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Full-wave modeling of broadband 
near field scanning microwave 
microscopy
Bi-Yi Wu1,2, Xin-Qing Sheng2, Rene Fabregas   3,4 & Yang Hao1

A three-dimensional finite element numerical modeling for the scanning microwave microscopy (SMM) 
setup is applied to study the full-wave quantification of the local material properties of samples. The 
modeling takes into account the radiation and scattering losses of the nano-sized probe neglected in 
previous models based on low-frequency assumptions. The scanning techniques of approach curves and 
constant height are implemented. In addition, we conclude that the SMM has the potential for use as a 
broadband dielectric spectroscopy operating at higher frequencies up to THz. The results demonstrate 
the accuracy of previous models. We draw conclusions in light of the experimental results.

Scanning microwave microscopy (SMM) is a near fi ld scanning probe microscopy (SPM) technique that meas-
ures the local transmission of microwaves from a sample using a sharp probe close to the surface of sample. The 
SMM is a potential alternative to access the electromagnetic properties of samples such as electrical impedance 
and the complex permittivity with high spatial resolution. The SMM applications include the super-resolution 
imaging and characterization of inorganic and organic samples1–14, as well as the development of functional mate-
rials and devices at nanoscale such as molecular electronics15. In addition, the SMM has been applied to biological 
imaging for single bacterial16, live cells in situ17, muscle cells18. In contrast to the scanning optical microscopy 
(NSOM), microwaves have larger penetration depths. Thus, the SMM provides a high-resolution mapping of both 
surface and internal properties of material samples. The frequency range commonly used by SMM is about 1 GHz 
to 20 GHz. However, in the last years the work of Lucibello et al.6, Trasobares et al.15. and Imtiaz et al.10. point out 
the capability of SMM operating at higher frequency bands. For example, the skin cancer detection at THz fre-
quency19, the calculation of complex permittivity of water at millimeter-wave frequency band in biological tissues.

The SMM setup consists of a nano-sized sharp probe connected to a microwave source through an impedance 
matching circuit. The SMM provides an excellent spatial resolution down to the molecular and atomic scales com-
pared to other near fi ld microwave microscopy techniques20–26. SMM usually measures the S-parameter1,4,8,11,18,27, 
shifted resonant frequency12 or directly the complex impedance5,9,28 of tip-sample interaction. Then the capac-
itance or conductance can be calculated from the tip-sample system which refl cts the dielectric property of 
sample. However, it is not so obvious to map these quantities in samples with local material properties such as 
complex permittivity or permeability. These quantities represent complex convolutions between the probe geom-
etry and electromagnetic response including material properties and surface topography20,28. Due to the small 
interactions of the tip-sample system the SMM setup requires a high-sensitive and stable signal detection system. 
Thus, a good estimation of the tip-sample impedance is of great signifi ance in the design of the impedance 
matching circuit, especially for future implementation of broadband SMMs. In addition, the full-wave modeling 
allows the study of SMM integrated with metamaterial component, such as a flat lens of negative refraction index 
that amplifies evanescent waves. Such lenses have been fully-studied and demonstrated at microwave frequen-
cies29,30, and its integration with SMM would further improve the spatial resolution and may enhance the ability 
to detect buried features.

Our goal is the modeling of the SMM setup and their electrodynamic interaction with material samples at 
low and high microwave frequencies. We used the fin te element method (FEM) for the numerical simulations. 
Our model takes into account the key factor of the so-called low-frequency breakdown problem. We point out that 
the quasi-static model provides a good accuracy in terms of calculating the tip-sample capacitance, while the 
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calculation of dissipation loss becomes less accurate as the frequency goes higher. Also, we demonstrate that the 
quasi-static model and PEC approximation are accurate methods for calculating capacitance of the nano-sized 
probe tip operating at K-band or lower. Our simulations show that the SMMs operating at higher frequency 
provide better sensitivity on dielectric loss measurement while both field radiation and skin effect need to be 
taken into consideration. The proposed full-wave modeling of SMM will provide some physical insights for the 
development of broadband near fi ld microwave scanning spectroscopy with high imaging precision by taking 
both propagation and evanescent wave components into consideration. Th s work will present a complete modal 
picture of SMM in line with the collection mode used in NSOM, which determine local material properties by 
applying the evanescent-scattering fi ld to propagating fi ld conversion and it may open up new frontiers of SMM 
research at higher frequencies up to THz.

