

The minimal clinically important difference in the treadmill six-minute walk test in women with breast cancer during and after oncological treatments

Journal:	Disability and Rehabilitation
Manuscript ID	Draft
Manuscript Type:	Research Paper
Keywords:	6MWT, breast cancer, minimal clinically important difference, physical function, physiotherapy, treadmill

 This study is entitled "The minimal clinically important difference in the treadmill sixminute walk test in women with breast cancer during and after oncological treatments".

This work aims to determine the minimal clinically important difference for treadmill 6minute walk test in women with breast cancer, at two time points: during and after oncological treatments. It establishes cut-off points for this population which could be used for example to monitor the progress of patients in the survival stage; or monitor whether their health status worsens during treatments. If they can be monitored in a simple way, it is also easier to see changes in the physical condition or health of these women. Furthermore, with the treadmill, the 6-minute walk test can be performed under more control.

The minimal clinically important difference in the treadmill six-minute walk test in women with breast cancer during and after oncological treatments Short title: MCID in the 6MWT in women with breast cancer Word count: 2955 **1. INTRODUCTION** Breast cancer and its treatment have important impacts on women's health, including physical and psychological alterations [1] and even loss of functional capacity [2]. Functional capacity is the ability to perform activities of daily living. Particularly important among them is the ability to walk since it facilitates self-sufficiency and provides information about the state of the cardiopulmonary [3] and musculoskeletal systems [4]. The 6-minute walk test (6MWT) – a submaximal walking test – is commonly used to determine functional exercise capacity in patients with different ailments, including cancer [4]. Indeed, it is often used in physical therapy in oncology patients since it is easily performed [5] and provides prognostic [6] and survival information [4], and key information is provided by the minimal clinically important difference (MCID) in the walked distance.

 The MCID is the smallest change required to affect patient-perceived outcomes and, hence, reflects whether the change is relevant [7]. The MCID is valuable to patients with cancer, clinicians and researchers, and allows interpretation of any change in performance of the 6MWT. Identification of reference values that highlight changes in patients' health with cancer is essential to analyse trends in recovery and to provide adequate

Page 3 of 34

Disability and Rehabilitation

interventions. This will help to offer a continuum cancer care to prevent physical
deterioration [8]. Anchor- and distribution-based methods are the most commonly used
methods to calculate the MCID [9], and the combination of these approaches has been
previously used successfully to determine the MCID in the 6MWT [9,10,19,11–18].

A review [20] established that the MCID of the 6MWT for the geriatric population is between 14 and 30.5 metres, and 44 metres has been considered meaningful progress in people after stroke [21]. Considering certain cancer settings, Granger and collaborators [15] obtained the MCID in adults with lung cancer and identified an MCID ranging from 22 to 42 metres. Meanwhile, Shan and collaborators [22] worked with patients with multiple myeloma undergoing autologous haematopoietic cell transplantation (auto-HCT), although their efforts were inconclusive due to the lack of practicality of the 6MWT. To our knowledge, the MCID of the 6MWT in breast cancer is not known in either active cancer patients or cancer survivors. Knowledge of the MCID for this group of patients would further support physical therapists involved in the oncology setting.

The international consensus [23] on the performance of the 6MWT advises the use of a 25- or 30-m hallway without obstacles or distractions for standardization and optimal conduction of the 6MWT. However, many physical therapy facilities have insufficient space to meet these requirements, which has led clinicians and researchers to investigate the use of alternative distances [24] and even treadmills as possible substitutes to the recommended hallway [25]. Despite helping to improve the feasibility of conducting the 6MWT in areas with limited space, the use of a treadmill for the 6MWT remains controversial. While some studies have shown that a treadmill is an adequate alternative to assess the distance walked (the primary endpoint of the test) [26] and the heart rate

achieved during the 6MWT [27], other studies have found significant differences in the distance walked when the 6MWT is performed on a treadmill rather than overground [27–29]. In general, it appears that distances walked in the 6MWT on a treadmill are shorter than the distances achieved using the overground gold standard approach [28–30]. Several hypothesized reasons for this difference include lack of familiarization with the treadmill [28,31], a constant and limited speed [31], and different walking biomechanics compared to overground walking [32]. Based on the currently available evidence, normal reference data for the 6MWT completed on the ground versus the treadmill are not interchangeable.

Despite this, studies have used the treadmill for performing the 6MWT to check the health status of patients with chronic obstructive pulmonary disease [33] or pulmonary arterial hypertension [31], with few conducted specifically in cancer and even less in patients with breast cancer [34,35]. More studies are needed to standardize the development of the 6MWT on treadmills [28]. Therefore, this study aims to determine the MCID of the treadmill 6MWT in a sample of patients with breast cancer in two different situations: during anticancer treatment (during-chemotherapy group) and once these treatments have been completed (after-treatment group).

2. METHODS

2.1. Study design and sample

A secondary analysis was carried out with two data sets from two randomized controlled
trials developed by the CUIDATE group (from the PAIDI BIO277 group) with 24
physical exercise sessions in accordance with the American College of Sport Medicine
recommendations for patients with cancer [8]: e-CUIDATECHEMO (Clinicaltrials.gov

NCT02350582) [36] and eCUIDATE (Clinicaltrials.gov NCT01801527)[34], which were approved by the Research Ethics Committee of the University of Granada (FIS PI10/02749-02764 and PI-0457-2010, respectively) (Figure 1). The STrengthening the Reporting of Observational studies in Epidemiology (STROBE) statement was followed [37]. Participants were referred by their treating oncologist at the Virgen de las Nieves Hospital (Oncology and Breast Unit) from March 2012 to November 2013 (eCUIDATE) and from September 2013 to June 2015 (e-CUIDATECHEMO).

