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a b s t r a c t

Energy efficiency is a major issue in the fifth generation (5G) of cellular networks as they require an
ultra-dense deployment of small base stations (SBSs) to meet the forecasted traffic demands. Switching
off cells is a widely recognized strategy to reduce the power consumption of these networks during
off-peak conditions but, as times goes by, these demands change, thus requiring the activation or
deactivation of a different set of cells that provide the users with a minimum QoS. In this context,
the optimization problem of selecting which cells have to be switched on/off in each period of time
has been approached from the dynamic multi-objective evolutionary (MOEA) domain, by proposing a
novel restart method that enables the algorithms to react to changes in the traffic demands. The newly
devised operator, named Adjacent Cell Restart (ACR), is based on exploiting the spatial continuity of
the mobile users in the network. The experiments over a set of 9 ultra-dense networks with increasing
densities of both users and base station has shown the enhanced capabilities of the ACR-enabled
dynamic MOEAs to better approximate the newly induced the Pareto fronts in consecutive periods
of time.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The latest mobility reports published by Ericcson [1] and
Cisco [2] are just confirming the predicted previsions about the
increasing global mobile data traffic. The former, updated up to
the first quarter (Q1) 2019, announces that such a traffic has
grown by 82% between Q1 2018 and Q1 2019, reaching more than
28 exabytes per month and more than 6.0 billion mobile broad-
band subscriptions globally. On its part, Cisco has forecasted this
amount of traffic to increase to 77 exabytes by 2022. Under this
scenario, both public and private initiatives started to develop the
fifth generation (5G) of cellular systems more than a decade ago.
Through these years, three paradigms has been clearly identified
to reach the challenging design requirements and expected per-
formance indicators of 5G networks [3,4]: moving to millimeter
wave (mmWave) spectrum to use larger bandwidths, enhanc-
ing spectral efficiency via multi-antenna transmission (massive,
collaborative MIMO), and finally increasing spatial reuse through
network densification [5]. This work focuses on the latest one.
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In order to reduce the propagation loss of mmWave com-
munications, improve the signal to interference plus noise ratio
and reduce the latency, 5G networks require the deployment of
a large number of small base stations (SBSs), which are close
to the mobile users [5]. They are named ultra-dense networks
(UDNs) [6,7]. However, these dense deployments come with a
considerable increase in the power consumption of the system
as SBSs are the most consuming device of the network (between
50% to 80%), regardless of its load [8]. This major issue could be
addressed at different network levels [9], but one of the most
promising one, to the point of being standarized by the 3rd
Generation Partnership Project association [10], lies in switching
off a number of SBSs when they are underutilized during low
traffic demand periods. This is known as the Cell Switch-Off (CSO)
problem [11]. CSO problems can be classified into two main cat-
egories [12]: online and offline CSO. Whereas online approaches
are performed in real time (or in a few minutes basis), offline
ones determines the set of active cells for longer time scales (from
dozens of minutes to hours) in which the network conditions
are assumed to be constant. Our work deals with offline CSO
problems unless otherwise specified.

However, the decision problem that determines which subset
of SBSs should be switched off in offline CSO is a NP-complete
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problem [13]. It also has to account not only for the energy con-
sumption of the UDN, but also for any indicator of the QoS pro-
vided to the users. The CSO problem has also been addressed from
different perspectives, ranging from clustering techniques [14,
15] or game theory [16], to its formulation as an optimization
problem [13]. As an optimization problem, CSO has been tackled
with exact algorithms [17], simple heuristics [18,19], and both
single [20] or multi-objective [21] metaheuristics. The present
work extends a previous publication [22], in which the CSO prob-
lem has been formulated as a bi-objective optimization problem,
where the power consumption of the UDN is to be minimized
and the capacity provided to a set of users is to be maximized.
This CSO problem has been addressed with two well known
multi-objective evolutionary algorithms (MOEAs), NSGA-II and
MOCell, which seek for a set of non-dominated solutions that
approximates the Pareto front [23] of different instances.

In order to face the QoS optimization objective within the
offline CSO framework, most of the existing works use a service
demand that is considered also to be fairly constant during a
given time span [13]. The optimization algorithm then searches
for the optimal set of active SBSs that optimizes the problem
objectives, and the next period is considered as an entirely new
problem instance with a new service demand, which is addressed
again from scratch. No information is passed on from one op-
timization stage to the next one. This is precisely one of the
contributions of the present work: approaching the CSO problem
from a dynamic multi-objective optimization perspective [24], in
which the set of SBSs to switch-off for a given traffic pattern at
period t is optimized, but starting from the search experience of
the algorithm in the previous period t − 1. The changes between
consecutive periods have been modeled by users moving within
the service area, which constitutes an actual challenge as network
densification requires a frequent update of user association to
the serving SBS [5,11]. We have named this new problem as the
dynamic CSO (DCSO) problem.

When a multi-objective optimization problem changes with
time, dynamic MOEAs have to detect when change occurs, and
to react to this change to track the new Pareto front [25,26]. We
consider here that the traffic demand will certainly change from
one period to another, but remains constant within each of such
periods, so the detection phase is trivial: it is just a true fact after
changing the period. Once detection is done, dynamic MOEAs
react to change by incorporating dynamic handling techniques,
also known as restart methods [27]. Among them, diversity-based
schemes try to maintaining a high diversity in the population so
that the algorithms can easily approximate the new Pareto front.
They were among the first proposed in the domain [28]. A second
contribution of this work is the introduction of a novel diversity-
based restart method specially tailored for the DCSO problem. It
has been called Adjacent Cell Restart (ACR), and aims at exploiting
the spatial continuity of the movements of the users in the
network, by switching on deactivated SBSs, which are neighbors
of cells that are already serving users, thus trying to anticipate
the movement. In order to account for the user mobility, a third
objective that measures the number of handovers induced by the
new network configuration from one period to another has been
included. The ACR operator has been incorporated to both NSGA-
II and MOCell, and has been evaluated over a time horizon divided
into 48 periods (e.g., a half-an-hour period over a full day), using
9 different UDN instances with different densities of up to 750
users and up to 3000 SBSs. To the best of our knowledge, the
contributions of this work are:

1. This is the first time the (offline) CSO problem has been
approached from the dynamic multi-objective evolutionary
algorithm domain, not considering different periods of time
as entirely new optimization phases.

