
Accepted manuscript. Cite as: Mora, M., Ramírez, R., Gutiérrez, A., Jaime, A. (2024). Traits of 

generalization of problem solution methods exhibited by potential mathematically gifted students 

when solving problems in a selection process.  ZDM - Mathematics Education, 56(6), 1257-1272. 

Traits of generalization of problem solution methods 

exhibited by potential mathematically gifted students when 

solving problems in a selection process 

Mónica Mora1 (https://orcid.org/0000-0002-3165-4037), Rafael Ramírez2 

(https://orcid.org/0000-0002-8462-5897), Angel Gutiérrez3 (https://orcid.org/0000-0001-

7187-6788), Adela Jaime3 (https://orcid.org/0000-0003-3839-1476) 

1 Cátedra de Didáctica de la Matemática. Universidad Estatal a Distancia. San José (Costa 
Rica) 

2 Depto. de Didáctica de la Matemática. Universidad de Granada. Granada (Spain) 
3 Depto. de Didáctica de la Matemática. Universidad de Valencia. Valencia (Spain) 

mmorab@uned.ac.cr, rramirez@ugr.es, angel.gutierrez@uv.es, adela.jaime@uv.es 

Abstract. Identifying mathematically gifted students is an important objective in mathematics 

education. To describe skills typical of these students, researchers pose problems in several 

mathematical domains whose solutions require using different mathematical capacities, such 

as visualization, generalization, proof, creativity, etc. This paper presents an analysis of the 

solutions to two problems by 75 students (aged 11 to 14), as part of the selection test for a 

workshop to stimulate mathematical talent. These problems require the use of the capacity for 

mathematical generalization of solution methods. We define a set of descriptors of such 

capacity, use them to analyze students’ solutions, and evaluate how well students with high 

capacity for generalization can be distinguished from average students. The results indicate 

that the two problems are suitable for identifying potential mathematically gifted students and 

several descriptors have high discriminatory power to identify students with high or low 

capacity for generalization. 
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1 Introduction 

Only a few countries have established formal programs to identify and serve mathematically 

gifted students (MG students from now on). Chamberlin and Chamberlin (2010) reported a 

significant lack of training and resources available for teachers to identify and support their 

MG pupils. This gap persists today, so further research is needed in this direction (Leikin, 

2021). Leikin (2021) raised the need for research addressing the question “What types of 

mathematical tasks can best serve for the identification of mathematical giftedness (MG from 

now on) in earlier ages? In elementary school? In middle school?” (p. 1581). This paper 

contributes to answer it, since we present the results of a study focused on analyzing the kinds 

of mathematical generalization (just generalization from now on) made by students to solve 

two problems and the effectiveness of the problems to discriminate potential MG Students. 

The problems were part of an admission test for the Spanish mathematical enrichment 

program ESTALMAT (EStímulo del TALento MATemático), aimed at identifying, 

stimulating, and nurturing potential MG students. The program extends over two years and 

consists of about 20 3-hour-long workshops per year. The admission test consists of 5 paper 

and pencil non-routine problems, each with several parts of increasing complexity. The 

solutions (i.e., the processes of obtaining answers) to each problem are scored by applying 

agreed marking criteria. The 25 students with the highest total scores are admitted to the 

program. 

Students are considered as mathematically gifted when they quickly grasp new mathematical 

content and demonstrate characteristics of mathematical reasoning, problem-solving 

strategies, and creativity that are more complex and elaborated than those of average students 

of their age or grade (Bicknell, 2008; Krutetskii, 1976; Leikin, 2018). Research results show 

that problem-solving is a very reliable way of identifying MG students. We present two 

original problems suitable for identifying students with above-average capacity for 

generalization. Correctly solving them does not ensure that students are mathematically 

gifted, but we can affirm that they have potential (Pitta-Pantazi & Leikin, 2018) to be MG 

students. The 25 students admitted to the ESTALMAT Program can be considered as 

potential MG students. 

Generalization is a main mathematical activity, from young children to mathematicians. To 

define the hypothesis of his study and choose his research methodology, Krutetskii (1976) 

“assumed that pupils with different abilities who are capable of learning mathematics are 
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characterized by differences in degree of development of both the ability to generalize 

mathematical material and the ability to remember generalizations.” (p. 84, original italics). 

He also added that “Abstractions and generalizations constitute the essence of mathematics” 

(p. 86). 

Researchers have paid attention to MG students’ activity of generalization, which is typically 

assessed by asking students to produce arithmetic, algebraic, or functional generalizations. 

However, the capacity for generalization is also necessary to recognize mathematical 

procedures and other types of regularities, such as the generalization of computational 

strategies specific to certain contexts (Krutetskii, 1976), like the problems we have analyzed. 

Mathematical competitions and after-school problem-solving workshops are good contexts 

for identifying and nurturing MG students (Bicknell, 2008; Leikin, 2021). To correctly solve 

the problems posed in competitions and workshop admission tests, students must exhibit 

some above-mentioned specific capacities and skills. This allows researchers to analyze 

possible differences in the behavior of students with varying levels of success in solving 

problems. The research we present is situated in this context, since it is based on problems 

posed to students who took the admission test of the ESTALMAT Program. Analyzing the 

students’ answers to these problems allowed us to reliably identify potential MG students. 

The general objective of the research presented in this paper is to identify distinctive 

characteristics of MG students related to the generalization of methods for solving 

mathematical problems. To achieve this, we have analyzed the solutions to two problems of 

the test. This objective is divided into several specific objectives: 

1. Identify and categorize different types of generalizations of methods for solving problems 

and express them as operational descriptors of generalization. 

2. Particularize those descriptors to specifically analyze the students’ solutions to the 

problems posed in our experiment. 

3. Identify and analyze the evidence of generalization of solution methods in the answers 

produced by students with different levels of success in solving the problems. 

4. Analyze the effectiveness of the problems posed and the descriptors defined to discriminate 

potential MG students, based on their use of the capacity for generalization of solution 

methods. 
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2 Review of literature 

Without trying to be exhaustive, we first present a synthetic review of the mathematics 

education literature on different issues about MG related to identification and attention (2.1). 