Patients were recruited if they i) were between 25 and 80 years old, ii) had a breast cancer diagnosis (I-IIIa), iii) were undergoing chemotherapy (e-CUIDATECHEMO) or had finished medical therapy (eCUIDATE), and iv) had no medical contraindications to participation. Patients were excluded if they had a chronic disease or orthopaedic issues that influenced their physical abilities.

2.2. **Procedure and outcome measures**

Participants recruited to both RCTs performed the 6MWT and completed the European Organization for Research and Treatment of Cancer questionnaire (EORTC-QLQ-C30) at baseline and again 8 weeks later. All assessments were completed in the physical therapy laboratory in the Health Science Faculty from Granada by the same blinded physiotherapist from the CUIDATE group, who had 4 years of experience in the evaluation of patients with cancer, according to the Helsinki Declaration (WMA Declaration of Helsinki - Ethical Principles for Medical Research Involving Human Subjects, 2017) and the Spanish Biomedical Research Law (Organic Law 14/2007, of 3rd July).

The 6MWT assessments were performed according to the European Respiratory Society/American Thoracic Society instructions [23], with the exception of being conducted on a treadmill instead of overground. The treadmill (H-P-COSMOS for graphics, Germany) test was performed using a previously published protocol [38] (Supplementary material 1). All participants received familiarization training on the treadmill and were asked to rest, sitting for more than 10 minutes, prior to testing. The Borg rating of Perceived Exertion (RPE), peripheral capillary oxygen saturation (SpO₂) and heart rate were collected before and after the test as control variables. Participants were instructed to walk as fast as possible for 6 minutes with no treadmill inclination and an initial speed of 0. Participants were able to see only the speed, which they were able to increase or decrease by themselves. The test was performed twice by each participant with an active rest period of 15 minutes. The greatest 6MWT distance in metres was included in the analysis. This test has shown good reliability, with an intraclass correlation coefficient (ICC) of 0.78 for distance.

 The physical function (PF) domain of the EORTC-QLQ-C30 Spanish version 3.0 was used as an anchor to calculate the MCID. This questionnaire includes both single- and multi-item scales (functional, symptoms and six single items) that are rated from 1 (not at all) to 4 (very much) and are transformed into a score of 0 to 100. A change > 5 points in PF is considered a minimal relevant threshold [39] and was used to classify participants into subgroups that achieved a 'positive change' (≥ 5 points) or remained 'unchanged' (<5 points) between time points [16]. The PF domain has a test-retest reliability of r=0.91 [40].

 The demographic and clinical characteristics of participants were collected with a selfreport questionnaire, a plastic tape measure and bioelectrical impedance analysis (InBody
720; Biospace, Gateshead, UK).

2.3. Statistical analysis

Analyses were performed using Statistical Package for the Social Sciences (IBM SPSS) Statistic for Windows, Armonk, NY, USA version 24.0). Only participants with repeated 6MWT and PF domain results were considered for analysis. The normality of the distribution of the variables was checked with the Shapiro-Wilk test. The demographic and clinical characteristics are expressed as the mean (m) and standard deviation (SD) for continuous variables and as a number (n) and percentage (%) for categorical variables. Based on the PF domain results, participants were divided into a 'positive change' subgroup (\geq 5 points difference in the PF domain between baseline and follow-up) and an 'unchanged' subgroup (<5 points difference in the PF domain between baseline and follow-up) [15]. The differences between groups in demographic and clinical characteristics were calculated using t tests for independent samples (continuous variables) and X^2 analysis (categorical variables). The change in 6MWT distance and PF domain between two time points was calculated using repeated-measures ANOVA. The test retest reliability was calculated with an intraclass correlation coefficient (ICC).

The anchor-based method contrasts the change in a patient-reported outcome with another measure of change [41]. To determine whether the change in the 6MWT established a difference between the 'positive change' and 'unchanged' subgroups (with the PF domain of EORTC-QLQ-C30 as the anchor), we calculated the sensitivity and specificity for each cut-off point. The optimal cut-off point was obtained with the Youden Index [42]. Distribution-based methods were used to determine the MCID based on statistical characteristics of the patient-reported outcomes with different methods, such as the standard error of measurement (SEM) and effect size (ES) [41], using the following formulas: SEM= $\sigma_1 \sqrt{(1 - r)}$, where σ_1 = standard deviation (SD) at baseline r= test-retest reliability coefficient and ES=0.5 X SD of the change in distance in the 6MWT [15].

3. RESULTS

3.1. **Demographic and clinical characteristics**

One hundred and twelve patients with breast cancer were included in this study. The average age of the participants were mean (SD) 49.29±8.40 years (range 30-72) for patients in the 'during-chemotherapy' group and 48.85±8.53 years (27-70) for patients in the 'after-treatment' group. Additional participant demographic and clinical characteristics are shown in Table 1. From baseline to 8 weeks, 21.1% of participants (n=8) were classified in the 'positive change' subgroup based on the EORTC-QLQ-C30 PF domain, whereas 78.9% (n=30) were classified in the 'unchanged' subgroup for patients during chemotherapy. Overall, 51.4% of participants (n=38) were classified as exhibiting a 'positive change', whereas 48.6% (n=36) were classified as 'unchanged' for patients in the after-treatment group. There were no significant differences between the levels of moderate and vigorous physical activity between the groups within the time periods (Table 1).

