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Abstract In recent years, there has been a growing 
interest in one-part alkali-activated materials, which 
utilize solid-form alkali activators, within the con-
struction industry. This approach is becoming popular 
due to its simpler and safer application for cast-in-situ 
purposes, as compared to the conventional two-part 
method. At this purpose, we have pioneered the use 
of volcanic deposits of Mt. Etna volcano (Italy) as 
precursor for the synthesis of a unique one-part for-
mulation. This was done to assess its performance 
against both traditional and two-part alkali-activated 
materials. The study employed a comprehensive 
range of investigative techniques including X-ray 
powder diffraction, Fourier transform infrared spec-
troscopy, hydric tests, mercury intrusion porosimetry, 
ultrasound, infrared thermography, spectrophotom-
etry, contact angle measurements, uniaxial compres-
sive strength tests, as well as durability tests by salt 
crystallization and freeze–thaw cycles. The key find-
ings on the studied samples are as follows: i) small 
size of pores and slow absorption-drying cycles; ii) 
satisfying compactness and uniaxial compressive 
strengths for building and restoration interventions; 

iii) high hydrophily of the surfaces; iv) lower heat-
ing dispersion than traditional materials; v) signifi-
cant damage at the end of the salt crystallization test; 
vi) excellent resistance to freeze–thaw cycles. These 
newly developed materials hold promises as envi-
ronmentally friendly options for construction appli-
cations. They offer a simplified mixing process in 
contrast to the conventional two-part alkali-activated 
materials, thus providing an added advantage to this 
class of materials.

Keywords Volcanic deposits · One-part alkali-
activated materials · Hydric and ageing tests · 
Porosimetry · Compressive strength

1 Introduction

The principles of environmental sustainability and 
circular economy, promoted by the European policy, 
push towards an ecological transition [1]. In particu-
lar, for the material sector the design of advanced 
materials with low  CO2 emissions that can be pro-
duced from natural or industrial waste sources is 
required to limit the depletion of natural resources 
[2]. In this context, alkali-activated materials (AAMs) 
present an eco-friendly alternative to conventional 
cement-based materials, which contribute to approxi-
mately 10% of global  CO2 emissions [3]. AAMs 
are solid materials synthesized by combining “two-
parts”: a powdered aluminosilicate source with an 
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alkaline solution, typically based on sodium (Na) or 
potassium (K) [4]. The main advantages of this class 
of materials include the possibility of using precur-
sors from both natural wastes and industrial by-prod-
ucts, thus providing a sustainable approach to waste 
management [5], as well as the wide versatility for 
various industrial applications thanks to their favour-
able technological approach [6].

However, the use of concentrated aqueous alkali 
solutions, which are known for their corrosive nature 
makes less user-friendly and pose potential risks dur-
ing material preparation and application. At this pur-
pose, in the last years one-part or “just add water” 
alkali-activated materials (AAM) were designed and 
developed with high advantages in terms of logis-
tics and adaptability to various scenarios [7]. This 
approach involves a dry mix, containing solid alumi-
nosilicate precursor, solid alkali source and optional 
admixtures, triggered only by water, like for the 
preparation of ordinary Portland cement [8]. How-
ever, further researches on optimising mixes made 
from different precursors than fly deposits and blast 
furnace slag are required. Indeed, the few works in 
the literature aiming at characterizing one-part mix-
tures based on volcanic precursors, namely based on 
pumice coming from a mine in Idaho (United States) 
or volcanic deposits from Manisa (Turkey), have 
obtained satisfactory physical–mechanical properties, 
but without information on their durability [9, 10]. 
Moreover, a thermal treatment of the mixture at 60 °C 
for ten days was carried out for the curing of one-part 
mixtures based on volcanic deposits from Manisa 
(Turkey) [10].

