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Mutational landscape of risk variants in comorbid depression
and obesity: a next-generation sequencing approach
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Major depression (MD) and obesity are complex genetic disorders that are frequently comorbid. However, the study of both
diseases concurrently remains poorly addressed and therefore the underlying genetic mechanisms involved in this comorbidity
remain largely unknown. Here we examine the contribution of common and rare variants to this comorbidity through a next-
generation sequencing (NGS) approach. Specific genomic regions of interest in MD and obesity were sequenced in a group of 654
individuals from the PISMA-ep epidemiological study. We obtained variants across the entire frequency spectrum and assessed
their association with comorbid MD and obesity, both at variant and gene levels. We identified 55 independent common variants
and a burden of rare variants in 4 genes (PARK2, FGF21, HIST1H3D and RSRC1) associated with the comorbid phenotype. Follow-up
analyses revealed significantly enriched gene-sets associated with biological processes and pathways involved in metabolic
dysregulation, hormone signaling and cell cycle regulation. Our results suggest that, while risk variants specific to the comorbid
phenotype have been identified, the genes functionally impacted by the risk variants share cell biological processes and signaling
pathways with MD and obesity phenotypes separately. To the best of our knowledge, this is the first study involving a targeted
sequencing approach toward the study of the comorbid MD and obesity. The framework presented here allowed a deep
characterization of the genetics of the co-occurring MD and obesity, revealing insights into the mutational and functional profile
that underlies this comorbidity and contributing to a better understanding of the relationship between these two disabling
disorders.
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INTRODUCTION
Major depression (MD) and obesity are amongst the major causes
of disability, morbidity and mortality worldwide [1, 2]. While
suffering from any of these conditions independently represent a
major burden to personal and public health implications,
generating an enormous economic and social cost, the fact of
suffering them comorbidly contributes to aggravate the situation
[3–7]. Consequently, given the high prevalence of both disorders
and their consequences, understanding the nature of their
relationship is a challenge in epidemiological and psychosomatic
medicine.
The association between MD and obesity has been firmly

established [8–15]. In addition, epidemiological evidence, includ-
ing several longitudinal meta-analyses, strongly supports a
bidirectional association between these two common conditions
[16–19]. There is evidence that people with MD are more likely to
suffer from obesity compared to psychiatrically healthy controls.

Likewise, people with obesity are also more likely to develop MD
than normal weight people. Despite that, the underlying
mechanisms remain unclear. Biological, psychological and
behavioral factors have been proposed as plausible explanations
[20]. Obesity would lead to MD due to stigma, interpersonal
distress, and changes in body image; while MD would lead to
obesity as a result of physical inactivity, alcohol abuse, emotional
eating and antidepressant treatment [17, 18, 21, 22]. Interest-
ingly, such psychological and behavioral factors are associated
with biological dysregulations of depression and obesity [20].
The biological mechanisms described appear to be strongly
connected by alterations in the systems involved in homeostatic
adjustments and the brain circuitries that integrate mood
regulatory responses (e.g., the hypothalamic–pituitary–adrenal
(HPA) axis, immuno-inflammatory activation, neuroendocrine
regulators of energy metabolism or the microbiome)
[17, 20, 23–26].
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The etiology of MD and obesity reveals their complexity and
multifactorial nature. Concerning the biological component,
different studies have reported that MD and obesity have a
similar genetic burden, with additive genetic effects explaining
~35% and ~40% of heritability for MD [27, 28] and body mass
index (BMI) [29, 30], respectively. Nowadays, hundreds of single
nucleotide polymorphisms (SNPs) associated with MD [31–34] and
obesity or BMI [35–37] have been identified thanks to genome-
wide association studies (GWASs). Interestingly, the polygenic
contribution to BMI heritability was found to be significantly
enriched for brain cells as compared to other tissues, suggesting a
central role of specific brain regions in the regulation of body
mass and energy homeostasis [38]. In addition to the genetic risk
factors identified for each disease, a shared genetic susceptibility
profile between MD and obesity has also been found [32, 39]. In
fact, Bahrami et al. [39] have identified 32 shared loci between
both conditions. In this direction, genetic risk for obesity-related
traits has been found to be significantly increased in individuals
with certain depressive symptoms [40–44]. Likewise, genetic risk
for MD has also been found to be significantly increased in
individuals with higher BMI values [43]. However, despite the
relevance of these findings, the explored variants are mainly SNPs
(minor allele frequency (MAF) ≥ 1%). Rare (1% >MAF ≥ 0.1%),
ultra-rare genetic variants (MAF < 0.1%) and other structural
variations are considerably more poorly explored. Indeed, while
common variation constitutes an important part of the heritability
of complex diseases, those other genetic variations usually confer
a substantially higher risk of disease due to a more deleterious
impact on the affected gene functionality [45–48]. Their explora-
tion is therefore necessary to contribute to unraveling the genetic
architecture and thus to unravel the molecular mechanisms
underlying the MD–obesity relationship.
Next-generation sequencing (NGS) technology captures many