3.2. Changes in the 6MWT distance and the PF domain between the two time points

In the during-chemotherapy group, in the 'positive change' subgroup, the mean difference in the 6MWT walked distance between the baseline and the 8-week follow-up was +100.1 (90.2) m; in the 'unchanged' subgroup, the mean difference between timepoints was -

3 4	176	7.00 (86.9) m, with p=0.004; F=0.004. In the after-treatment group, in the 'positive
5 6	177	change' subgroup, the mean difference in the 6MWT walked distance between the
7 8	178	baseline and the 8-week follow-up was +85.1 (83.0) m, and in the 'unchanged' subgroup,
9 10 11	179	the mean difference between time points was +46.8 (75.1) m, with p=0.043; F=0.292
12 13	180	(Figure 2A and 2B).
14 15	181	
16 17 18	182	3.3. Test rest reliability of the 6MWT distance from test to retest
19 20	183	The test-retest reliability of the 6MWT distance was moderate in the during-chemotherapy
21 22	184	group, with an ICC= 0.746 (95.0% CI: 0.51-0.86), and excellent in the after-treatment
23 24 25	185	group, with an ICC= 0.934 (95.0% CI: 0.89-0.95).
26 27	186	
28 29	187	3.4. MCID calculation – anchor-based approach
30 31 32	188	The areas under the receiver operating characteristic (AUROC) curves were .808 (p=.008,
33 34	189	95.0% CI 0.63-0.98; Figure 3A) in the during-chemotherapy group and .646 (p=.032,
35 36	190	95.0% CI .5277; Figure 3B) in the after-treatment group. The optimal cut-off points for
37 38 20	191	clinically relevant decline were -58.9 m (with a sensitivity of 87% and a specificity of
40 41	192	70%) and -42.7 m (with a sensitivity of 97% and a specificity of 91%), respectively.
42 43	193	
44 45	194	3.5. MCID calculation – distribution-based approach
40 47 48	195	The distribution-based methods calculated for the during-chemotherapy and after-
49 50	196	treatment groups showed MCID estimates of 66.5 m and 41.4 m based on SEM and of
51 52	197	41.5 m and 40.5 m based on ES, respectively.
53 54 55	198	
56 57	199	4. DISCUSSION
58 59		
60		8

The results of this study have important clinical applications, as we have established a minimum distance for the 6MWT using a treadmill. We determined cut-off points in order to have reference values in women with breast cancer during and after medical treatments, expanding the possibilities of the use of the 6MWT to improve the monitoring and evaluation of physical health status. Our sample of middle-aged women with breast cancer was representative of this population, and the reliability of the 6MWT distance was moderate and excellent in the during-chemotherapy and in the after-treatment group respectively. We have estimated that changes between 41 and 66 m for women in the during-chemotherapy group and between 40 and 42 m for women in the after-treatment group in the 6MWT distance on a treadmill indicates a significant clinical improvement. Women with breast cancer may experience adverse side effects associated with cancer diagnosis and treatments, which can lead to significant physical function deterioration [43] that has been related not only to a decrease in health status [44] but also to increased risks of recurrence and mortality [45]. For these reasons, researchers must have valid reference values to identify changes in patients' health [46].

 The range of MCID for the 6MWT in chronic diseases has been established as 14 to 30.5 m [20]. However, previous evidence in different populations suggests that it is possible to find higher values, up to 58.5 m, in patients with idiopathic pulmonary fibrosis [11,14] and even 167 m in women with fibromyalgia [47]. The values we report may provide an indication of the MCID for the 6MWT in patients with cancer; however, it is clear that the MCID must be set for each specific condition [48]. Previous studies conducted in lung cancer [15,20] showed MCID ranges of 14 to 42 m in studies using an overground 6MWT. The wide range of MCIDs may be explained by factors such as methodologies to calculate the MCID score, anchors used, levels of physical fitness, demographic

Disability and Rehabilitation

characteristics, or the instrument used [48]. Although the previous results could be an
approximate reference, more specific values are required for the use of the treadmill in
the 6MWT for patients with breast cancer.

The American Thoracic Society (ATS) does not recommend the use of a treadmill when conducting the 6MWT [25]; however, this advice was based on the result of only one study [30]. Subsequent evidence is not in agreement concerning the reliability of the 6MWT on a treadmill compared to overground [28]. Despite the ATS guidelines, the 6MWT on a treadmill has been used in subsequent trials [27–30] to assess functional exercise capacity and to compare with reference values for the 6MWT overground. More evidence on the reliability of reference values for the 6MWT on a treadmill is required across different clinical populations.

According to previous studies [11,12,14,15], our results report a wide MCID range in the during-chemotherapy group, although the values were very similar to the references established for the 6MWT in a corridor. This large difference in values could be due to the impact on physical function while these women are receiving treatment [49] and may be due to the use of both anchor- and distribution-based methods. The two methods were frequently used together in previous studies to calculate the MCID for the 6MWT [9-14,16–19]; additionally, we used an increase ≥ 5 points in the PF domain of the EORTC-QLQ-C30, which has been widely accepted for its ability to determine physical improvement [50]. This method considers the importance of the change but is sensitive to the degree of variability in the sample, which was large in this group. With our results, it may be adequate to think that MCIDs of approximately 54 m in the duringchemotherapy group and 41.5 m in the after-treatment group are appropriate minimum improvement points for monitoring physical health.

The MCID helps both clinicians and researchers interpret changes in health status objectively, but our study also enables the detection of physical deterioration, a risk factor for poor health, recurrence, and mortality in patients with cancer [51]; thus, it has important clinical and research implications. In addition, identifying patients with physical deterioration and providing them with supportive programs may be useful for determining sample sizes in research studies, establishing new research designs, selecting variables or assessing the effectiveness of new approaches. Additionally, it is important to note that obtaining a reference value, such as the MCID, is necessary for a continuously growing clinical population, such as women with breast cancer. In a clinical context, the use of a treadmill provides a logistical advantage since it is often difficult to find a hallway that is free of distractions. 202.

- 4.1.

Limitations

This study has several limitations. One of these is the use of a treadmill for the 6MWT. We know that the main limitation is the inadequacy of the comparison with the values of previous studies conducted in corridors, but we believe that the treadmill is a widely used resource in clinical situations. In addition, the participants of the studies analysed were part of clinical trials with different interventions, although there were no differences between the groups in terms of the level of moderate and intense physical activity that they performed, as measured with accelerometery. More studies are needed to confirm these results in women with breast cancer.

