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The problem of ion transport in porous media is fundamental to many practical applications
such as Capacitive Deionization, where ions are electrostatically attracted to a porous electrode and
stored in the Electric Double Layer, leaving a partially desalinated solution. These electrodes are
functionalized to achieve maximum efficiency: it is intended that for each depleted electron one ion is
removed. For this purpose, the surface is coated with a polyelectrolyte layer of the same sign as the
electronic charge. In this work, the movement of ions from the solution to the soft or polyelectrolyte-
coated electrodes is studied. For this purpose, a 1-dimensional model is used to study the electric
and diffusive fluxes produced by the application of an electric field and the storage of these ions
in the micropores. The partial differential equations governing the process are numerically solved
using the explicit Euler method. The results of the model indicate that the number of ions removed
using soft electrodes is approximately 15 % greater than that achieved with bare electrodes. Ion
adsorption kinetics show that coated electrodes provide slightly slower adsorption compared to bare
electrodes. Regarding the charging time of the micropores, it can be seen that it is a faster process
(characteristic time of 100 seconds) compared to the time in which the ion concentration reaches
equilibrium: electromigration is faster than diffusion. Comparing the situations with and without
polyelectrolyte coating, it is observed that saturation in the micropores is reached earlier when the
electrodes are coated. Concerning the cell geometry, it has been found that the characteristic time
is proportional to the length of the spacer and inversely proportional to the length of the electrodes.
With regard to microporosity, the rate of the process is approximately constant, irrespective of the
number of micropores. Moreover, the number of adsorbed ions strongly depends on their initial
concentration. Finally, the analysis of the ionic diffusion coefficient is determinant in the kinetics
of the process: taking into account the tortuosity of the porous electrode, which directly affects the
diffusion in the channel, is fundamental to obtain model predictions close to reality.

I. INTRODUCTION

Capacitive Deionization (CDI) is considered one of the
most attractive charge transfer process-based techniques
for next-generation water treatment and purification. It
has become a focus of attention in several studies [1–4]
since 1990s due to the great possibilities of CDI to turn
brackish water into fresh water by using small amounts
of energy and its ionic separation capacity. In the last
10 years, there has been great progress thanks to the
development of new materials and methods and the ex-
istence of advanced theoretical models that suggest ways
for improvement. The key to the method lies in the ca-
pacitive property of the solid-liquid interface (typically
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porous carbon)/ionic solution. It is based on a simple
and well-founded procedure from the physical point of
view: it is sufficient to apply a small potential differ-
ence to a pair of porous electrodes so that many of the
species present are removed from an ionic solution, due
to the electrostatic attraction towards the corresponding
electrode.

To understand the basis of CDI, let us imagine a pair
of electrodes immersed in an electrolyte solution, and
to which a potential difference (typically around 1 V to
avoid water electrolysis) is applied externally. The pores
of the electrodes acquire electronic charge, and thus an
Electric Double Layer (EDL) will form that shields the
surface charge. Ions removed from the solution and in-
corporated into the EDL render the solution, therefore,
partially deionized or desalinated. It can then be said
that capacitive desalination of the solution has been gen-
erated. This effect is encouraged by the extremely large
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surface area of the carbon electrodes. Because of its
porous characteristics, 1 g of carbon can have a surface
area of around 1500 m2. Nevertheless, some studies show
that only 10% of this surface is employed in the storage
of ions [5]. The distribution of pores and the accessibility
of these pores appear to be of significant importance in
determining the efficiency of ion adsorption [6]. For this
reason, we have proposed to study the transport of ions
to the porous electrode and the physical phenomena that
support it.

A number of studies attempt to achieve two main goals.
On the one hand, innovative models are being developed
to explain the dynamics of ions in CDI cells. This is a
difficult aim because of the differences between the size
scales of the electrodes (mm), macropores (µm), and mi-
cropores (nm) [7, 8]. Apart from that, many researchers
have proposed modified methods to improve the effi-
ciency of the CDI process. These upgrades involve the
use of ionic exchange membranes [9, 10], new materi-
als for electrodes [11], including ordered mesoporous car-
bon [12, 13], complex geometries for cells [14–16], putting
aside the traditional flow-between architecture, or even
using movable electrodes [17].

Ion adsorption occurs at the interface between the
charged solid and the surrounding dilution. In other
words, the ions are removed from the solution when the
electrical double layer is built on the carbon porous sur-
face. Indeed, the counterions are attracted to the surface,
while the coions are repelled, resulting in an increase in
the concentration of the former and a decrease in the lat-
ter. At low charge (low surface potential) the amount
of ions attracted is comparable with the amount of those
repelled. In this case, the ionic solution will not be desali-
nated. However, at higher surface potentials, coion con-
centration nearly drops to zero and more counterions are
attracted to compensate for the surface charge, resulting
in an asymmetry of both ion distributions. Therefore,
there is a net adsorption of the salt in the dilution and
hence desalination takes place. The phenomenon is re-
versed at the negative electrode, where a net electrical
charge of a different sign is stored. The use of ion ex-
change membranes or polyelectrolyte coating is a com-
mon feature of the capacitive deionization. They block
the expulsion of coions, and enhance the counterion en-
trance in such away that the counterions concentration
increases comparing to the case of bare electrodes and
therefore the efficiency of the systems.

