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The signalling hypothesis suggests that avian eggshell coloration is a sexually
selected female signal advertising her quality to its male partner, thereby sti-
mulating his provisioning rate. This hypothesis has been tested for structural
eggshell pigments, but not for cosmetic colorations, such as that produced by
the uropygial secretion on eggshells. During the breeding season, female hoo-
poes (Upupa epops) host in their uropygial glands symbiotic bacteria. Females
actively smear the eggshells with their secretion, protecting embryos from
pathogenic trans-shell infections and changing eggshell coloration. Because
the colour of the secretions is related to their antimicrobial potential, cosmetic
eggshell coloration may act as a cue or even as a post-mating sexually selected
signal if it affects male provisioning rates. To experimentally test this hypoth-
esis, we cross-fostered already-smeared clutches between hoopoe nests, and
quantifiedmale feeding behaviour to females before and after the experiment.
This approach allows disentanglement of the effects of female quality and of
egg coloration on male investment. In accordance with the hypothesis, males
adjusted their provisioning rate to the eggshell cosmetic coloration. This is, to
our knowledge, the first experimental demonstration that egg colour stained
with uropygial secretion could act as a post-mating sexual signal of female
quality to males.

1. Introduction
Individual quality can be reflected by phenotypic traits that influence mate choice
preferences [1,2] or differential reproductive investment after mating [3,4], being,
therefore, sexually selected. Most studies have mainly explored these sexually
selected traits in males [5,6], while the role of sexual selection explaining the evol-
ution of females traits have only been recently considered [7,8]. In particular,
female post-mating sexual signals causing differential investment by males, are
less known, despite the fact they may be responsible for an important component
of female reproductive success in species with paternal care [5,9].

An example of the post-mating sexual signal of a female reflecting her qual-
ity is avian eggshell coloration [9–19]. Intra- and interspecific variation in
eggshell colour have intrigued researchers for a long time. Several adaptive
and non-adaptive explanations have been proposed [15,20–25], although not
all of them have received a similar level of support [25–27]. The possibility
that eggshell coloration is sexually selected (SSEC hypothesis) [15] implies
two assumptions: (i) females signal their quality (and hence the potential qual-
ity of their descent) to the male partner by means of egg coloration; and
(ii) male partners adjust their reproductive investment (for example, their

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2020.3174&domain=pdf&date_stamp=2021-05-05
mailto:silviadiazlora@ugr.es
https://doi.org/10.6084/m9.figshare.c.5401651
https://doi.org/10.6084/m9.figshare.c.5401651
http://orcid.org/
http://orcid.org/0000-0001-8008-2752
http://orcid.org/0000-0002-2271-1706
http://orcid.org/0000-0002-6421-4572
http://orcid.org/0000-0003-4648-7988
http://orcid.org/0000-0002-1488-5642
http://orcid.org/0000-0003-2990-1489
http://orcid.org/0000-0002-5432-425X


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20203174

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 M

ay
 2

02
1 
provisioning rate to the female and nestlings) to eggshell
coloration. Several studies have found an association between
eggshell coloration and the quality of females in some bird
species (e.g. [18,19,28,29]). As for the second assumption, a
relationship between parental investment and eggshell color-
ation has been found through correlational [30,31] and
experimental studies [9,13,14,32,33]. However, other studies
failed to find such a relationship [18,34–38]. These mixed
results make necessary further experimental studies to explore
such association, measuring parental investment during the
incubation period. This approach will ensure that changes in
male investment are caused by eggshell colour rather than
by confounding variables associated for instance with nestling
phenotype (reviewed in [39]).

The SSEC hypothesis has been mainly focused on
pigment-based coloration owing to antioxidant and other
physiological properties of biliverdin and protoporphyrin
[14,16,30,32,36,40,41], the responsible pigments of the eggshell
coloration. However, other external sources of pigments are
involved in eggshell coloration. This is, for instance, the case
of the eggshell spots caused by the activity of some ectopara-
sites [42–45]. Deliberate application of cosmetic substances,
such as the uropygial secretion, could also affect eggshell
coloration, and may function as a cue or signal of female
characteristics that would influence male parental investment
[46]. The effect of the cosmetic use of uropygial secretion on
avian coloration has mainly been investigated for feathers
[47–51] and in scenarios of pre-mating sexual selection
[48,52,53]. However, it may also function on eggs as post-
mating sexual signals, and correlative results suggest that it
may be the case in hoopoes eggshell cosmetic colours [31].