Page 13 of 34

2	
3	274
4 5 6	275
7 8	276
9 10	277
11 12	278
13 14	270
15 16	219
17 18	280
19 20	281
21 22	282
23 24 25	283
23 26 27	284
28 29	285
30 31	286
32	
33 34	287
35 36 27	288
37 38 20	289
40 41	290
42 43	291
44 45	292
46 47	293
48 49	294
50 51 52	295
53 54	296
55 56	297
57 58	298
59 60	270

In conclusion, our study showed the MCID of the 6MWT distance, when conducted on a treadmill, in women with breast cancer is between 41 and 66 m in patients undergoing active treatment and between 41 and 43m in patients after completion of treatment. These values could be used by clinicians and researchers as reference data to interpret changes in the physical health status of their patients with breast cancer when using the 6MWT.

Acknowledgments

The authors thank the patients who took part in the study. Thanks, are also due to Drs. Manuel Arroyo-Morales and Carmen Angélica Ariza-Garcia without whom this work would not have been possible. The authors thank the Health Institute Carlos III (FIS PI10/02749-02764), the PN I+D+I 2008-2011 FEDER funds, and the Andalusian Health Service, Junta de Andalucia, call for subsidies for the financing of biomedical research and health sciences in Andalusia (SAS-0457-Periev 2010), for funding this study.

Conflict of interest

The authors declare no conflict of interests

2 3 4	299		
5 6	300	Refei	rences
7 8	301	1.	Valdivieso M, Kujawa AM, Jones T, Baker LH. Cancer survivors in the United
9 10 11	302		States: a review of the literature and a call to action. Int J Med Sci. 2012;9:163-
12 13 14 15	303		173. Available from: http://dx.doi.org/10.7150/ijms.3827
14 15	304	2.	Kokkonen K, Saarto T, Makinen T, Pohjola L, Kautio H, Jarvenpaa S,
16 17 18	305		Puustjarvi-Sunabacka K. The functional capacity and quality of life of women
18 19 20	306		with advanced breast cancer. Breast Cancer. 2017;24:128–136. Available from:
21 22	307		http://dx.doi.org/10.1007/s12282-016-0687-2
23 24	308	3.	Schumacher AN, Shackelford DYKK, Brown JM, Hayward R. Validation of the
25 26 27	309		6-min Walk Test for Predicting Peak V O2 in Cancer Survivors. Med Sci Sport
28 29	310		Exerc. 2019;51:271–277. Available from:
30 31	311		http://dx.doi.org/10.1249/mss.000000000001790
32 33 24	312	4.	Schmidt K, Vogt L, Thiel C, Jager E, Banzer W. Validity of the six-minute walk
34 35 36	313		test in cancer patients. Int J Sport Med. 2013;34:631–636. Available from:
37 38	314		http://dx.doi.org/10.1055/s-0032-1323746
39 40	315	5.	Enright PL, Sherrill DL. Reference equations for the six-minute walk in healthy
41 42 43	316		adults. Am J Respir Crit Care Med. 1998;158:1384–1387. Available from:
44 45	317		http://dx.doi.org/10.1164/ajrccm.158.5.9710086
46 47	318	6.	Pecorelli N, Fiore JF, Gillis C, Awasthi R, Mappin-Kasirer B, Niculiseanu P,
48 49 50	319		Fried GM, Carli F, Feldman LS. The six-minute walk test as a measure of
50 51 52	320		postoperative recovery after colorectal resection: further examination of its
53 54	321		measurement properties. Surg Endosc. 2016 June 1 [cited 2020 March
55 56	322		11];30:2199–206. Available from:
57 58 59	323		http://www.ncbi.nlm.nih.gov/pubmed/26310528
60			13

2			
2 3 4	324	7.	de Vet HC, Terwee CB, Ostelo RW, Beckerman H, Knol DL, Bouter LM.
5 6	325		Minimal changes in health status questionnaires: distinction between minimally
7 8	326		detectable change and minimally important change. In: Health Qual Life
9 10 11	327		Outcomes. Vol. 4. ; 2006. p 54. Available from: http://dx.doi.org/10.1186/1477-
12 13	328		7525-4-54
14 15	329	8.	Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvão DA,
16 17	330		Pinto BM, Irwin ML, Wolin KY, Segal RJ, Lucia A, et al. American college of
18 19 20	331		sports medicine roundtable on exercise guidelines for cancer survivors. Med Sci
21 22	332		Sports Exerc. 2010 [cited 2018 December 19];42:1409–1426. Available from:
23 24	333		http://www.canceradvocacy.org
25 26 27	334	9.	Cella D, Eton DT, Lai JS, Peterman AH, Merkel DE. Combining anchor and
28 29	335		distribution-based methods to derive minimal clinically important differences on
30 31	336		the Functional Assessment of Cancer Therapy (FACT) anemia and fatigue scales.
32 33 34	337		J Pain Symptom Manag. 2002;24:547–561. Available from: http://dx.doi.org/
35 36	338	10.	Chan KS, Pfoh ER, Denehy L, Elliott D, Holland AE, Dinglas VD, Needham
37 38	339		DM. Construct validity and minimal important difference of 6-minute walk
39 40	340		distance in survivors of acute respiratory failure. Chest. 2015;147:1316–1326.
41 42 43	341		Available from: http://dx.doi.org/10.1378/chest.14-1808
44 45	342	11.	du Bois RM, Weycker D, Albera C, Bradford WZ, Costabel U, Kartashov A,
46 47	343		Lancaster L, Noble PW, Sahn SA, Szwarcberg J, et al. Six-minute-walk test in
48 49 50	344		idiopathic pulmonary fibrosis: test validation and minimal clinically important
50 51 52	345		difference. Am J Respir Crit Care Med. 2011;183:1231–1237. Available from:
53 54	346		http://dx.doi.org/10.1164/rccm.201007-1179OC
55 56	347	12.	Naylor JM, Mills K, Buhagiar M, Fortunato R, Wright R. Minimal important
57 58 59 60	348		improvement thresholds for the six-minute walk test in a knee arthroplasty 14