These polyelectrolyte coated electrodes are called Soft
Electrodes. Unfortunately, there have not been many
theoretical studies on the effects of ionic transport using
soft layers. However, previous results [18–22] seem to
indicate that soft electrodes are highly effective in the
CDI process when compared to bare electrodes. There
are even fewer studies that propose models describing the
dynamics in CDI cells that use soft electrodes.

This is the starting point for this work, whose objec-
tives are to provide a theoretical description of the dy-
namics of the ions inside the cell and the polyelectrolyte

coated pores, to solve the proposed equations with nu-
merical methods, and to find the main parameters that
optimize the CDI process.

II. THEORY

In order to predict the dynamic response of the sys-
tem, the macroscopic cell architecture is reduced to a 1-
dimensional model (Figure 1a). It comprises two porous
electrodes separated by a spacer filled with a solution
of two monovalent ionic species. The length of each of
the electrodes is denoted as le, and ls denotes the spacer
length.

Nevertheless, the microscopic structure within the elec-
trodes is complex because of the presence of multiple pore
scales. First, carbon is full of pores ranging in size be-
tween 50 nm and 1 µm, known as “macropores”. Further-
more, the material contains “micropores”, which are ap-
proximately 1 nm in size. Figure 1b provides a schematic
representation of this structure. These micropores can
be considered as the regions where the EDL is formed,
and a volumetric charge density caused by excess coun-
terions can be found. As a counterpart, the spacer and
macropores are large enough to avoid surface effects, thus
maintaining electroneutrality.

The microscopic geometry of the electrodes can be
summarized using two parameters: macroporosity pmA,
and microporosity pmi. These parameters represent the
volumes of the macropores and micropores, respectively,
divided by the total volume of the electrodes. Conse-
quently, their values are between zero and one, and their
sum must be less than one. It should be noted that the
spacer is entirely occupied by macropores (pmA = 1),
and therefore, there are no micropores present (pmi = 0).
With these considerations, the equations below are valid
in any region of space, both electrodes and spacer.

Simplifications are required regarding the EDL, which
can be achieved by introducing the modified Donnan
model (mD model). This model assumes that the EDLs
overlap inside the micropores as the thickness of the mi-
cropores is typically 2-3 nm for ionic concentrations of 10
mM or 20 mM of sodium chloride, NaCl, while the size
of the micropore is around 1 nm. Therefore, the poten-
tial inside the micropores is assumed to be constant and
equal to ∆φD (Donnan potential). These considerations
allow us to decompose the potential, φ, at any position
within the liquid phase in the cell as

φ = Vapp − (∆φD +∆φst)VT . (1)

In equation (1), ∆φst represents the non-dimensional
potential drop across the Stern layer and ∆φD is the
potential difference between micropores and macropores.
VT = e/kBT is the thermal voltage, being kB the Boltz-
mann constant, e the electron charge and T the temper-
ature.
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FIG. 1: Multiscale scheme of the CDI cell used for the model and simulation results of this study. (a) The cell
consists of two carbon porous electrodes, each with a length of le, separated by a spacer of length ls. The applied
voltage is denoted as Vapp. The height of the cell is not taken into account. (b) The porous structure of the carbon
is made up of macropores, with a diameter between 50 nm and a few micrometers, and micropores, with a diameter
of approximately 2 nm. The electrode surface, including that of the macropores, can be coated with a charged
polyelectrolyte layer (green). (c) Within this layer, the concentration can be simulated by assuming a
50-nanometer-wide polyelectrolyte coating, obtaining a distribution that can be approximated to a Heaviside
function: the counterion concentration remains constant and increases compared to the concentration in the bulk of
the macropore. The opposite is true for coions.

A. Polyelectrolyte layer model

It is assumed that the polyelectrolyte layer is lining the
walls of the macropores. As a result, ions are required
to pass through this layer when moving from macro to
micropores (as shown in Figure 1b). This layer facilitates
the passage of counterions into the micropores while pre-
venting the outflow of coions from the micropores into

the solution when the Electrical Double Layer is formed.
This ensures that, for each deposited charge on the sur-
face of the electrode, one counterion will be removed from
the solution, increasing the process efficiency to its ideal
value of 1. The polyelectrolyte, whose polymer chains
have charged repeating units, is permeable to the fluids
and to the ions. However, in order to maintain electric
neutrality due to the charged monomer groups, ions with
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opposite charges will be distributed in the region occu-
pied by the polymer chains. Therefore, it is possible to
conceive a model for the polyelectrolyte coating layer as
a uniformly charged volumetric region with a charge den-
sity ρpol, which is permeable to ion flux. This region is
known as the soft layer. To obtain the electric potential,
φ, and ion concentration, c, close to the soft layer, the
Poisson equation must be solved. Nevertheless, it must
be split into two regions, inside the polyelectrolyte and
beyond:{

∇2ϕ = − 1
εε0

ρsol outside the soft layer,

∇2ϕ = − 1
εε0

(ρsol + ρpol) inside the soft layer,
(2)

where the solution charge density, ρsol, coming from the
accumulation or depletion of ions, is given by

ρsol = F (z1c1,mA + z2c2,mA) . (3)

Here we assume a binary electrolyte, so that k = 1, 2 rep-
resents counterions and coions in solution, respectively.
Although the scope of this paper is limited to binary,
symmetric and monovalent electrolytes, at this stage we
shall present the model in a way that it allows for any
number of ionic species, as this might be useful elsewhere.
In that way, zk is the elemental charge of the ion type k
and ck,mA is the concentration in macropores. F stands
for the Faraday constant.