Then we focus on the literature about the topics relevant to our study: the role of problem-

solving in MG (2.2), the characterization of traits of generalizations in MG students (2.3), and 

the identification of MG students in competitions and selection tests (2.4). 

2.1 Characteristics of MG students 

The identification of MG students is an ever-present research question. Identification is 

mainly based on mathematical problem-solving, so various kinds of problems are posed to 

identify specific characteristics of MG students’ behavior. Several authors proposed different 

traits typical of MG students, like flexibility, identification of patterns and relationships, use 

of efficient problem-solving procedures, inversion of thinking processes, and capacities of 

generalization, abstraction, and transfer (Krutetskii, 1976; Greenes, 1981; Freiman, 2006). 

Other researchers have verified the validity of the most important of those characteristics, but 

the question of what differentiates MG students from average students remains open. Pitta-

Pantazi and Christou (2009) argued that this is due to the lack of a commonly agreed 

definition of MG, of appropriate instruments to identify MG students, and the great diversity 

of traits of MG. 

2.1.1 Mathematical creativity 

The construct of creativity is somewhat ambiguous, as proved by the compilation of more 

than 100 definitions by Treffinger et al. (2002). In mathematics education, there is currently a 

wide consensus in considering mathematical creativity as integrated by three components: 

flexibility, originality, and fluency (Leikin & Lev, 2013). Leikin and Sriraman (2022) 

presented a retrospective analysis of empirical research on mathematical creativity, showing 

that it can be assessed in quite ways, the multiple-solution tasks (Leikin & Lev, 2013) being 

one of the most successful, since it allows to assess the three components of creativity. 

Schoevers et al. (2022) concluded that students with higher levels of creativity perform better 

in solving geometry problems in general, and particularly in multiple-solution problems. 

2.1.2 Visualization 

Krutetslii (1976) identified a high capacity of visualization in some MG students, but he did 

not consider it as a characteristic of MG. Since then, various studies have attempted to shed 



Mora, Ramírez, Gutiérrez, Jaime (2024): Traits of generalization of problem solution methods ... 

5 

light on the relationship between visualization and MG. Presmeg (1986) observed that less 

than 20% of a sample of grade 12 MG students used geometric thinking, which led her to 

confirm Krutetskii’s conclusion. However, more recent research, based on experiments with 

students in different educational levels, identified visualization skills used by the students and 

agreed in concluding that visualization is a capacity observed in MG students more than in 

their average peers (Applebaum, 2017; Mora et al., 2024; Ramírez, 2012). 

2.2 Problem-solving 

Problem-solving is at the core of MG students’ activity, so many publications report on their 

problem-solving processes. Some focus on analyzing students’ use of capacities such as 

generalization (Amit & Neria, 2008; Gutiérrez et al., 2018; Jablonski & Ludwig, 2022; 

Krutetskii, 1976), proof (Elgrably & Leikin, 2021; Jablonski & Ludwig, 2022), visualization 

(Diezmann & Watters, 2002; Lee et al., 2007), or analogy (Lee et al., 2007; Rott, 2013), in 

contexts like arithmetic (Rott, 2013; Schifter & Russell, 2022), geometry (Elgrably & Leikin, 

2021; Lee et al., 2007; Rott, 2013), stochastics (Durak & Tutak, 2019; Jan & Amit, 2012), etc. 

Most of these authors agree that problem-solving helps to observe students’ reasoning 

associated with some capacities, which are more developed in MG students than in average 

students. 

2.3 Generalization 

Generalization is a central tool in mathematics and a key cognitive process that students must 

develop (Amit & Neria, 2008). At schools, generalization emerges during the early learning 

of arithmetic (Baroody & Purpura, 2017). Later, it has a relevant role in the learning of 

algebra and functions (Amit & Neria, 2008; Radford, 2006; Ramírez et al., 2022). 

Consequently, researchers have analyzed MG students’ learning processes of arithmetic and 

algebraic thinking. 

In his seminal study, Krutetskii (1976) claimed that MG students can make more abstract 

generalizations than their peers, since they have “the ability for rapid and broad generalization 

of mathematical objects, relations, and operations” (p. 350). Usual school contexts in which 

students practice generalization include computing the next terms of numerical sequences 

(arithmetic generalization), calculating the general term of sequences (algebraic 

generalization), or formulating abstract functional relationships (functional generalization). 

Recent research has provided further support to this claim and literature on MG students has 
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shown cases of this form of reasoning (Amit & Neria, 2008; Gutiérrez et al., 2018; Mora et 

al., 2022; Sheffield, 2009; Singer et al., 2016; Ureña et al., 2022). 

When Krutetskii (1976) alluded to the generalization of operations, he meant, in particular, 

the generalization of solution methods of problems. This is a kind of generalization, different 

from generalizing mathematical facts, objects, or relationships, which has received very little 

attention in the mathematics education literature. It is also a necessary element of 

computational thinking (Khine, 2018), which is increasingly present in mathematics curricula 

from early primary grades. Stacey (1989) noted that, when secondary students identified a 

generalizable solution method in a part of a geometric pattern problem, they tended to use it 

in the next parts. Koichu and Kontorovich (2013) and Ramírez and Fernández (2018) posed 

the well-known billiard problem to students of different levels of mathematical talent, in 

which the method to calculate the paths of a ball has to be generalized to different sizes of 

tables. Montejo et al. (2020) posed to potential MG high school students a problem requiring 

to generalize a strategy to calculate the possible positions of two points on a grid to have the 

maximum distance between them. 

Our study is situated in this approach, since the students had to identify and generalize 

methods of calculating solutions for several cases of the same type. An original contribution 

of this paper is that it focuses on students’ capacity to generalize solution methods of 

problems, which requires an approach very different from the generalization of properties or 

relationships. 