Disability and Rehabilitation

2			
3 4	349		cohort: triangulation of anchor- and distribution-based methods. In: BMC
5 6	350		Musculoskelet Disord. Vol. 17. ; 2016. Available from:
7 8	351		http://dx.doi.org/10.1186/s12891-016-1249-7
9 10 11	352	13.	Puhan MA, Chandra D, Mosenifar Z, Ries A, Make B, Hansel NN, Wise RA,
12 13	353		Sciurba F. The minimal important difference of exercise tests in severe COPD.
14 15	354		Eur Respir J. 2011;37:784–790. Available from:
16 17	355		http://dx.doi.org/10.1183/09031936.00063810
18 19 20	356	14.	Swigris JJ, Wamboldt FS, Behr J, du Bois RM, King TE, Raghu G, Brown KK.
21 22	357		The 6 minute walk in idiopathic pulmonary fibrosis: longitudinal changes and
23 24	358		minimum important difference. Thorax. 2010;65:173–177. Available from:
25 26 27	359		http://dx.doi.org/10.1136/thx.2009.113498
28 29	360	15.	Granger CL, Holland AE, Gordon IR, Denehy L. Minimal important difference
30 31	361		of the 6-minute walk distance in lung cancer. Chron Respir Dis. 2015;12:146-
32 33	362		154. Available from: http://dx.doi.org/10.1177/1479972315575715
34 35 36	363	16.	Holland AE, Hill CJ, Conron M, Munro P, McDonald CF. Small changes in six-
37 38	364		minute walk distance are important in diffuse parenchymal lung disease. Respir
39 40	365		Med. 2009;103:1430–1435. Available from:
41 42 42	366		http://dx.doi.org/10.1016/j.rmed.2009.04.024
43 44 45	367	17.	Gremeaux V, Troisgros O, Benam S, Hannequin A, Laurent Y, Casillas JM,
46 47	368		Benam C. Determining the minimal clinically important difference for the six-
48 49	369		minute walk test and the 200-meter fast-walk test during cardiac rehabilitation
50 51 52	370		program in coronary artery disease patients after acute coronary syndrome. Arch
53 54	371		Phys Med Rehabil. 2011 April;92:611–619.
55 56	372	18.	Kwok BC, Pua YH, Mamun K, Wong WP. The minimal clinically important
57 58 59	373		difference of six-minute walk in Asian older adults. BMC Geriatr. 2013;13.
60			15

2			
3 4	374	19.	Lee AL, Hill CJ, Cecins N, Jenkins S, McDonald CF, Burge AT, Rautela L,
5 6	375		Stirling RG, Thompson PJ, Holland AE. Minimal important difference in field
7 8	376		walking tests in non-cystic fibrosis bronchiectasis following exercise training.
9 10 11	377		Respir Med. 2014 September 1;108:1303–1309. Available from:
12 13	378		http://www.ncbi.nlm.nih.gov/pubmed/25087836
14 15	379	20.	Bohannon RW, Crouch R. Minimal clinically important difference for change in
16 17	380		6-minute walk test distance of adults with pathology: a systematic review. J Eval
18 19 20	381		Clin Pract [Internet]. 2017 April 4 [cited 2019 April 10];23:377-381. Available
20 21 22	382		from: http://www.ncbi.nlm.nih.gov/pubmed/27592691
23 24	383	21.	Fulk GD, He Y. Minimal Clinically Important Difference of the 6-Minute Walk
25 26 27	384		Test in People With Stroke. J Neurol Phys Ther. 2018 October;42:235–240.
27 28 29	385	22.	Shah N, Shi Q, Giralt S, Williams L, Bashir Q, Qazilbash M, Champlin RE,
30 31	386		Cleeland CS, Wang XS. Utility of a patient-reported outcome in measuring
32 33	387		functional impairment during autologous stem cell transplant in patients with
34 35 36	388		multiple myeloma. Qual life Res an Int J Qual life Asp Treat care Rehabil. 2018
37 38	389		April;27:979–985.
39 40	390	23.	Holland AE, Spruit MA, Troosters T, Puhan MA, Pepin V, Saey D, McCormack
41 42 42	391		MC, Carlin BW, Sciurba FC, Pitta F, et al. An official European Respiratory
43 44 45	392		Society/American Thoracic Society technical standard: field walking tests in
46 47	393		chronic respiratory disease. Eur Respir J [Internet]. 2014;44:1428-1446.
48 49	394		Available from: http://dx.doi.org/10.1183/09031936.00150314
50 51 52	395	24.	Gochicoa-Rangel L, Ramírez-José MC, Troncoso-Huitrón P, Silva-Cerón M,
53 54	396		Guzmán-Valderrábano C, Lechuga-Trejo I, Cid-Juárez S, Torre-Bouscoulet L.
55 56	397		Shorter corridors can be used for the six-minute walk test in subjects with chronic
57 58	398		lung diseases. Respir Investig [Internet]. 2020 February 26 [cited 2020 March
59 60			16