A BVP4C MATLAB routine was developed to solve
equations (2) and (3) considering a Boltzmann distribu-
tion for the ions in the soft layer with appropriate bound-
ary conditions. Figure 1(c) shows the results for a given
KCl concentration (50 mM) bathing a region coated with
a soft layer.

It should be noted that the concentration of coions
and counterions within the soft region, cSOFT

k , remain
relatively constant as long as the thickness of the poly-
electrolyte layer is greater than that of the EDL. Conse-
quently, to simplify the calculations, these amounts can
be expressed as a multiple of the equilibrium concentra-
tion, cmA:

cSOFT
1 = acmA, c

SOFT
2 = bcmA. (4)

In the previous relation, cSOFT
1 and cSOFT

2 are the
concentrations of counterions and coions, respectively.
Therefore, it is necessary that a ≥ 1 and 0 < b ≤ 1.

B. 1D Model for the ionic transport

The starting point is the general form of the mass
transport equation for an ion [23]:

∂ck,total
∂t

= −∇ · jk.

In this model, both electric and diffusive terms contribute
to the ionic flow. We use the conservation of ionic species

during ion transport between micropores and macrop-
ores. Then we get

pmA
∂ck,mA

∂t
+pmi

∂ck,mi

∂t
= zk

∂

∂x

(
DkpmAc

SOFT
k

∂φ̃

∂x

)
+

∂

∂x

(
DkpmA

∂ck,mA

∂x

)
, (5)

where we recall that k = 1, 2 represents counterions and
coions in solution respectively, Dk is the diffusion coeffi-
cient, zk is the elemental charge of the ion, ck,mi is the
concentration in micropores and ck is the concentration
in macropores. Furthermore, φ̃ is the non-dimensional
potential associated with the one in the equation (1)

φ̃ =
φ

VT
=

eφ

kBT
. (6)

In the sequel a symmetric and monovalent electrolyte
will be considered. What this means is that k = 1, 2, and
z1 = 1, z2 = −1 and D1 is equal to D2. One example of
this kind of electrolyte is potassium chloride, KCl, where
DK = 1.96010−9 m2/s and DCl = 2.03010−9 m2/s [24].
Finally, as mentioned above, the macropores and the

spacer are large enough to consider an electronneutrality
situation. Thus, we set c := c1,mA = c2,mA. Then, using
(4), the pair of equations (5) can be reduced to

pmA
∂c

∂t
+ pmi

∂c1,mi

∂t
= DpmA

∂

∂x

(
ac

∂φ̃

∂x
+

∂c

∂x

)
, (7)

pmA
∂c

∂t
+ pmi

∂c2,mi

∂t
= −DpmA

∂

∂x

(
bc
∂φ̃

∂x
− ∂c

∂x

)
. (8)

By adding and subtracting equations (7) and (8), we get
to

2pmA
∂c

∂t
+ pmi

∂ (c1,mi + c2,mi)

∂t
=

= DpmA
∂

∂x

[
(a− b)c

∂φ̃

∂x
+ 2

∂c

∂x

]
, (9)

pmi
∂ (c1,mi − c2,mi)

∂t
= (a+ b)DpmA

∂

∂x

(
c
∂φ̃

∂x

)
. (10)

The term σmi := c1,mi − c2,mi multiplied by the Fara-
day constant F represents the charge density accumu-
lated in micropores. Let us ellaborate on the expression
c1,mi + c2,mi. Assuming equilibrium between micropores
and macropores, the following relation can be proposed
for their concentrations:

ck,mi = c exp (−zk∆φD + µk,att), (11)

where µk,att is a non-dimensional potential. This po-
tential is introduced as an improvement to the modified
Donnan model [3] over the basic one -see e.g. [9, 25, 26].
It represents the natural tendency of ions to enter micro-
pores due to non-electrostatic interactions. These inter-
actions involve both the electrode surface and the ions in
the solution, being typically of chemical nature.
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Furthermore, it is possible to establish a connection
between the charge density and the capacitance of the
Stern layer as follows:

σmi = −Cst,vol∆φstVT

F
. (12)

The equation includes the volumetric micropore Stern
layer capacitance, denoted as Cst,vol.
Considering this, and remembering that the electrolyte

is symmetric (thus µ := µ1,att = µ2,att), the term c1,mi +
c2,mi will read

c1,mi+c2,mi = 2ceµcosh (∆φD) = 2ceµ
√
1 + sinh2 (∆φD)

= 2ceµ
√
1 +

( σmi

2ceµ

)2

=
√
4c2e2µ + σ2

mi. (13)

Finally, the PDE system that describes the ion distri-
bution in the CDI cell is

2pmA
∂c

∂t
+ pmi

∂
√
4c2e2µ + σ2

mi

∂t

= DpmA
∂

∂x

[
(a− b)c

∂φ̃

∂x
+ 2

∂c

∂x

]
, (14)

pmi
∂σmi

∂t
= (a+ b)DpmA

∂

∂x

(
c
∂φ̃

∂x

)
, (15)

φ̃ =
Vapp

VT
+arcsinh

( σmi

2ceµ

)
+

Fσmi

(Cst,vol,0 + ασ2
mi)VT

, (16)

where the unknowns are c, σmi and φ̃.
A charge-dependent Stern layer capacitance has been

considered [3], expressed as Cst,vol = Cst,vol,0 + ασ2
mi

where Cst,vol,0 is the capacitance in the absence of charge,
and α is a parameter which represents the deviation from
the linear character of the Stern capacity when surfaces
are charged.