types of genetic variation across the entire frequency spectrum
including structural variations. Recent whole exome sequencing
(WES) studies have provided new insights into the contribution of
rare coding variants on depression [49–53] and obesity [54–56].
Furthermore, this approach allowed the identification of causal
genes, mainly for monogenic obesity. These genes – including
BDNF, MC4R and PSCK1 – have also been found to be strongly
associated with obesity in GWAS [54]. Nevertheless, while WES has
provided clear advantages in comparison to whole genome
sequencing (WGS) – including lower cost and easier interpretation
of the functional impact of coding variants – noncoding variants
are not covered [57]. Targeted sequencing offers an alternative
that could not only solve some of the limitations that WGS and
WES present, but is also an ideal option to further explore specific
genomic regions of relevance in the phenotypes under investiga-
tion. Thus, candidate gene sequencing – mainly in Mendelian
diseases [58] – or post-GWAS fine mapping studies [59] are among
the main applications of this sequencing approach. To the best of
our knowledge, no relevant targeted gene sequencing studies for
MD have been performed to date. Meanwhile, in the study of
obesity genetics, a few studies have applied candidate gene
sequencing [60, 61]. Thus, an in-depth genetic screening of
candidate regions and genes in MD and obesity has not been
carried out so far, neither independently nor combined. This study
aimed to further explore the genetic relationship between MD and
obesity taking advantage of targeted sequencing strategy.
Specifically, we searched for genetic risk variants across the entire
frequency spectrum in flanking genomic regions and genes
previously associated with MD and obesity, assessed the
contribution of those variants to the pathophysiology of comorbid
MD and obesity, and provided a general overview of the cellular
and molecular pathways mapped by those variants when these
complex diseases co-occur. The overall workflow of the study is
shown in Fig. 1.

METHODS
Study cohort
Subjects. The study was conducted in a group of 654 individuals from the
PISMA-ep cohort, a cross-sectional epidemiological study based on a
representative sample of the general adult population living in the entire
Andalusia region (Spain) [62] aimed to establish the prevalence of major
psychiatric disorders in Andalusia. The methodology and characteristics of
the PISMA-ep study have been described in more detail elsewhere [62]. For
the present study we selected all depressive cases, an age- and sex-
matched group of individuals with obesity, and individuals without any of
these disorders.

Clinical assessments and measures. The Mini-International Neuropsychia-
tric Interview (MINI) was used to ascertain the diagnosis of MD following
DSM-IV criteria [63]. Interviews were conducted by fully trained
psychologists and took place either in the participant’s local primary
healthcare center or in their homes. For each participant, self-reported
height and weight were obtained to calculate their body mass index (BMI)
using the formula: weight in kilograms divided by height in meters
squared (kg/m2). Participants were grouped into four categories, following
WHO criteria [64]: underweight (BMI < 18.5 kg/m2), normal weight (BMI
18.5–24.99 kg/m2), overweight (BMI 25.0–29.99 kg/m2) and obesity (BMI ≥
30 kg/m2). In addition, a biological sample was obtained from each
participant with an Oragene® saliva DNA (OG-500; DNA Genotek Inc.,
Kanata, ON, Canada) collection kit. The Oragene® Saliva Collection Kit
protocol was used for DNA extraction. The original DNA samples were
prepared to be stored at −80 °C in matrix plate format. DNA quantification
was measured using the Infinite® M200 PRO Multimode Microplate Reader
(Tecan, Research Triangle Park, NC, USA).

Sequencing
Targeted genomic regions sequencing. Specific genomic regions of interest
in MD and obesity, respectively, based on traditional candidate genes for
these disorders as well as associated loci reported in GWAS meta-analysis –
available at the time of the study design – of MD [32] and obesity [35] were
included in the design of the targeted DNA sequencing panel (see details
in Fig. 2). Capture libraries were prepared by hybridization according to the
SeqCap EZ HyperCap v2.3 protocol (Roche) and libraries were sequenced
at 75 base pairs (bp) paired-end read length with Illumina NextSeq
500 system. All coding exons of 357 genes and 979 noncoding regions,
distributed in 414 genes, (~1.5 Mb) were sequenced for the 654 included
individuals (for all covered regions, see Supplementary Table 1).