2. A new restart operator specially engineered for the DCSO
problem has been devised, showing very promising re-
sults over a wider variety of scenarios. Both NSGA-II and
MOCell have been endowed with it, resulting in the so-
called DNSGA-II-ACR and DMOCell-ACR algorithms. The
behavior of the ACR operator has been fully characterized
by evaluating 80 different configurations in a systematic
experimental setup.

3. For comparison purposes, the same mechanism of DNSGA-
II-A and DNSGA-II-B introduced in [28] have been im-
plemented within the MOCell algorithm, resulting in the
DMOCell-A and DMOCell-B. As a baseline algorithm, both
NSGA-II and MOCell have been used to address each of the
periods considered starting the search from scratch.

The work has been structured as follows. The next section
discusses several related works that better contextualize the sci-
entific contributions of this paper. Section 3 formally describes
the model of the UDN used, as well as the formulation of the
problem objectives for both the CSO and the DCSO problems. The
ACR operator is fully described in Section 4, together with the dy-
namic MOEAs used in this work. Section 5 is devoted to detailing
the experimentation carried out to assess the performance of the
newly proposed restart operator. Finally, the main conclusions of
the work as well as the lines for future research are included in
Section 6.

2. Related works

As stated in the previous section, this work is focussed on
offline CSO problems in 5G UDN networks. Attending to clas-
sification devised in [12], the actual scope of this work is an
offline static coordination, with a non-uniform demand distri-
bution and a site-based switch-off level. Given the NP-complete
nature of the problem, and that the power consumption is usually
in conflict with other QoS performance problem objectives [21],
we are addressing the problem with multi-objective evolutionary
algorithms. Unlike online CSO, it is considered that the UDN
configuration is static during a long period of time, ranging from
tens of minutes to hours and, to the best of our knowledge on
the MOEAs related literature, when this period of time changes,
a fairly new instance of the CSO problem is tackled restarting the
search from scratch [13,22].

The most closely related work is presented by Chandhar and
Sekhar Das [29], in which a framework for the dynamic optimiza-
tion of OFDMA network (fourth generation, or 4G) is presented.
The framework does not only address the activation/deactivation
of base stations, but also configures other sectorized antenna
parameters (power, tilting, etc.). It is a entire network planning
problem. From a dynamic optimization point of view, the authors
use a flavor of the NSGA-II algorithm that runs on a central
controller and, based on gathering network information and daily
traffic estimations, searches for an optimized network configura-
tion. If estimations at a given period of the day match those of
the previous day, the algorithm restarts from the same candidate
solutions of the previous period. Otherwise, it randomly gener-
ates a number of individuals that replace the worst solutions in
the population. As a 4G network, it is not highly densified, which
is a major challenge in 5G.

Aissaoui Ferhi et al. [30] use a genetic algorithm (GA) for the
optimization of a sectorized 5G network, but limited to only 12
base stations. Analogously to [29], the GA optimizes switching off
sectors (not entire sites), as well as other antenna parameters.
The problem objectives are aggregated on a single function, so no
set of non-dominated solutions are identified. On the dynamism
side, the work performs a robust optimization of the network,
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Table 1
Summary of the advantages of this work with respect to the revised literature.
Ref. 5G UDN Multi-objective Dynamic Specialized operators

[29] # # ✓ ✓ #

[13] ✓ ✓ ✓ # #

[21] ✓ ✓ ✓ # #

[30] ✓ # # ✓ #

[22] ✓ ✓ # # ✓
This work ✓ ✓ ✓ ✓ ✓

that is, the objective function is evaluated over a traffic profile,
thus searching for a solution that performs well on average.

A summary of the advantages of our approach with respect to
the revised works is shown in Table 1, which analyzes the differ-
ent works on the basis of the following five relevant features, one
in each column: 5G, the CSO in 5G networks is addressed; UDN,
attention is paid to highly densified networks; Multi-objective,
a multi-objective formulation of the CSO problem is considered;
Dynamic, it checks whether the CSO problem is addressed from
a dynamic optimization perspective; and, finally, Specialized op-
erators, which analyze if specialized search operators have been
devised for the optimization problem and thus tailoring the op-
timizers. A ‘‘✓’’ symbols is used in the case a given work, cited
in the first column, has considered the column feature, whereas
‘‘#’’ symbols appears otherwise. The table clearly highlights our
contributions. Despite the rather large body of knowledge on the
CSO problem, the novelty of our work is contrasted with the
dynamic multi-objective approach of the CSO problem. We have
considered a long time horizon composed of several of periods or
epochs, as well as the use of mechanisms from the dynamic MOEA
domain. The design of new problem-specific operators, capable
of profiting from the search experience of past periods to better
approximate the new Pareto fronts when the traffic demands
change over time, has been also undertaken, a feature that is
seldom reported in the literature.

3. The dynamic CSO problem

This section first introduces the modeling of the UDN and,
then, it mathematically formulates the DCSO problem.