Female hoopoes actively cover their eggs with the uropy-
gial secretion taken with the beak, which causes a colour
change of the eggshell, from bluish to greenish-grey [46].
The coloration of the uropygial secretion is caused partially
by the bacteria living within the uropygial gland of females
[40,54–56]. When the female stains the eggshell with the
secretion, she transfers these bacteria to the egg surface [57],
protecting embryos from pathogenic infections and increas-
ing hatching success [57]. Interestingly, previous studies
have demonstrated an association between coloration, the
density of bacterial symbionts, and antimicrobial properties
of the uropygial secretion of hoopoe females [31,46,58]. In
all these studies, the main colour parameter of secretions
related to bacterial presence, abundance or antimicrobial
activity is saturation. Secretions with higher colour saturation
are related to a lower antimicrobial capacity of the secretion
[46]. Similarly, eggshells (coated with secretion by females)
with higher colour saturation are related to a lower bacterial
load of the uropygial secretion [31]. Therefore, more saturated
eggshell colours could indicate less antimicrobial capacity of
the secretion. Consequently, the cosmetic coloration of the
eggshells of hoopoes could inform of the antimicrobial prop-
erties of the symbiotic bacterial community hosted within the
female’s uropygial gland. Thus, differential reproductive
investment of males in nests whose eggshell coloration indi-
cates a high antimicrobial capacity of the mate, would be of
selective advantage [59]. Therefore, sexual selection could,
at least partially, drive the evolution of this cosmetic color-
ation [46]. Benefits for males differentially investing in
reproduction based on egg colour would include higher
hatching success [57], and adaptive microbiota that their off-
spring would acquire from mothers [60–62]. Although
correlative evidence support this claim [31], egg colour
might covariate with several characteristics including female
and male parental quality [28] and, thus, an experimental
approach is necessary to discern causes and consequences
of this detected association. Unlike most studies of SSEC
hypothesis, we focus on male provisioning rate to the
female during the incubation period, instead of chick
provisioning.

Here, we cross-fostered hoopoe clutches already coated by
the secretion of their mothers. We monitored male feeding be-
haviour to incubating females before (i.e. with their own eggs)
and after the experiment (i.e. with experimental cross-fostered
eggs). We predicted that, within nests, differences in male pro-
visioning rate should be related to differences in cosmetic
coloration between original and cross-fostered clutches.
Specifically, the male provisioning rate should increase when
the colour saturation of the cross-fostered clutch decreases.
2. Material and methods
(a) Study species
The hoopoe is a cavity nester that readily nests in nest-boxes and
is distributed throughout Europe, Africa and Asia. Females lay
one or two clutches, typically of six to eight eggs from February
to July [63]. They start to incubate with the first or second egg,
generating an asynchronous hatching and, therefore, a consider-
able size hierarchy within the brood [64]. The uropygial gland of
incubating females increases in size, producing a greater amount
of secretion compared with non-breeding females [58], allowing
them to cover the egg surface of the entire clutch [46]. Moreover,
unlike other birds, the external structure of hoopoe eggshells is
full of small crypts helping in the retention of the coloured
secretion [57]. Hoopoes start to paint eggshells with secretion
with the first or second egg laid. Few days after the end of
laying, the cosmetic coloration is uniform for the entire clutch.
Only the female incubates and the male feeds her while she is
in the nest (from the start of incubation until the first hatched
nestling is around 8 days old). This allows males to see the
eggs while provisioning females at the nest entrance. That is
because females of hoopoes are small relative to the nest-box
size, and they always need to move off the eggs to reach the
male’s food delivery (see video recording in the electronic sup-
plementary material, S1). Moreover, females go out from the
nest several times a day during incubation. The male always
tries to feed the female in the nest-box and, when she is not
there, males look inside the nest many times, being able to see
the eggs (see video recordings in the electronic supplementary
material, S1–S3). In addition, hoopoes perform a striking court-
ship behaviour in which males do not give the prey to female
the first time of offering, but they repetitively move the head
back and forth at the nest entrance, while females stand up unco-
vering the clutch, allowing the male to have more time to see the
eggs (see video recording in the electronic supplementary
material, S3).