Data processing. Primary bioinformatics analysis of the obtained reads
was carried out in accordance with GATK best practice [65] (https://
software.broadinstitute.org/gatk/best-practices/). The quality of the reads
generated by the sequencer in FASTQ format was analyzed and those of
low quality were discarded. The remaining sequences were aligned to the
reference genome GRCh37(hg19), eliminating low-quality alignments.
Subsequently, variants (SNVs and small INDELs) were identified. Resulting
variants were annotated using Cellbase [66]: information was added
regarding its genotype, population frequency, the sequence ontology (SO)
of the variant, the gene and transcript(s) it might affect, its HGVS
nomenclature, the degree of conservation (GERP) [67], its pathogenicity
level (SIFT [68], Polyphen [69], CADD [70]) and its clinical significance
according to the OMIM [71] (https://www.omim.org/) and ClinVar [72]
(https://www.ncbi.nlm.nih.gov/clinvar/) databases.

Variant analysis
Classification of variants. Autosomal variants found in individuals were
classified according to their MAF in the European population of the 1000
Genomes Project Phase 3 [73] (1 KG-EUR, https://
www.internationalgenome.org) as common (those variants with an
MAF ≥ 0.05); rare (0 <MAF < 0.05); and undetected (undescribed in the
aforementioned database). Additionally, rare autosomal variants at 1 KG-
EUR or undetected, but common in the control groups of our cohort
(MAF≥ 0.05) were also considered common variants. A different approach
was used to treat common and rare variants in the subsequent association
analyses.

Disease association studies. Comorbid MD and obesity status was the
main binary outcome analyzed in this study. Thus, cases consisted of
individuals in the study cohort diagnosed with MD who also had obesity
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(BMI ≥ 30) and controls consisted of individuals with no co-occurring MD
and obesity. Sex and age were included as covariates in the analyses. In
addition, MD and obesity phenotypes separately were also considered as
binary outcomes in the study. BMI and MD status were included as
covariates when MD and obesity were considered outcomes, respectively.
An additive inheritance model was assumed for the variants to be
assessed.
First, all identified common variants (MAF ≥ 0.05 in 1 KG-EUR and in our

control groups) were included. Weighted logistic regression models
(generalized linear model, GLM) were performed using Stats R package
(v 4.1.2) to assess the association of each of these variants with each of the
three phenotypes under study (i comorbid MD and obesity, ii MD and iii
obesity). Weights were constructed by inverse probability weighting (IPW)
with the WeightIt R package (v 0.13.1). To assess the viability of a causal
analysis based on IPW, the proportion of covariates that could be
effectively balanced was checked using the standardized mean differences
test as implemented in the Cobalt R package (v 4.4.0). A 0.05 threshold was
considered as suggested in Stuart et al. [74]. In order to obtain a reliable
estimate of the covariate-adjusted odds ratio, bias-corrected and
accelerated bootstrap interval (BCa CI) method with 10,000 resamples
was performed to measure the association between variants and
outcomes using the Boot R package (v 1.3.28). 95% confidence intervals
(CI) were obtained for the covariate-adjusted odds ratios (OR). Therefore,
associations in which 1 was not included in this interval were considered
significant. In order to identify independent associations, the patterns of
linkage disequilibrium (LD) between those variants were explored using
European ancestry TOPMed WGS data [75] through the TOP-LD tool [76].
For all pairs of variants within 500 Kb a maximum R2 threshold of 0.2 was
considered to determine independence between them. To validate these
findings, the independence of these pairs of variants in a window of
500 Kb was also assessed in our sequencing data by using chi-square
statistic implemented in vcftools [77].
The sequence kernel association test-optimal (SKAT-O) [78] as provided

in the SKAT R package (v 2.2.4) was conducted using a small-sample
(<2000) adjustment and a maximum cutoff of internal cohort MAF of 0.05

to determine the difference in the aggregate burden of prioritized rare
variants between cases and controls at gene level. Rare and undetected
variants in 1 KG-EUR (0 � MAF < 0.05) with functional relevance – (i)
missense variants; (ii) Loss of function (LoF) variants: nonsense, frameshift
and inframe (insertions and deletions) variants and splicing regulatory
variants; and (iii) variants in UTR regions – were prioritized. In addition,
genes carrying variants annotated as pathogenic or probably pathogenic
in Clinvar were included. SKAT-O was applied to aggregate genetic
information across genes with at least two prioritized rare variants to test
for associations with the main outcome of the study (comorbid MD and
obesity) and with the phenotypes of MD and obesity separately. Similarly
as in the variant level exploration, sex and age were used as covariates in
the analyses. Also, BMI and MD status were included as covariates when
MD and obesity were considered outcomes, respectively. 10,000 bootstrap
replicates were carried out to obtain a reliable estimate of the statistic.
Genes with a resampled p value < 0.05 were considered significant.