3.1. UDN modeling

This work considers a service area of 500× 500 square meters,
which has been discretized using a grid of 100 × 100 points (also
called ’’pixels’’ or area elements), each covering a 25 m2 area,
where the signal power is assumed to be constant. Ten different
regions have been defined with different propagation conditions.
In order to compute the received power at each point, Prx[dBm],
the following model has been used:

Prx[dBm] = Ptx[dBm] + PLoss[dB] (1)

where, Prx is the received power in dBm, Ptx is the transmitted
power in dBm, and PLoss are the global signal losses, which
depend on the given propagation region, and are computed as:

PLoss[dB] = GA+ PA (2)

where GA is the total gain of both antennas, and PA are the
transmission losses in space, computed as:

PA[dB] =
(

λ

2 · π · d

)K

(3)

where d is the Euclidean distance to the SBS, K is the exponent
loss, which ranges randomly in [2.0, 4.0] for each of the 10

different regions. The signal to interference plus noise ratio (SINR)
for UE k, is computed as:

SINRk =
Prx,j,k[mW ]∑M

i=1 Prx,i,k[mW ] − Prx,j,k[mW ] + Pn[mW ]
(4)

where Prx,j,k is the received power by UE k from SBS j, the
summation is the total received power by UE k from all the SBSs
operating at the same frequency that j, and Pn is the noise power,
computed as:

Pn[dBm] = −174+ 10 · log10 BWj (5)

being BWj the bandwidth of SBS j, defined as 5% of the SBS
operating frequency (see Table 2). Finally, the capacity of the UE
k is:

C j
k[bps] = BW j

k[Hz] · log2(1+ SINRk) (6)

where BW j
k is the bandwidth assigned to UE k when connected to

SBS j, assuming a round robin scheduling, that is:

BW j
k =

BWj

Nj
(7)

where Nj is the number of UEs connected to SBS j, and UEs are
connected to the SBS with the highest SINR, regardless of its type.

In order to model an heterogeneous network, four different
types of cells of decreasing size are considered: femtocells, pic-
ocells, microcells, and macrocells. Two subtypes of femto, pico,
and microcells are also defined, summing up 7 cell types. Both the
SBSs and the UEs are deployed using independent Poisson Point
Processes (PPP) with different densities (defined by λSBS

P and λUE
P ),

respectively).
The power consumption of a transmitter is computed based on

the model presented in [31], which considers that the device is
transmitting over the fiber backhauling. Hence, the regular power
consumption of SBS j, Pj, is expressed as:

Pj = α · P + β + δ · S + ρ (8)

where P denotes the transmitted or radiated power of the trans-
mitter, the coefficient α represents the efficiency of transmit
power produced by an radio-frequency amplifier and feeder losses,
the power dissipated owing to signal processing and site cooling
is denoted by β , the dynamic power consumption per unit data
is given by δ, being S the actual traffic demand served by the SBS,
and, finally, the power consumption of the transmitting device is
represented by the coefficient ρ.

The detailed parameterization of the scenarios addressed is
included in Table 2, in which the column Eq. links the parameter
to the corresponding equation in the formulation detailed above.
The names in the last nine columns, XY, stand for the deployment
densities of SBSs and UEs, respectively, so that X = {L, M, H},
meaning either low, medium, or high density deployments (λSBS

P
parameter of the PPP), and Y= {L, M, H}, indicates a low, medium
or high density of deployed UEs (λUE

P parameter of the PPP), in
the last row of the table. The parameters Gtx and f of each type
of cell refer to the transmission gain and the operating frequency
(and its available bandwidth) of the antenna, respectively. Nine
instances have been therefore used in this work in order to assess
the performance of the newly designed restart operator.

3.2. The static CSO problem

Let B be the set of the SBSs randomly deployed. A solution
to the CSO problem is a binary string s ∈ {0, 1}|B|, where si
indicates whether SBS i is activated or not. The first objective to
be minimized is therefore computed as:

min fPower (s) =
|B|∑
i=1

si · Pi (9)
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Table 2
Model parameters for cells and users.
Cell Parameter Eq. LL LM LH ML MM MH HL HM HH

macro

Gtx (2) 14
f (5) 2 GHz (BW = 100 MHz)

α (8) 21.45
β (8) 344440
δ (8) 2
ρ[W ] (8) 1

micro1

Gtx (2) 12
f (5) 3.5 GHz (BW = 175 MHz)
α (8) 15
β (8) 10000
δ (8) 1
ρ[W ] (8) 1

λmicro1
P [SBS/km2

] 100 100 100 200 200 200 300 300 300

micro2

Gtx (2) 10
f (5) 5 GHz (BW = 250 MHz)
α (8) 15
β (8) 10000
δ (8) 1
ρ[W ] (8) 1

λmicro2
P [SBS/km2

] 100 100 100 200 200 200 300 300 300

pico1

Gtx (2) 5
f (5) 10 GHz (BW = 500 MHz)
α (8) 9
β (8) 6800
δ (8) 0.5
ρ[W ] (8) 1

λ
pico1
P [SBS/km2

] 500 500 500 600 600 600 700 700 700

pico2

Gtx (2) 7
f (5) 14 GHz (BW = 700 MHz)
α (8) 9
β (8) 6800
δ (8) 0.5
ρ[W ] (8) 1

λ
pico2
P [SBS/km2

] 500 500 500 600 600 600 700 700 700

femto1

Gtx (2) 4
f (5) 28 GHz (BW = 1400 MHz)
α (8) 5.5
β (8) 4800
δ (8) 0.2
ρ[W ] (8) 1

λ
femto1
P [SBS/km2

] 1000 1000 1000 2000 2000 2000 3000 3000 3000

femto2

Gtx (2) 3
f (5) 66 GHz (BW = 3300 MHz)
α (8) 5.5
β (8) 4800
δ (8) 0.2
ρ[W ] (8) 1

λ
femto2
P [SBS/km2

] 1000 1000 1000 2000 2000 2000 3000 3000 3000

UEs λUE
P [UE/km2

] 1000 1000 1000 2000 2000 2000 3000 3000 3000

where Pi is the power consumption of SBS i (Eq. (8)).
Let U be the set of the UEs also deployed as described in

the section above. In the static version of the CSO problem, the
position of the UEs is constant and does not depend on the time.
Subsequently, in order to compute total capacity of the system,
UEs are first assigned to the active SBS that provides it with the
highest SINR. Let A(s) ∈ {0, 1}|U |×|B| be the matrix where aij = 1
if sj = 1 and SBS j serves UE i with the highest SINR, and aij = 0
otherwise. Then, the second objective to be maximized, which is
the total capacity provided to all the UEs, is calculated as:

max fCap(s) =
|U |∑
i=1

|B|∑
j=1

sj · aij · BW
j
i (10)

where BW j
i is the shared bandwidth of SBS j provided to UE

i (Eq. (7)). We would like to remark that these two problem

objectives are clearly conflicting one each other, as switching off
base stations, that is, minimizing the power consumption of the
network, will clearly decrease its capacity because the available
bandwidth to serve users is reduced.