The abundant deposits of volcanic deposits spread 
out worldwide represent a promising and natural 
waste resource with great potential to produce inno-
vative and sustainable building materials [11, 12]. 
The chemical and mineralogical compositions of 
both fresh and aged volcanic deposits, exemplified 
by those from Mt. Etna volcano in Sicily (Italy), 
validate their suitability for the alkaline environment 
required for AAMs [13]. While these volcanic materi-
als may benefit from the addition of a small amount 
of metakaolin to enhance aluminium availability 
and reactivity, previous research has already dem-
onstrated their remarkable performance in terms of 
network reticulation, compressive strength, porosity 
and overall durability [14]. In particular, the choice 
of alkaline solution significantly influences the final 

performance, with potassium-based solutions show-
ing superior results compared to sodium-based alter-
natives both at room temperature and after thermal 
treatments up to 1000  °C [15]. Furthermore, AAMs 
based on volcanic sources have exhibited exceptional 
resistance to atmospheric exposure [16] and salt 
spray, making them particularly suitable for applica-
tions in coastal regions [17]. Their successful use in 
in-situ restoration works is exemplified by the restora-
tion of a mosaic area in the UNESCO World Heritage 
Site, Monreale Cathedral in Sicily (Italy), highlight-
ing the practical and beneficial use of volcanic-based 
AAMs in real-world restoration and construction 
activities [18].

In this work a set of one-part of AAMs based 
on volcanic deposits from Mt. Etna volcano (Italy) 
has been synthetized and, for the first time, thor-
oughly investigated in terms of mineralogy, physi-
cal–mechanical performance and durability to age-
ing tests, in order to compare their performance with 
those of two-parts and some traditional materials in 
order to find the most suitable applications and under-
line the advantages of one-part system.

2  Materials and methods

2.1  Sample preparation

Volcanic deposits (Va) were sampled in a landfill 
belonging to the territory of Zafferana Etnea, located 
in the eastern flank of Mt. Etna volcano (Sicily, 
Italy), where pyroclastic deposits of recent and past 
eruptions are stockpiled. They were subjected to wet 
grinding, following a drying step to obtain a particle 
size suitable for the alkaline activation process, and 
thus, to be used as main precursor for the design of 
one-part alkali-activated paste. Volcanic deposits 
of Mt. Etna volcano have been recently chemically 
and mineralogically analysed by Barone et  al. [19]. 
Chemically, they contain:  SiO2 = 49%;  Al2O3 = 16%, 
 Fe2O3 = 12%;  TiO2 = 2%;  Na2O = 3.5%;  K2O = 2%; 
CaO = 10.5%; MgO = 4%, while the main mineral-
ogical phases are plagioclase, augite, forsterite and 
titanomagnetite are, together with a considerable 
amount of volcanic glass (~ 70%). The solid acti-
vator is made by the combination of pellets of Na-
hydroxide (97% purity) and powder of Na-silicate 
(code: 373908, provided by Carlo Erba Reagents 
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srl, Italy) with a molar ratio  SiO2/Na2O = 2. A com-
mercial metakaolin, ARGICAL™ M1000 (Imerys, 
France), was added as reactive powder, whose 
chemical composition is:  SiO2 = 55%;  Al2O3 = 40%, 
 Fe2O3 = 1.4%;  TiO2 = 1.5%;  Na2O +  K2O = 0.8%; 
CaO + MgO = 0.3%; and LOI = 1%. Mineralogically, 
few amount of quartz (α-SiO2), anatase  (TiO2), and 
muscovite  (KAl2(Si3Al)O10(OH)2) were identified 
by X-ray diffraction analysis [20]. The preparation of 
the one-part alkali-activated paste based on volcanic 
deposits (Vop) was carried out at room temperature. 
It consisted of a preliminary and manual mixing of 
all the solid components, namely volcanic deposits, 
metakaolin and activators, following the final one 
with the use of tap water for 5  min, then the filling 
into the cubic mould and a vibration step to remove 
air bubbles. The mix design of this one-part alkali-
activated paste had the following amounts: 53  wt% 
of volcanic deposits, 13  wt% of metakaolin, 2  wt% 
of sodium hydroxide, 13 wt% of sodium silicate and 
18  wt% of tap water. All samples were prepared 
in the shape of cubes with edges of approximately 
4 cm, which were then cured for 28 days before being 
analysed.