Follow-up of significantly associated variants and genes. To explore the
functional impact of the common associated variants, all the significant
signals were considered. First, in order to gain insights into the effects of
noncoding variants, public expression Quantitative Trait Loci (eQTL)
datasets were checked to find out other genes whose expression was
altered by these variants (eGenes) using eQTL datasets across 13 brain
regions from the GTEx portal (Release V8 data, www.gtexportal.org) [79].
Additionally, to provide functional meaning to our detected associations, a
gene-set enrichment analysis (GSEA) was performed. Thus, for each
explored phenotype, a list of input genes was built by including genes
mapped by those risk common variants (carrier genes), genes resulting
from SKAT-O and eGenes. GSEA was performed using the gprofiler2 R
package (v 0.2.1). Gene-sets were obtained using data from Gene Ontology
(GO) Consortium (http://www.geneontology.org/) [80, 81] and Reactome
(https://reactome.org) [82] with the aim of having a representation of
descriptive terms of biological processes involving a group of genes at
cellular level (defined in GO:BP) and canonical cell signaling pathways
(defined in Reactome) [82]. GO terms Inferred from Electronic Annotation

Fig. 1 Study flowchart. a Biological sample (saliva) was obtained from 654 participants. This group included (I) individuals with comorbid MD
and obesity (N= 83), from among (II) MD individuals (N= 273) and (III) obese individuals (N= 192), and (IV) individuals without MD or obesity
(N= 189). b Specific genomic regions of interest in MD and obesity were sequenced. c The identified variants were classified according to
their MAF in the European population of the 1000 Genomes Project Phase 3 (1 KG-EUR) as common (MAF ≥ 0.05) and rare (0 ≤MAF < 0.05).
Internal common variants in the control group of our cohort (MAF ≥ 0.05) were also included as common variants. A different prioritization
criterion was used to treat common and rare variants. d All autosomal common variants annotated with the sequence ontology (SO) terms
detailed in (c) were included in the variant level analysis. Weighted logistic regression models were performed to evaluate the association of
these variants with the comorbid phenotype. For gene level analysis, all rare variants with SO annotations highlighted in bold in (c) were
collapsed into genes and the association of these genes with the phenotype of interest was evaluated by performing a sequence kernel
association test-optimal (SKAT-O). Ten thousand bootstrap samples were carried out on both variant and gene level analyses. e Finally, (i)
public expression Quantitative Trait Loci (eQTL) datasets were checked to find out genes whose expression was altered by the risk variants
(eGenes) using eQTL datasets across brain regions from GTEx (Release V8 data) and (ii) a gene-set enrichment analysis (GSEA) was performed
to determine in which biological processes and cell signaling pathways mapped the variants and genes previously identified and thus
contribute to a better understanding of the mechanisms underlying the relationship between depression and obesity.
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(IEA) were excluded. Enrichment p values were computed using Fisher’s
exact test and corrected for multiple testing with false discovery rate (FDR)
[83]. Results for the comorbid phenotype were compared with those
obtained considering MD and obesity phenotypes separately.

RESULTS
Study cohort
The main case-control study included 83 individuals with
comorbid MD and obesity, and 571 individuals with no co-
occurring MD and obesity (named as controls). Sex distribution
between cases and controls was significantly different (χ2= 6.56, p
value < 0.05). Furthermore, a significant difference in the age
means between these two groups was found (t=−86.81, p
value < 0.05) (see Table 1). The sex, age and BMI distributions
considering MD and obesity phenotypes separately are detailed in
Supplementary Tables 2, 3 and Supplementary Fig. 1.

Sequencing
The average percentage of positions with coverage depth ≥30×
for these 654 individuals was 92.1% ( ± 5.2) (Supplementary Fig. 2).
Overall, 38,528 autosomal variants were identified, out of which
3165 were common and 35,393 were rare or undetected (based
on the 1 KG-EUR database using a threshold of ≥5% for common
variants). Table 2 details the number of variants found according
to their classification, based on their frequencies and their
consequence annotation.