Both sexes care for offspring, providing them food until fledg-
lings abandon the nest at 24–30 days old [65]. Within our study
population, there is variation in the colour of the uropygial
secretions and eggshells among individuals [46] (see the color-
ation of each egg in our sample in the electronic supplementary
material, S5).

(b) Study area and general procedures
The fieldwork was carried out during the 2016 breeding season at
the Hoya de Guadix (37°C, 180 N, 110 W), Granada (southern
Spain) in a hoopoe population studied over the last 25 years.
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Figure 1. Schematic of the experimental design in a nest with eight eggs. Orange boxes (from 1 to 10) are days when the nest contained the female’s own eggs,
and grey ones (from 10 to 17) the days with exchanged eggs belonging to another female. (Online version in colour.)
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They breed in cork nest-boxes situated in trees (dimensions: 24 cm
(bottom-to-hole height), 35 × 18 × 21 cm (internal height ×width ×
depth) and 5.5 cm (entrance diameter)), and in natural cavities.

Nest-boxes were visited every 5 days from early March to the
end of July. Laying date was the day when the female laid her
first egg, assuming that one egg was laid daily [64]. The hatching
date was the day on which the first nestling hatched. Females
were captured by hand inside the nest twice, during the cross-
fostering experiment for marking (see below), and 15 days after
the laying date for sampling. We measured tarsus length with
a calliper (accuracy 1 mm) and body mass with a hanging scale
(Pesola 0–100 g, accuracy 1 g). The body condition of the females
was estimated as residuals of body mass on tarsus—length3

[66–68]. Individuals were also ringed with numbered aluminium
rings (Spanish Institute for Nature Conservation, ICONA) and
with unique colour ring combinations. Disposable latex gloves
previously cleaned with 96% ethanol were used to prevent
cross-contamination among nests and among individuals.
(c) Experimental design
Eggs were cross-fostered between pairs of nests with a maximum
laying date difference of 3 days. After laying completion, and at
least 2 days after laying of the sixth egg, the six eggs that were
completely covered with coloured secretion at this stage (i.e.
those that female had laid first) were exchanged between two
synchronous nests. For clutches larger than six eggs, the remain-
ing non-cross-fostered eggs were removed and artificially
incubated at 37.5°C in an incubator (Covatutto 24 Eco, Novital)
in the laboratory. As a result, the cross-fostering experiment
implied that clutch sizes were reduced in 47 nests, were equal
in 13 nests and increased in one nest. In donor nests, the removed
six eggs were temporarily replaced with artificial plastic eggs
(cleaned with 96% ethanol to avoid cross-nests contamination),
therefore, avoiding a drastic reduction in clutch size that could
have influenced nest desertion. The plastic and the extra eggs
were removed few minutes later, when the six experimental
eggs collected from the other nest were introduced into the
nest-box. Cross-fostering lasted less than 30 min and exchanged
eggs were transported in a portable incubator. Hatchlings from
surplus eggs were placed in a brood of its original nest or, in
the case of predation, on nests of similar phenology. In the mean-
time, they were fed by hand with previously frozen fly larvae
(asticot).

(d) Paternal investment
Males feeding visits to incubating females were video-recorded
twice: 0–5 days after laying the last egg, with the original clutch,
and 3 days after the cross-fostering experiment, with the
exchanged-experimental eggs (figure 1). For video recording,
digital video cameras (Sony Handycam DCR SR190 and DCR-
SR55 models) were placed several metres away from the nest,
camouflaged among stones, vegetation or trunks. Each recording
registered periods of approximately 3 h starting around 16.00.
However, there was variation in the time lasting until the behav-
iour of males and females normalized (from 65 to 120 min), and
in the duration of the video (e.g. in five nests, owing to technical
problemswith batteries, only time from 31 to 57 min could be ana-
lysed after the behaviour was normalized). Parents were
identified by their colour-ring combinations and/or other charac-
teristics of their plumage or body. Male provisioning rate was
calculated as the number of prey carried per hour (feeding rate)
multiplied by the average relative size of all the prey carried. Rela-
tive prey size was estimated on an ordinal scale from 1 to 3 (1
when the length of the prey was less than a quarter of the beak,
2 when it was between a quarter and a half and 3 when it was
bigger than a half the beak) [65]. In some feeding attempts
(three samplings of three differentmales), the preywas not visible,
and the average prey size of all studied males was considered to
estimate conservatively the amount of food carried. A total of
122 videos, from 61 nests, including 41 first clutches, eight repla-
cement clutches, 11 second clutches and one third clutch, were
analysed through VLC Media Player (v. 2.2.6).