2.4 The role of olympiads and enrichment programs in identifying MG students 

Several studies have compared the results of identifying MG students by using psychometric 

tests or mathematical problem-solving. In Spain, Díaz et al. (2008) and Ramírez (2012) 

compared answers to several psychometric tests and problems posed in the admission test of 

ESTALMAT. In the international context, Benavides (2008) in Chile, Niederer et al. (2003) 

in New Zealand, and Al-Hroub (2010) in the UK compared answers to psychometric tests and 

sets of problems. The findings of these studies, in line with the conclusion raised by Leikin 

(2018), consistently suggest that solving complex mathematical problems is more effective 

and reliable to identify MG students than administering other kinds of instruments. 

Based on the mentioned results, mathematics education researchers have focused on 

observing students’ behavior in mathematical competitions and other competitive contexts, 
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such as problem-solving tests for admission to enrichment programs. Competitions at 

different educational levels have a long international tradition (Falk de Losada & Taylor, 

2022; Leikin, 2021). Mathematical competitions play an important role in revealing students’ 

capacities that remain hidden in schools (Kahane, 1999), motivating potential MG students 

and developing their mathematical capacities (Bicknell, 2008). Olympic-style problems are 

also effective in helping ordinary teachers identify their MG pupils (Miller, 1990). Elgrably 

and Leikin (2021) compared the abilities of two groups of students in a problem-posing task: 

candidates or participants in the IMO and mathematics majors who excelled in university 

mathematics. Their results showed that the olympic students significantly outperformed the 

majors. 

Extracurricular mathematics enrichment activities, like workshops, summer camps, etc., also 

have a long tradition and are regularly conducted around the world (Kenderov, 2022). To 

ensure that the participants have above-average mathematical talent, some activities include 

an admission test, usually based on solving non-routinary problems; e.g., Ramírez et al. 

(2022) informed on the solutions to a problem asking to formulate a general rule to calculate 

the area of any of a given kind of figures. They showed the potential of the problem to enable 

grade 6 students to represent and generalize a quadratic relationship. 

3 Theoretical framework 

In this paper, we focus on identifying potential MG students by analyzing their solutions to 

two problems that require the use of the capacity for generalization. We first present the 

theoretical aspects related to the identification of (potential) MG students and then the 

generalization of solution methods of problems. 

3.1 Identification of mathematical giftedness 

Although different authors proposed several definitions of MG, they share the idea that MG 

students stand out in solving complex problems from their peers in mathematics classes and 

they evidence high mathematical abilities within their reference school group (Leikin, 2018). 

Based on the definitions proposed by Diezmann and Watters (2002), Krutetskii (1976), and 

Leikin (2018), we consider students to be mathematically gifted if they stand out above 

average students of their grade or age in the ease and speed of understanding new 

mathematical contents, in their ability to perceive and apply complex mathematical structures 

and procedures, in their effectiveness in correctly solving mathematical problems (even 
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problems that are difficult for most students), and in their ability to generate novel 

mathematical ideas (relative to their prior mathematical experience). Furthermore, we adhere 

to the characterization of mathematical problems by Schoenfeld (1985). 

For MG to be realized, the students’ mathematical abilities have to be developed (Leikin, 

2018); then, some researchers (Jablonski & Ludwig, 2022; Pitta-Pantazi & Leikin, 2018) refer 

to potential or promising MG students when students’ behavior gives initial or partial signs of 

MG, to distinguish them from those who have already consistently demonstrated their MG. 

Jablonski and Ludwig (2022) distinguished between “giftedness as a potential achievement 

and achievement as a visible outcome” (p. 607). This distinction alludes to the belief that MG 

has an innate component that needs to be nurtured. It also alludes to the fact that MG has to be 

evaluated for a diversity of contents (arithmetic, geometry, algebra, etc.) and competencies 

(e.g., generalization, visualization, analogy and transfer, proof, mathematical creativity, etc.) 

with a variety of activities (e.g., problem-solving and problem-posing). We agree with Leikin 

(2018) in considering the terms potential and promising as synonymous. 

The mathematics education research literature has described numerous characteristics of MG 

that serve as elements for the identification of MG students, although no specific student 

exhibits all of them (Freiman, 2006; Krutetskii, 1976). Therefore, to make a valid 

identification of MG, it is necessary to observe students’ production in a variety of contexts 

adequate to allow students to evidence the use of different characteristics of MG. In practice, 

when experiments are based only on one context or competency (e.g., asking to solve a set of 

generalization problems, like in our study), what can be said about successful students is that 

they are potential MG students. Other actions, focusing on different characteristics and 

competencies, will be necessary to complete the identification and confirm their MG. In our 

experiment, we focused on observing students’ use of generalization in solving two problems, 

so we can only conclude that the students producing the best solutions are potential MG 

students. 

3.2 Generalization of mathematical problem-solving methods 

Various definitions of mathematical generalization can be found in the literature (Amit & 

Neria, 2008). Krutetskii (1976), apart from analyzing the capacity of generalization of 

mathematical objects and relations, also observed that, in his experiments, “the ablest pupils 

… immediately after the first acquaintance with the solution principle using a certain … 

solution-scheme for a typical problem, this … solution-scheme is applied … to the most 
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diverse variants of examples or problems of the appropriate type” (p. 240). So, the 

“generalization of the method of solution …, [i.e.,] algorithms for solving the whole class of 

problems of one type” (p. 259) is a differential trait of MG students: when they solve a 

problem (or a part of it), they may grasp a general solution method and transfer it to solve 

other problems (or parts of the problem) of the same type. 

Based on Krutetskii (1976), Polya (1957), and Radford (2006), we consider that the capacity 

for generalization is a complex process consisting of knowing how to perform two types of 

mathematical activities: i) recognizing a particular property in some cases and inducing a 

general property valid for all elements of the set to which the cases belong, and ii) 

recognizing characteristics of a particular mathematical problem-solving method performed 

one or several times, inducing an abstract method sharing those characteristics, and being able 

to apply it in any other related but distinct problem. To generalize a solution method, students 

must first familiarize with a problem’s solution, to realize the essence of the idea under the 

solution method; this should lead them to be aware that such method can be adapted to use it 

in other similar problems (Maj, 2011). The problems we have analyzed are of the second type, 

since, to solve them, students have to identify, in the first questions of the problem, new 

solution methods, generalize them, and apply them to solve the following questions of the 

problem. 