2.2  Methods

Different techniques were selected to characterize for 
the first time one-part alkali-activated paste based 
on volcanic deposits of Mt. Etna volcano. The min-
eralogical and molecular structure was evaluated 
respectively by means of X-ray powder diffraction 
and Attenuated Total Reflectance Fourier Transform 
Infrared Spectroscopy in order to define the reaction 
mechanism induced by the solid precursors and acti-
vator in the one-part system. Moreover, the physical 
behaviour was assessed by hydric tests, porosimetry, 
ultrasound, colorimetry, infrared thermography and 
contact angle tests. The durability was estimated 
after the salt crystallization and freeze–thaw cycles. 
Finally, mechanical tests were also carried out, 
including flexural and uniaxial compressive strength 
to assess the mechanical performance.

2.2.1  X-ray powder diffraction

X-ray powder diffraction (XRPD) analyses were car-
ried out on raw and synthetized materials using a 
Miniflex Rigaku instrument equipped with a Ni filter 

and CuKα radiation generated at 40 kV and 15 mA. 
The measurements involved scanning the samples at a 
speed of 5º/min with a step size of 0.02º, covering the 
2θ range from 5° to 65°. Qualitative and quantitative 
data obtained were processed using BGMN/Profex 
5.0 software [21]. Rietveld refinement was performed 
after the addition of 2 wt% of a standard corundum 
powder (NIST code 676a) to enable the quantification 
of mineralogical phases and amorphous content [22]. 
The structures of specific phases were identified by 
referencing the BGMN database (accessible at http:// 
www. bgmn. de/ index. html). The quality of the refine-
ment results was assessed through visual compari-
sons of observed and calculated patterns, as well as 
the calculation of discrepancy indices, including the 
weight profile R-factor. Values lower than 10% for the 
R-factor indicated satisfactory refinement outcomes 
[23].

2.2.2  ATR FT-IR analysis

The chemical and molecular composition of synthe-
tized material was carried out by means of Attenuated 
Total Reflectance Fourier Transform Infrared Spec-
troscopy (ATR FT-IR), using a Jasco 6200 infrared 
spectrometer, which performed 30 scans per measure-
ment in the range of 4000—400   cm−1 and a resolu-
tion of 2  cm−1. Data were acquired by the SPECTRA 
MANAGER v2 software. Three replicas were carried 
out on the alkali-activated powder to obtain an aver-
age spectrum.

2.2.3  Mechanical strengths

Mechanical tests were carried out using a Controls 
UNIFRAME automatic compression testing machine, 
using a 10 kN load cell for flexural tests and a 50 kN 
load cell for compressive tests. For the flexural tests, 
three prisms measuring 2 × 2x8   cm3 were used. The 
uniaxial compressive strength was defined from the 
six resulting samples of the flexural test, follow-
ing the methodology described in UNI-EN 1015–11 
standard [24].

2.2.4  Determination of the pore system

To assess the water behaviour, a series of hydric 
tests following the UNE-EN 13755 [25] and 
NORMAL 29/88 [26] standards in controlled 

http://www.bgmn.de/index.html
http://www.bgmn.de/index.html


 Materials and Structures          (2024) 57:198   198  Page 4 of 13

Vol:. (1234567890)

thermo-hygrometric conditions at 18  °C and 35% 
relative humidity were conducted on cubic samples. 
These tests included free water absorption  (Ab), 
forced water absorption under vacuum  (Af) and dry-
ing. From these tests, several crucial parameters 
were determined, such as the degree of pore inter-
connection  (Ax) [27], the drying index  (Di), appar-
ent density (ρa), real density (ρr) and open porosity 
 (Po), in accordance with the RILEM standard [28].
For a more comprehensive view of the porous sys-
tem of the AA-paste mercury intrusion porosimetry 
analysis (MIP) was carried out using a Micromerit-
ics Autopore V 9600 porosimeter, examining the pore 
size distribution in the range 0.002–200 μm of a frag-
ment of approximately 1   cm3, which was oven dried 
at 70 ± 5 °C for 8 h prior to analysis. Open porosity 
 (PoMIP), specific surface area (SSA) and apparent and 
real densities (ρaMIP and ρrMIP) were also determined.