In the next section, we shall write down the full-wave model derived form the Maxwell’s equations. Th s sec-
tion starts by describing of the so-called low-frequency breakdown problem. Then is presented the equation for 
calculating the complex impedance of the tip-sample interaction derived from the wave equation for electric fi ld. 
In addition, the fin te element model for the governing wave equation is written down. We present a framework 
of high frequency applications linked to the SMM. We start the section of results by describing the geometrical 
parameters used in our simulations and comparing the quasi-static model with the full-wave model via an exper-
imental approach curve. We discussed the model and the simulations in light of a number of experiments and 
applications. Finally, we draw conclusions on the proposed numerical modeling and the future directions for it.

The model.  The probe size of AFM is much smaller than the operating wavelength, and it barely radiates elec-
tromagnetic waves. In the local near fi ld region, the electric fi ld is nearly irrational and Maxwell’s equations are 
reduced to the equation of Poisson for electrostatic potential. The complex impedance of the tip-sample interaction  
can be calculated by solving the Poisson’s equation numerically. Th s approach has been widely used for modeling 
the SPM techniques at low frequencies (30–300 kHz) such as nanoscale capacitance microscopy31, electrostatic 
force microscopy (EFM)32,33 and SMM based applications2,3,5,9,16,28. In addition to the quasi-static models have 
been developed equivalent circuit for profiling doped semiconductors and measuring material conductivity1,3,8. 
The accuracy of these methods have been proved with analytical approximations for particularly shaped probes at 
low frequencies31,32. However, the scattering and magnetic fi ld play no role in these previous models.

Evanescent fi lds are embedded in the solutions to the Maxwell ‘s equations, thus a full-wave approach is 
always preferred to model the near fi ld microscopy, which accounts for all wave-numbers both real and imagi-
nary. However, there exist signifi ant challenges in the numerical modeling of nano-structures and nano-materials 
at microwave frequencies. Unlike near fi ld imaging in the optical regime for NSOM applications where the 
tip-size is around λ1/100  at the infrared range34,35, or probes at millimeter scale for microwave applications24–26. 
The SMMs use an AFM probe with tip dimensions that can be less than λ1/106  at millimeter-wave frequency 
band10. Th s leads to the so-called low-frequency breakdown problem36,37 for the full-wave numerical modeling of 
SMM. The key factor of this problem is the ill-conditioned system obtained for the fin te element solution of 
Maxwell’s equations (see Supplementary Information S1).

The wave equation for electric fi ld is derived from the Maxwell’s equations. Thus, in a domain Ω the wave 
equation is given by

µ ω ε µ ε∇ × ∇ × − = ∈ Ω− E E J r( ) ( ) , (1)r r
1 2

0 0

where ε ε ε= ′ − ″jr r r  is the relative permittivity and µ µ µ= ′ − ″jr r r  is the relative permeability. Given a current
source J with intensity I0 the electric fi ld E can be calculated by solving (1). Thus, the complex impedance 
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where ω is the angular frequency, I0 is the current intensity from tip apex to the substrate. The resistance imped-
ance R corresponds to the electromagnetic energy loss including material dissipation (fi st term in (2)) and radi-
ation or scattering (second term in (2)). The reactance corresponds to the electromagnetic energy stored in the 
near fi ld region, >X 0 represents the dominated fi ld is the magnetic fi ld, and the reactance is inductive, while 

<X 0 represents the reactance is capacitive, and the electric fi ld dominates.
To simplify the analysis and the simulation, we use a delta-gap source as the excitation port which is a com-

mon approach in antenna simulation using the Method of Moments (MOM)38. Namely, we set the current source 
J as an infin tely thin current line with constant intensity I0 connecting the probe cantilever and substrate which 
holds the sample under study. The numerical solution of (1) leads to the calculation of the electric and magnetic 
fi ld. Therefore, the complex impedance can be computed by

=Z V
I (4)0

together with the equation for the voltage gap V between the probe surface and substrate
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∫= ⋅V dE l (5)L

where L is the path of the current source (see Supplementary Information S2). We use the fin te element method 
to solve equation (1)39. Thus, we can excite the SMM probe electromagnetically without introducing the support-
ing circuits such as impedance transformer or coaxial line. Therefore, the multiscale problem in our numerical 
simulations is avoided. If we assume that the metallic tip-probe is a perfect conductor at microwave frequencies, 
we can use the perfect electric conductor (PEC) boundary condition on the probe surface Ωprobe as follow

× = ∈ Ω .n̂ E r0, (6)Probe

In addition, we truncate the simulation domain Ω using the following Sommerfeld boundary condition40

× ∇ × − × × = ∈ Ωˆ ˆ ˆn jk n nE E r( ) ( ) 0 (7)S0

where ΩS is the truncation boundary. The Sommerfeld boundary condition involves the non-radiation of electro-
magnetic energy into the simulation domain as well as the electric or magnetic fi lds are not zero on the truncated 
boundary due to the existence of electromagnetic radiation.

