noxious visceral 
stimulus (Gallo et al. 1988; Agüero et al. 1993), for example, 
the administration of a toxic/aversive agent (Contreras et al. 
2007). In fact, the IC is known to participate in the process-
ing of nociceptive (Hanamori et al. 1998; Ito 1998; Peyron 
et al. 2000) and aversive information induced by the visceral 
administration of lithium chloride, morphine (Mackey et al. 
1986; Contreras et al. 2007), and other substances of abuse 
(Wang et al. 1999; Sell et al. 2000; Bonson et al. 2002). 
The electrical stimulation may have produced a change in 
incentive attribution, making the associated stimuli aversive 
for the animal and explaining the behaviors of avoidance 

Fig. 5   Effect of naloxone 
administration (Nx vs. No Nx) 
on the duration of stay (in sec-
onds) by groups of experiment 2 
in the Model 2 maze compart-
ment associated with electrical 
stimulation of the insular cortex
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or aversion to the stimulation area. In fact, the IC has been 
implicated in various negative motivational-affective pro-
cesses (Jasmin et al. 2004), including: the facial expres-
sion of fear (Wright et al. 2003) or disgust (Phillips et al.  
1997), the recall of situations that generate anxiety (Liotti 
et al. 2000) or sadness (Lane et al. 1997), and the innate or 
learned hedonic evaluation of gustatory stimuli (Yamamoto 
et al. 1989; Kiefer and Orr 1992; Sewards 2004).

The fact that electrical stimulation of the IC from the same 
stereotaxic coordinates generates either preferences or aver-
sions suggests that the systems processing rewarding and 
aversive motivational information may be anatomically very 
close together (Hoebel 1976; Salamone 1994; O’Doherty 
et al. 2001). In this way, electrical stimulation in the “neu-
tral” animals may have simultaneously activated cells of 
neighboring neuronal populations that, respectively, pro-
cess appetitive or aversive information, as observed in other 
brain regions (Yamamoto et al. 1989; Moufid-Bellancourt  
et al. 1996; O’Doherty et al. 2001; Ogawa and Wang 2002). 
For example, stimulation of the lateral hypothalamus (LH) 
can induce self-stimulation or aversion and increased  
water or food intake (Hawkins et al. 1983; Gratton and Wise 
1983), and periaqueductal gray matter stimulation induced 
pain or analgesia (Mayer et al. 1971; Prado and Roberts 
1985).

However, we have not yet been able to develop intrac-
ranial self-stimulation behaviors by activation of the IC 
(Cubero and Puerto 2000), which has been achieved by the 
activation of prefrontal regions, among many others (Phillips  
and Fibiger 1989; McGregor and Atrens 1991). Neverthe-
less, our results on the effects of IC electrical brain stimu-
lation are compatible with the dissociation obtained with 
drugs such as lysergic acid diethylamide (LSD), buspirone, 
and pentylenetetrazole, which can induce place preferences 
but not self-administration behaviors, and conversely, with 
drugs such as pentobarbital or phencyclidine, which sustain 
self-administration behaviors but do not induce CPP (Bardo 
and Bevins 2000 for a review). Our finding is also consistent 
with immunohistochemical evidence that intracranial self-
stimulation of the LH does not induce activation of the IC 
(Arvanitogiannis et al. 1997; Flores et al. 1997), despite the 
anatomical connections between them (Öngür et al. 1998). 
The results obtained in this and other studies (Cubero and 
Puerto 2000) suggest that electrical stimulation of the pos-
terior IC may not be able to elicit self-stimulation behaviors 
or at least not to the degree observed after LH stimulation 
(Hawkins et al. 1983; Simón et al. 2009, 2011). Hence, 
we may be acting on different reward systems (Robertson 
1989; Waraczynsky 2006) with distinct physiological and 
even neurochemical characteristics. Thus, our group dem-
onstrated that the administration of opiate antagonists does 
not interfere with the CPP induced by LH electrical stimula-
tion but blocks the CPP induced by stimulation of the LPBe 

nucleus, which is anatomically connected to the IC, in which 
self-stimulation has also not yet been achieved (Simón et al.  
2011). Nevertheless, we cannot rule out the induction of 
alternative rewarding behaviors, such as a low rate of lever-
press self-stimulation (Vale-Martinez et al. 1999).

In our second experiment, administration of the opiate 
antagonist naloxone blocked the rewarding effect of pos-
terior IC electrical stimulation when the learning task was 
conducted in a new maze but not when it was conducted in 
the same maze as used for the initial learning. Analogous 
results have been obtained by administering drugs of abuse 
such as heroin or cocaine (McFarland and Ettenberg 1998; 
Mueller and Stewart 2000). Our finding cannot be attrib-
uted to an extinction of the stimulation effect because, in 
the absence of naloxone, the preference of animals in the 
“positive” group for a place associated with IC stimula-
tion did not differ between the two mazes. It also does not 
appear to result from a general deficiency in the capacity 
to associate stimuli as an aversive or motor effect of nalox-
one, because no significant behavioral changes between 
the mazes were observed in the “negative” or “neutral” 
groups.