2.2.5  Non-destructive testing

2.2.5.1 Ultrasound Ultrasound technique was cho-
sen to assess the degree of compactness, using a Con-
trol 58-E4800 ultrasonic pulse velocity tester with 
transducers operating at a frequency of 54  kHz and 
having a circular surface area of 27  mm. To ensure 
continuous contact with the material surfaces, a 
water-based eco-gel was applied onto the transducers. 
P-wave propagation was measured on three cubic sam-
ples in the three perpendicular directions. The meas-
urement was conducted following the guidelines out-
lined in the ASTM D2845 [29] standard and expressed 
in m/s. Furthermore, the structural anisotropy (ΔM) 
was determined using the following equation [29]:

where Vmax and Vmin are respectively the maximum 
and minimum velocities measured regardless of the 
measurement direction.

2.2.5.2 Spectrophotometry Spectrophotometry was 
chosen to quantify the colour resulting from the mix-
ing design of the sample set. The measurement proto-
col adhered to the UNI-EN 15886 standard [30], using 
a portable Konica Minolta CM-700d instrument for 
data acquisition. The analysis was carried out within 
the wavelength range of 400–700 nm, using CIE illu-

ΔM =
V
max

− V
min

V
max

∗ 100

minant D65 that simulates daylight conditions with a 
colour temperature of 6504 K. A pulsed xenon lamp 
with a UV cut filter illuminated an 8 mm diameter cir-
cular region of the synthesized surface, considering a 
vision angle of 10°. Parameters such as lightness (L*), 
chromatic coordinates (a* and b*), chroma (C*) and 
hue angle (h°) were determined. The measurements 
were performed in both SCI (specular component 
included) and SCE (specular component excluded) 
modes, with three replicate measurements obtained 
for each sample.

2.2.5.3 Infrared thermography In order to quali-
tatively assess the propagation of heat, an infrared 
(IR) thermography technique was used. This method 
entails the conversion of thermal radiation into elec-
tric signals, which are subsequently visualized as an 
image. To conduct the experiment, a FLIR T440 ther-
mographic camera was used in a laboratory within 
controlled thermo-hygrometric condition of 25 °C and 
50% relative humidity. The cubic samples were heated 
on a hot plate positioned 30 cm from the camera lens 
for 30  min at a temperature of 50  °C. The process 
involved capturing IR thermographic images at 30  s 
intervals, allowing for the observation of heat propa-
gation across the surface of the sample. Additionally, 
the isotherm at 50 °C was marked to further assess the 
spread of heat.

2.2.5.4 Contact angle test The sessile drop method 
using by means of an OCA system (Dataphysic Con-
tact angle system, software SCA20, Filderstadt, Ger-
many) was performed to estimate the static contact 
angles of a drop of ultrapure water over the material 
surface, defining its hydrophobic behaviour. A drop 
volume equal to 4 μL was used as liquid amount. The 
contact angle value was calculated considering the 
average of 6 measurements carried out in different 
spot analysis, 10 s after the drop deposition.

2.2.6  Ageing tests: salt crystallization and freeze–
thaw cycles

Fifteen freeze–thaw and fifteen salt crystallization 
cycles using a 14%  Na2SO4 ×  10H2O solution on three 
AAM samples were carried out according to UNE-
EN 12371 [31] and UNE-EN 12370 [32] standards, 
respectively. The freeze–thaw cycles quantified the 
stress caused by the increase in the volume of water 
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in the pores due to freezing at temperatures below 
0  °C. Instead, the salt crystallization test replicated 
the decay due to the dissolution and recrystalliza-
tion of soluble salts within their porous systems. The 
decay of the samples was monitored daily, measuring 
their weight and registering the loss of fragments.