Very few authors have studied the generalization of solution methods and, as far as we know, 

there is no detailed characterization of this kind of generalization. Then, we have defined a set 

of descriptors of i) the kinds of solution methods that students can perform when solving a 

sequence of related questions in a problem or a sequence of related problems and ii) the levels 

of generalization of those methods: 

DG0. Non-codable answers: Blank answers or solutions that provide no useful information. 

DG1.Types of solution methods 

DG1.1. Solutions that do not meet some requirement of the problem: Solutions based on 

methods using operations, numbers, figures, etc. that are incompatible with the data or 

conditions in the problem. 

DG1.2. Trial and error: Solutions based on methods using random data or other elements 

of the problem. 

DG1.3. Recursive: Solutions based on recursive-style methods. 
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DG1.4. Partially optimal: Solutions based on an optimal method poorly applied by the 

student. 

DG1.5. Optimal: Solutions based on an optimal method correctly applied by the student. 

DG2. Levels of generalization (of optimal solution methods) 

DG2.1. Uninitiated generalization: Solutions showing that the student has neither 

abstracted nor generalized an optimal solution method. 

DG2.2. Partial generalization: Solutions showing that the student has started to abstract 

and generalize an optimal solution method by noticing some regularities. 

DG2.3. Complete generalization: Solutions showing that the student has abstracted and 

generalized an optimal solution method. 

These descriptors are partially based on other well-established descriptors of generalization 

and partially emergent. We first used literature on early algebra to define the descriptors: 

descriptors DG1 are based on the strategies to calculate near and far terms of pattern 

problems: trial and error, recursive, functional (Stacey, 1989; Lannin, 2005); descriptors DG2 

are based on the levels of generalization by Radford (2006): DG2.2 relates with arithmetic 

generalization and DG2.3 with algebraic factual and contextual generalizations. After using 

the first definitions of the descriptors to analyze a sample of students’ answers, we improved 

them to adapt them more accurately to the specific characteristics of the solution methods 

used in problems P3 and P4, resulting in the above definitions. In Section 4, we present the 

particularizations of these descriptors to the characteristics of the specific methods that 

students should generalize to solve the problems used in our study. 

4 Research methodology 

This study is qualitative, descriptive, and exploratory. Its general objective is to identify 

distinctive characteristics of MG students’ styles of generalization of solution methods of 

mathematical problems. 

4.1 The experiment 

The population of this research comprised the 312 students in grades 6 (primary school), 7, 

and 8 (secondary school) who took the admission test for the ESTALMAT Program. The 25 

students who obtained the highest total score on the test were admitted to participate in the 
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workshop. We discarded the students who scored 0 points in problems P3 and P4, resulting in 

a reduced population of 289 students. Then we selected a convenience sample of 75 students, 

based on their total scores on the admission test: the top 25 scores (the admitted students), the 

middle 25 scores, and the bottom 25 scores. In this way, we can compare the outcomes of the 

most successful students (which we consider as potential MG students) with the less 

successful parts of the population. The data analyzed are their written solutions to P3 and P4. 

To maintain anonymity, each student was assigned a number. 

The admission test consisted of five original and varied problems, dealing with visual 

thinking, logical thinking, intuition, creativity, generalization, ability to organize ideas, etc., 

and diverse mathematical contents. Each problem has several parts with increasing 

complexity and only requires mathematical content knowledge typical of ordinary students in 

grade 6. 

To select the problems of the test for this study, we analyzed the mathematical capacities 

necessary to solve each problem. We selected problems P3 and P4 because they are the only 

ones requiring generalization of solution methods. We present the statement of each problem 

and then analyze its characteristics related to the solution methods to be generalized. 

Problem P3 

Three fairies live in a palace with many floors, numbered 1, 2, 3, 4, 5, ... There are two magic 

wands on each floor, one red and one blue. To move between floors, the fairies must touch a 

wand. 

When a fairy touches the red wand, she can go 10 floors up or 10 floors down; e.g., if a fairy 

is on floor 37 and touches the red wand, she can go to floor 47 or 27. 

When a fairy touches the blue wand, she can go up to another floor that is three times the 

floor she is on plus one; e.g., if the fairy is on floor 5, she can go up to floor 16 (16 = 

3×5+1). The fairy can also move in the opposite direction; for instance, if she is on floor 13, 

she can go down to floor 4, because 13=3×4+1. 

3a) The Forest fairy lives on floor 1. Could she go to floor 13? Could she go to floor 40? 

What about floor 93? What about floor 57? If she can go to any of these floors, explain 

which wands she touched and in which order. If you think she cannot go to some of these 

floors, explain why she cannot. 

3b) Could you state a property that all floor numbers that the Forest fairy can reach have in 

common? 
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3c) The Moon fairy lives on floor 2. Describe how she can go to floor 57. 

3d) The Water fairy lives on floor 18. Could she use the two wands to go to floor 5? 

3e) Can two or the three fairies meet on any floor? If you think they can, tell us on which 

floor, which fairies meet there, and how they would go there. If you think they cannot, give 

a reason. 

Two methods must be generalized to solve this problem. Students have to recognize, based on 

their answer to part 3a, that a fairy can only reach the floors whose number has specific unit 

digits: if the Forest fairy touches the blue wand, she can go from floor 1 to 4 (1×3+1); if she 

uses the blue wand three more times, she can go to floors 13 (4×3+1), 40 (13×3+1), and 121 

(40×3+1). To complete the solution, students have to recognize and generalize the property 

that, if the fairy continues using the blue wand, she can only reach floors ending in 4, 3, 0, or 

1. In part 3e, students are expected to calculate the floors accessible by each fairy and realize 

that they cannot meet. 

Students also have to generalize the optimal method to find the shortest number of steps to go 

to any reachable floor: repeatedly touch the blue wand until the fairy reaches a floor whose 

number has the same unit digit as the target floor; then, touch the red wand as many times as 

needed to go to the target floor. 