We are now at a position to consider the numerical implementation of solving the governing wave equation 
(1) together with the boundary conditions (6) and (7) for an arbitrary geometry and materials. Following the
standard fin te element method procedure, the resultant matrix equation in the frequency domain is

ω ω ω= .x bA( ) ( ) ( ) (8)

Here the matrix ωA( ) is calculated by

ω ω ω= − + jA S T R( ) (9)2

where S is the stiffness matrix, T is the mass matrix and R is the conductivity- and boundary condition- related 
matrix. Expanding the unknown electrical field E using a vector basis function N, the entities of these matrices are 
assembled from their elemental contributions. In the SMM simulation at low frequencies, entries of ω T2  associ-
ated with the tip are assumed negligibles due to fin te machine precision37, and this introduces singularities to 

ωA( ), therefore the failure of solving the matrix equation (8) is called low-frequency breakdown problem. To solve 
this problem, we first extract the ill-conditioned submatrix Ass from the system matrix A, and then find the 
inverse of Ass by using a generalized eigenvalue decomposition. Finally, the inverse of A can be computed via the 
method of Schur-Complement37,41 (see Supplementary Information S1).

Results
The quantities used to determine the physical properties (relative permittivity) of a sample in the SMM measure-
ment are the capacitance C and conductance G of tip-sample system from the admittance ω= = +Ys Z G j C1/ . 
Figure 1A shows the schematic three-dimensional metallic SMM probe with a sample placed on the conducting 
substrate. The tip is defi ed by a nose cone with a cylinder on top. The nose cone is a truncated cone of height H 
with half-angle θ and ended in a tangent spherical cap of radius R. W denotes the thickness of cylinder and L 
represents the diameter of cylinder.

Example 1.  The geometry dimensions of the SMM probe used in our calculations are: cone height 
µ=H m40 , µ=W m6  and µ= .L m14 6 . Here the tip radius =R nm217  and cone angle θ = 5  are calibrated 

parameters from the paper of Biagi, M.C. et al.16 (see Table. 2 in Supplementary Information). We show the FEM 
mesh convergence performance for the quasi-static and full-wave models in Fig. 1B. We solve the Poisson’s equa-
tion of the quasi-static model using a nodal basis function i.e. 10 degree of freedoms for a tetrahedral element. 
However, the vector basis functions i.e. 20 degree of freedoms for a tetrahedral element are required for solving 
the Maxwell ‘s equations in full-wave using FEM. Thus, the degree of freedoms for tetrahedral elements of 
full-wave FEM is generally larger than the required for the quasi-static FEM. The absolute capacitance is deter-
mined by the tip-sample interaction and the domain size, and it is also affected by the choice of truncation bound-
ary condition. We eliminate the contribution of the domain size by considering the difference of capacitance 
∆ = −C x y z C x y z C x y z( , , ) ( , , ) ( , , )0  respect to a fi ed point =z nm10500 . Figure 1C–F depict the compari-
son of the theoretical approach curves calculated via the quasi-static model (using COMSOL AC/DC module)
and the full-wave model, and the experimental measurement reported by M.C et al.16. The two theoretical models
and the experimental data show a very good agreement which proofs the accuracy of the quasi-static
approximation.

Example 2.  The Fig. 2 compares the contribution of the quasi-static model and the full-wave model in capac-
itance and conductance for a sample with dimensions of µ=D m6w  and µ=C m2w . Here, Dw and Cw represent 
the axes of the hemiellipsoid depicted in Fig. 2A. Th s geometry mimics a droplet of pure water. The tip-sample 
distance for the calculations of fi ed approach curve is 5nm. As in the previous example, the domain contribution 
is neglected by using the intrinsic capacitance Λ = −C x y z C x y z C x y z( , , ) ( , , ) ( , , )0  for x Dw0 . Also, we 
assume that the sample is non-dispersive in the frequency band of interest to simplify the analysis. Later on we 
assume that the sample is dispersive and made of pure water whose dielectric constant is described by the modi-
fi d Klein-Swift model with two Debye relaxations42,43.
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S1. Low-frequency breakdown problem