3  Results and discussion

3.1  X-ray powder diffraction

Mineralogical qualitative and quantitative results 
were plotted and listed respectively in Fig.  1 and 
Table  1. Volcanic deposits showed the typical com-
position of basalt rock, namely in decreasing amount 
order: plagioclase, augite, olivine and iron-oxide (i.e., 
Ti-magnetite). Moreover, quartz, muscovite/illite and 
chlorite were detected, possibly due to the contamina-
tion of the volcanic deposits in the sampled landfilled 

area [33]. This composition is almost equally bal-
anced by the 57 wt.% of amorphous amount, whose 
value is strongly dependent to the fragmentation phe-
nomena occurring during the eruption [34]. Contrary, 
the synthetized material (Vop) displayed a higher 
amorphous amount, 88  wt.%, in contraposition to a 
general decreasing of all mineral phases and the dis-
appearance of chlorite due to the polycondensation 
reaction [35]. However, a secondary phase, namely 
trona  (Na3(CO3)·(HCO3)·2(H2O)), derived by the 
combination between the excess of unreacted  Na+ 
with  CO2 [19] was identified. This phenomenon is 
also common in other systems based on other vol-
canic precursors such as ghiara or pumice, both of 
which undergone to standard ageing or weathering 
conditions [36, 37]. Moreover, no mineralogical dif-
ference with the corresponding two-part system based 
on volcanic deposits from Mt. Etna volcano investi-
gated in previous studies was observed.

3.2  ART FT-IR analysis

Notoriously, the alkali-activation process is extremely 
complex due to the several variables involved, leading 
to the sequence of different stages [39]. Figure 2 plot-
ted the spectrum of the synthetized material obtained 
by ATR FT-IR for the understating of reaction mech-
anism of the system. The evidenced positions concern 
the stretching and bending of the O–H bonds at 3400 
and 1640  cm−1; the stretching vibrations of the O-C-O 
at 1400   cm−1, suggesting the carbonation reaction 
between the carbon dioxide from the air and the free 
ions of the paste [40]; the asymmetric stretching 
vibrations of the Si–O-Si bonds at 1050 and 980  cm−1 
[41]; the Si–O-Ca bond at 920  cm−1 [42], suggesting 
the formation of a Si–O-Ca co-network formed by the 
presence of free Ca ions released from the volcanic 
ash [15]. Therefore, according to the FT-IR results 
and the evidence found with XRPD, we supposed that 
the reaction was triggered by the metakaolin and the 

Fig. 1  XRPD pattern of raw material (Va) and synthetized 
paste (Vop). Mineral phases associated to the symbolism: 
Aug = augite; Chl = chlorite; Fe-ox = Ti-magnetite; Ms = mus-
covite; Ol = olivine; Pl = plagioclase; Qtz = quartz; Tn = trona. 
Mineral acronyms according to Whitney and Evans [38]

Table 1  Mineralogical results (in wt.%) obtained by XRPD 
analysis with Rietveld Method. Aug = augite; Chl = chlorite; 
Fe-ox = Ti-magnetite; Ms = muscovite; Ol = olivine; Pl = plagi-

oclase; Qtz = quartz; Tn = trona; amorph. = amorphous phase. 
Mineral acronyms according to Whitney and Evans [38]

Aug Chl Fe-ox Ms Ol Pl Qtz Tn Amorph

Va 10.2 0.6 1.6 1.8 3.8 22.9 1.7 – 57.3
Vop 2.7 – 0.4 0.6 0.8 5.8 0.8 0.8 88.1
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chemical reactants, which favour the increase of Si/Al 
species needed for the formation of the main network, 
thus balancing the low reactivity of the volcanic ash 

at room temperature [43]. Moreover, the formation of 
another network based on Ca resulting from the par-
tial dissolution of the Ca-species of volcanic ash (e.g., 
plagioclase and augite) was observed. Therefore, vol-
canic ash can be considered both as binder, because 
it partially participates in the reaction, and as a filler.

3.3  Mechanical strengths

In Table 2, flexural and uniaxial compressive average 
strengths were reported. In detail, the results showed a 
flexural resistance of 12 MPa (σ = 1.3) and a uniaxial 
compressive resistance of 27.4 MPa (σ = 2.6). These 
values are in agreement with those of previous works 
on two-parts AAMs based on volcanic deposits of Mt. 
Etna volcano (Italy), whose range is 15–40 MPa for 
the uniaxial compressive strengths [14, 17]. A slight 
reduction of 80 and 85% in compressive strengths 
in one-part system than two-parts AAMs was also 
observed by other authors [44]. This behaviour is 
probably due to the higher water content used to 
improve their lower workability (i.e., approximately 
35% lower) [45]. Moreover, our average strengths are 