The initial and boundary conditions for the concentra-
tion c, the charge density σmi and the non-dimensional
potential φ̃ are given as follows (see Figure 2):

• The initial ion concentration must be uniform
throughout the cell. Furthermore, there is zero
charge density in micropores at t = 0,

c(x, t = 0) = c0, σmi(x, t = 0) = 0. (17)

• The charge density is zero throughout the spacer
as there are no micropores in this region.

• The potential at the electrode ends remains con-
stant, with a value of Vapp/2VT at the left (cathode)

electrode end and −Vapp/2VT at the right (anode)
electrode end. Moreover, the electric potential in
the spacer between the electrodes decays linearly,
as no charge accumulates in this region.

• Ionic concentrations and electric potential must
be continuous. As there is no net charge in the
spacer, the potential decreases linearly from φ (l−e )
to φ ((le + ls)

+).

• Since the electric and diffusive fluxes are zero at
the ends of the cell, then

∂c

∂x
(x = 0, t) =

∂c

∂x
(x = ls + 2le, t) = 0, (18)

∂φ̃

∂x
(x = 0, t) =

∂φ̃

∂x
(x = ls + 2le, t) = 0, (19)

• The electric and diffusive fluxes must remain con-
tinuous across the interfaces that separate the elec-
trodes and spacer region. As the available volumes
for concentrations in the spacer and the electrodes
differ, the fluxes must be multiplied by the porosity,

pmA
∂c

∂x

(
x = l−e , t

)
=

∂c

∂x

(
x = l+e , t

)
, (20)

pmA
∂φ

∂x

(
x = l−e , t

)
=

∂φ

∂x

(
x = l+e , t

)
, (21)

∂c

∂x

(
x = (le + ls)

−, t
)
= pmA

∂c

∂x

(
x = (le + ls)

+, t
)
,

(22)

∂φ

∂x

(
x = (le + ls)

−, t
)
= pmA

∂φ

∂x

(
x = (le + ls)

+, t
)
.

(23)

III. RESOLUTION METHOD

The finite difference method can be used to solve the
previous PDE system. A time-marching scheme has been
implemented using the explicit Euler method. Centered
formulas are used to discretize spatial derivatives.
To implement the previous scheme, equation (14) must

be rewritten accordingly. From equation (15), it follows

∂σmi

∂t
= (a+ b)D

pmA

pmi

∂

∂x

(
c
∂φ̃

∂x

)
. (24)

Therefore, the second term on the lhs of (14) can be
expanded and then solved for the time derivative of c. In
such a way, the following equation is obtained:
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FIG. 2: Not to scale schematic of initial, boundary and interface conditions

∂c

∂t
=

a− b

2
D

∂

∂x

(
c
∂φ̃

∂x

)
+D

∂2c

∂x2
−

(a+ b)Dσmi
∂
∂x

(
c∂φ̃∂x

)
4

√
e2µc2 +

σ2
mi

4

×

1 +
pmie

2µc

pmA

√
e2µc2 +

σ2
mi

4

−1

(25)

This is complemented with equations (16) and (24).
The flow diagram in Figure 3 represents the time-
marching procedure.

To approximate the first derivatives with respect to the
space variable in the first step of the numerical procedure,
the centered difference formula is used,

∂f

∂x
(a) ≈ f(a+∆x)− f(a−∆x)

2∆x
. (26)

The exceptions are the endpoints of the cell, where
f(a + ∆x) or f(a − ∆x) are undefined. In these cases,
standard regressive or progressive difference formulas are
used instead. Second spatial derivatives are approxi-
mated using the standard second-order centered differ-
ence formula.

The Explicit Euler method requires a time step pa-
rameter, ∆t, and a spatial grid with intervals of length
∆x, that divides the total length of the cell, ls + 2le, in
N := 1 + (ls + 2le)/∆x nodes (see in Figure 4).

Note that the simulation provides more accurate re-
sults with lower values of ∆t and ∆x. Furthermore, to
avoid instabilities we have to operate the method under
a constraint of the form ∆t = O((∆x)2/(2D)), see e.g.
[27].

IV. RESULTS

A. Simulation parameters

This study examines the ion transport kinetics in a
porous electrode and compares the performance of a
polyelectrolyte-coated electrode with that of an uncoated

electrode. To analyse how the main parameters affecting
this problem impact transport, we have selected a set of
standard experimental parameters for the simulations, as
shown in Table I. The temporal and spatial responses of
the system have been studied by varying some of these
parameters.
Although increasing the layers of one electrode im-

proves the overall adsorption of the system, it is optimal
to use electrodes of the same size when considering ad-
sorption per gram of electrode. This corresponds both
to the modified Donnan model and to the experimental
observations [28]. That is why the lengths of the anode
and cathode are the same (le = lanode = lcathode) and
electrodes of different lengths will not be considered.
Moreover, the diffusion coefficient will be taken ap-

proximately as that of potassium chloride, KCl, which,
as mentioned above, is a binary, almost symmetric and
monovalent electrolyte.
It is assumed that the simulations run under the pa-

rameters given in Table I by default, unless otherwise
stated.