Disability and Rehabilitation

3 4	399		11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32111517
5 6	400	25.	Crapo RO, Casaburi R, Coates AL, Enright PL, MacIntyre NR, McKay RT,
7 8	401		Johnson D, Wanger JS, Zeballos RJ, Bittner V, et al. ATS statement: Guidelines
9 10 11	402		for the six-minute walk test. Am J Respir Crit Care Med. 2002 July 1;166:111-
12 13	403		117.
14 15	404	26.	Elazzazi A, Chapman N, Murphy E, White R. Measurement of distance walked
16 17 18	405		and physiologic responses to a 6-minute walk test on level ground and on a
19 20	406		treadmill: a comparative study. J Geriatr Phys Ther [Internet]. 2012;35:2-7.
21 22	407		Available from: http://dx.doi.org/10.1519/JPT.0b013e31821c91b1
23 24 25	408	27.	Prochaczek F, Winiarska H, Krzyzowska M, Brandt JS, Swida KR, Szczurek
25 26 27	409		ZW, Owczarek A, Galecka J. Six-minute walk test on a special treadmill:
28 29	410		Primary results in healthy volunteers. Cardiol J [Internet]. 2007;14:447–452.
30 31	411		Available from: http://dx.doi.org/
32 33 34	412	28.	de Almeida FG, Victor EG, Rizzo JA. Hallway versus treadmill 6-minute-walk
35 36 37 38	413		tests in patients with chronic obstructive pulmonary disease. Respir Care
	414		[Internet]. 2009;54:1712–1716. Available from: http://dx.doi.org/
39 40 41	415	29.	Lenssen AF, Wijnen LC, Vankan DG, Van Eck BH, Berghmans DP, Roox GM.
42 43	416		Six-minute walking test done in a hallway or on a treadmill: how close do the
44 45	417		two methods agree? Eur J Cardiovasc Prev Rehabil [Internet]. 2010;17:713-717.
46 47 48	418		Available from: http://dx.doi.org/10.1097/HJR.0b013e32833a1963
49 50	419	30.	Stevens D, Elpern E, Sharma K, Szidon P, Ankin M, Kesten S. Comparison of
51 52	420		hallway and treadmill six-minute walk tests. Am J Respir Crit Care Med
53 54	421		[Internet]. 1999;160:1540–1543. Available from:
55 56 57	422		http://dx.doi.org/10.1164/ajrccm.160.5.9808139
58 59 60	423	31.	Camargo VM, Martins Bdo C, Jardim C, Fernandes CJ, Hovnanian A, Souza R. 17

Page 19 of 34

1 2			
2 3 4	424		Validation of a treadmill six-minute walk test protocol for the evaluation of
5 6	425		patients with pulmonary arterial hypertension. J Bras Pneumol [Internet].
7 8	426		2009;35:423-430. Available from: http://dx.doi.org/
9 10 11	427	32.	Greig C, Butler F, Skelton D, Mahmud S, Young A. Treadmill walking in old age
12 13	428		may not reproduce the real life situation. J Am Geriatr Soc [Internet].
14 15	429		1993;41:15–18. Available from: http://dx.doi.org/
16 17	430	33.	Liu WY, Meijer K, Delbressine JM, Willems PJ, Franssen FM, Wouters EF,
18 19 20	431		Spruit MA. Reproducibility and Validity of the 6-Minute Walk Test Using the
21 22	432		Gait Real-Time Analysis Interactive Lab in Patients with COPD and Healthy
23 24	433		Elderly. PLoS One [Internet]. 2016;11:e0162444. Available from:
25 26 27	434		http://dx.doi.org/10.1371/journal.pone.0162444
28 29	435	34.	Galiano-Castillo N, Ariza-Garcia A, Cantarero-Villanueva I, Fernandez-Lao C,
30 31	436		Diaz-Rodriguez L, Legeren-Alvarez M, Sanchez-Salado C, Del-Moral-Avila R,
32 33 24	437		Arroyo-Morales M. Telehealth system (e-CUIDATE) to improve quality of life
35 36	438		in breast cancer survivors: rationale and study protocol for a randomized clinical
37 38	439		trial. Trials [Internet]. 2013;14:187. Available from:
39 40	440		http://dx.doi.org/10.1186/1745-6215-14-187
41 42 43	441	35.	Galiano-Castillo N, Arroyo-Morales M, Lozano-Lozano M, Fernandez-Lao C,
44 45	442		Martin-Martin L, Del-Moral-Avila R, Cantarero-Villanueva I. Effect of an
46 47	443		Internet-based telehealth system on functional capacity and cognition in breast
48 49 50	444		cancer survivors: a secondary analysis of a randomized controlled trial. Support
50 51 52	445		Care Cancer [Internet]. 2017. Available from: http://dx.doi.org/10.1007/s00520-
53 54	446		017-3782-9
55 56	447	36.	Ariza-García A, Arroyo-Morales M, Lozano-lozano M, Galiano-Castillo N,
57 58 59 60	448		Postigo-Martín P, Cantarero-villanueva I. A Web-Based Exercise System (e- 18

3 4	449		CuidateChemo) to Counter the Side Effects of Chemotherapy in Patients With
5 6	450		Breast Cancer: Randomized Controlled Trial. J Med Internet Res. 2019;0:e0.
7 8	451	37.	Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP.
9 10 11	452		The Strengthening the Reporting of Observational Studies in Epidemiology
12 13	453		(STROBE) statement: Guidelines for reporting observational studies. Ann Intern
14 15	454		Med. 2007 October 16;147:573-577.
16 17	455	38.	Laskin JJ, Bundy S, Marron H, Moore H, Swanson M, Blair M, Humphrey R.
18 19 20	456		Using a treadmill for the 6-minute walk test: reliability and validity. J
20 21 22	457		Cardiopulm Rehabil Prev [Internet]. 2007;27:407–410. Available from:
23 24	458		http://dx.doi.org/10.1097/01.HCR.0000300270.45881.d0
25 26	459	39.	Musoro ZJ, Hamel JF, Ediebah DE, Cocks K, King MT, Groenvold M, Sprangers
27 28 20	460		MAG, Brandberg Y, Velikova G, Maringwa J, et al. Establishing anchor-based
29 30 31	461		minimally important differences (MID) with the EORTC quality-of-life
32 33	462		measures: a meta-analysis protocol. BMJ Open [Internet]. 2018;8:e019117.
34 35	463		Available from: https://www.ncbi.nlm.nih.gov/pubmed/29326191
36 37 38	464	40.	Hjermstad MJ, Fossa SD, Bjordal K, Kaasa S. Test/retest study of the European
39 40	465		Organization for Research and Treatment of Cancer Core Ouality-of-Life
41 42	466		Ouestionnaire J Clin Oncol [Internet] 1995-13-1249–1254 Available from:
43 44	467		http://dx.doi.org/10.1200/ico.1995.13.5.1249
45 46 47	468	<i>4</i> 1	Lydick F. Enstein RS. Interpretation of quality of life changes. Qual Life Res
47 48 49	460	71.	1002 June: 2:221, 226
50 51	409	40	1995 June, 2.221-220.
52 53	470	42.	Ruopp MD, Perkins NJ, Whitcomb BW, Schisterman EF. Youden Index and
54 55	471		optimal cut-point estimated from observations affected by a lower limit of
56 57	472		detection. Biom J. 2008 June;50:419–430.
58 59 60	473	43.	Katz S, Branch LG, Branson MH, Papsidero JA, Beck JC, Greer DS. Active life 19