3.3. The DCSO problem

In this dynamic version of the CSO problem, the time comes
into play, so the problem objectives defined for the static prob-
lems in the section above now depend on the period of time
they are computed. This is one of the major contributions of our
approach, as the existing related works that face the CSO problem
consider that each of these periods is an entirely new instance,
which is addressed independently by a MOEA [13]. We introduce
here the concept of epoch within the CSO framework. An epoch
is one of such a time interval of a predefined duration, which
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may range from dozens of minutes to few hours, in which the
positions of UEs (i.e., the traffic demands) are assumed to be fixed.
After an epoch is elapsed, the UEs move to a new position in the
service area using the Random Waypoint Mobility model [32].

In our modeling, let E = {e1, e2, . . . , et} be a finite set of
t consecutive epochs over a planning horizon (one day, one
week, etc.). From the two objectives of the CSO problem, only
fCap(s) is affected by changes in the positions of the UEs, as
fPower (s) only considers the set of SBSs switched-on (the tentative
solution provided by the MOEAs). In order to formulate an epoch-
dependent fCap, namely fCap(s, et ), a new definition of the matrix A
is required: AE (s) ∈ {0, 1}|U |×|B|×|E| is the matrix where aijt = 1
if sj = 1 SBS j serves UE i with the highest SINR at epoch t , and
aijt = 0 otherwise. This capacity objective is now defined for a
given epoch t as follows:

max fCap(s, t) =
|U |∑
i=1

|B|∑
j=1

sj · aijt · BW
j
i (11)

But the mobility of UEs also induces handovers. A handover
is the transfer of a given UE from one SBS to another due to
either its own movement or the switch-off of its serving SBS.
This requires extra signaling from the access network, which is
rather costly [13]. The DCSO problem formulation also considers
this issue by measuring the induced handovers from one epoch
to the next one:

min fHO(s, t) =
|U |∑
i=1

|B|∑
j=1

sj · aij(t−1) · (1− aijt ) (12)

where aij(t−1) · (1−aijt ) = 1 when SBS j served UE i at epoch t−1,
and, at epoch t , is served by a different SBS. If UE i is either not
served by SBS j at t − 1, thus aij(t−1) = 0, or remains served by
j at t , aijt = 1, this multiplication is 0, because no handover has
been required.

In summary, the DCSO problem has to minimize the power
consumption of the UDN network, maximize the capacity pro-
vided to the UEs, and minimizing the number of handovers in-
duced by the new switching on plan for a new epoch.

4. The new restart operator

This section first details the ACR operator and, then, how it
has been integrated within the dynamic MOEAs considered in
this work. The source code developed for this work is available
at https://bitbucket.org/pablozapata/udn/branch/FGFS.

4.1. The ACR operator

The rationale in the design of this operator is to exploit the
locality and spatial continuity of the movements of users within
the service area of the UDN. That is, if a given SBS j is active and
does have any associated users, meaning that it is their serving
SBS (Eq. (4)), the operator assumes that, if these users move
somewhere, their new location will be close to that they are
currently positioned. Therefore, the action of the ACR operator is
to switch on the adjacent or neighboring SBSs of j with one main
goal: enabling the algorithms to better track the approximated
Pareto front by gradually activating SBSs in the areas where users
may potentially move to. This introduces highly valuable genetic
material into the solutions that will be passed on to the next
epoch. Additionally, this strategy also provides the users with
alternative SBSs to be associated with, thus balancing the load
and increasing the capacity objective (Eq. (11)).

Algorithm 1 Pseudocode of the ACR operator
Input 1: P //A population of solutions
Input 2: rp //The application rate on P
Input 3: ron //The application rate on each SBS
Input 4: lon //The length of the activation ratio
1: for ∀p ∈ P do
2: Select p with probability rp
3: for ∀b ∈ SBSwithUsersAssociated(p) do
4: for ∀n ∈ Neigborhs(p, lon) do
5: Select n with probability ron
6: SwitchOn(n)
7: end for
8: end for
9: end for

Algorithm 2 Generic dynamic multi-objective metaheuristic for
the DCSO problem
1: S(0)← GenerateInitialSolutions()
2: A(0)← ∅
3: for e ∈ E do
4: Evaluation(S, e)
5: A(0)← Update(A(0), S(0))
6: t ← 0
7: while not StoppingCriterion( ) do
8: t ← t + 1
9: S(t)← Variation(A(t − 1), S(t − 1))

10: Evaluate(S(t), e)
11: A(t)← Update(A(t), S(t))
12: end while
13: Se ← A(t)
14: S ← ACR(A) //Reaction to change
15: end for

The pseudocode of the ACR operator is included in Algo-
rithm 1. It is a randomized procedure that works on a population
of solutions P , and does have three configuration parameters: rp
indicates the percentage of solutions from P that undergo to SBS
activation, ron determines the percentage of adjacent SBSs of a
given SBS p that will be activated and, finally, lon is the range of
action of the operator for each SBS p, measured in terms of grid
points of the discretized service area (see Section 3.1). The opera-
tor chooses a subset of solutions from P and then, for all the SBSs
of each of these solutions having users associated (line 3), which
could potentially move in the next epoch, it selects the adjacent
SBSs within a range defined by lon (function Neighbors(p, lon) on
line 4) and switches on those that are deactivated. The possibly
modified set of solutions P is the output of the method.