(e) Egg colour and biometric measurements
Eggshell coloration was measured twice; the day of the cross-fos-
tering, and after several days of incubation in the foster nest
(days 10 and 15 in the example of figure 1). These two measures
allow estimation of differences between original and experimen-
tal eggs and between experimental eggs before and after the
experiment.
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Eggshell coloration was measured with an Ocean Optics
S2000 spectrometer connected to a deuterium-halogen light
(D2-W, Mini). A black bag wrapping the tip of the optical
probe and the egg was used to standardize ambient light con-
ditions. All measures were performed as quickly as possible,
close to the nest-box and blocking the entrance to prevent nest
desertion by parents. Females were captured within the nest-
box, kept inside a bag during egg measurements and placed
back in the nest after returning the eggs.

The spectrometer was calibrated using a standard white and
black reference before measuring each clutch. Reflectance spectra
at 10 nm intervals from 300 to 700 nm were obtained for the six
experimental eggs of each clutch. Eggshell colour was measured
on five equidistant points along the long egg axis. Prior to all
analysis, reflectance curves were corrected for noise using
triangular smoothing and negative values were set to zero [69].

Estimated colour variables took into account animal vision
[70,71] by considering the visual parameters of a physiological
model for a tetrachromatic violet vision as implemented in
AVICOL V.6 software [69]. Specifically, an Endler & Mielke [72]
model was used with the correction for dark colours and the
non-logarithmic transformation of the photoreceptor response
values [73]. The model was run considering ambient light con-
ditions inside a nest-box, and since no information is available
on the violet spectral sensitivity of the hoopoe [74], that of pea-
fowls (Pavo cristatus) was used [75], the best representative for
violet sensitive birds for which enough data are available [76].
Three colour variables were estimated with the spectra infor-
mation: Theta, Phi (both with spherical coordinates) and
Chroma (r). Theta measures an angle (between −180° and 180°)
in the red-green-blue plane [72]. Phi measures an angle (between
−90° and 90°) in the ultraviolet/violet sensitive (UV/V) range
with maximum stimulation of the violet cone at 90°. Both
measures inform on hue, while r values inform on colour satur-
ation, i.e. the distance to the centre of the tetrahedron [73,77].
Maximum potential chroma (rmax) depends on hue values since
the colour space is not a sphere. For this reason, achieved
Chroma (rA, hereafter saturation), computed as rA = r/rmax

was used in our analyses [73]. Theta values for our samples
were all located in the region between the red (Theta =−30) and
green (Theta = 90) vertices of the tetrahedron (range: from
−14.74 to 85.04). Because Phi always takes values between −90
and 90 (range from −86.86 to −49.62 in our sample), we can use
these two variables in linear scales, given that increasing values
always imply changes of hue in the same direction.

To verify that eggshell coloration was more variable among
than within nests, repeatability was calculated for each egg
(among the five measures per egg), and among the eggs within
the same clutch. To this aim, we used 26 randomly chosen nests.
Eggshell coloration among the five measures per egg (general
linear model (GLM): Theta: r = 0.61, F203,806 = 8.96, p < 0.0001; Phi:
r = 0.71, F203,816 = 13.5, p < 0.0001; rA: r = 0.67, F203,816 = 11.35, p <
0.0001) and among the eggs of each nest (GLM: Theta: r = 0.83,
F25,754 = 31.40, p < 0.0001; Phi: r = 0.60, F25,754 = 10.1, p < 0.0001, rA:
r = 0.88,F25,754 = 45.12,p < 0.0001)was repeatable and, thus, average
colour values of clutches were used in subsequent analyses.

Egg length and breadth were measured using a calliper
(accuracy 0.01 mm) and egg volume was estimated from Hoyt’s
formula (size = 0.51 × length ×width2; [78]). Egg volume was
more variable among than within nests (GLM: r = 0.58,
F51,260 = 9.41, p < 0.001) and, thus, average values were used in
the analyses.