Page 21 of 34

474		expectancy. N Engl J Med [Internet]. 1983;309:1218-1224. Available from:
475		http://dx.doi.org/10.1056/nejm198311173092005
476	44.	Shin WK, Song S, Jung SY, Lee E, Kim Z, Moon HG, Noh DY, Lee JE. The
477		association between physical activity and health-related quality of life among
478		breast cancer survivors. Heal Qual Life Outcomes [Internet]. 2017;15:132.
479		Available from: http://dx.doi.org/10.1186/s12955-017-0706-9
480	45.	Park N-J, Chang Y, Bender C, Conley Y, Chlebowski RT, van Londen GJ,
481		Foraker R, Wassertheil-Smoller S, Stefanick ML, Kuller LH. Cardiovascular
482		disease and mortality after breast cancer in postmenopausal women: Results from
483		the Women's Health Initiative. PLoS One [Internet]. 2017 [cited 2019 February
484		18];12:e0184174. Available from:
485		http://www.ncbi.nlm.nih.gov/pubmed/28934233
486	46.	Brown JC, Winters-Stone K, Lee A, Schmitz KH. Cancer, Physical Activity, and
487		Exercise. In: Comprehensive Physiology. Vol. 2. Hoboken, NJ, USA: John Wiley
488		& Sons, Inc.; 2012. pp 2775–2809. Available from:
489		http://doi.wiley.com/10.1002/cphy.c120005
490	47.	Kaleth AS, Slaven JE, Ang DC. Determining the Minimal Clinically Important
491		Difference for 6-Minute Walk Distance in Fibromyalgia. Am J Phys Med
492		Rehabil [Internet]. 2016;95:738–745. Available from:
493		http://dx.doi.org/10.1097/phm.000000000000485
494	48.	Wright A, Hannon J, Hegedus EJ, Kavchak AE. Clinimetrics corner: a closer
495		look at the minimal clinically important difference (MCID). J Man Manip Ther
496		[Internet]. 2012;20:160–166. Available from:
497		http://dx.doi.org/10.1179/2042618612y.0000000001
498	49.	Hurria A, Soto-Perez-de-Celis E, Allred JB, Cohen HJ, Arsenyan A, Ballman K, 20
	474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 491 492 493 494 495 495 496 497 498	47447547647747847948045.48148248348448548648748848949047.491492493494485495496497498498493

3 4	499		Le-Rademacher J, Jatoi A, Filo J, Mandelblatt J, et al. Functional Decline and
5 6	500		Resilience in Older Women Receiving Adjuvant Chemotherapy for Breast
7 8	501		Cancer. J Am Geriatr Soc [Internet]. 2019 May 1 [cited 2021 May 16];67:920-
9 10 11	502		927. Available from:
12 13	503		https://agsjournals.onlinelibrary.wiley.com/doi/full/10.1111/jgs.15493
14 15	504	50.	Cocks K, King MT, Velikova G, Martyn St-James M, Fayers PM, Brown JM.
16 17 18	505		Evidence-based guidelines for determination of sample size and interpretation of
19 20	506		the European Organisation for the Research and Treatment of Cancer Quality of
21 22	507		Life Questionnaire Core 30. J Clin Oncol [Internet]. 2011;29:89–96. Available
23 24 25	508		from: http://dx.doi.org/10.1200/jco.2010.28.0107
26 27	509	51.	Blanchard CM, Courneya KS, Stein K, American Cancer Society's SCS-II.
28 29	510		Cancer Survivors' Adherence to Lifestyle Behavior Recommendations and
30 31 32	511		Associations With Health-Related Quality of Life: Results From the American
33 34	512		Cancer Society's SCS-II. J Clin Oncol [Internet]. 2008 May 1 [cited 2019 May
35 36	513		5];26:2198–2204. Available from:
37 38 30	514		http://www.ncbi.nlm.nih.gov/pubmed/18445845
40 41	515		
42 43	516		
44 45	517		
46 47 48	518		
49 50	519		
51 52	520		
53 54 55	521		
56 57	522		
58 59	523		
60			21

Test explanation and

evaluation

(0-10) RPE assessment

Conducting the test

Evaluation

(0-10) RPE assessment

. SpO₂

RETEST ≥ 15 min active rest

HR

≥ 10 min sitting rest

•

SpO₂

HR

Peer Peurez

546 Tables

Table 1: Demographic and clinical characteristics of the groups.