B. Correction factors depending on the
polyelectrolyte charge

The parameters mentioned above are dependent on the
physical properties of the system. In addition to these pa-
rameters, the values of factors a and b are also required.
These values are associated with the volumetric charge
of the polyelectrolyte coating and the solution concen-
tration in which they are immersed. Specifically, they
can be calculated as ratios of concentrations inside and
outside the soft layer, see (4). The MATLAB routine
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TABLE I: Set of standard parameters used in the simulations. The last three parameters have been taken from [3].

Magnitude Value
Thickness of the spacer (spacer length) ls = 1 mm
Thickness of the electrodes (electrode length) le = 0.5 mm
Spatial step ∆x = 0.01 mm
Total time tmax = 500 s
Time step ∆t = 0.001 s
Applied voltage Vapp = 1 V
Temperature T = 300K
Initial ionic concentration c0 = 50 mM
Macroporosity pmA = 0.5
Microporosity pmi = 0.2
Ion diffusion coefficient D = 2× 10−9 m2/s
Non-dimensional potential µ µ = 1.4

Volumetric capacitance of Stern layer without charged Cst,vol,0 = 1.2× 109 F/m3

Parameter α α = 17 F·m3/mol2

FIG. 3: Flow chart of the Explicit Euler method used
for the calculation of the evolution of concentrations
and charges. It is based on the approximation given by
f ′(x) ≈ (f(x+ h)− f(h))/h.

mentioned above returns the values of a and b as a func-
tion of polyelectrolyte charge density, ρpol, as shown in
Figure 5.

It can be seen that highly charged polyelectrolytes and
low concentrated solutions have a greater impact on coion
and counterion concentrations. Additionally, the value of
a increases exponentially with the charge, while the value

FIG. 4: Scheme of a cell divided into N nodes.
Electrode walls are represented in grey, micropores in
black, and both the spacer (in the center) and
macropores (in the electrode area) in blue. The indices
of the anode nodes vary between x1 and xle , those of
the spacer between xle and xle+ls , and those of the
cathode between xle+ls and xN .

of b appears to have a lower limit that cannot be lower
than zero.

C. Comparison between simulation with and
without soft layer

This section will analyse the effect of polyelectrolyte
coating by comparing the concentration distribution over
time. To achieve this, we will take the values of the poly-
electrolyte charge density from previous experimental re-
sults [18]. The outputs of the simulations are visible in
Figure 6a. Note that the qualitative behaviour aligns
with the predictions made by other authors in the stud-
ied region (spacer) [26].
Figure 6a shows that the concentration decreases most

rapidly at the boundary between the electrode and the
spacer (x50). This is because the concentration is ini-
tially constant throughout the entire cell. Thus its
spatial derivative is zero. The potential is constant
along the electrodes with value Vapp/2VT on the left
and −Vapp/2VT on the right, and decays linearly be-



8

FIG. 5: Simulated values for parameters a (greater
than 1) and b (less than 1) for typical polyelectrolyte
charge and solution concentration values.

tween those two values in the spacer. Therefore, the sec-
ond derivative of the potential with respect to x is non-
zero only at the boundary between the electrode and the
spacer. This causes the time derivative of the concentra-
tion to be non-zero at this point, where the concentration
begins to decrease. As time advances, the concentration
diffuses in and out of the electrode.

On the other hand, the innermost point of the electrode
(x2) experiences the greatest decrease in concentration.
This is because an ion must pass through the entire elec-
trode to reach this point by diffusion from the spacer,
making it more likely to be adsorbed before arriving.

As can be seen in Figure 6a, concentrations at differ-
ent points equalize over time. This happens when the
double layer reaches equilibrium and enough ions have
been adsorbed to shield the charge of the electrode (and
the polyelectrolyte, if present). At this time, the poten-
tial difference across the cell becomes zero, cancelling the
electric flow of ions. Then those begin to redistribute by
diffusion until they reach an equilibrium concentration
throughout the space.

The predictions for polyelectrolyte coated electrodes
follow the same trend but the final concentration at equi-
librium is reduced, indicating that ion extraction is more
efficient. The predictions of the model demonstrate an
increase of 18.34% in the number of ions removed with
the use of a polyelectrolyte coating.

However, adsorption process in both cases have similar
characteristic times. An adjusted exponential model is
used,

c(t) = A exp

(
− t

τ

)
+ c∞, (27)

where A is a multiplicative constant, τ is the character-
istic time of the CDI process, and c∞ is the limit con-
centration to infinite time. By fitting the time evolution

of the concentration in the spacer (x100), the character-
istic time is 90.4 s and 94.0 s without and with polyelec-
trolyte coating respectively, giving a slight difference in
the kinetics of the process; therefore, the coating brings a
slower adsorption. The spatiotemporal surface generated
by the solution in every point of the spacer at every time
instant can be seen in Figure 7 (A).
It is important to note that the reduction in the num-

ber of ions is significantly greater than that observed in
an experimental setting involving a real CDI cell. This
is due to the fact that we are utilising a simplified one-
dimensional model, which is more analogous to a section
of a real cell without convection.
The charge accumulated inside micropores (not present

at the spacer) can also be analyzed, as shown in Figure
6b. It has been represented just for the first 100 seconds
because for longer times evolution curves almost overlap.
The same occurs for the potential. Thus, after this time,
there is hardly any dynamics, in agreement with the ob-
servations from the time evolution of ionic concentration:
the electromigration is faster than the diffusion.
The point at which the adsorption of charge occurs