( f ) Statistical analysis
A best-subset general regression model (GRM) was used to verify
that the original eggshell coloration was the best predictor of egg
coloration after some days in nests of adoptive females. One nest
was excluded from this analysis because it was considered an
outlier that influenced these results (see analysis of Mahalanobis
distances below).

The breeding attempt was considered as a continuous variable
indicating increasing levels of breeding effort already performed
by pairs in the season. A value of 1 was assigned to first clutches,
1.5 to replacement clutches (when the previous clutch of the
female was not successful), 2 to second clutches (i.e. after success-
fully reared a first brood), 2.5 to replacement of second clutches
and so on. A nest that followed two replacement clutches, and a
first successful clutch was evaluated as 1.75. The breeding attempt
did not influence eggshell coloration (GLM: Theta: F1,59 = 0.55,
p = 0.462; Phi: F1,59 = 0.84, p = 0.363; rA: F1,59 = 0.01, p = 0.933).

To test the effect of the experiment on the provisioning rate of
males, we analysed the relationship between differences in the
colour of eggs (values of the three variables obtained in the phys-
iological model) of the exchanged clutches, and differences in the
amount of food carried per hour by males. These differences were
calculated as values after the interchange minus those estimated
before the interchange. We controlled for other variables that
could explain inter-individual differences in feeding effort in this
phase such as laying date, breeding attempt, clutch size, female
body condition and differences in egg sizes caused by the exchange.
The expected associations were tested by means of a GRM selecting
the best subset of predictors by mean of Mallow’s CP [79], equival-
ent toAkaike’s information criterion [80]. The existence of outliers in
the dependent and independent variables was explored by estimat-
ing Mahalanobis distances (i.e. plotting standard residuals against
deleted residuals). The analysis showed the existence of one possible
outlier, but its exclusion did not qualitatively affect the results, and
was maintained in the analyses.

The residuals of all statistical models followed a normal dis-
tribution (Kolmogorov–Smirnov, p > 0.20). All statistical tests
were performed with STATISTICA 7 software [81].
3. Results
The variables retained in the best model explaining eggshell
colorations after 4–6 days in the adoptive nest were those
describing coloration of the same eggs before the cross-fostering
experiment (best subset GRM1: initial Theta value: F1,58 = 0.76,
p= 0.385, adjusted R2 =−0.004; GRM2: initial Phi value:
F1,58 = 17.88, p< 0.001, adjusted R2 = 0.22; GRM3: initial
saturation value: F1,58 = 9.76, p= 0.003, adjusted R2 = 0.13).

The change in provisioning rates of males before and after
the experimental exchange of clutches was significantly
related to colour differences between original and experimen-
tal eggs (table 1). Moreover, when eggshell colour did not
vary, male feeding effort did not change either (see non-sig-
nificant intercept, table 1). An increase in egg colour
saturation (rA2–rA1 positive) produces a reduction of the
male provisioning rate (figure 2a). In the case of Phi, the
detected negative relationship implies a reduction in provi-
sioning rates when the amount of violet in egg colour
increases (figure 2b). In addition to colour variables, only
the difference in egg volume entered in the best model,
with a non-significant negative trend (figure 2c and
table 1). In the nests in which the experiment reduced egg
volume, males tended (non-significantly) to increase feeding
effort to females when incubating experimental eggs (see all
models in the electronic supplementary material, S4).
4. Discussion
We have found experimental support to the prediction that
male provisioning rates to incubating female hoopoes



Table 1. General regression model exploring the association between changes (second minus first measures) in male provisioning rates and changes in eggshell
coloration caused by the cross-fostering of clutches between pairs of hoopoe nests. (The best subset of predictors was selected by the mean of Mallow’s CP. The
numbers after variable names refer to values of the original (1) or adopted (2) clutches. Statistically significant values are in italics. Whole model statistics:
F3,57 = 3.65, p = 0.018, R2 = 0.161.)

predictor in best subset T p β s.e.

intercept 0.59 0.5578

eggshell colour changes: Theta 2–Theta 1 pooled

Phi 2–Phi 1 retained 2.72 0.0085 −0.36 0.13

rA2–rA1 retained 2.11 0.0396 −0.28 0.13

other predictors: laying date pooled

breeding attempt pooled

clutch size pooled

egg volume 2–1 retained 1.72 0.0907 −0.21 0.12

fem. body cond. pooled
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depended on the coloration of the eggshells. This coloration is
owing to the presence of symbiotic bacteria in the uropygial
secretion of breeding females, which actively use it to smear
and colour their eggs. The colour of uropygial secretion reflects
its antimicrobial properties [46,57] and, thus, our results
suggest that hoopoe eggshell coloration might be a post-
mating sexually selected indicator of female quality in terms
of antimicrobial capabilities of their secretion.