Variants analysis
Common variants association study. Common autosomal variants
found in individuals were selected according to their MAF in 1 KG-
EUR and in the control group of our cohort. Thus, the number of
variants included in the comorbid MD and obesity study was 3757.
From these, in a first step, 151 significant variants (95% CI
covariate-adjusted OR) were obtained in the explored comorbid
phenotype (Supplementary Table 4). In addition, considering the
MD and obesity phenotypes independently, a total of 166 and
168 significant variants (95% CI covariate-adjusted OR) were
identified, respectively (Supplementary Tables 5, 6). Comparing
the results of these three contrasts, among the 151 variants
associated with the comorbid phenotype, 101 were exclusive to
that phenotype. Among the remaining 50 variants, 49 overlapped
with the variants identified in the MD or obesity groups separately,
and only one variant (rs74991234) overlapped in all three
evaluated phenotypes (Fig. 3). Considering the direction of
association of the overlapping variants with the comorbid
phenotype, all of them were found to be opposite, except for
the one that overlapped in the three groups. This could be
explained by the fact that MD and obesity association studies
were corrected for the effect that BMI or MD status might have on
the assessed phenotype, respectively. Therefore, 102 common
variants were finally considered as risk variants for comorbid MD
and obesity. These correspond to the exclusive variants of the
comorbid phenotype and the overlapping variant in the three
outcomes. Among the 102 risk variants, 55 independent signals

Fig. 2 Overview of the targeted sequencing panel design strategy from candidate genes and SNPs for MD and obesity. a For all genes
included in the panel, coding sequences and UTR regions were captured, except for FTO and MC4R genes, for which the complete sequence
was captured, given their high interest according to candidate gene studies in MD and obesity. b Capture of the 200 bp flanking to candidate
SNPs located in intronic regions and capture of the exonic and UTR regions of functionally related genes (eQTLs, DEPICT, GRAIL, miRNA
binding site, etc.) to these polymorphisms and of carrier genes.
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were identified after checking their independence with TOP-LD
and vcftools (Table 3). The haplotypes determined, as well as the
independent variants, are detailed in Supplementary Table 7. It
should be noted that the FTO gene, whose sequence was
completely captured, concentrates 25 variants (8 independent
signals), being the gene in which the highest number of
independent signals have been mapped. Additionally, it is
noteworthy that up to 3 independent variants were mapped in
the LRP1B gene.

Rare variants association study. After prioritizing rare variants
according to their potential functional relevance, the role of the
remaining 8009 rare variants was assessed by a variant burden

analysis using SKAT-O at the gene level. These variants were
grouped in 274 carrier genes, which were included in the study.
The number of rare variants found in each gene and their
classification according to their consequence annotation are
shown in Supplementary Table 8 and Supplementary Fig. 3.
After performing a gene-based association test, 4 genes (PARK2,

FGF21, HIST1H3D and RSRC1) were found to be significantly
associated with comorbid MD and obesity (Table 4). Figure 4
shows the distribution of rare variants in these genes according to
their consequence annotation. Considering the genes obtained for
the independently evaluated MD and obesity phenotypes
(Supplementary Tables 9, 10), one gene (MTIF3) was overlapped
between MD and the comorbid phenotypes (Fig. 5). Therefore,
taking into account that the gene level analysis for the MD
phenotype was also adjusted with BMI, this gene was excluded
from those significantly associated with comorbid MD and obesity
and it was not considered for subsequent analyses.

Follow-up of significantly associated variants and genes. Using
eQTLs datasets across 13 brain regions from the GTEx portal [78],
35 of the total of 102 variants significantly associated with
comorbid MD and obesity (Table 3 and Supplementary Table 7)
were found to be eQTLs in at least one of those brain regions for
36 eGenes (Supplementary Table 11). After performing GSEA
considering these eGenes, along the carrier genes of the common
risk variants and genes resulting from SKAT-O, 210 statistically
significant gene-sets (FDR < 0.05) were obtained from GO:BP
(178 significant group of genes) and from Reactome (32 significant
pathways) (Supplementary Table 12). Regarding MD and obesity
phenotypes independently, 40 and 15 variants were found to be
brain eQTL for 36 and 16 genes, respectively (Supplementary
Tables 13, 14). Likewise, after applying GSEA in these phenotypes,
396 and 132 gene-sets were determined to be significantly
enriched, respectively (Supplementary Tables 15, 16). Comparing
the results obtained from GSEA for the three evaluated
phenotypes, 32 significant gene-sets were obtained exclusively
for the comorbid phenotype (20 reported from GO and 12
reported from Reactome) (Fig. 6). Figure 7 shows a summary of
these significant gene-sets for the comorbid phenotype and the
mapped genes derived from the previous analyses. Most GO terms
defined biological processes related to carbohydrate metabolism
or peptide metabolism (GO:0005975, GO:0045912, GO:0034248,

Fig. 3 Venn diagram of the variants significantly associated with
each of the three phenotypes evaluated. A total of 151, 166 and
168 significant variants (95% CI covariate-adjusted OR) were
identified for (i) comorbid MD and obesity, (ii) MD and (iii) obesity,
respectively. Only the variant rs74991234 in CCDC68 gene was
significant in the three phenotypes. Other 17 and 32 variants
overlapped between the comorbid phenotype and the indepen-
dently explored MD and obesity phenotypes, respectively. An
overlap of 8 significant variants (rs74991234, rs2481662, rs501142,
rs3740689, rs7336604, rs4143229, rs17823199 and rs708262) was
found among MD and obesity.