	Time periods						
	During-chemotherapy p After-treatment			р			
Characteristic	Positive change group	Unchanged group		Positive change group	Unchanged group		
	(n=8)	(n=30)		(n=38)	(n= 36)		
		(1 50)	Socioder	nographic character	ristics		
Age (year), mean+SD			563			063	
	47.75±6.60	49.70±8.78		47.03±9.02	50.78±8.00		
Education n (%)			.099			.647	
Basis	4 (50)	12 (40)		15 (39.5)	17 (47.2)		
Medium	0 (0)	11 (36)		11 (28.9)	11 (30.6)		
Superior	4 (50)	7 (23.3)		12 (31.6)	8 (22.2)		
Occupation, n (%)	2 (25)	7 (02.2)	.905	12 (24.0)	16 (44 4)	.446	
Home duties	2 (25)	7(23.3)		13 (34.2)	16 (44.4)		
Full time	2(23)	5(10.7)		3(13.2) 12(21.6)	0(10.7) 11(20.6)		
Permanent sick leave	4(50)	17 (56 7)		$\frac{12}{8}(31.0)$	3(83)		
Smoking status n (%)	+ (50)	17 (50.7)	663	0(21.1)	5 (0.5)	840	
Never smoker			.005			.040	
Current smoker	4 (50)	11 (36.7)		20 (52.6)	19 (52.8)		
Ex-smoker	1 (12.5)	8 (26.7)		7 (18.4)	5 (13.9)		
	3 (37.5)	11 (36.7)		11 (28.9)	12 (33.3)		
Alcohol intake, n (%)			.863			.414	
Monthly	4 (50)	12 (40)		19 (50)	15 (41.7)		
Weekly	2 (25)	7 (23.3)		6 (15.8)	7 (19.4)		
Daily	2 (25)	9 (30)		11 (28.9)	14 (38.9)		
	0 (0)	2 (6.7)		2 (5.3)	0 (0)		
		Clinic	al charact	eristics			
Cancer stage, n (%)			.141			.108	
I	3 (37.5)	8 (26.7)		17 (44.7)	8 (22.2)		
II	1 (12.5)	15 (50)		16 (42.1)	23 (63.9)		
	4 (50)	7 (23.3)		5 (13.2)	5 (13.9)		
Medical treatment, n (%)			.421			.998	
No treatment	2 (25)	4 (13.3)		0 (0)	0 (0)		
Radiotherapy	0 (0)	0 (0)		1 (2.6)	1 (2.8)		
Chemotherapy	6 (75)	26 (86.7)		2 (5.3)	2 (5.6)		
Radiotherapy &	0 (0)	0 (0)		35 (92.1)	33 (91.7)		
chemotherapy							
Menopause, n (%)	5 (62.5)	17 (56.7)	.767			.264	
No	3 (37.5)	13 (43.3)		5 (13.2)	2 (5.6)		
Yes				33 (86.8)	34 (94.4)		
Accelerometry (MVPA) , mean±SD	84.92±33.04	84.41±38.81	.974	77.41±27.18	74.97±34.04	.734	
Body Mass Index,	24.65±4.69	27.46±4.26	.113	26.11±5.72	28.30±5.80	.105	
mean±SD							

548	P values of between-group differences using t-test for independent samples (continuous variables) and X^2 analysis
549	(categorical variables). $n =$ sample size. SD: standard deviation. MVPA: moderate-vigorous physical activity * <i>P</i> <0.05.
	24

2 3 4 5	550 551	FIGURE LEGENDS
6 7	552	Fig.1 Patients flow in both studies
8 9 10	553	Fig. 2A Change in the 6MWT distance (m) between baseline and 8 weeks tests in the
11 12	554	'positive change' and the 'unchanged' subgroups from the after-treatment group.
13 14 15	555	Fig. 2B Change in the 6MWT distance (m) between baseline and 8 weeks tests in the
16 17	556	'positive change' and the 'unchanged' subgroups from the during-treatment group.
18 19	557	Fig.3A The Area Under Receiver Operating Characteristic (AUROC) curve in the
20 21	558	during-treatment group
22 23 24	559	Fig.3B The Area Under Receiver Operating Characteristic (AUROC) curve in the after-
25 26	560	treatment group
27 28	561	
29 30 31	562	
32 33	563	
34 35	564	
36 37 38	565	
39 40	566	
41 42	567	
43 44 45		
45 46 47		
47		
49 50		
51		
52 53		
54		
55		
56 57		
58		
59		
60		1

569

'positive change' and the 'unchanged' subgroups from the during-chemotherapy group.

Fig.2B Change in the 6MWT distance (m) between baseline and 8 weeks tests in the

'positive change' and the 'unchanged' subgroups from the after-treatment group.

Page 29 of 34

855x481mm (38 x 38 DPI)

Fig.2A Change in the 6MWT distance (m) between baseline and 8 weeks tests in the

'positive change' and the 'unchanged' subgroups from the during-chemotherapy group.

Fig. 2A Change in the 6MWT distance (m) between baseline and 8 weeks tests in the 'positive change' and the 'unchanged' subgroups from the after-treatment group.

197x113mm (120 x 120 DPI)

URL: http:/mc.manuscriptcentral.com/dandr Email: IDRE-peerreview@journals.tandf.co.uk

Fig.2B Change in the 6MWT distance (m) between baseline and 8 weeks tests in the

'positive change' and the 'unchanged' subgroups from the after-treatment group.

Fig. 2B Change in the 6MWT distance (m) between baseline and 8 weeks tests in the 'positive change' and the 'unchanged' subgroups from the during-treatment group.

197x132mm (120 x 120 DPI)

Fig.3A The Area Under Receiver Operating Characteristic (AUROC) curve in the during-treatment group

170x133mm (120 x 120 DPI)

URL: http:/mc.manuscriptcentral.com/dandr Email: IDRE-peerreview@journals.tandf.co.uk

Fig.3B The Area Under Receiver Operating Characteristic (AUROC) curve in the after-treatment group

172x138mm (120 x 120 DPI)