Fig. 2  – ATR FT-IR spectrum of synthetized paste col-
lected in absorbance in the range of 4000–400  cm−1. A break 
between 2400–1800  cm−1 was made for eliminating the atmos-
pheric contribution

Table 2  Physical and mechanical values. The standard devia-
tion is indicated in brackets. Results obtained by hydric tests: 
 Ab = free water absorption (%);  Af = forced water absorption 
(%);  Ax = degree of pore interconnection (%);  Po = open poros-
ity (%); ρa = apparent density (g/cm3); ρr = real density (g/cm3); 
 Di = drying index. Results obtained by MIP test: SSA = specific 
surface area  (m2/g); ρrMIP = real density (g/cm3); ρaMIP = appar-
ent density (g/cm3);  PoMIP = open porosity (%). Results 

obtained by ultrasound test:  VP1,  VP2,  VP3 = waves speed 
along the three orthogonal directions of cubic samples (m/s); 
ΔM = structural anisotropy (%). Results obtained by mechani-
cal strength:  Sux = average uniaxial compressive strength 
(MPa);  Sfx = average flexural strength (MPa). Results obtained 
by spectrophotometry: lightness (L*); chromatic coordinates 
(a* and b*); chroma (C*); hue angle (h°)

Hydric testes Porosimetry

Ab Af Ax Po �a �r Di SSA �rMIP �aMIP PoMIP

7.09 8.69 18.60 15.57 1.79 2.12 0.941 23.5 2.51 2 20.52
(0.86) (0.60) (4.51) (1.11) (0.01) (0.03) (0.002)

Ultrasound Mechanical strengths

VP1 VP2 VP3 VP4 �� Sux Sfx

2475.9 2421.3 2484.4 2460.5 5.2 27.40 11.96
(34.24) (2.59) (1.25)

Spectrophotometry

L* a* b* C* h°
38.0 0.8 3.7 3.8 79.1
(4.3) (0.3) (0.6) (0.7) (3.0)
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higher than one–part geopolymers obtained from the 
volcanic deposits from Manisa (Turkey), whose val-
ues range from 13.89 MPa to 19.6 MPa, despite the 
curing was at 60  °C for ten days [10]. Therefore, in 
general our one-part AAMs set achieved satisfactory 
resistance, especially for unstructured building or res-
toration fields.

3.4  Determination of the pore system

Figure  3 and Table  2 showed the main results con-
cerning the hydric (a) and MIP (b) tests. In detail, 
the sample had a slow and little free water absorp-
tion capacity with a low percentage value (around 7% 
in the step 1 of Fig. 3a), whose value agree with the 
range (i.e., 7–16% in one-part alkali-activated blast 
furnace slag) found by Abdel-Gawwad and Abo-El-
Enein [46], maybe due to the formation of hydration 
products and thus decreasing porosity. During forced 
water absorption (step 2 of Fig.  3a), the set showed 
an abrupt slope of the curve suggesting the difficulty 
of water circulation in the pore network [47]. This 
is confirmed by the high Ax value (~ 19%, Table  2) 
when compared with other construction materials 
(i.e., Ax values < 5 for bricks containing volcanic 
deposits from Mt. Etna volcano [48]). The poor inter-
connection between the pores caused a very slow 
drying  (Di < 1%, Table  2), whose initial dry weight 
was not fully achieved even after about three weeks 
(step 3 of Fig. 3a). This phenomenon may be due to 
an interaction between the matrix sample and the 

water, leading to the formation of a gel-like substance 
within the pores, hindering the drying process or also 
due to the formation of trona within the pore network 
already identified by XPRD. The hydric behaviour 
determined an open porosity of ~ 16%, while the cal-
culated values of apparent and real densities corre-
spond to 1.8 and 2.1 g/cm3, respectively. These val-
ues agree with those obtained by MIP test, although 
the latter are a slightly higher. The obtained results 
are consistent with those obtained in previous works 
where two-part AAMs based on volcanic depos-
its of Mt. Etna volcano were investigated [17, 19, 
49] whose recorded values ranged between 1.9–2 g/
cm3 for real density and 24–26% for open porosity. 
However, the manufacturing process of our one-part 
AAMs increased the density and decreased the open 
porosity, suggesting a more compactness structure 
than the traditional two-parts AAMs. The MIP results 
evidenced a unimodal pore size distribution with the 
main peak ranged between 0.01 and 0.1 µm (Fig. 3b), 
which is in agreement with previous researches [19, 
49].