Table 2. Classification of the genetic variants identified according to their MAF in 1 KG-EUR and their consequence annotations.

Intergenic
upstream

5′
UTR

Coding Intronic 3′
UTR

Intergenic
downstream

Total

Missense Nonsense Synonymous Ins/
Del

Common 18 52 240 0 341 9 2371 85 19 3165

Rare 32 114 736 0 597 14 3122 125 17 4757

Undetected 103 651 4509 10 11109 168 13,334 710 42 30,636

Total 153 817 5485 10 12,047 191 18,827 920 78 38,528

Ins/Del insertion/deletion.

Table 1. Sex and age distribution between cases with comorbid MD and obesity and controls.

Cases 83 (12.7%) Controls 571
(87.3%)

Test (χ2/t-test;
df)

p

Sex N (%) Female 66 (79.5) 369 (64.6) 6.56; 1 0.010

Male 17 (20.5) 202 (35.4)

Age mean (SD) 55.05 (14.32) 50.96 (15.18) −86.81; 653.63 <2.2 × 10−16

χ2 chi-square test, df degree of freedom, p p value, SD standard deviation.
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GO: 0006109, GO:0044281), intracellular transport (GO:0051169,
GO:0006913, GO:0032386) and steroid hormone signaling
(GO:0071383, GO:0030518, GO:0048545, GO:0043401) (see Fig. 7a).
Concerning the significant Reactome pathways, we found some
related to lipid and lipoprotein metabolism (HSA-9024446, HSA-
9029569, HSA-174824, HSA-8964043) and others linked to
chromatin organization and modification (HSA-4551638, HSA-
3247509, HSA-4839726) (see Fig. 7b). We also found groups of cell
cycle-related genes among both GO (GO:0007049) and Reactome
(HSA-6791312) terms (Fig. 7).

DISCUSSION
Here we present a framework that addresses an unexplored
approach in the study of the genetics of comorbid MD and
obesity: the contribution of rare variants in this comorbidity.
Through targeted sequencing of specific genomic regions of high
interest in both MD and obesity phenotypes, we have identified
common and rare variants for this comorbid phenotype, providing
initial insight for the molecular mechanisms underlying the co-
occurrence of both diseases, and contributing to complement the
biological knowledge available on the field. Over the last few
years, several studies have contributed to elucidating the shared
genetic profile between these disorders [39–44], being the meta-
GWAS by Barahmi et al. [39] the only study to date that has
identified shared loci between both depression and obesity.
Despite these studies have pointed toward significant findings
that explore common variants shared between these diseases, to
the best of our knowledge, the study of the contribution of rare

variants in the comorbid phenotype has not been addressed yet.
Although WES-based studies exploring the burden of rare variants
in MD [49–53] and in obesity [54–56] have been conducted in
recent years, these phenotypes were considered separately. There
are no NGS approaches that identify variants, across the entire
frequency spectrum, associated with these two complex diseases
to date.
Our results report 55 independent common variants associated

with comorbid MD and obesity. FTO and LRP1B were the genes
with the highest number of independent signals. Interestingly,
both genes have been found to be relevant in the two explored
phenotypes. Several studies have shown that depression increases
the effect of the FTO gene on BMI [84–86]. LRP1B has been
reported in GWAS including large populations as a factor in
obesity susceptibility [35, 87–89]. In addition, this gene is highly
expressed in the adult human brain [90, 91] and it has been
reported in various studies of neurological disorders [92–96],
which suggests that LRP1B is a gene of interest for psychiatric
disorders. Furthermore, considering CCDC68 gene, in which the
only overlapping variant between the comorbid phenotype and
the independently explored MD and obesity phenotypes mapped,
some interesting findings emerged from previous studies. Several
signals at CCDC68 have been previously reported to be associated
with depression [31–34, 97–100] and with obesity-related
diseases, such as diabetes [101] or coronary artery disease [102].
Finally, comparing our results with the results by Bahrami et al.
[39], no overlap at variant level was found. However, taking into
account the genes in which the identified signals were mapped, 4
overlapping genes were found (IQCK, ZNF536, AGBL4, STK24).

Fig. 4 Distribution of the identified rare variants among the significantly associated genes with comorbid MD and obesity. Barplot
showing the number of rare variants identified in each gene and their classification based on their SO for the four genes (PARK2, FGF21,
HIST1H3D, RSRC1) obtained in the burden analysis.

Table 4. Genes associated with comorbid MD and obesity through rare variation.