Problem P4 

We want to tile a rectangular wall measuring 3m by 7m using only square tiles, which may be 

different, with integer side lengths and using the minimum possible number of tiles. The 

minimum number [Figure 1] is 5 tiles: two tiles with sides of 3m and three tiles with sides of 

1m. The design shown in the figure is a solution; there are other designs, but we consider 

them equal, since they use the same tiles, although arranged differently. 

 

Figure 1. 

4a) To tile a rectangular wall of 8m by 5m [Figure 2] using the same criterion as above, how 

many square tiles do we need, and what are their sizes? Draw a design using those tiles. 
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Figure 2. 

4b) If we only have square tiles with sides of 2m, 4m, and 6m, and we use the same criterion 

as above, calculate the number of square tiles required, along with their sizes, to tile a 

22m by 6m wall [Figure 3]? Draw a design using those tiles. 

 

Figure 3. 

4c) Now the wall is a square with sides of 9m. We only have square tiles with sides of 1m, 2m, 

4m, 5m, and 7m. We can tile it in two different ways using the minimum number of tiles. 

Find them and draw each tiling [in Figure 4]. 

 

Figure 4. 

4d) We can use square tiles with integer side lengths and decimal side lengths with .5 as the 

only decimal: 0.5m, 1m, 1.5m, 2m, 2.5m, ...,15.5m, 16m, and 16.5m. We have a wall 

measuring 371.25m2 and want to tile it by using as the largest tile only one square tile with 

a side of 16.5m. What is the minimum set of tiles that allows us to do it? Justify your 

answer. 

Students have to identify and generalize, from the example given, the optimal tiling method: 

first, place the largest possible tile as many times as possible; then, fill in the gap using the 
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largest possible tile as many times as possible; repeat the procedure with smaller tiles until the 

whole rectangle is tiled. For instance, to tile the rectangle in Figure 3, we place three 6m tiles, 

then one 4m tile, and finally two 2m tiles. Part 4d does not specify a shape for the wall, but 

students, based on the context of the previous parts of the problem, assumed that the wall is a 

rectangle. 

4.2 Methodology of analysis of data 

We first conducted a pilot evaluation of a small sample of six students with different levels of 

performance on the test. The four authors independently analyzed their solutions and, based 

on the initial definitions of the descriptors of generalization, determined which descriptors 

were evidenced in each problem. We triangulated our assignments of descriptors, discussed 

the differences, and agreed on new definitions of the descriptors. We then analyzed the 

solutions of the six students again and repeated the triangulation. Finally, we produced the 

general definitions of the descriptors presented in 3.2. 

The next step was to produce initial versions of particularized descriptors for P3 and P4. By 

applying the same triangulation methodology, we obtained particularized versions of the 

definitions of the descriptors for P3 and P4 (Tables 1 and 2). 

The descriptors of generalization, and the particularizations to P3 and P4, represent processes 

of reasoning that can be observed in students’ solutions and allow us to efficiently and 

reliably determine whether the students evidenced or not their capacity for generalization of 

solution methods and in which ways it is evidenced. In section 5 we show examples of 

solutions evidencing the most useful descriptors. 

Problem P3 requires generalizing two solution methods: how to use the wands and which 

floors can be reached by each fairy. For this reason, we have defined some pairs of descriptors 

for the same degree of generalization. Note that DG1.3 and DG1.4 do not apply to P3, so 

Table 1 only includes the descriptors valid for P3. 
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Table 1. Descriptors of generalization used to analyze the solutions to P3. 

Code Description 

DG1.Types of solution methods 

DG1.1 Solutions that 

do not meet some 

requirement of the 

problem 

Calculations (made several times) of movement from one floor to 

another that do not match the wand definitions 

DG1.2 Trial and 

error 

Calculations (made several times) using randomly chosen wands 

DG1.5 Optimal Calculations (made several times) with optimally chosen wands for 

going to any reachable floor 

DG2. Levels of generalization 

DG2.1a Uninitiated 

generalization of the 

use of wands 

They do not use the optimal wand selection method because they 

make, at least in part, random selection of wands. They have not 

abstracted that they must use blue wand to reach a floor with the same 

unit digit as the target floor 

DG2.1b Uninitiated 

generalization of 

accessible floors 

Their solutions do not mention the unit digits of floors, except the 

specific floors they have reached in their calculations, or provide other 

kind of explanation. They have not abstracted that only floors with 

certain unit digits can be reached 

DG2.2 Partial 

generalization of 

accessible floors 

Their solutions consist of one of these arguments (or a combination of 

them), based on the cases they have calculated: 

- Each fairy can only reach floors with certain unit digits (but they do 

not mention all digits for each fairy) 

- Some fairies can only reach floors with certain unit digits (but they 

do not mention all fairies) 

DG2.3a Complete 

generalization of the 

use of wands 

They apply systematically (though not necessarily from 3a) the optimal 

method for choosing wands 
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Code Description 

DG2.3b Complete 

generalization of 

accessible floors 

They explain that each fairy can only reach floors ending in certain 

unit digits and name all digits of each fairy 

 

 

Table 2. Descriptors of generalization used to analyze the solutions to P4. 

Code Description 

DG1.Types of solution methods 

DG1.1 Tilings that do 

not meet some 

requirement of the 

problem 

They draw an apparently correct tiling, but i) they use non-square tiles, 

or ii) the dimensions of the tiles they write are larger (smaller) than the 

correct ones, so the tiles actually overlap (leave gaps) in the rectangle 

DG1.2 Trial and 

error 

They cover the rectangle with tiles chosen randomly (at least the first 

ones) or chosen without considering the rule of using the minimum 

number of tiles 

DG1.3 Recursive They make incorrect repetitive tilings, because they use an excessive 

number of (usually small) tiles of the same size 

DG1.4 Partially 

optimal 

In some rectangles, they use the optimal strategy correctly, but in 

others they try to apply it but make incorrect tilings 

DG1.5 Optimal Tilings made by selecting the optimal tiles to cover the rectangles 

DG2. Levels of generalization 

DG2.1 Uninitiated 

generalization of the 

tiling method 

They have not abstracted the optimal tiling method, since they cover 

the rectangles with inadequate tiles 

DG2.2 Partial 

generalization of the 

tiling method 

They have not fully abstracted and generalized the optimal tiling 

method, since they start using adequate tile (the largest possible), but 

then continue with inappropriate tiles 

DG2.3 Complete 

generalization of the 

tiling method 

They systematically apply the optimal tiling method (although not 

necessarily in 4a) 
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4.2.1 Qualitative analysis 

For each problem, and based on Tables 1 and 2, we recorded the descriptors of generalization 

evidenced in the students’ solutions in summary tables (Figure 5), to record the students 

evidencing each descriptor. 