faster is at the border between the electrode and the
spacer (x50) because the time derivative of σmi depends
on the second spatial derivative of the potential, see
(24). At every point inside the electrode the accumu-
lated charge increases (in absolute value) until it reaches

a saturation level, which is around 70.77 MC/m
3
. This

occurs when the electrical double layer in the micropores
has already accumulated enough counterions to shield
the electrode charge and is, therefore, independent of the
polyelectrolyte charge (located in macropores).
Comparing the situations with and without polyelec-

trolyte coating, it is possible to observe that the satura-
tion in the micropores is reached earlier when the elec-
trodes are coated. Moreover, the final adsorbed charge
is slightly higher in the latter case: Figure 7 (C) shows
a difference of about −3.95 mM when we use a poly-
electrolyte coating with electrical charge 1 MC/m

3
with

respect to when there is no polyelectrolyte coating in the
spacer after 500 s. The determining factor for the in-
crease in efficiency due to the coating is due to the first
term of the second member of equation (10), which comes
from an enhancement of the counterion flow into the mi-
cropores and the blocking of the coion flow. The figure
also shows that the most significant changes take place
in the initial instants (before 100 seconds). This is due to
the influence of the polyelectrolyte layer on the electric
flux, which is dominant at these times: the presence of
the soft layer facilitates the rapid migration of counte-
rions towards the electrodes at the initial stages of the
CDI process.
The detailed work on the charge dynamics of porous

electrodes, conducted by Lian et al. [29] demonstrates
that the electrode charge process can be divided into two
distinct time scales. One is associated to the formation
of double layer, which can be conceptualised as a capac-
itor with a characteristic time of κ−1ls/2D, where κ is
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FIG. 6: (a) Concentration of ions in the macropores over 500 seconds of time. Solid lines represent a cell without

polyelectrolyte coating, while dotted lines represent a charge density ρ = 1 MC/m
3
. The concentration is

represented at the end of the electrode (x2, black), at its midpoint (x25, blue), at the interface between the electrode
and the spacer (x50, green), and at the midpoint of the spacer (x100, red). (b) Charge accummulated in micropores,
here shown at x2, x25 and x50 and only over the first 100 seconds.

the inverse of the Debye length. However, in the con-
text of a porous electrode, a set of n parallel electrodes
(transmission line model) is considered, resulting in a
longer generalised relaxation time in comparison to RC.
The other mechanism is associated with the transport of
salt across the electrode, which arises from the accumu-
lation of charge in the micropores. The time scale for
this mechanism, as determined by Lian et al., is given by
(le + ls/2)

2/D. This value is 500 s for our system.
It is interesting to point out that, if the graphs repre-

senting the temporal evolution of the ion concentration in
the macropores (Figure 6a) and the evolution of the ac-
cumulated charge in the micropores (Figure 6b) are com-
pared, it is observed that the equilibrium concentration
is reached at approximately 400 seconds, in good agree-
ment with the previous calculated value (500 s), while the
micropore charge reaches a stationary level at around 150
seconds. This behavior reveals that the shielding of the
electrodes occurs first, which ceases the charge adsorp-
tion. From this moment on, there begins the redistribu-
tion of concentrations by diffusion in the absence of an
electric field. The diffusion process is slower than elec-
tromigration and the ions are redistributed along the cell
until they equalize their concentration throughout space.

Using the fit curve given by (27) to obtain the charac-
teristic charge times (at the midpoint of the electrodes),
we get 13.8 seconds and 16.2 seconds without and with
charged polyelectrolyte respectively. If these values are
compared with those obtained for the concentration in
the spacer, we can conclude that the accumulation of
charges in the pores is much faster than the decrease in
concentration.

For this reason, the correct choice of porous material
for the electrode is very important. Physical aspects that
increase the diffusion time should be avoided if a fast
adsorption of ions on the electrodes is wanted.

D. Length of electrodes and spacer

Other magnitudes of interest are the lengths of the
electrodes and the spacer and their dependences with the
adsorption dynamic. To analyze this relation, r = ls/le
is defined as the ratio between the spacer and electrodes
lengths.
In Figure 8 it can be seen how the concentration of ions

evolves at the midpoint of the spacer when electrode and
spacer have the same length (r = 1), double (r = 2)
and quadruple (r = 4). As expected, the lower the ratio
of spacer to electrode length, the greater the adsorption
that occurs. This is because, for low values of r, there
is more space available in micropores to store ions in
relation to their total amount in the spacer. That is
one of the reasons why, when a CDI process is carried
out on a larger scale, the space between electrodes must
be minimal to increase ion adsorption, even if then the
dissolution flow between electrodes is lower.
The characteristic times of the different simulations

are summarized in Table II. It can be observed that the
characteristic time τ and the ratio of lengths r follow
approximately a linear relationship,

r

τ
∝ k.
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FIG. 7: Concentration surface as a function of spatial and temporal variables (A) an corresponding heat map (in

mM) (B) when using a polyelectrolyte coating of with charge density ρ = 1 MC/m
3
. The difference with respect to

the case where no coating is used is represented by a heat map (in mM) (C).

This is reasonable since capacitive deionization is a sur-
face charge storage process. Therefore, the smaller the
electrodes, the less surface area is available. Also, the
larger the spacer, the longer it will take for the concen-
tration to change from the surface of the electrodes to
the center of the spacer. This causes the characteristic
time to behave proportionally with ls and inversely pro-
portional to le.