4.2. Integration within dynamic MOEAs

Algorithm 2 displays a generic dynamic MOEA for solving
the DCSO problem that has E epochs (line 3). As stated in the
introduction, the definition of the DCSO problem addressed in this
work considers that the traffic demand change from one epoch to
another, and remains constant within each epoch, so no detection
to change is required in the algorithms. The reaction to change is
therefore undertaken at the end of the optimization process of the
epoch (line 14), where the ACR operator is invoked. The algorithm
records the best approximated front for each epoch (line 13).

https://bitbucket.org/pablozapata/udn/branch/FGFS
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The generic framework of Algorithm 2 has been particular-
ized into two actual algorithms: NSGA-II [33] and MOCell [34].
They have been called DNSGA-II-ACR and DMOCell-ACR, respec-
tively. These two algorithms have been chosen to build upon our
previous work in [22]. This pseudocode can also embrace the
DNSGA-II-A and DNSGA-II-B algorithms proposed in [28] (and
their corresponding counterpart versions for MOCell: DMOCell-A
and DMOCell-B), which have been used for comparison purposes.

5. Experimentation

This section is devoted to describing the experimentation con-
ducted to assess the performance of the ACR operator. It first
details the parameters used in all the algorithms, the method-
ology used to provide the results with statistical confidence is
included next and, finally, the discussion and analysis of the
results obtained. Both the algorithms and the DCSO problem have
been implemented within the jMetal framework1 and the source
code is available for downloading at http://metanet5g.lcc.uma.es/
files/fgcs.zip.

All the experiments have been executed in the facilities of
the Supercomputing and Bioinformatics center of the Universidad
de Málaga, named Picasso. It is an heterogeneous computing
platform composed of a 48 nodes with 2 E5-2670 processors
having 8 cores at 2.6 GHz and 64GB of RAM each, 7 shared
memory machines with 2 TB of RAM each (7 nodes with 8 E7-
4870 processors and 10 cores at 2.4 GHz), and 168 nodes with
2 Intel E5-2670 processors and 8 cores at 2.6 GHz and 32 GB of
RAM each. The full hardware description can be found in http:
//www.scbi.uma.es/site/scbi/hardware.

5.1. Parameterization

All the algorithms in this work, NSGA-II and MOCell, either
their static or dynamic versions, use a binary string representa-
tion for the solutions (see Section 3) and, as genetic operators,
TwoPointCrossover with crossover rate of 1.0 and BitFlip muta-
tion with a mutation rate of 1/L, being L = |B|. The population
size is always 100.

The ACR operator has been systematically evaluated over a
total of 80 configurations, using the following set of values for
its three parameters: rp = {0.05, 0.25, 0.5, 0.75, 0.95}, ron =
{0.25, 0.5, 0.75, 1.0}, and lon = {1, 2, 4, 8} grid points, which
is equivalent to say that the radius is lon = {5, 10, 20, 40},
since the separation between the grid points is 5 m. These 80
configurations have been tested on both DNSGSA-II-ACR and
DMOCell-ACR.

The four {DNSGA-II,DMOCell}-{A,B} versions also depend on
a parameter rp = {0.05, 0.25, 0.5, 0.75, 0.95}, which is the per-
centage of solutions involved in their restart method: whereas
the A versions insert randomly generated solutions, the B ones
replace existing solutions with randomly chosen mutated solu-
tions.

Finally, a total number of 48 epochs have been considered in
each run. This is aimed at simulating a time horizon of half-an-
hour period in one day. Within each epoch, all the algorithms run
for 25000 function evaluations, which is a rather common setting
within the MOEA community. With the accurate problem model-
ing used, this setting of the dynamic MOEAs induces a runtime for
a given epoch that depends on the size of the instances and, on
average over all the independent runs performed, it ranges from
87.2 ± 48.8 and 118.6 ± 50.2 seconds in LL for DNSGA-II and

1 https://github.com/jMetal/jMetal

DMOCell, respectively, to 285.8±261.9 and 214.1±189.1 seconds
in HH. These figures clearly allow for an actual applicability of
the approach, as the duration of an epoch (30 min) must account
for two separated times: the optimization of the dynamic MOEAs
for the current traffic data, and the actual deployment of the
solution in the UDN, i.e., switching on/off the base stations, which
requires roughly 30 seconds [35]. Whereas the latter is a techno-
logical constraint imposed by the SBS manufacturer, the former
is on our side, and we believe that the reported times clearly
fit in the assumed timeframe. Besides, it is also important to
remark that these runtimes have been reached within the multi-
core computing nodes of the Picasso supercomputer, which are
shared among different independent runs of the dynamic MOEAs
and even among processes from different users. If dedicated
resources would have been used, these runtimes would be clearly
reduced. And, lastly, MOEAs are clearly prone to parallelism [36],
an advanced tool that may aid to shorten the executions times
drastically, if a tighter timeframe is imposed.

5.2. Methodology

In order to guarantee a fair comparison among the algorithms,
the random UDN generation (deployment of base stations) is
undertaken on the basis of the same 30 seeds, thus ensuring
that all the algorithms face the same set of instances in the 30
independent runs required to gather statistical data. These 30
independent runs have been performed for a total of 91 different
configurations: 80 of the ACR operator, 5 + 5 for the A and
B versions, and 1 more for the algorithms without any sort of
reaction to change, that is, the isolated optimization of each
epoch. This is done for the 9 instances defined in Table 2, which
means 91×30×9×2 = 49140 runs. The mobility of the users in
the network is the same for all the cases. In summary, the total
accumulated CPU time for all these experiments required more
than 12.7 years. We have collected the approximated fronts and
the approximated Pareto optimal sets with the problem variables
for all the epochs of all the algorithms, resulting also in more than
300 GB of data.