Using different experimental procedures, the IC has been 
shown to be involved in: learning processes (Nerad et al. 
1996; Paredes et al. 2000; Contreras et al. 2007); the asso-
ciation between contexts and natural or artificial reinforcers 
(Schroeder et al. 2001; Volkow et al. 2006); and the effects 
of drugs of abuse such as cocaine, morphine, heroin, nico-
tine, or marihuana (Mathew et al. 1997; Sell et al. 2000; 
Bonson et al. 2002; Naqvi et al. 2007). The present find-
ings demonstrate that the physiological electrical stimula-
tion of this cortical region, which has a high density of κ, δ, 
and μ opioid receptors (Mansour et al. 1994; Svingos et al. 
1995; Izenwasser et al. 1999), can activate some of the brain 
rewarding/aversion processes mediated by opioid systems 
and that this activation can be associated with somatosen-
sory or contextual stimuli.

The IC has also been implicated in some other effects of 
opiates/opioids (Mackey et al. 1986; Burkey et al. 1996). 
Thus, behavioral and pharmacological studies have related 
the IC, among other brain regions, to the analgesic effect 
induced by morphine and other μ-opioid antagonists  
(Burkey et al. 1996; Casey et al. 2000; Wise et al. 2002). 
Likewise, both opioid-exogenous and opioid-endogenous 
substances have been considered as rewarding mechanisms 
that can induce CPP (Herz and Spanagel 1995; Paredes 
et al. 2000; Bodnar and Hadjimarkou 2003; Gerrits et al. 
2003) and self-administration behavior in laboratory ani-
mals (Gerrits et al. 2003). Finally, the results obtained in the 
“positive” groups (Cubero and Puerto 2000; and this paper) 
are compatible with those reported after kindling seizure 
disorders of the granular IC (Paredes et al. 2000) or after 
morphine administration (Blokhina et al. 2000; Parker et al. 
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2002; Kawasaki et al. 2005). In short, it is possible that the 
rewarding effect of the electrical stimulation of this region 
mobilizes opioid systems that could be blocked by naloxone 
administration.

Naloxone administration, in a different maze (model 2),  
blocked the rewarding effect of stimulation (“positive” 
animals in phase 3) and generated avoidance or aversion 
behaviors toward the area associated with stimulation, as 
also found after the administration of low doses of nalox-
one to animals pre-treated with opiates (McDonald et al. 
1997; Blokhina et al. 2000; Parker et al. 2002). In fact, 
the IC (along with regions such as the lateral parabrachial 
complex) has been implicated in the processing of aver-
sive properties of morphine and other substances of abuse 
(Bechara et al. 1993; Mackey et al. 1986) and in the with-
drawal syndrome (Nader et al. 1996; Georges et al. 2000; 
Lowe et al. 2002). Thus, damage in the IC has been reported 
to inhibit the craving of smokers and the need for tobacco 
(Naqvi et al. 2007), and conversely, IC activation has been 
observed during craving periods in subjects addicted to 
drugs of abuse (Wang et al. 1999; Sell et al. 2000; Bonson 
et al. 2002) and even during food craving episodes (Small  
et al. 2001; Pelchat et al. 2004).

Finally, the IC includes κ receptors among its opioid 
mechanisms (Izenwasser et al. 1999), and agonists of these 
receptors were not able to develop self-administration 
behaviors (Mansour et al. 1995) but could generate taste 
and place aversions in rodents (Mucha and Herz 1985; 
Herz and Spanagel 1995). Activation of this opioid system 
may explain the tendency observed in the “negative” group 
for naloxone to reduce the aversive effect of stimulation, 
although significance was not reached, possibly due to the 
small sample size.

In summary, the present results demonstrate that electrical  
stimulation of the posterior IC induces consistent prefer-
ence or aversive behaviors in concurrent conditioned place 
preference tests, apparently acting as a substitute for bio-
logical processes that have yet to be determined. According  
to the behavioral criteria established in this and previous 
parabrachial complex experiments (Simón et al. 2007, 
2009), electrical stimulation habitually generates three  
animal groups: “positive” animals, which consistently prefer 
the stimulated area in a rectangular maze; “negative” animals,  
which avoid the stimulated area; and “neutral” animals, 
which alternate between the different areas of the maze 
and show no consistent behavior. Naloxone administration 
impairs the rewarding effect of stimulation, suggesting the 
possible participation of opioid mechanisms. However, this 
learning blockage is only shown when the task is conducted 
in a novel context and not when it is carried out in the same 
maze as that in which the initial preferences were acquired, 
where the animals appear to retain the rewarding effects of 
the stimulation.
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