Using the full-wave model, the wave equation derived from Maxwell-equations is

∇× µ−1
r (∇× E)− ω2ε0µ0εrE = J (1)

where εr = ε′r − jε′′r and µr = µ′r − jµ′′r are the relative permeability and permittivity respec-

tively, and J is the source current. Following the standard FEM procedure, the discretized

equation becomes to a matrix equation

A(ω){x(ω)} = {b(ω)} (2)

and the matrix A is the summation of

A(ω) = S− ω2T + jωR (3)
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where S is the stiffness matrix, and T is the mass matrices and R is the conductivity - and

boundary condition- related matrix. They are assembled by the elemental contributions

Se
ij =

∫
V e

(µ′r − jµ′′r)−1(∇×Ni) · (∇×Nj)dV

Te
ij =

∫
V e

ε′r − jε′′r
c2

Ni ·NjdV

Re
ij =

1

c

∫
Ω

(n̂×Ni) · (n̂×Nj)dS

(4)

and the right-hand side of (2) are assembled by

bei = −jωµ0

∫
V e

Ni · JdV (5)

where N is the normalized vector basis function for electric field and V e is the element

volume in the simulation domain. Suppose the length of an element is l, the norm of ∇×N

is proportional to 1/l, and the norm of Se
ij is the order of l and Te

ij is the order of 10−17l3.

The ratio between Se and ω2Te is 1017/ω2l2 ∼ λ2/36l2 and λ is the freespace wavelength.

For a nanosized probe, to represent the mesh accurately, the minimum mesh size l can be

as small as 1nm. Therefore, at microwave frequency band, ω2Te is about 1015 times smaller

than Se. The contribution of ω2Te is treated as zero in Ae because of the round-off error in

computing. As a result, the matrix A(ω) becomes singular, and the full wave FEM solution

breaks down. Generally, for the smaller tip, the low-frequency breakdown problem is more

pronounced, because the minimum mesh size would be smaller.

To overcome this low-frequency breakdown problem due to the finite machine precision,

we find the inverse of the nearly ill-conditioned component of matrix A by transforming

it from a frequency dependent problem to a frequency independent generalized eigenvalue

problem. To be more specific, we first divide the FEM matrix A into

A(ω) =

Ass(ω) Asr(ω)

Ars(ω) Arr(ω)

 (6)
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where Ass represent the ill-conditioned submatrix, and it is associated with the region near

the probe tip apex, Arr is the regular component in A. Correspondingly, the unknowns x in

(2) are also divided into two categories: xS and xR. Here, Asr = AT
rs represent the coupling

between these two sets of unknowns.

According to the Schur-complement lemma, the inverse of A can be written as

A(ω)−1 =

A−1
ss + A−1

ss AsrB
−1
rr ArsA

−1
ss −A−1

ss AsrB
−1
rr

−B−1
rr ArsA

−1
ss B−1

rr

 (7)

where

Brr = Arr −ArsA
−1
ss Asr (8)

here we omit the ω for simplicity. For SMMs operating in non-contact mode, the tip apex

is surrounded by air which is lossless, the frequency dependency of Ass can be written as

Ass(ω) = Sss − ω2Tss (9)

In FEM, matrices Sss and Tss are real and symmetric. Solving the following generalized

eigenvalue problem

Sssν = λTssν (10)

where λ is the eigenvalue and ν is the associated eigenvector, we have inverse of Ass(ω)

Ass(ω)−1 = (V0Vh)

−ω2I 0

0 Λh − ω2I


−1

(V0Vh)T

= − 1

ω2
V0V

T
0 + Vh

[
Λh − ω2I

]−1
V T
h

(11)

In the right-hand side of (11), V0 is the set of eigenvectors associated with zero eigenvalues,

and represents the direct current (DC) modes near the tip apex area, and Vh is the set of

eigenvectors associates with non-zero eigenvalues Λh. For SMM operating in contact mode

3



where tip touches the sample surface or surrounded by lossy media, the inverse of Ass can

be found in a similar way. Matrix Brr usually is non-singular, and its inverse can be found

normally or using eigenvalue decomposition again for a frequency dependent inversion . The

electrical field in the simulation domain then can be calculated using the solved unknowns

E and basis functions N.

S2 Validation of the line port

To validate the correctness of the line port we used in this paper, we compare the complex

impedance of the tip-sample interaction calculated by formula

Z =
V

I0

(12)

and their definitions (formula (1) and (2) in the paper). The value of dimensional parameters

of the probe tip and simulation domain shown in Fig.1A of main text are given in Table.1

. The complex impedance of the probe tip 50nm above on bare substrate calculated by

these two approaches agrees very well as shown in the Table.2. Here we use two kinds of

basis functions in full-wave FEM: the linear basis functions and quadratic basis functions.

