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Abstract  
 
The extrinsic proteins of photosystem II in plants (PsbO, PsbP and PsbQ) are known to be targets of stress. In previous 
work, differential regulation of hypothetical isoforms of these proteins was observed in Nicotiana benthamiana upon 
viral infection. Each of these proteins is encoded by a multigene family in this species: there are at least four genes 
encoding PsbO and PsbP and two encoding PsbQ. The results of structural and functional analyses suggest that PsbO 
and PsbP isoforms could show differences in activity, based on significant substitutions in their primary structure. Two 
psbQ sequences were isolated which encode identical mature proteins. 
 
Additional key words: oxygen-evolving complex; photosystem II; PsbO; PsbP; PsbQ; stress. 
 
Introduction 
 
Photosystem II (PSII) is a multisubunit protein complex 
embedded in the thylakoid membrane of higher plants, 
eukaryotic algae and cyanobacteria. Its function is to 
harvest solar energy used for water oxidation. This 
reaction takes place in the oxygen-evolving complex 
(OEC), which is stabilized and protected by extrinsic 
membrane proteins attached to the lumenal side of PSII. 
These proteins are PsbO, PsbP, and PsbQ and are 
encoded by multigene families in higher plants such as 
Arabidopsis, pea, tomato, and tobacco (Seidler 1996, 
Peltier et al. 2000). 

Despite considerable efforts put into the study of PSII 
structure, only the high-resolution crystal structure of a 
cyanobacterial but not plant PSII has been elucidated 
(Loll et al. 2005). Therefore, the exact binding sites for 
PsbO, PsbP, and PsbQ on plant PSII have not been 
resolved, and little is known about their protein 
interactions (Nield and Barber 2006, Suorsa and Aro 
2007, Enami et al. 2008). 

PsbO is involved in the regulation of PSII affinity for 
Mn and the stabilization of the OEC (Chu et al. 1994, 
Popelkova et al. 2008). It plays a role in the stabilization  
 

and turnover of the D1 during the PSII damage-repair 
cycle (Eisenberg-Domovich et al. 1995, Yamamoto et al. 
1998, Komenda et al. 2010). In Arabidopsis, two PsbO 
proteins are found, which are encoded by distinct genes 
and show differences in functionality (Murakami et al. 
2005, Lundin et al. 2007a,b). 

The extrinsic protein PsbP plays an important role in 
Ca2+ and Cl– retention (Ifuku and Sato 2002, Ifuku et al. 
2004), providing Mn ions during the D1 turnover, and 
protecting the structural integrity of the PSII super-
complexes (Bondarava et al. 2005, Suorsa and Aro 2007, 
Ido et al. 2009). Moreover, a function related to GTP 
metabolism has been proposed for PsbP in interaction 
with PsbO (de las Rivas and Roman 2005). In contrast 
with the differences in functionality described for the 
PsbO isoforms in Arabidopsis, the four PsbP isoforms 
found in Nicotiana tabacum appear to carry out the same 
functions in vivo (Ishihara et al. 2005). However, they 
may not be equivalent under stress, as indicated by 
previous studies on N. benthamiana plants with viral 
infection (Pérez-Bueno et al. 2004). 

PsbQ is the most divergent of the extrinsic proteins 
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of PSII in higher plants. This feature could be related to 
its structural flexibility and its dispensable nature 
regarding oxygen evolution. 

The OEC extrinsic proteins are some of the main 
targets of viral infection in N. benthamiana plants (Barón 
et al. 1995, Rahoutei et al. 2000, Pérez-Bueno et al. 
2004). Furthermore, it was shown that the OEC poly-
peptide pattern in the thylakoid membranes was modified 
by viral infection, and that hypothetical PsbP isoforms 

were differentially affected. Takahashi et al. (1991)  
also described a differential down-regulation of PsbP  
in tobacco plants infected with cucumber mosaic virus. 

The data presented here reveal that in N. benthamiana 
multigene families encode the PsbO, PsbP, and PsbQ 
proteins. The polypeptide sequences corresponding to the 
isolated cDNA sequences have been analysed and the 
impact of the differences in the proteins sequence are 
discussed. 

 
Materials and methods 
 
Plants of Nicotiana benthamiana Domin were grown in 
growth chambers under a regime of 16-h photoperiod at 
25ºC, 80% relative humidity, and 200 µmol m–2 s–1 light 
intensity. 

 
cDNA cloning: Two cDNA sets were used as templates 
for cloning cDNA sequences encoding the PsbO, PsbP, 
and PsbQ proteins: cDNA synthesised from total RNA 
isolated from N. benthamiana plants (Logemann et al. 
1987) and a cDNA library of N. benthamiana cloned in 
pACT2, kind gift of Dr. J. Bol (Wageningen, The 
Netherlands). Sequences were amplified by: SMARTTM 
RACE Amplification kit (Clontech, Mountain View, CA, 
USA), and RT-PCR by Superscript II RNase H reverse 
transcriptase (Gibco BRL, Barcelona, Spain). The primers 
for the downstream amplification were designed in  
a conserved region encoding the N-terminal region of the 
mature proteins (Pérez-Bueno et al. 2004). Further 
primers were designed based on alignments of the 
amplified sequences. Table 1 shows the primers and the 
amplification method used in each case. 