In order to measure the quality of all these approximated
fronts, we have used the Hypervolume indicator [37], which is
recognized as one of the most suitable Pareto-compliant metric
in the multi-objective community. Higher values of HV are better.
However, this indicator is not free from an arbitrary scaling of
the objectives, so we have composed a reference Pareto front for
normalizing each approximated front prior to compute the HV
value. The point here is that the reference Pareto front does not
only depends on the UDN configuration, but also on the epoch.
Indeed, from a strict point of view, each epoch induces a different
problem instance. As a consequence, we have 9 × 48 reference
Pareto fronts, which are built by retrieving the non-dominated
solutions for all the algorithms on a given UDN configuration and
a given epoch.

5.3. Results

This section has been further structured into different parts
to better organize the analysis of the results. Given the amount
of data, we first give a big picture on the impact of the ACR
operator in the search of the algorithms over all the epochs. Then,
we develop a by-epoch and by-epoch plus by-algorithm analysis,
and, finally, we compare our proposal to existing dynamic MOEAs
from the literature.

http://metanet5g.lcc.uma.es/files/fgcs.zip
http://metanet5g.lcc.uma.es/files/fgcs.zip
http://metanet5g.lcc.uma.es/files/fgcs.zip
http://www.scbi.uma.es/site/scbi/hardware
http://www.scbi.uma.es/site/scbi/hardware
http://www.scbi.uma.es/site/scbi/hardware
https://github.com/jMetal/jMetal
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Table 3
HV values aggregated over all the epochs and by configurations of the ACR operator in the LL, LM and LH instances.

LL LM LH

DNSGA-II DMOCell DNSGA-II DMOCell DNSGA-II DMOCell

NRC 0.1078±0.0114 0.1173±0.0124 0.1094±0.0116 0.1180±0.0125 0.1117±0.0118 0.1191±0.0126
rp = 0.05 0.2398±0.0935 0.2650±0.1032 0.2437±0.0949 0.2661±0.1036 0.2487±0.0968 0.2697±0.1048
rp = 0.25 0.2645±0.1029 0.2925±0.1137 0.2668±0.1039 0.2951±0.1147 0.2719±0.1057 0.2995±0.1163
rp = 0.50 0.2739±0.1065 0.3121±0.1212 0.2760±0.1073 0.3146±0.1222 0.2815±0.1094 0.3201±0.1241
rp = 0.75 0.2797±0.1088 0.3280±0.1274 0.2820±0.1096 0.3313±0.1287 0.2874±0.1116 0.3381±0.1311
rp = 0.95 0.2836±0.1102 0.3352±0.1303 0.2860±0.1112 0.3390±0.1318 0.2914±0.1132 0.3470±0.1347
ron = 0.25 0.2691±0.1143 0.3080±0.1310 0.2713±0.1151 0.3111±0.1323 0.2768±0.1174 0.3165±0.1344
ron = 0.50 0.2683±0.1139 0.3065±0.1303 0.2709±0.1150 0.3094±0.1315 0.2759±0.1170 0.3151±0.1338
ron = 0.75 0.2679±0.1138 0.3061±0.1301 0.2703±0.1147 0.3084±0,1311 0.2754±0.1168 0.3139±0.1333
ron = 1.00 0.2679±0.1137 0.3056±0.1299 0.2699±0.1146 0.3079±0.1310 0.2754±0.1168 0.3141±0.1333
lon = 1 0.2713±0.1152 0.3121±0.1328 0.2736±0.1162 0.3149±0.1340 0.2791±0.1183 0.3207±0.1364
lon = 2 0.2709±0.1151 0.3117±0.1326 0.2732±0.1160 0.3136±0.1335 0.2788±0.1182 0.3200±0.1360
lon = 4 0.2694±0.1144 0.3070±0.1304 0.2709±0.1150 0.3100±0.1317 0.2763±0.1172 0.3152±0.1338
lon = 8 0.2617±0.1110 0.2955±0.1253 0.2646±0.1122 0.2984±0.1265 0.2691±0.1141 0.3037±0.1286

Table 4
HV values aggregated over all the epochs and by configurations of the ACR operator in the ML, MM and MH instances.

ML MM MH

DNSGA-II DMOCell DNSGA-II DMOCell DNSGA-II DMOCell

NRC 0.0765±0.0082 0.0981±0.0104 0.0745±0.0080 0.0961±0.0102 0.0755±0.0081 0.0971±0.0103
rp = 0.05 0.2702±0.1051 0.3040±0.1181 0.2701±0.1051 0.3061±0.1188 0.2731±0.1064 0.3082±0.1197
rp = 0.25 0.2931±0.1140 0.3348±0.1298 0.2929±0.1138 0.3360±0.1301 0.2965±0.1153 0.3387±0.1313
rp = 0.50 0.3016±0.1172 0.3592±0.1392 0.3021±0.1173 0.3594±0.1391 0.3053±0.1187 0.3625±0.1404
rp = 0.75 0.3077±0.1196 0.3808±0.1476 0.3078±0.1195 0.3808±0.1474 0.3108±0.1208 0.3842±0.1488
rp = 0.95 0.3118±0.1211 0.3875±0.1505 0.3118±0.1210 0.3865±0.1499 0.3155±0.1226 0.3902±0.1514
ron = 0.25 0.2973±0.1260 0.3544±0.1504 0.2974±0.1260 0.3557±0.1508 0.3006±0.1275 0.3589±0.1522
ron = 0.50 0.2966±0.1257 0.3537±0.1501 0.2967±0.1257 0.3539±0.1500 0.2995±0.1271 0.3571±0.1514
ron = 0.75 0.2965±0.1258 0.3528±0.1497 0.2963±0.1255 0.3535±0.1498 0.3004±0.1275 0.3560±0.1510
ron = 1.00 0.2960±0.1255 0.3521±0.1494 0.2961±0.1255 0.3520±0.1491 0.2991±0.1268 0.3550±0.1505
lon = 1 0.3004±0.1274 0.3602±0.1531 0.3002±0.1272 0.3614±0.1533 0.3035±0.1288 0.3642±0.1546
lon = 2 0.2997±0.1271 0.3596±0.1527 0.2998±0.1270 0.3598±0.1526 0.3036±0.1288 0.3630±0.1541
lon = 4 0.2975±0.1261 0.3541±0.1501 0.2977±0.1261 0.3540±0.1499 0.3008±0.1276 0.3574±0.1515
lon = 8 0.2889±0.1223 0.3391±0.1435 0.2888±0.1222 0.3399±0.1437 0.2917±0.1235 0.3425±0.1449

Table 5
HV values aggregated over all the epochs and by configurations of the ACR operator in the HL, HM and HH instances.