Genea Variants (N) Missense LoFb UTR SKAT-O resampc p

PARK2 23 14 6 3 0.006

MTIF3 3 3 0 0 0.011

FGF21 5 4 0 1 0.021

HIST1H3D 3 0 1 2 0.024

RSRC1 7 5 2 0 0.045

LoF loss of function, resamp p resampled p value.
aMTIF3 gene was excluded because it was also significant in the MD phenotype analysis, which was adjusted with BMI.
bLoF variants include nonsense, frameshift, inframe and splicing regulatory variants.
c10,000 bootstrap replicates were carried out to obtain a reliable estimate of the statistic. Genes with a resampled p value < 0.05 were considered significant.
Sex and age were used as covariates.
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Nevertheless, the target phenotype in Bahrami et al. [39] was not
comorbid MD and obesity, since GWAS of both diseases
independently were meta-analyzed.
At the gene level, we found a burden of rare variants in PARK2,

FGF21, HIST1H3D and RSRC1 genes for the comorbid phenotype.
These results are consistent with previous studies identifying a
significant role of these genes in both MD and obesity – or other
related physical conditions. First, PARK2 gene has been associated
with mitochondrial dysfunction [103, 104], present in patients with

MD [103]. Song et al. [105] found that Parkinson’s disease (PD)
patients with mutations in PARK2 had more depressive symptoms
and fewer motor symptoms. In addition, this gene is involved in
the development of metabolic syndrome, which includes obesity –
among others [104]. Second, FGF21 gene is a crucial hormonal
regulator of metabolic function and has been found to act directly
on the nervous system suppressing sweet and alcohol preference,
increasing thermogenesis and improving insulin sensitivity
[106–108]. Also, it affects biological signaling cascades involved
in depression, such as corticotropin-releasing hormone (CRH),
leptin and sympathetic nervous system pathways [106]. Third,
HIST1H3D gene has been reported to be downregulated in
women with postpartum depression [109]. Meanwhile, another
study identified an association between this gene and adiposity
by assessing differential methylation between colon cancer
patients with and without obesity [110]. Finally, risk loci in the
RSRC1 gene have been identified in GWAS studies of depression
[34] and BMI [111]. Despite the evidence reported for the
relationship of these genes with the diseases of interest, the
studies addressed the evaluation of depression and obesity
independently – with the exception of previous evidence found
for the FGF21 gene, in which these diseases were considered
together. Therefore, these results constitute the first evidence of
the involvement of PARK2, HIST1H3D and RSRC1 genes in the
pathophysiology of comorbid depression and obesity. Further
studies in this direction are needed to validate these results and to
continue providing evidence at the gene level.
We further explored the functional impact of the variants and

genes found for comorbid MD and obesity. Approximately 50% of
the identified eQTLs were intronic variants distributed in 9 genes
(RNF103, EP300, L3MBTL2, PLCD4, PRKCD, SULT1A2, TAL1, TOPAZ1
and USP37). These eQTLs would account for the impact on the
expression levels of nearly 80% of the eGenes for the comorbid
phenotype. This highlights the relevance of noncoding variants in
this phenotype and suggests that more extensive follow-up of
these variants is necessary. Regarding GSEA results, a substantial
number of the biological processes defined by the enriched gene-

Fig. 6 Venn diagram of the gene-sets obtained in the GSEA for each of three phenotypes evaluated. a GO:BP results. A total of
178 significant gene-sets were obtained for the comorbid phenotype, while 284 and 67 significant terms were obtained for the MD and
obesity phenotypes, respectively. Among these, 20 exclusive gene-sets were identified for the comorbid phenotype. b Reactome results. A
total of 32 significant signaling pathways were found in the comorbid phenotype, while 112 and 66 pathways were obtained in MD and
obesity phenotypes, respectively. Among these, 12 gene-sets were exclusive to the comorbid phenotype.

Fig. 5 Venn diagram of the genes significantly associated with
each of three phenotypes evaluated through rare variation. A
significant burden of rare variants (SKAT-O resampled p value < 0.05)
in the comorbid MD and obesity phenotype were identified in
PARK2, FGF21, HIST1H3D, RSRC1 and MTIF3 genes. MTIF3 gene was
also among the 31 significant genes in the MD phenotype. No
overlap was identified between the three genes with a significant
burden in the obesity phenotype and the ones obtained in the
comorbid phenotype. Neither with those obtained when consider-
ing the MD phenotype.
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sets have been reported to be crucial in metabolic dysregulation
and hormone signaling mechanisms linking MD and obesity,
which supports the general approach presented here. For
instance, lipid dysregulation is an important component in the
relationship between MD and obesity [112, 113]. The metabolic

dysregulations observed in atypical depression mainly affect lipid/
fat metabolism [112]. The role of steroid hormone signaling in the
link between the diseases of interest should also be highlighted.
These hormones include glucocorticoids (cortisol, cortisone and
corticosterone), which are involved in the regulation of