The quadratic basis functions (with 20 DOFs for a tetrahedron) result in a much larger

number of DOFs in the matrix equation, yet it has a higher accuracy comparing to the

linear basis functions (with 6 DOFs for a tetrahedron). Thus we recommend using quadratic

basis functions in the full wave FEM for SMM simulation.

Table 1: Geometric parameters of the SMM probe and the simulation domain

Ld Hd L W H θ R
322.53µm 200µm 18.52µm 6µm 40µm 10◦ 217nm

4



Table 2: Complex impedance calculated by full-wave FEM

Example DOFs Zport(Ω) R(Ω) X(Ω)
20GHz-Quadratic 760756 2.0148-j4510.4940 2.0129 -4510.4941

20GHz-Linear 116222 2.0830-j4347.3978 2.1490 -4347.3999

S3.The absolute capacitance of the dispersive sample

The dielectric constant of pure water at microwave frequencies calculated by modified Klein-

Swift model from reference (38) is shown in Figure.1A . The absolute capacitances of the

tip-sample interaction with and without the dispersive sample are shown in Figure.1B and

Figure.1C, the intrinsic capacitance ΛC of these two figures are presented in Fig.2E of the

main text. The absolute capacitance in Figure.1B is calculated by quasistatic model, while

the counterparts in Figure.1C are calculated by full-wave model. The tip capacitance without

sample calculated by quasistatic model is a constant value because the air in computation

domain is non-dispersive. However, the capacitance for a tip on the bare substrate from 1GHz

to 100GHz remain constant is unphysical. These two sets FEM calculations use the same

sized simulation domain and the same mesh, while the absolute capacitances are different.

This is because two different boundary conditions used in these two models. In the quasistatic

model, the simulation domain is truncated by a surface on which the voltage is a constant

value, thus both electric field and magnetic field are zero on this boundary. In our full-wave

model, we use the Sommerfeld radiation boundary condition to truncate the simulation

domain which enforces no energy radiated from infinity into the simulation domain. The

electric and magnetic fields are non-zero on the boundary, and thus more electric charges are

stored in the simulation domain comparing to those of quasistatic model, and the absolute

capacitance of full-wave model is slightly larger.
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Figure 1: A.Dielectric constant of pure water at 25◦C. B. Absolute capacitance of the tip
with and without sample calculated by quasistatic model. C.Absolution capacitance of the
tip with and without sample calculated by full-wave model.

S4 High-purity silicon sample under SMM and the skin

effect

The dimension of the silicon sample is 8µm × 8µm × 1.6µm, and this sample is placed

50nm under the probe tip apex as shown in Figure.2A. Other parameters including the

geometry of probe tip and simulation domain size are given in Table.3. The real part of

the relative permittivity of the high-purity silicon is almost a constant(ε′r = 11.6) in the

simulated frequency band, the conductivity of the sample is shown in Figure.2B.

Table 3: Geometry parameter of SMM probe tip and simulation domain

Ld Hd L W H θ R
332.03µm 200µm 28.03 µm 6µm 40µm 10◦ 517nm

The total conductance of the SMM tip-sample interaction in this study includes three

parts: the radiation, the sample dissipation loss and the probe dissipation loss. The impedance
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Figure 2: A highly pure silicon block under SMM probe. A.Geometry of the sample under
the probe tip. B. The loss tangent of the silicon sample.

of these three parts are

Rradi =
1

|I0|2

∫∫
S

Re [E×H∗] · ds

Rsample =
ω

|I0|2

∫∫∫
Vsample

ε0ε
′′
r |E|2dV

Rprobe =
ω

|I0|2

∫∫∫
Vprobe

ε0ε
′′
r |E|2dV

(13)

The radiation impedance, sample dissipation loss impedance and probe dissipation loss

impedance from 1GHz to 100GHz are given Figure.3A-C. The inner field inside the PEC

probe is zero, thus Rprobe is zero for PEC boundary simulation. The radiation and sample

dissipation loss are almost the same for different conductive probes, while the probe dissipa-

tion losses are different because of the skin effect. The metallic probe is highly conductive,

and wave impedance of metal and of the surrounding air are so different that the reflection

coefficient is just less than unity. Therefore, most of the incident energy is reflected by the

metallic probe, only a small fraction of it is absorbed. The conductivity of PEC is infinitely

large and all incident energy is reflected. At 100GHz, the absorbed energy of titanium probe

7



is only 0.8% (0.24/2.74) of the total energy loss, thus the field distribution near the metal-

lic probe are almost identical to that near the PEC probe. In this study, the high-purity

silicon is semi-insulator, the sample dissipation loss is minimum comparing to the radiation

and probe dissipation loss as shown in this figure. This implies that it might be difficult

to accurately characterize the local dissipation factor of high-purity silicon sample in SMM

without considering the skin effects.