HL HM HH

DNSGA-II DMOCell DNSGA-II DMOCell DNSGA-II DMOCell

NRC 0.0181±0.0024 0.0472±0.0051 0.0158±0.0020 0.0456±0.0050 0.0138±0.0020 0.0424±0.0047
rp = 0.05 0.2528±0.0987 0.2944±0.1142 0.2571±0.1003 0.3001±0.1165 0.2525±0.0984 0.2959±0.1147
rp = 0.25 0.2719±0.1060 0.3183±0.1234 0.2775±0.1082 0.3239±0.1256 0.2727±0.1062 0.3192±0.1237
rp = 0.50 0.2799±0.1090 0.3382±0.1312 0.2848±0.1109 0.3445±0.1337 0.2802±0.1090 0.3391±0.1314
rp = 0.75 0.2857±0.1112 0.3582±0.1390 0.2910±0.1133 0.3641±0.1414 0.2858±0.1111 0.3579±0.1389
rp = 0.95 0.2891±0.1126 0.3615±0.1406 0.2949±0.1148 0.3668±0.1427 0.2894±0.1125 0.3601±0.1400
ron = 0.25 0.2760±0.1173 0.3358±0.1424 0.2815±0.1196 0.3413±0.1449 0.2761±0.1172 0.3359±0.1424
ron = 0.50 0.2755±0.1171 0.3342±0.1417 0.2809±0.1194 0.3404±0.1445 0.2762±0.1172 0.3346±0.1419
ron = 0.75 0.2757±0.1172 0.3334±0.1414 0.2803±0.1191 0.3392±0.1439 0.2756±0.1170 0.3341±0.1416
ron = 1.00 0.2752±0.1170 0.3332±0.1413 0.2804±0.1191 0.3386±0.1437 0.2752±0.1168 0.3332±0.1412
lon = 1 0.2793±0.1187 0.3414±0.1449 0.2843±0.1208 0.3473±0.1475 0.2789±0.1184 0.3415±0.1449
lon = 2 0.2784±0.1184 0.3401±0.1443 0.2836±0.1205 0.3454±0.1466 0.2785±0.1182 0.3401±0.1442
lon = 4 0.2766±0.1175 0.3341±0.1416 0.2818±0.1197 0.3399±0.1441 0.2769±0.1176 0.3348±0.1418
lon = 8 0.2681±0.1138 0.3210±0.1358 0.2734±0.1161 0.3269±0.1385 0.2689±0.1140 0.3215±0.1360

5.3.1. ACR characterization
In order to evaluate the effect of the different configuration

parameters of the ACR operator, we have aggregated the HV value
of a given setting, over all the defined ones in the previous sec-
tion, and over all the 48 epochs. That is, the row rp = 0.05 shows
the average value of the HV over all the configurations out of the
80 defined above in which rp = 0.05. The goal is to characterize
the impact of each setting separately. Tables 3–5 include these
aggregated HV values for DNSGA-II-ACR and DMOCell-ACR cor-
responding to the L*, M*, and H* instances, respectively. The first
row in the tables, named NRC or Not Reaction to Change, shows

the results of the standard NSGA-II and MOCell that optimizes
each epoch from scratch.

Let us try to shed some light over such an amount of data.
The first conclusion to be highlighted is that any ACR-enable
dynamic algorithm outperform the NRC versions. This means that
the genetic material that the ACR operator passes on to the next
epoch is very helpful to approximate the newly induced Pareto
front defined by the new users positions. Given the normalization
procedure detailed in the previous section, differences in the HV
values are significant and increase with highly dense scenarios.
Indeed, for the L*, M*, and H* instances, the HV value of NRC
versions is roughly 30%, 25% and 10% of that of the ACR versions,
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respectively. In order to better illustrate the impact of the newly
devised restart operator, Figs. 1 and 2 display two representative
cases of approximated Pareto fronts reached by DNSGA-II-ACR
and DMOCell-ACR for a given epoch of the HH instance, respec-
tively. Fig. 1a depicts a 3D plot with the trade-off solutions for the
DCSO problem (three objectives) of DNSGA-II-ACR and DNSGA-
II-NRC, clearly showing that the former has computed a better
approximated front with non-dominated solutions having lower
power consumption and higher capacity. A projection of this 3D
front on the consumption vs. capacity plane (Fig. 1b) better shown
this fact, where even DNSGA-II-ACR solutions with a greater
number of handovers always dominate those of DNSGA-II-NRC.
Reaching approximated Pareto fronts in which all non-dominated
solutions has zero handovers is the second representative case,
and is very frequent in DMOCell-ACR. Fig. 2 includes a typical
approximated front (2D) reached by this dynamic MOEA. Again,
it can be seen that the ACR operator has clearly improved the
search of the algorithm by incorporating information from the
previous epoch, rather than starting the exploration from scratch
as the NRC versions do. At this point, it is important to remark
that this scenario, where no handovers are necessary, is a feasible
scenario as users may move in the network and still being served
by the same base station, if it remains on the coverage radio
that receives the signal with the higher SINR (Eq. (4)). Therefore,
the dynamic MOEAs then seek to switch-off other base stations
of the network, reducing both the power consumption and the
interferences, thus increasing the SINR and therefore the capacity
provided to the users. The ACR operator is able to pass this
information between consecutive epochs. Finally, as to the com-
parison between the dynamic algorithms DNSGA-II and DMOCell,
the results are consistent with those reached in [22], the latter
always outperforms the former, also with larger differences as the
densification of the instances increases.