Male provisioning rate was affected by two specific egg-
shell colour variables: saturation (rA) and hue (Phi, the
violet colour variable), in both cases with a negative relation-
ship. Because saturation of eggshell colour is negatively
related to the bacterial load of the uropygial secretion [31],
our results show that males feed females more frequently
when the saturation of the cosmetic eggshell coloration indi-
cates a higher load of symbiotic bacteria in the uropygial
secretion. Moreover, uropygial secretions of less saturated
coloration have higher antimicrobial capacity [46], probably
mediated by symbiotic antimicrobial producer bacteria
[40,46,54,55]. Therefore, our results suggest that eggshell
colour saturation is a cue or signal that males use to evaluate
the antimicrobial capacity of female secretion.

As for changes in Phi, the negative relationship found
with changes in male provisioning rate after controlling for
rA suggests that this component of cosmetic eggshell colour
is also affecting male behaviour, despite not being known
which particular information it may convey. To further inves-
tigate how the colour variables vary with the presence of the
secretion, it would be interesting to investigate eggshell color-
ation before and after being covered by the uropygial
secretion.

Besides egg coloration, the final model also retained egg
size. A non-significant reduction in provisioning rates was
associated with an increase in egg size of experimental
clutches. However, if egg size reflects female and/or
embryo quality, the sign of the association is contrary to
that expected by SSEC. This negative differential investment
could be the result of compensating the lower potential pro-
spects of offspring (‘the compensation hypothesis’, [82]); a
possibility that should be further tested. Further investi-
gations on the effects of egg size on male provisioning rate
are, however, necessary to look for possible adaptive value
of such association.
Some authors have argued that the dim environment of
hole nests [83] prevents the evolution of visual signals such
egg coloration within those environments ([84], but see [85]).
However, there is enough behavioural evidence to conclude
that birds have impressive colour discrimination and scotopic
visual abilities, being also able to discriminate in dim light
conditions [86], and inside a nest cavity [84,85,87,88]. Thus,
it is likely that sexual signals in general, and those of egg color-
ation in particular, function within hole-nest environments
[84,87]. In the present study, we have analysed the eggshell
coloration of hoopoes taking into account the stimuli of the
avian cones inside a nest-hole, and find out the expected
associations, which, therefore, support that, in spite of related
dim light conditions, such traits function in hoopoes.

Our results are consistent with the assumption of the SSEC
hypothesis that relates male investment with eggshell color-
ation [15]. Moreover, although we have not explored costs
associated with the signal, the use of uropygial secretion to
colour the eggs is probably costly. Uropygial secretions might
be a limited resource of females with associated costs of pro-
duction, and colouring the eggs is a time-consuming activity.
In addition, eggshell coloration is probably an honest signal
that cannot be falsified and would accurately indicate charac-
teristics of the secretion and the female. These bacteria
determine secretion colour [40,58], but depend on females
characteristics, such as those influencing the immune
system or amount and quality of the resources that bacteria
use to grow [60,62,89]. Thus, females cannot falsify the
signal. Finally, uropygial secretion protects embryos from
pathogenic infections increasing hatching success [57], and
thus, the colour of the eggshells would predict hatching suc-
cess; a prediction of the SSEC hypothesis to be experimentally
tested in the future.

Therefore, although further studies are necessary to eluci-
date costs associated with the use of uropygial secretion to
colour the eggs, or to point out mechanisms assuring honest
signalling, our findings support the SSEC hypothesis. Interest-
ingly, although this hypothesis was proposed to explain
intrinsic eggshell pigmentation, our results support an exten-
sion of the SSEC hypothesis to cosmetic eggshell coloration
[46]. However, to ensure that secretion colour is not only a
cue that hoopoe males follow to adjust reproductive invest-
ment, but a trait that evolves as consequence of sexual
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Figure 2. Relationship between changes in male provisioning rates (male
provisioning rate 2–1) and those of the changes in: (a) saturation eggshell
colour values (rA2–rA1); (b) Phi values of the eggshells (Phi 2–Phi 1);
and (c) egg volume (egg volume 2–egg volume 1).
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selection (i.e. post-mating sexual signal), it is necessary to
explore whether the colour of uropygial secretion has evolved,
at least partially, to attract males, even though coloration was
mediated by hosted symbiotic bacteria.