3.5  Non-destructive testing

3.5.1  Ultrasound

Ultrasound usually give interesting features on com-
pactness of the materials, which in turn depends on 
the own microstructure, namely mineralogy, density 
and porosity network [50–52]. Our results display an 

Fig. 3  Pore system evaluated by hydric (a) and MIP (b) testes: 
(a) Weight variation (ΔM/M%) versus time (in hours), whose 
trend is made of: 1) water absorption at atmospheric pressure, 

2) water absorption under vacuum and 3) drying; (b) pore size 
distribution results: DV/DlogD (in ml/g) versus pore diameter 
(d, in μm)
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average velocity of 2461  m/s (Table  2), which is in 
accordance with the range, 1500–3000 m/s, found in 
the literature on fly deposits-geopolymers differenti-
ated by several concentrations of the alkali activator 
used [53]. Indeed, the concentration of alkali as well 
as the ratio between the alkaline solids to metakao-
lin generally influence the values of compactness 
as demonstrated by Albidah et  al. [54], whose val-
ues agree with ours. Instead, the traditional cement 
concrete showed a higher compactness, depend-
ing to the water/cement ratio (w/c), whose range is 
2800–4800  m/s [55]. Therefore, our synthetic mate-
rials have better insulating properties than traditional 
ones and this behaviour match with the natural stones. 
In fact, our sample set seems to have a compact-
ness similar to sedimentary rocks, such as sandstone 
(1400–4200  m/s), limestone (2500–6000  m/s) and 
conglomerate (2500–5000 m/s) [56]. However, these 
rocks do not match with the mineralogy of our sam-
ples, not only because of the difference in minerals 
but especially for the amorphous and semi-crystalline 
microstructure which differs from that of sedimentary 
rocks. In fact, the ultrasound velocity in glassy mate-
rials is, generally, attenuated compared to crystalline 
ones [57].

3.5.2  Spectrophotometry

The colorimetric results confirmed the negative cor-
relation between the high concentration of volcanic 

deposits, used as main precursor in our alkaline sys-
tem, with the lightness (L*, Table  2). Indeed, this 
latter is low, mostly uniform in all surfaces. Moreo-
ver, also the chromatic parameters, a* and b*, have 
very low values, lying within the greyish chroma (C*, 
Table  2). These chromatic values are in accordance 
with those obtained by Occhipinti et al. [36] on two-
parts AAMs based on volcanic deposits investigated 
before and after weathering exposition. However, 
slight difference in terms of lightness was recorded, 
probably due to the different alkaline synthesis 
approach (i.e., two-part).

3.5.3  Infrared thermography

Figure 4 showed the IR images of the sample respec-
tively at 2  min and 30  min of heating. The heating 
spread homogeneously from the bottom to the top. 
In detail, during the first two minutes, the thermal 
absorption was gradual, reaching an average tempera-
ture of about 35  °C within the first few millimetres 
(Fig. 4a). Instead, the isotherm at 50 °C recorded at 
the end of the test was marked at 13 mm from the bot-
tom, meaning a 35.5% of the sample surface (Fig. 4b). 
Notoriously, the thermal conductivity of a ceramic 
material, traditional or advanced like geopolymer 
[58], is subject to various influencing factors such 
as the mineralogical composition, moisture content, 
grain size of the raw material, as well as the appar-
ent density, porosity and pore size distribution, which 

Fig. 4  - IR-thermographic images took after 2 min (a) and 30 min of eating; the continuous line marks the 50 °C isotherm (b). The 
images were configured with the lava palette colours
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play a significant role [59, 60]. Moreover, another 
work, based on the estimation of heat dispersion, 
demonstrated the potential of IR-thermography to 
derive indirect information on the physical–mechani-
cal behaviour of two-part alkali activated materials 
based on volcanic deposits [17].