 
Sequence analysis and bioinformatics tools: Nucleic 
acid and protein sequences were aligned by CLUSTALW2 
(Larkin et al. 2007) and edited by ESPript 2.1 (Gouet  
et al. 1999). The corresponding amino acid sequences 
were deduced and analysed by the programs TargetP 
(Emanuelsson et al. 2000) for signal peptide prediction 

and Compute pI/Mw (Gasteiger et al. 2005) for theore-
tical calculations of pI and molecular mass.  

Homology modelling of protein structures was carried 
out using SWISS-MODEL (Arnold et al. 2006) and the 
obtained models were displayed by Swiss-PdbViewer 
v3.7. (http://www.expasy.org/spdbv/). Loops of interest 
were modelled by SWISS-MODEL, using the database 
LOOPDB and energy computation by the GROMOS96 
implementation in Swiss-PdbViewer. The reliability of 
the loop modelling was assessed by the value of the  
B-factor, which provides information about the quality of 
the prediction. 
 
Southern blot analysis: For the analysis of N. bentha-
miana genome, 10 μg of nuclear genomic DNA from 
young leaves (Sambrook et al. 1989) was digested with 
EcoRV, Hind III and Xba I and treated with DNase-free 
RNase A. Each digestion product was loaded onto a 1.2% 
agarose gel in TAE buffer and run overnight at 2.5 V cm–1. 
Prior to blotting, the DNA was denaturalised and then 
transferred by capillarity to a Hybond-N membrane 
(Pharmacia, Barcelona, Spain). For maximum specifi-
city, the blottings were hybridised overnight at 65ºC with 
[-32P]dCTP-labelled cDNA probes in 0.9 M NaCl, 
90 mM sodium citrate, 5X Denhardt’s solution, 0.1% 
SDS and 0.12 mg ml–1 salmon sperm DNA; and the 
washings were carried out at low stringency conditions 
(twice at 65ºC for 30 min in 0.9 M NaCl, 90 mM sodium  
 

Table 1. Details of the amplification of psbO, psbP, and psbQ cDNAs from N. benthamiana. 
 

 Primers cDNA Method 

psbO 33b (CGCTCACCACCAGGAAGCTGAACTG), NUP (AAGCAGTGGTAACAACGCAGAGT) 
33a (GAAGGTGTTCCAAAACGT), 102 (AGATGGTGCACGATGCA) 
33a (GAAGGTGTTCCAAAACGT), 110 (CCAAGGCCT18) 

mRNA 
cDNA library 
cDNA library 

cDNA 5’RACE 
PCR 
PCR 

psbP 24b (GATTCAAATCCACCCTCTGAATCAGT), NUP (AAGCAGTGGTAACAACGCAGAGT) 
24a (CTGCAGATGCTGCTTATGGAGAAGC), 110 (5CCAAGGCCT18) 
24c (CAAGCTGGTGACAAGAGATGG), 110 (CCAAGGCCT18) 
24d (GTGCATAAAAAGCACAACTCATATGCTTAC), 101 (TACCACTACAATGGATG) 
24e (AGAGGGGGGAGAACTAAGTACATAC), 101 (TACCACTACAATGGATG) 
24f (TGCTTTAGGCCAAGCTCAATACTC),101 (TACCACTACAATGGATG) 

mRNA 
cDNA library 
mRNA 
cDNA library 
cDNA library 
cDNA library 

cDNA 5’RACE 
PCR 
cDNA AMV-RT
PCR 
PCR 
PCR 

psbQ 16b (GGGCTGTTCTTGGTCTTTGCTGCATGG), NUP (AAGCAGTGGTAACAACGCAGAGT) 
16a (AACTCGGATGAGGCAAGGGACTT), 102 (AGATGGTGCACGATGCA) 
16a (AACTCGGATGAGGCAAGGGACTT), 110 (CCAAGGCCT18) 

mRNA 
cDNA library 
cDNA library 

cDNA 5’RACE 
PCR 
PCR 
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Table 2. Theoretical molecular mass (MM) and pI of the extrinsic proteins PsbO, PsbP, and PsbQ from N. benthamiana. 
 