Figure 3: A.Radiation impedance of different kinds probes. B.Sample dissipation loss
impedance of different kinds of probes. C.Probe dissipation loss impedance of different
metallic probes.

8
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Figure 2A,B shows the capacitance and conductance curves as function of the dielectric constant of the sample 
calculated by the two models. We point out that the intrinsic capacitance calculated via the two models almost 
match as shown in Fig. 2A. However, the computed conductance curves using the two methods are gradually 
separate from each other when the frequency increases as shown in Fig. 2B. Th s means that the radiation com-
ponent dominates the total conductance when the frequency increases. The comparison of the intrinsic capaci-
tance and total conductance for the two models are presented at Fig. 2C,D as function of the frequency. The 
intrinsic capacitance slowly decays due to the decrease of real part of the relative permittivity of pure water in the 
frequency range of 10 GHz to 100 GHz (see S3 in Supplementary information). We point out, that the difference 

Figure 1.  (A) Schematic representation of the model of SMM probe and the hemiellipsoid used in the 
numerical calculation (not to scale). The parameters used for the calculations: radius =R nm217 , half cone 
angle θ = 10  and nominal values µ=H m40 , µ=W m6  and µ= .L m14 6 . (B) Mesh convergence test of the 
quasi-static (QS) and full-wave (FW) models as function of the degree of freedoms. (C–F) Theoretical 
capacitance gradient approach curves of the tip-substrate system of both models at different frequencies and the 
experimentally measured data nearly to 19 GHz.
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between the results for the quasi-static model and the full-wave model becomes signifi ant when the frequency 
increases. Th s implies that the frequency range for the accuracy of the quasi-static model is less than 30 GHz. At 
high frequencies, the local strength of magnetic fi ld increases and the stored electric energy becomes smaller. 
Therefore, the intrinsic capacitance computed by the quasi-static model is smaller than full-wave model for the 
same ε′r (see Supplementary information S3 for absolute capacitances). In addition, the calculated conductance 
by the quasi-static model is smaller than the computed by the full-wave model. Furthermore, the radiation com-
ponent in the total resistance impedance R increases when the frequency increases. The electromagnetic energy 
loss due to the material dissipation can be calculated via extracting the radiation contribution from the total 
conductance. The residual conductance is represented in Fig. 2D (curve of green dots). Th s curve matches very 
well with the result of quasi-static model.

The tip-sample system of SMM only stores electric energy because the size of tip is much smaller than the 
operating wavelength, and the capacitance is depend on the dielectric of the material. The quasi-static model is 
accurate for calculate the capacitance for sub-micron sized metallic tips operating below the K-band. However, 
for the characterization of dielectric loss, we have to use the full-wave model in order to take the radiation in 
consideration. The radiation is usually affected by the sample surface during the scanning procedure and it cannot 
be removed or calibrated. However, there might exist experimental techniques to overcome this problem, such as 
using a flat and ultra thin membrane to separate the sample and probe tip17.

Example 3.  In this study, we apply the full-wave method to investigate a micron-size pure water droplet under 
SMM for the frequencies of 30 GHz, 40 GHz, 50 GHz and 60 GHz at constant height of 100 nm. We assume the 
same geometrical dimension as in the previous examples. The droplet of water is lying on a metallic substrate and 
is modeled as hemiellipsoid with semiaxes µ= .D m1 0w  and µ= .C m0 6w . Figure 3 shows the images and pro-
files in intrinsic capacitance and dissipation loss. Although ε ′r  of the sample decreases from about 27 at 30 GHz to 
12 at 60 GHz (see S3 in Supplementary Information). The intrinsic capacitance image does not change signifi-
cantly as shown in Fig. 3A–D and I. Figure 3E–H and J show the dissipation conductance images calculated from 
the radiation admittance of the total conductance. Here, the contrast increases due to the increase in frequency 

Figure 2.  Contribution of a sample with hemiellipsoidal geometry that mimics a droplet of water by using the 
quasi-static model and full-wave method at different frequencies. Dimensions of the droplet of water: 

µ= .D m1 0w  and µ= .C m0 6w ; relative permittivity of the sample is ε ε ε= ′ − ″jr rSample . (A,B) Intrinsic 
capacitance and total conductance as function of ε ′r  for fi ed ε ″ = .5 0r . (C,D) Intrinsic capacitance and 
conductance as a function of frequency for a dispersive sample.
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despite that ε ″r  decreases from 33 to 21. Th s means that increasing the range of frequency of the SMM improve 
the image contrast related to the conductance/absorption of the sample.