 

Figure 5. Fragment of the table to classify the answers to P4. 

The result of this qualitative analysis is a classification of the solutions to each problem 

according to the descriptors evidenced. Section 5 includes examples of solutions evidencing 

the most relevant descriptors. 

4.2.2 Quantitative analysis 

To analyze the effectiveness of the problems and descriptors in discriminating potential MG 

students with high capacity for generalization of solution methods, we need to identify 

differences between students’ behaviors. A way to do it is to classify the answers to each 

problem and identify which descriptors were evidenced by the students with higher scores 

more (or less) often than by those with lower scores. As defined in the literature on 

educational research methods (e.g., Allen & Yen, 1979), discrimination is a tool that analyzes 

the characteristics of an item relative to the test as a whole of which it is a part (hence, if the 

test were changed, the discrimination of the item could be different). Calculating the 

discrimination of the problems and the descriptors of generalization allows us to decide 

whether they are adequate to identify specific students’ traits of reasoning that differentiate 

high- and low-scoring students and, consequently, differentiate between potential MG and 

average students. 

We have adopted the discrimination index (d), as characterized by Allen and Yen (1979): it 

evaluates “whether a person who does well on the test as a whole (that is, a person who 

presumably is high on the trait being measured) is more likely to get the particular item 

correct than a person who does poorly on the test as a whole … [and] whether an item 

discriminates between those examinees who do well and those who do poorly on the test as a 

whole” (p. 120). In other words, d assesses whether a particular test item performs as well as 
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the test as a whole and identifies the best students; in a well-designed test, the best items are 

those in which students with the highest and lowest scores obtain the same score on the item 

and the overall test (Allen & Yen, 1979). Then, d is suitable to differentiate between high and 

low performers according to a given criterion, the capacity of generalization in our case: the 

discrimination index of a problem (P3 or P4) or descriptor assesses its efficacy in 

discriminating the students with the highest capacity for generalization of solution methods 

and, hence, potential MG students. 

To calculate the discrimination index d of an item under analysis, “examinees [are] ordered on 

the basis of their total test scores” (Allen & Yen, 1979, p. 122) and then their item scores are 

compared. To do it, two parts of the sample are selected, comprising the subjects with higher 

and lower total scores in the whole test. The best option for our study is to select groups 

consisting of the top third (highest performers) and bottom third (lowest performers) of the 

sample. The central third of students is not used. The discrimination index d for each problem 

P3 and P4 is calculated as follows: 

d = Pt – Pb, where 

Pt is the mean score on the problem of the students in the top third 

Pb is the mean score on the problem of the students in the bottom third 

The index d evaluates “the degree to which responses to one item are related to responses to 

the other items in the test” (p. 120). The total number of items on the test does not influence 

the value of d, since it is only based on the arithmetic mean of the students’ scores on the item 

analyzed. 

As d is mostly used to analyze dichotomous items, it is assumed that it varies between –1 and 

+1. The discriminatory power of an item increases as d moves away from 0: if d = 0, there 

was the same number of correct answers by subjects in both thirds, so the item does not 

discriminate at all. If d = +1 (d = –1), all subjects in the top (bottom) third and no subjects in 

the bottom (top) third answered correctly the item, so the item has perfect discrimination. We 

will show that values of d close to –1 are meaningful in our study. The discrimination is (Ebel 

& Frisbie, 1965): 

 Very high when 0,40 ≤ |d| ≤ 1 

 High when 0,30 ≤ |d| < 0,40 

 Low when 0,20 ≤ |d| < 0,30 

 Very low when 0 ≤ |d| < 0,20 
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The steps to calculate d for P3 or P4 are: i) order the 75 students in the sample according to 

their total scores in the admission test (range 0–50 points). ii) Identify the 25 students with the 

highest total scores (top third) and the 25 students with the lowest total scores (bottom third). 

iii) Calculate the values of Pt and Pb for the problem; the scores of P3 and P4 (range 0–10 

points) are non-dichotomous, so it is necessary to standardize Pt – Pb to the range [–1, +1] by 

dividing it by 10. And iv) calculate d = (Pt – Pb)/10 and interpret its values for each problem. 

We also use d to analyze the discriminatory power of the descriptors (Tables 1 and 2), to 

identify solution methods that are more typical of students with a higher capacity for 

generalization of solution methods. The steps to calculate d for the descriptors are similar to 

those described above, with some differences: a) the meanings of the descriptors are particular 

for each problem so, now, the unit of analysis is not the test, but each problem; b) 

consequently, the students are ordered, and the top and bottom thirds are made, based on the 

problem scores; c) Pt – Pb is calculated for each descriptor in each problem; d) the descriptors 

are dichotomous items (1 = the descriptor is evident in a solution, 0 = it is not evident), so Pt – 

Pb is in the range [–1, 1] and it is not necessary to standardize it, so d = Pt – Pb. 

If d is negative for a descriptor, the descriptor has been more evidenced in solutions by 

students in the bottom third; hence, it may be associated with the use of inefficient or 

incorrect solution methods. The values of d allow us to get conclusions about the 

characteristics of each problem and descriptor allowing us to discriminate the students with 

higher capacity for generalization of solution methods and being potential MG students. 

5 Analysis of data and results 

This section presents the analysis of the data obtained after calculating d for the problems and 

the descriptors of generalization evidenced in the solutions. We analyze the power of 

discrimination of i) P3 and P4 and ii) the descriptors of generalization evidenced in the 

solutions to P3 and P4. We present all data but analyze only the descriptors that provide 

relevant information. 