 NbPsbO1 NbPsbO2 NbPsbO3 NbPsbO4 NbPsbP1 NbPsbP2 NbPsbP3 NbPsbP4 NbPsbQ1 NbPsbQ2

MM [kDa] 26.6 26.6 26.8 26.8 20.3 20.4 20.1 20.1 16.3 16.3 
pI 5.05 5.04 4.94 4.94 5.27 5.10 5.28 5.28 9.48 9.48 

 

 
 

Fig. 2. A: Alignment of the mature PsbO protein sequences from: N. benthamiana, Arabidopsis (AtPsbO1 P23321; AtPsbO2 
Q9S841), and tobacco (NtPsbO1 Q40459; NtPsbO2 AY0076). Putative GTP binding sites G1, G2, G3, and G4 (Lundin et al. 2007b) 
are marked. B: Homology modelling of the mature PsbO proteins from N. benthamiana (NbPsbO1 and NbPsbO2, lilac; NbPsbO3 and 
NbPsbO4, green) and the crystal structure of PsbO from T. elongatus (2AXT_O, grey). Yellow: residues K/N49 and E/D140. Blue: 
residue E/D33. 
 
side of PSII whereas AtPsbO2, with GTPase activity, 
regulates the D1 dephosphorylation and turnover. The 
replacements V186S, V204I, and L246I at the C-terminus 
of the Arabidopsis PsbO protein sequences were sug-
gested to be responsible for their functional differences 
(Murakami et al. 2005, Lundin et al. 2007a,b). Although 

these positions are conserved among the four PsbO 
proteins of N. benthamiana, replacements and changes in 
spatial orientation of other residues involved in the 
GTPase activity (K49N and E140D) (Lundin et al. 
2007a) may be relevant. 

It is believed that most adaptive changes in sequences 
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Fig. 3. A: Alignment of mature PsbP protein sequences from: N. benthamiana, Arabidopsis (AtPsbP1 Q42029; AtPsbP2 O49344), and 
tobacco (NtPsbP1 Q7DM39; NtPsbP2 P18212; NtPsbP3 Q04127; NtPsbP5B Q04126). B: Homology modelling of the mature PsbP 
proteins from N. benthamiana (NbPsbP1 and NbPsbP2, lilac; NbPsbP3 and NbPsbP4, green) and the crystal structure of NtPsbP3 
(1V2B, grey). Yellow: residue K143. 
 
occur after gene duplication. The resemblance between 
the PsbO sequences of both species, despite their evolu-
tionary distance, seems remarkable and suggests a dif-
ferential functionality for NbPsbO1 and NbPsbO2 with 
respect to the NbPsbO3 and NbPsbO4 isoforms of 
N. benthamiana, as reported for AtPsbO1 and AtPsbO2 
in Arabidopsis (Murakami et al. 2005, Lundin et al. 
2007a,b). 

Within the C-terminus of the protein, which could be 
involved in the interaction with the PSII core (de las 
Rivas and Barber 2004), the region including the -helix 
E182–N189 appears to be shifted in the N. benthamiana 
PsbO proteins with respect to the crystal structure for the 
cyanobacterial PsbO (Fig. 3). Within this region, E188 

takes part in interactions with PsbP (Bricker and Frankel 
2003) and would adopt a different orientation in 
N. benthamiana PsbO with respect to cyanobacterial 
PsbO, as supported by its low B-factor value. These 
differences are in accordance with previous suggestions 
of differences in the binding sites on PsbO for PSII from 
bacteria compared to those from higher plants. 

 
PsbP proteins in N. benthamiana: Four cDNA sequen-
ces were isolated which encoded the proteins termed 
NbPsbP1 to NbPsbP4 (accession numbers JF897607, 
JF897608, JF897609, and JF897610, respectively). 
NbPsbP1 corresponds to the only PsbP sequence from 
N. benthamiana available in the database (AY952374), 
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signal peptide (Fig. 4). Their theoretical molecular mass 
and pI are shown in Table 2. 

The nucleic acid sequences NbPsbQ1 and NbPsbQ2 
reported in this work have a 99% and 97% identity with 
the only sequence from N. benthamiana on the database 
(Q5EFR5), respectively. The encoded protein sequences 
differ on a conservative substitution (H3Q) and a semi-
conservative (C24S) in their signal peptide. 
 
Conclusions: The homology models presented in this 
work show that most of the possible differences in 
structure among isoforms of the PsbO, PsbP, and PsbQ 
proteins here reported involve loops. Loops are often a 
very important part of the protein surface and determine 
the binding affinity to other proteins, ligands or sub-
strates. Moreover, functional differences among members 
of the same protein family are usually due to structural 
differences in their loop regions (Blouin et al. 2004), 
suggesting that functionality and/or binding affinity of 

PsbO and PsbP isoforms depends upon the particular 
conformation of these regions in each protein. 

Multigene families are thought to be a possible adap-
tative response to variable ambient conditions. Our 
results are compatible with an scenario in which genes of 
the same family were differentially regulated in 
N. benthamiana upon viral infection at a transcriptional 
and/or translational level, and the isoforms of PsbO and 
PsbP could perform different functions, as it has been 
already described for the PsbO proteins in Arabidopsis, 
or could perform the same functions with different effi-
ciencies (Murakami et al. 2005, Lundin et al. 2007a,b). 
Given that the extrinsic proteins of PSII are especially 
sensitive to stress and their accumulation pattern is 
differentially regulated upon viral infection, it is sug-
gested that isoforms of PsbO and PsbP proteins might 
differ in functionality and/or binding affinity to other 
PSII subunits or ions. This would tune the activity of PSII 
according to environmental conditions. 
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