Comparing the isotherms at 50  °C of our sample 
set with those of traditional ceramics studied using 
the same setting measurement [50], the heat absorp-
tion rate of our one-part AAMs was significantly 
lower than that of traditional materials. Therefore, 
this behaviour confirms the potential application of 
alkali activated materials for high thermal insulation 
applications [61].

3.5.4  Contact angle test

The contact angle is considered a measure of hydro-
phobicity of the surface. The absorption rate of drop 
water used for the test was very fast. Indeed, the 
recorded average angle value at time  t0 was of 18.20° 
(st. 0.64), corresponding to the instantaneous contact 
between the drop and the surface (Fig.  5). There-
fore, there was no evolution during the 10 s because 
the absorption was immediate: typical behaviour of 
hydrophilic surfaces [62]. Similar behaviour has been 
observed when analysing the surface of cement-based 
mortars, whose results were ranging between 22° and 
26° at  t0 [63]. In view of this, these synthetized mate-
rials should be used for indoor applications or for 
outdoor environments based on a pre-treatment with 
waterproofing coatings in order to enhance the hydro-
phobicity [64].

3.6  Ageing tests: salt crystallization and freeze–thaw 
cycles

The weight loss after the salt crystallization cycles 
were plotted in Fig. 6. Specifically, the sample evi-
denced a mass loss of 60 wt% at the end of the test. 
The damages start at the edges and corners, where 
tiny fragments separate from the cubic samples pre-
serving their core. Therefore, the salt crystalliza-
tion cycles produced significant damage at the end 
of the test. This behaviour is very interesting con-
sidering the low porosity and unimodal pore size of 
the matrix, which normally have a negative effect 
on the material’s durability to salt crystallization 
[65]. Differently, one-part geopolymer synthesized 
by calcium carbide residue-sodium carbonate-
activation of slag showed limited sodium sulphate 
degradation [66]. Moreover, the resistance to salt 
crystallization is strongly influenced by the calcium 
content of the precursors and cross linked alumino-
silicate gel, which can lead to the formation of gyp-
sum or ettringite  [67]. The sample performs much 
better to freeze–thaw compared to salt crystalliza-
tion (Fig.  6). In fact, during the fifteen cycles the 
material recorded a very little weight loss (< 1%). 
This result agrees with the very low weight loss 
(i.e., around 2% after 15 cycles at − 5 °C) recorded 
in similar materials [68], confirming the high 
resistance to freezing. However, the weight loss 
increases with decreasing the freezing temperature, 

Fig. 5  – Representative measurement of contact angle at time 
 t0 of our sample

Fig. 6   Weight variations over 15 salt crystallization (black) 
and freeze–thaw (grey) cycles. Each curve represents the mean 
of three measurements
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increasing the number of cycles and also depending 
on the activator used [68]. According to the results 
of ageing tests performed, this class of material is 
suitable for applications in cold (> − 5  °C) coastal 
environments [69].

4  Conclusions

The proposed methodological approach was useful to 
define the microstructural features of one-part alkali-
activated materials to assess their decay behaviour. 
Indeed, the obtained results highlight the coexistence 
of Si–O-Si and Si–O-Ca networks for the contribution 
of volcanic ash both in the reaction mechanism and as 
filler in the mixture. Moreover, this latter is charac-
terized by a small size of pores, confirmed, also, by 
the slow absorption-drying rates recorded during the 
hydric tests. This behaviour can be due to the interac-
tion of the matrix sample and water causing the for-
mation of trona or a gel in the pores, which hampers 
the drying. Ageing tests showed poor resistance to 
salt crystallization but excellent durability to freezing, 
suggesting applications in cold coastal environments. 
Moreover, the compactness and uniaxial compres-
sive strength are satisfactory for building and resto-
ration interventions, although outdoor applications 
are not recommended due to the high hydrophily of 
the surfaces if these latter are not pre-treated with 
specific coatings. On the other hand, they showed 
slow heat propagation, making them a viable alter-
native for thermal insulation properties. Therefore, 
these synthetized materials can represent a potential 
eco-friendly material for building applications with a 
simplified mixing procedure contrary to the common 
two-part AAMs, representing an adding value for this 
material class.
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