The total conductance for the electric small probes is = = +G Re Z R R X(1/ ) /( )2 2 . Here, the reactance is 
larger than the resistance impedance (.i.e X R) and ω| | ~X C1/ . Thus, the total conductance of SMM small 
probe is about ω~ ~G R X RC/ 2 2. In this study, the capacitance is nearly constant over the frequency band of 
30 GHz to 60 GHz and the decay of ε ″r  is slower than ω1/ 2. Therefore, the overall conductance increases as fre-
quency increases. This shows that SMM operating at higher frequencies provide better contrasts in 
sub-wavelength imaging of lossy material samples. However, the accurate quantification of the dissipation 
requires the removal of the radiation loss contribution.

Discussion
Skin e� ect.  The samples used in the SMM measurements usually are placed on a conducting surface (metals) 
and the tip-probe of AFMs is made of metals asuch as titanium, aluminum, tungsten44,45 or alloys17. At non-zero 
operating frequency, the electric current fl wing in a conductor distributed towards the boundary due to the skin 
effect. The bulk skin depth of metals ranges from hundreds of nanometers to several micrometers at microwave 
frequency range which are comparable to the probe tip apex radius. For example, the bulk skin depth of titanium 
is 5.23 µm at 5 GHz which is several times larger than the radius of the tip apex. Furthermore, the works of Vora 
et al.46 and G ü ney et al.47 have shown that the geometric skin depth of metallic nanostructures is much larger 
than bulk skin depth of the same conductor.

In previous studies of SMM and devices at low frequency such as EFM, the metallic components are assumed 
as perfect conductors with zero skin depth by applying a constant AC voltage to the boundaries. To validate the 
accuracy of this approximation, we simulated the metallic tip as a lossy medium in the full-wave model and 
compared the result with the perfect electric conductor (PEC) boundary model. Here, we assumed that the con-
ducting substrate is an impedance boundary because its thickness is much larger than the skin depth, and the 
electromagnetic waves cannot penetrate the substrate40.

The Fig. 4A,B presented the profile of normalized local electric fi ld near a titanium tip modeled as the PEC 
and a lossy medium. We point out, that the profiles are quite similar, and the intensity of fi ld inside the titanium 

Figure 3.  The SMM capacitance and conductance images of a water droplet at 25 . (A–D) intrinsic capacitance 
images at 30 GHz, 40 GHz, 50 GHz and 60 GHz. (E–H) Sample dissipation loss conductance images at 30 GHz, 
40 GHz, 50 GHz and 60 GHz. (I–J) Numerically calculated cross-section intrinsic capacitance profiles and 
dissipation loss conductance profiles at 30 GHz, 40 GHz, 50 GHz and 60 GHz.
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tip modeled as a lossy medium is almost zero as shown the inset of Fig. 4B. In addition, Fig. 4C shows the electric 
fi ld intensity along the red dash lines depicted in the Fig. 4A,B. Also, here is presented a very good agreement 
below the tip apex. The refl ction coeffici t from air to the probe surface is just less than unity due to the high 
metal conductivity. Thus, the incident energy is refl cted by the metal tip such as the used probe PEC. Therefore, 
the fi ld near the metallic probe is roughly identical to the fi ld near the PEC probe. We also consider the case of 
metallic tips made of tungsten and aluminum, which have higher conductivity and smaller skin depth compared 
to the titanium. The normalized current density inside the titanium, tungsten and aluminum are shown in 
Fig. 4D,E. These non-magnetic metallic probe are simulated via the full-wave model as a lossy media with relative 
permittivity ε ε σ ωε= ′ − j /r r 0. The conductivities of titanium, tungsten, and aluminum are 2.4e6S/m, 1.8e7S/m 
and 3.5e7S/m respectively. It seems that the geometric skin depth is larger for the metallic tip with a lower con-
ductivity and the current penetrates into the tips of different materials.