Fig. 7 Heatmap with GO and Reactome GSEA summary results. Exclusive significant gene-sets (FDR < 0.05) for the comorbid MD and obesity
phenotype were plotted. The color of the dots shows the phenotype for which each gene was considered as an input gene in the GSEA of the
corresponding phenotype (“All”: input gene in the three phenotypes, “Comorbid MD & Obesity”: input gene in comorbid MD and obesity,
“MD”: input gene in MD, “Obesity”: input gene in obesity and “MD+Obesity”: input gene in MD and obesity, separately). The shape inside the
dot denotes the source from which each gene was included as an input gene in the GSEA of the phenotype that the color indicates (“carrier”:
considered because of being a risk variant carrier, “SKAT-O”: considered because of being significant in the rare variant at gene level, “eGene”:
considered because of being determined as an eGene). For the “All” phenotype, the comorbid phenotype gene source was assumed. a Dot
plot shows significantly enriched GO:BP terms (FDR < 0.05) identified for comorbid MD and obesity phenotype. b Dot plot shows significantly
enriched Reactome pathways (FDR < 0.05) identified for comorbid MD and obesity phenotype.
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metabolism, immune response and anti-inflammatory function
[20]. Finally, we obtained cell cycle-related groups of genes in
both GO:BP and Reactome GSEA. Some studies have suggested
the role of cell cycle epigenetic regulation in neurodevelopmental
and emotional disorders [114, 115]. It is worth highlighting that
genes mapped in enriched gene-sets for the comorbid phenotype
come from the input gene lists not only of the comorbid
phenotype, but also of both MD and obesity phenotypes. This
suggests that, despite the specific mutational profile of comor-
bidity – revealed in our results at the variant and gene level, the
genes functionally impacted by the risk variants share biological
cell signaling pathways.
The genetic associations reported here are the result of

comparing three study groups. In this direction, the associations
identified, both at variant and gene level, are validated by taking
into account the MD and obesity groups separately. Associations
with MD phenotype were corrected for the effect of BMI, and those
with obesity were corrected for the effect of MD. Thus, only
exclusive associations with the comorbid phenotype were con-
sidered, as well as overlapping associations in the three phenotypes
and, in the analysis at the variant level, those with a similar direction.
Nevertheless, this study presents certain potential limitations. First,
the moderate sample size for genetic studies and the lack of an
external validation cohort. Nonetheless, to overcome such con-
straints, we used bootstrapping to find a better estimate of the
variability of the association measures, while minimizing the risk of
spurious associations by controlling for possible confounding
factors. Second, the use of self-reported height and weight
measures to calculate BMI values could be another limitation.
Nonetheless, in a study of an interaction effect between FTO gene,
BMI and depressive disorder conducted by Rivera et al. [85] both
self-reported and non-self-reported measures were used and no
differences due to this factor were found, which prevented us from
having reported mistaken results. Thirdly, SKAT-O is powerful, but
computes only set-wise association p values and does not provide
single-variant effect estimates, nor does it provide association
direction. However, studying the role of rare variants by grouping
them at the gene level is an approach that addresses the lack of
statistical power in the study of these variants due to their low
frequency. Finally, the contribution of single variants to a phenotype
is difficult to estimate and, as such, clinical applicability remains
complex and requires further in-depth functional follow-up, which
remains speculative so far. Future efforts including WGS data to
investigate the role of all common and rare coding and noncoding
genetic variation would allow the identification of new loci and
genes with functional impact on these phenotypes, as well as, the
discovery of other structural variations, a very difficult task fromWES
and targeted sequencing. However, the larger targets may require a
bigger sample size. Also, investigating more accurately the
functional impact of these associations, as well as the specific
functional profile of the comorbid phenotype, would be highly
interesting.
In conclusion, to the best of our knowledge this is the first study

using a targeted sequencing approach to study common and rare
genetic variants in the comorbid MD and obesity phenotype,
providing insights into the genetic mechanisms involved in the
etiology and development of this comorbidity. Interestingly,
although risk variants specific to the comorbid phenotype have
been identified, the genes functionally impacted by the risk
variants share biological cell signaling pathways with MD and
obesity phenotypes separately. These findings will be essential in
future approaches, where a more sophisticated modular perspec-
tive should be considered to contribute to a better understanding
of the relationship between these two conditions, as well as, of the
shared pathophysiological mechanisms. From a broader view,
these findings could facilitate the identification of causal variants
and, consequently, an easier interpretation of the functional

impact of previously associated genes and loci with MD and
obesity.
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