Uropygial secretions of birds, in general, have antimicrobial
substances [90] that may reach eggshells during incubation
because of the contact with belly feathers previously stained
with it. In addition, the uropygial secretion modifies the color-
ation of different parts of the body surfaces of birds, such as
feathers and bills [47–51,91]. Therefore, the possibility that
secretions change the colourof the eggshells [46], reflecting anti-
microbial capacity mediated by cosmetic uropygial secretions,
may also be applied to other bird species. It might be worth
studying the possibility that eggshell cosmetic coloration
owing to the use of uropygial secretion has a possible sexually
selected component in species other than hoopoes.

The uropygial secretion deposited on the eggshells by
females will change not only eggshell coloration, but also
the odour of the clutch. Thus, males might use one or both
characteristics to adjust their feeding effort. We have pre-
viously shown that when bacteria are eliminated from
uropygial glands with antibiotics, secretions become red,
and, simultaneously, the amount of associated chemical vola-
tiles was drastically reduced [55,58]. Our experiment does not
allow ruling out the possibility that males cue on eggshell
odour. However, given that their own females are continu-
ously producing a great amount of secretion daily, these
fresh secretions probably obscure the odour of dry secretions
coming from foster eggs. Thus, even though we cannot com-
pletely discard that other properties of the secretion covering
eggs are the signals detected by males, the most probable
explanation for our results is that males detected the
change in egg colour. It is possible that the relative portion
of variance unexplained by the model was owing to the limit-
ation of our estimates of male provisioning rate (low number
of feedings per hour in hoopoes during incubation), which
would add to error variance that our experiment could not
explain. However, despite this limitation, the colour variables
are associated with male provisioning rates in the expected
direction, which makes our inferences more robust.

The use of cosmetics has been reported for a wide variety
of animals, including several species of fishes, mammals and
birds (reviewed in [48]). For instance, similarly to hoopoes, it
has been shown how tropical reef fishes secrete biochemical
compounds with antibiotics into the epithelial mucus
[92,93]. These compounds lack UV reflectance, and their
coloration may signal characteristics of the mucus, but also
individual quality in terms of the capacity for obtaining
food sources rich in UV-blockers [94]. In mammals, the red
kangaroo (Megaleia rufa) and the grey possum (Trichosurus vul-
pecula) have coloured patches in the pelage owing to the
secretion of integumentary glands [95], being a sexually
dimorphic character due to cosmetic coloration. Two studies
in birds have shown how the plumage colour change owing
to deliberate staining of the cosmetic (by using iron-red soils
or uropygial secretion) may help individuals to communicate
their quality [50,53] in scenarios of social communication,
including mate choice [50]. Differing from these and some
other examples of cosmetic colorations, the eggshell coloration
of hoopoes are showing not only the physiological or cultural
abilities of individuals, but also the properties of their bacterial
symbionts. As far as we know, hoopoes painting their eggs
with their own uropygial secretion is the first example of ani-
mals using cosmetic coloration that can show characteristics
of their antimicrobial producing bacterial symbionts. Our
experimental results suggest that this behaviour is probably
maintained and selected by differential feeding investment of
males in a typically post-mating sexually selected process [3,4].

Ethics. The studywas conducted according to relevant Spanish national
(Decreto 142/2013, 1 de octubre) and regional guidelines. The proto-
cols adhered to the ASAB/ABS Guidelines for the Use of Animals in
Research and itwas approvedby the ethics committee of theUniversity
of Granada (Comité de Ética en Experimentación Animal, CEEA, ref.
785). All necessary permits for hoopoe’s manipulationswere provided
byConsejería deMedioAmbiente de la Junta deAndalucía, Spain (ref:
SGYB/FOA/AFR/CFS and SGMN/GyB/JMIF). Our study area is not
protected but privately owned, and the owners allowed us to work in
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their properties. The time spent in each hoopoe nest was the minimum
necessary for the experiment.
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