Numerical results of metal tips placed on a micron-sized block of high purity silicon are shown in Fig. 5. In 
addition, the complex permittivity of high-purity silicon is reported in48 (see the S4 Supplementary Information). 
Figure 5A depicts the total capacitance of the tip-sample interaction calculated by the full-wave model using 
the PEC boundary condition and the lossy media with the conductivity of aluminum and titanium. There is no 
signifi ant difference for the results of the three different probes. Th s implies, that the PEC boundary is a quite 
good approximation to the metallic tip. The skin effect has little effects on the capacitance values in SMM study. 
However, a notable differences between the PEC boundary and the lossy conductor simulations are presented 
in the total conductance results as shown in Fig. 5B. Th s means, that the electric currents penetrate the surface 
of the titanium and aluminum probes. Thus, the total conductance calculated for the titanium and aluminum 
probes is quite larger than the calculated for the PEC approximation. The radiation and sample dissipation loss 
in the total conductance under different probes are quite similar for the frequency range of 10 GHz to 100 GHz. 
However, in the same frequency band the dissipation losses are different (see S4 and Fig. 3 in Supplementary 
Information). Th s means, that the skin effect also a key factor to the calculation of total conductance at higher 
frequencies, in particular for probes made of metal with low conductivity.

Metallic tip versus dielectric tip.  Some applications of the SMM use dielectric probes instead of metallic 
tips. For example, the silicon (Si) tip and silicon nitride (Si3N4) tip are commonly used in AFM4. The Fig. 6A 
shows the normalized electric fi ld near and inside a silicon tip. The dielectric tip acting mimic a tapped dielectric 

Figure 4.  The electrical fi ld of different types of probe tips at 5 GHz. (A) Normalized electrical fi ld profile 
near the PEC boundary tip. (B) Normalized electrical fi ld profile near the titanium tip. (C) Electric fi ld 
intensity along the red dash lines in (A) and (B). (D–F) Normalized spatial current density in the cross-sections 
of different metal probe tip: (D) titanium tip; (E) tungsten tip; (F) aluminum tip.
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wave-guide in NSOM. Figure 6B shows the intensity of electric fi ld along the center line of tip to substrate (red 
line). The electric fi ld near the silicon tip is less localized and the maximum intensity of the fi ld is much lower 
compared to metallic probes. The electric fi ld on a bare conducting substrate for a titanium tip and silicon tip 
with the same geometry is shown in Fig. 6C,D. The electric fi ld under the metallic tip is more concentrated than 
under the silicon tip. Th s indicates, that the SMM with a metal tip has a better lateral resolution. The local elec-
tric fi ld of the metallic tip might introduce a non-linear response of the samples. Th s means, that the dielectric 
probes could be a very good choice for certain applications.

Figure 5.  Numerical simulations of full-wave model for a sample with prism geometry that mimics a high-
purity silicon sample of dimensions µ µ µ× × .m m m8 8 1 6  and different metallic probes. (A) Absolute 
capacitance and the total conductance as a function of the frequency.

Figure 6.  (A) Normalized electric fi ld near and inside the high-purity silicon tip. (B) The electric fi ld 
intensity on the red dash line. (C–D) Normalized electric fi ld on a conducting substrate plane of radius 1.55 µm 
below the SMM probe tip: (C) titanium tip, (D) silicon tip.
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Conclusions
We presented a rigorous modeling of nanosized SMM probes and their electrodynamic interaction with material 
samples at microwave frequencies. We start by set out the full-wave model derived from the Maxwell’s equa-
tions for the SMM setup and taking into account the regularization of low-frequency breakdown problem in the 
numerical implementation. We demonstrated the accuracy of the models in a few examples by using the scanning 
techniques of approach curves and constant height. First, we demonstrated that the quasi-static model provides a 
quite good accuracy for the calculation of capacitance at low frequencies. While this model is less accurate for the 
dissipation loss for the higher frequencies. We also pointed out that the quasi-static model and the PEC boundary 
are good approximations for the theoretical calculation of capacitance. Here, our simulations show that the SMMs 
operating at higher frequency provide greater sensitivity on the evaluation of dielectric loss. Here, we shown that 
for accurate analysis the fi ld radiation and skin effect need to be taken into consideration.

The numerical modeling presented here for the full wave model to mimics the SMM setup can be extended 
in a number of ways. First, the model can be used for the development of broadband near field microwave scan-
ning spectroscopy with high imaging precision by taking into consideration the propagation and evanescent 
wave components. Another extension, is to use the model to determine local properties of materials by applying 
the evanescent-scattering fi ld to propagating fi ld conversion. Th s will enable to study new frontiers of SMM 
research at higher frequencies up to THz. A third extension is to embed the model in realistic physiological 
conditions (liquid media). This extension will enable the quantification of biological samples (bacteria, cells) in 
a realistic media.
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