5.1 Analysis of the discriminatory power of the problems 

The discrimination index of P3 and P4 allows us to determine if the problems are high 

discriminators within the test, i.e., if they allow us to identify potential MG students. Table 3 

shows that the power of discrimination of both problems is very high, indicating that they 
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differentiate very well the students with the best capacity for generalization of solution 

methods. 

Table 3. Indices d for P3 and P4 

 Problems 

 P3 P4 

Mean problem score of 

students in the bottom third 
1,70 0,63 

Mean problem score of 

students in the top third 
6.26 5,86 

Index d 0.46 0.52 

 

5.2 Analysis of the discriminatory power of the descriptors in P3 

Table 4 shows the values of d for each descriptor. Below, we analyze the descriptors of 

generalization whose values of d show high or very high discrimination in P3. 

Table 4. Indices d for the descriptors of generalization in P3 

 Descriptors 

 
DG 

1.1 

DG 

1.2 

DG 

1.5 

DG 

2.1a 

DG 

2.1b 

DG 

2.2 

DG 

2.3a 

DG 

2.3b 

Number of evidences by students 

in the bottom third 
6 15 0 17 16 0 1 0 

Number of evidences by students 

in the top third 
0 6 19 8 5 10 15 11 

Index d –0,24 –0,36 0,76 –0,36 –0,44 0,40 0,56 0,44 

 

Two descriptors related to the methods of obtaining the solutions (DG1.x) provide interesting 

information: 

The index d of DG1.2 reveals that P3 makes a high negative discrimination of students with 

poor capacity of generalization of solving methods, since the students in the bottom third 

tended to use trial and error (Figure 6) more often than those in the top third. Then, DG1.2 

helps to discriminate students who are not potential MG students. 
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3c)  3d)  

Figure 6. Student 203’s solutions to parts 3c and 3d 

Descriptor DG1.5 has very high positive discrimination of students who identified and used 

the optimal method to calculate the shortest way to arrive at the desired floor (Figure 7). The 

discrimination is positive because students in the top third used this method much more often 

than students in the bottom third. Thus, the systematic use of this optimal method 

discriminates very well potential MG students showing a capacity to identify regularities in 

the problem-solving processes. 

 

Figure 7. Student 340’s solution to part 3c 

Regarding the levels of generalization evidenced by students in P3 (DG2), all descriptors 

provide interesting results: 

Descriptors DG2.1a and DG2.1b produce high and very high negative discrimination, 

respectively: DG2.1a was evidenced when students did not have an idea of how to find 

answers, so they randomly used the wands and, in most cases, failed to identify the optimal 

method for using them (Figure 6). DG2.1b was evidenced by students who did not note that 

only floors with specific unit digits are available to each fairy (Figure 8). These behaviors are 

typical of students who are unable to identify hidden regularities in the processes of solving 

the parts of the problem. Then, these descriptors are useful to identify students with low 

capacity for generalization. 
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Figure 8. Student 111’s solution to part 3e 

DG2.2 produces a very high discrimination (d = 0.40) of students who progressed in 

recognizing some regularity in the accessible floors but did not achieve complete 

generalization. The student in Figure 9 identified some unit digits for each fairy but not all of 

them. The discrimination is positive because most students evidencing partial generalization 

had higher problem scores, while no student with lower scores did it. Hence, DG2.2 

discriminates very well students with a high capacity for generalization. 

 

Figure 9. Student 594’s solution to part 3e 

Descriptors DG2.3a and DG2.3b make a very high discrimination of students who succeeded 

in making complete generalizations. Their discrimination is positive because a majority of the 

students in the top third generalized the three solution methods, while only one student in the 
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bottom third evidenced DG2.3a. Figure 10 presents a solution showing that the student had 

grasped an optimal procedure of using the wands, since, in all the questions, she used the 

optimal procedure to get the answer. Figure 11 presents a solution evidencing DG2.3b, since 

the student had identified the relationships between floors and wands, so was able to calculate 

all the floors available to each fairy. 

 

Figure 10. Student 9260’s solutions to parts 3a, 3c, and 3d 
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Figure 11. Student 185’s solution to part 3e 

The values of d in Table 4 show relationships between descriptors of DG1 and DG2 that are 

qualitatively consistent with the quality of the responses associated with those descriptors: 

when students used poor solving strategies (not meeting the requirements of the problem or 

trial and error), then they could not find a solving strategy allowing them to correctly 

generalize the use of wands (DG2.1a) or the access to floors (DG2.1b). Conversely, when 

students used correct solution strategies (DG1.5), then they were able to convert them into 

generalized strategies (DG2.2, DG2.3a,b). Quantitatively, these relationships are clear in 

Table 4, with values of d under -0.20 for DG1.1, DG1.2, and DG2.1a,b and over 0.40 for 

DG1.5, DG2.2, and DG2.3a,b. 

As a final synthesis of the analysis of P3, we argue that this problem is very adequate to 

obtain a variety of solutions evidencing the different descriptors of each type of generalization 

and allowing high or very high discriminatory power of potential MG students with high 

capacity to generalize solution methods. Concerning the descriptors, some have proved to be 

useful in identifying potential MG students (DG1.5, DG2.2, and DG2.3) while others are 

useful in identifying students who do not show MG characteristics (DG1.2 and DG2.1). 

Therefore, in ordinary groups of students, P3 helps identify both students with low and high 

MG. 
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5.3 Analysis of the discriminatory power of the descriptors in P4 

Table 5 shows the values of d for each descriptor. Below we analyze the descriptors whose 

values of d show high or very high discrimination for P4. The discussion made in section 5.2 

about the meanings of negative and positive values of d is also valid here. 