TABLE II: Characteristic times for the curves in
Figure 8 obtained from the fitting using Eq. (27).

Characteristic time τ (s)
r = 1 r = 2 r = 4

ρ = 0 MC/m3 55.07± 0.02 90.41± 0.18 205.9± 1.4

ρ = 0.5 MC/m3 56.53± 0.02 91.99± 0.18 208.6± 1.4

ρ = 1 MC/m3 58.27± 0.03 94.04± 0.17 212.3± 1.5
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FIG. 8: Concentration of ions at the midpoint of the
spacer (x100) as a function of time. All simulations
above have electrode lengths of le = 0.5 mm. Blue lines
represent spacer length of ls = 2 mm, green lines
represent ls = 1 mm, and orange lines represent
ls = 0.5 mm. Each color tone represents a charge value
for the polyelectrolyte coating.

E. Microporosity

In equations (24) and (25) the parameters pmA and
pmi just appear as the ratio p = pmA/pmi. Therefore,
to explore how the system behaves in our simulations,
we keep the macroporosity pmA constant (as indicated in
Table I) and vary the microporosity pmi accordingly. The
results can be seen in Figure 9.

FIG. 9: Concentration of ions in the macropores over
500 seconds of time. Blue lines represent a cell whose
electrodes have a microporosity pmi = 0.1, green lines
represent pmi = 0.2, and orange lines represent
pmi = 0.4.The concentration is represented at the
midpoint of the spacer (x100). Each color tone
represents a charge value for the polyelectrolyte coating.

As expected, the higher the microporosity value, the
further the remaining ion concentration in the spacer de-

TABLE III: Characteristic times for the curves in
Figure 9 obtained from fitting using Eq. (27).

Characteristic time τ (s)
pmi = 0.1 pmi = 0.2 pmi = 0.4

ρ = 0 MC/m3 71.64± 0.14 90.41± 0.18 137.70± 0.16

ρ = 0.5 MC/m3 71.76± 0.14 91.99± 0.18 140.37± 0.16

ρ = 1 MC/m3 71.91± 0.14 94.04± 0.17 140.40± 0.18

creases. This is because there is a greater volume avail-
able to store adsorbed ions.
The concentration of ions removed from the solution

is increased from 13 mM with low porosity to approxi-
mately 36 mM using higher carbon porosity -depending
on the charge density of the polyelectrolyte. This high
value is explained by the large amount of free space avail-
able for ion removal, as indicated by pmi = 0.4 and
pmA = 0.5, which means that it is 90% of the total vol-
ume. For example, values in [26] obtained by dry/water-
saturated measurements of the electrode mass and N2

adsorption porosimetry measurements are pmi = 0.2 and
pmA = 0.57.
As we can see in Table III, the characteristic time in-

creases substantially when the microporosity is increased.
The characteristic time for carbon with a porosity ratio
p = 5, which means a low microporosity, is 95% longer
than that of those with p = 1.25, A very high value
of microporosity compared to macroporosity. However,
comparing the number of ions removed, and defining the
velocity of the process as cremoved/τ , it can be seen that
the process speed is approximately the same regardless
of microporosity (in the specific case of a coating with

0.5 MC/m
3
of electrical charge, the ion adsorption ve-

locities are 0.184, 0.256 and 0.271, respectively, for pmi

values of 0.1, 0.2 and 0.4). The only noticeable difference
is that a longer time is needed for high microporosity val-
ues since adsorption is higher.

F. Initial concentration

As Figure 10 indicates, the number of ions adsorbed in
the process depends strongly on their initial concentra-
tion. To be able to compare the processes of CDI with
different initial concentrations, the non-dimensionalized
concentration c/c0 is used.
For the standard concentration (50 mM) used in this

work, the concentration drop is approximately 48% af-
ter the adsorption step. However, if the same process is
performed with a less concentrated solution (20 mM) the
drop increases substantially (94% of ions removed). This
result confirms that the association of many cells is nec-
essary to handle higher salt concentrations. If this is not
feasible, then hybrid deionization systems are required
for desalinating seawater (500 mM NaCl) since e.g. for a
solution of 100 mM the number of ions removed is only
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TABLE IV: Characteristic times for the curves in
Figure 10 obtained from fitting using Eq. (27).

Characteristic time τ (s)
c0 = 20 mM c0 = 50 mM c0 = 100 mM

ρ = 0 MC/m3 112.86± 0.18 90.41± 0.18 85.25± 0.12

ρ = 0.5 MC/m3 105.61± 0.17 91.99± 0.18 85.12± 0.12

ρ = 1 MC/m3 100.15± 0.15 94.04± 0.17 85.00± 0.11

14%.

FIG. 10: Concentration of ions in the macropores over
500 seconds of time. Blue lines represent a cell with an
initial concentration of c0 = 100 mM; green lines
represent c0 = 50 mM and orange lines represent
c0 = 20 mM. The concentration is represented at the
midpoint of the spacer (x100). Each color tone
represents a charge value for the polyelectrolyte coating.

About the characteristic times, Table IV shows that
the effect of the initial concentration is less decisive than
that produced by other parameters. Even so, the trend
in the data is clear: lower concentrations slow down the
process.

G. Ionic diffusion coefficients

Finally, the analysis of the diffusion coefficient of the
ions involved in desalination is decisive in the kinetics of
the process. This is not influenced by the quantity of
ions removed, which depends solely on the formation of
the electric double layer. This behavior can be observed
in Figure 11a.

Changes in diffusion coefficients do not cause ion ad-
sorption variations, as it is shown by the fact that the
curves corresponding to the same polyelectrolyte charge
values tend to the same final concentration at sufficiently
long times. They do, however, affect the speed of stabi-
lization of the CDI process. The characteristic times are
set out in Table V.

FIG. 11: Concentration of ions in the macropores as a
function of (a) the time and (b) the product of the
diffusion coefficient and the time, D · t. Blue lines
represent a cell whose ions have a diffusion coefficient of
D = 1× 10−9 m2/s; green lines represent
D = 2× 10−9 m2/s and orange lines represent
D = 5× 10−9 m2/s. The concentration is represented at
the midpoint of the spacer (x100). Each color tone
represents a charge value for the polyelectrolyte coating.

This phenomenon is also evident in Figure 11b, which
illustrates that the concentration graphs as a function of
the product D · t do overlap for identical polyelectrolyte
charge values. The curves for the three diffusion coef-
ficient are plotted from 0 to D · tmax = 0.5; 1.0; 2.5 ×
10−6 m2 respectively, given that tmax is equal to 500 sec-
onds and the value ofD varies. Nevertheless, our findings
indicate that the concentration evolution curves continue
to overlap when simulations are extended to 1250 sec-
onds for D = 2 × 10−9 m2/s (green lines in Figure 11b)
and 2500 seconds for D = 1 × 10−9 m2/s (blue lines).
This is consistent with the hypothesis that the value of
D does not impact the adsorption dynamics of the ions,
but rather influences the kinetics.

These differences in characteristic times are so signi-
ficative that they may lead to the development of selec-
tive methods to remove only certain types of ions from
a solution, while others remain in it, based on diffusion
coefficient differences between those ions.

On the other hand, the ions inside the macropores do
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TABLE V: Characteristic times for the curves in
Figure 11a obtained from fitting Eq. 27. Diffusion
coefficient D has ×10−9 m2/s units.

Characteristic time τ (s)
D = 1 D = 2 D = 5

ρ = 0 MC/m3 209.3± 0.7 90.41± 0.18 34.93± 0.06

ρ = 0.5 MC/m3 212.5± 0.6 91.99± 0.18 35.51± 0.06

ρ = 1 MC/m3 216.0± 0.6 94.04± 0.17 36.26± 0.06

not diffuse in the same way as those within the solution,
which would lead us to think that a more appropriate
model should take into account that the tortuosity of the
macropores affects the adsorption kinetics.

V. CONCLUSIONS

In this work a simple 1D model has been proposed
for the first time to explain the ion adsorption capac-
ity and dynamics change when soft electrodes are used
in Capacitive Deionization. By numerically solving the
equations governing the process, it has been possible to
analyze the dependence of ion removal and characteristic
time of CDI process on parameters such as the diffusion
coefficient, the length of electrodes and spacer, the ini-
tial electrolyte concentration, the carbon porosity and,
of course, the charge of the polyelectrolyte coating.

In addition to providing a theoretical basis that ex-
plains the functioning of the soft layer in a simple way
and effectively proving the positive implications of the
addition of this layer, the consequences drawn are as
expected and agree with those of other authors using

bare electrodes. These findings indicate that ion ad-
sorption increases with electrode thickness (or decreas-
ing spacer width) and with microporosity. Furthermore,
the amount of adsorbed ions is independent of the ini-
tial concentration, resulting in higher relative adsorption
using lower concentrations. Finally, the diffusion coef-
ficient of the extracted ions does not affect the amount
of ions removed. However, shorter characteristic times
occur when using ions with a higher diffusion coefficient.

In all simulations, it has been observed that the addi-
tion of a soft layer on the electrodes significantly increases
the number of ions removed during the capacitive deioni-
sation process, with an increase of approximately 15% by
averaging all simulations carried out in this work. This is
accompanied by a minimal impact on the characteristic
time. This represents a remarkable improvement in the
efficiency of the CDI cell for the desalination of highly
saline water.
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tigación e Innovación & ERDF/EU Andalusia Program,
by Grant PID2022-137228OB-I00 funded by the Spanish
Ministerio de Ciencia, Innovación y Universidades, MI-
CIU/AEI/10.13039/501100011033 & “ERDF/EU A way
of making Europe”. J.C and S.A have been partially
supported by Modeling Nature Research Unit, project
QUAL21-011.

[1] J. Farmer, R. Pekala, D. Fix, J. Phillips, J. Poco, and
C. Alviso, Capacitive deionization: New water treatment
technology, Chemistry & Materials Science , 134.

[2] Y. Oren, Capacitive deionization (cdi) for desalination
and water treatment—past, present and future (a re-
view), Desalination 228, 10 (2008).

[3] S. Porada, R. Zhao, A. van der Wal, V. Presser, and
P. M. Biesheuvel, Review on the science and technology
of water desalination by capacitive deionization, Progress
in materials science 58, 1388 (2013).

[4] M. A. Ahmed and S. Tewari, Capacitive deionization:
Processes, materials and state of the technology, Journal
of Electroanalytical Chemistry 813, 178 (2018).

[5] A. Delgado, S. Ahualli, M. Fernández, M. González,
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