Table 5. Indices d for the descriptors of generalization in P4 

 Descriptors 

 
DG 

1.1 

DG 

1.2 

DG 

1.3 

DG 

1.4 

DG 

1.5 

DG 

2.1 

DG 

2.2 

DG 

2.3 

Number of evidences by 

students in the bottom third 
18 4 4 1 0 7 1 0 

Number of evidences by 

students in the top third 
10 3 7 6 14 2 6 15 

Index d –0,32 -0,04 0,12 0,20 0,56 –0,20 0,20 0,60 

 

Descriptor DG1.1 offers interesting information about solutions based on inefficient or 

incorrect methods. It made high negative discrimination of students with a low capacity for 

generalization of the solution method, who used non-square tiles (Figure 12-1) or squares 

with incorrect dimensions (Figure 12-2). The discrimination is negative because these 

solutions are mostly used by students in the bottom third. 

1  2  

Figure 12. Solutions by students 121 and 203 to parts 4b and 4c, respectively. 

DG1.5 highlights correct solutions based on the optimal tiling method, evidenced only by 

students in the top third who consistently showed (Figure 13) that had understood and 
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generalized ways to use the minimum possible number of tiles and always used the optimal 

tiling method. Then, DG1.5 discriminates very well students with a high capacity for 

generalization of solution methods.

 

Figure 13. Student 301’s solutions to parts 4a and 4b. 

Descriptor DG2.3 made very high discrimination, as it was evidenced by most students in the 

top third but none in the bottom third. The solution in Figure 14 evidenced DG2.3. 

 

Figure 14. Student 9273’s solutions to parts 4a and 4c 

As for P3, the values of d in Table 5 show qualitatively consistent relationships between 

descriptors of DG1 and DG2: when students used poor tiling strategies (DG1.1, DG1.2, 

DG1.3), they failed to find a correct generalized method for tiling the surfaces (DG2.1). 

Conversely, when students used a correct tiling strategy (DG1.5), they succeeded in 

converting it into a generalized strategy (DG2.2, DG2.3). Quantitatively, as there is a 

diversity of poor solution strategies in P4, the values of d are close to 0. There are very clear 

relationships, DG1.1 – DG2.1, DG1.4 – DG2.2, and DG1.5 – DG2.3, but we cannot affirm 

that there is a relationship of DG1.2 and DG1.3 with DG2.2 and DG2.3, since their values of 

d are low or very low. 

As a final synthesis of the analysis of P4, this problem is adequate to let students evidence 

their different capacities of generalization, from average students to potential MG students. 

The descriptors DG1.5 and DG2.3 are useful in identifying potential MG students, while 

DG1.2 is useful in identifying non-MG students. 
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6 Conclusions 

Identifying potential MG students requires observing their problem-solving abilities across 

various mathematical topics and their use of a range of processes of reasoning. We have 

presented novel insights into this research line by analyzing solutions by 11 to 14 year-old 

students to two problems requiring them to identify specific solution methods, abstract and 

generalize them, and apply them in different ways to answer related questions. These 

problems are original, since they are not within the usual contexts of arithmetic, algebraic, or 

functional generalizations, but they ask students to think about procedural aspects of the 

solutions. A contribution of our study is to raise the importance of analyzing students’ 

capacity to generalize solution methods of mathematical problems, in line with Krutetskii 

(1976). 

Our research has four objectives. To achieve the first one, we have presented a set of original 

descriptors for the capacity to generalize solution methods, that characterize different ways 

and levels of using, abstracting, and generalizing solution methods. The proposed operative 

characterization of the processes of generalization, necessary to solve this kind of problem, is 

an original contribution to the research on students’ capacity for generalization. 

To accomplish the second objective, we have used the descriptors to analyze the solutions to 

two problems posed in the admission test to ESTALMAT. We have particularized the 

descriptors into specific operational descriptors for each problem (Tables 1 and 2), ensuring a 

reliable analysis of students’ solutions. 

Regarding the third objective, the qualitative analysis of the students’ solutions has shown 

evidence of different strategies of generalizing solution methods that align with the 

descriptors defined. This study offers an interpretation of generalization in contexts different 

from the usual ones and provides examples of various forms of generalization of solution 

methods of problems. 

As for the fourth objective, we have conducted a quantitative analysis of the descriptors 

evidenced in the solutions, by calculating their discrimination index d. We have identified the 

descriptors making high or very high discrimination of the solutions by students with higher 

or lower problem scores. These results lead us to argue that: 

• Our problems are suitable for identifying specific forms of generalization of solution 

methods typical of MG students. 
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• Some descriptors are associated with ways of reasoning of MG students (DG1.5, DG2.2, 

DG2.3) or students with low mathematical capacity (DG1.1, DG1.2, DG2.1). 

• Both problems require to generalize solution methods, but their contexts are quite 

different. This results in a diversity of solution methods, with some descriptors 

discriminating high-scoring students in both problems (DG1.5 and DG2.3) or only in a 

problem (DG2.2 for P3). We argue that this is a consequence of the richness of the 

problems and the diversity of their mathematical contexts. 

• The results for each problem show consistency between the values of d for sub-sets of 

descriptors of DG1 and DG2. This allows us to empirically confirm the theoretical 

validity of the descriptors we have presented to characterize the generalization of 

mathematical problem-solving methods and their usefulness to identify potential MG 

students. 

Possible limitations of our study are i) the length of the problem statements and the students’ 

lack of familiarity with such type of problems. This may have caused some students with low 

reading comprehension to have difficulty understanding the mathematical contents involved 

and solution methods, preventing them from providing correct solutions. ii) Our results cannot 

be generalized, since they are based on a moderate-sized sample and solutions to two specific 

problems. The values of d obtained for P3 and P4 in our experiment cannot be extended to 

other sets of problems, that might have different difficulties; however, the values of d for the 

descriptors are independent of the test, since they are based only on students’ scores in those 

problems. 

The theoretical framework and the research methodology used in our study seem to be 

suitable for future research experiments analyzing students’ processes of generalization of any 

kind of solution methods and problems. Then, this study paves the way for future research 

into the identification of potential MG students’ capacity for generalization of problem 

solution methods. Several directions of research can be envisaged, like the possible 

relationship between previous problem-solving experience, the scores obtained, and the 

discrimination power of the problems and descriptors. 
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