If we analyze the results by the ACR parameter, it can be seen
that the most decisive one is rp. In the corresponding block of this
parameter in all the three tables, the HV values of both DNSGA-II
and DMOCell steadily increase with higher values of rp. That is,
when larger portions of the final set of non-dominated solutions
at epoch e are passed on to epoch e + 1, the two algorithms
are able to better react to the change in the traffic demand,
and thus reaching better approximations to the Pareto fronts.
This enhancement in the search capabilities of the algorithms is
specially relevant for DCMOCell, which typically increases the HV
value almost in 0.8 from rp = 0.05 to rp = 0.95 in all the nine
instances, whereas DNSGA-II does only in 0.3.

The value of parameter ron is much less important on the
behavior of the ARC versions of the algorithm. The second block of
results in Tables 3–5 points out that differences in the HV values
are very tight in all the aggregated executions. This is consis-
tent in both DNSGA-II and DMOCell. Recall that this parameter
regulates the percentage of deactivated neigbors of a given base
station that are switched on. This could be explained by the high
density of deployed SBSs in all the considered instances, and the
overlapping among the different neighborhoods, which ends up
propagating a generalized activation of SBSs in localized regions
of the networks where a traffic demand (users) exists.

Finally, the impact of lon follows a different trend, since the ag-
gregated HV values get decreased when the value of this param-
eter gets bigger. Indeed, except for only one exception (DNSGA-II
in the MH instance on Table 4), it holds that HV lon=1 > HV lon=2 >

HV lon=4 > HV lon=8. Even though differences between the three
first values of lon are negligible, the average HV value reported by
all the configurations with lon = 8 is clearly worse (lower). The
interpretation in terms of the functioning of the ACR operator is
that it does not make much sense to enlarge the range of activa-
tion of neighboring cells, because of the overlapping described in

Fig. 1. Representative approximated fronts of a given epoch for the HH instance
reached by DNSGA-II with both the ACR and NRC versions. The subfigure (a)
corresponds to the actual 3D front, whereas (b) is the projection on the power
consumption vs. capacity plane.

Fig. 2. Representative approximated fronts of a given epoch for the HH instance
reached by DMOCell with both the ACR and NRC versions. It is a 2D projection
on the power consumption vs. capacity plane as the number of handovers in all
the non-dominated solutions of the two algorithms is zero.

the previous paragraph. With higher values of this parameter, the
operator activates very large numbers of SBSs in the UDN, driving
the algorithms in the next epoch to restart the search from an



884 F. Luna, P.H. Zapata-Cano, J.C. González-Macías et al. / Future Generation Computer Systems 110 (2020) 876–891

Fig. 3. Average HV values by epoch over all the ACR configurations of the (a) LL, (b) LM, and (c) LH scenarios. The different lines aggregate the values of the
configurations with rp = {0.05, 0.25, 0.50, 0.75, 0.95}. The NRC results are included as the baseline. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

network operating at full power. In the end, larger values of lon
do not allow to properly track the mobility of the users for the
next epoch.

5.3.2. Analysis by epoch
In this section, we further analyze the results of the ACR-

enable dynamic MOEAs, but now considering their behavior
throughout the predefined 48 epochs. Starting upon the con-
clusions of the previous section, that have shown that the rp
parameter of the ACR operator is the one with a major impact

in the quality of the approximated Pareto fronts, we again have
aggregated the HV values over all the configurations that main-
tain rp fixed. Figs. 3, 4, and 5 include the evolution of these HV
values over the 48 epochs, together with that of the NRC version.

There are several findings one can identify across all the fig-
ures: first, the advantage of the configuration with rp = 0.95
to track the Pareto front of each epoch is kept during all the
time horizon. As it can be seen, the green lines with squares
always plot on the upper part with the higher (better) HV values.
This clearly supports the values in Tables 3–5 of the previous
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Fig. 4. Average HV values by epoch over all the ACR configurations of the (a) ML, (b) MM, and (c) MH scenarios. The different lines aggregate the values of the
configurations with rp = {0.05, 0.25, 0.50, 0.75, 0.95}. The NRC results are included as the baseline. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

section. Second, there also exist epochs in which differences are
negligible (epoch 3 in all the instances), meaning that the new
traffic demand for the epoch induces a new Pareto front which is
easily tracked regardless of the configuration. On the other hand,
other epochs exist where the gap between the configuration with
rp = 0.95 and the four remaining ones is significant. In any case,
there is not a clear pattern across all the instances as the changes
in the traffic demand may affect differently depending on the
actual deployment of the base stations. Third, it is also important
to remark that the mobility of the users, i.e., the change in traffic
demands throughout the epochs, provokes strong updates in the

newly induced Pareto fronts, which is reflected by the peaks
one can find in consecutive periods. And, finally, these figures
also show the actual, important need of using dynamic MOEAs
to address the CSO problem rather than optimizing indepen-
dently each epoch. Indeed, the NRC line that corresponds to these
settings clearly reports the worst HV value.

5.3.3. Analysis by-epoch and by-algorithm
This is the first section in which we discuss the impact of

the ACR operator separately on DNSGA-II and DMOCell. Again,
given the number of different configurations, we have processed
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Fig. 5. Average HV values by epoch over all the ACR configurations of the (a) HL, (b) HM, and (c) HH scenarios. The different lines aggregate the values of the
configurations with rp = {0.05, 0.25, 0.50, 0.75, 0.95}. The NRC results are included as the baseline. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

the results in order to compact them properly. In this case, we
have ranked the configurations of rp, ron and lon separately for the
two algorithms and computed the average ranking over all the
epochs. The resulting values for each of the nine UDN scenarios
are displayed in Fig. 6. Note that, in this figures, the lower the
average ranking, the better, as the configuration that scores the
best (the highest HV) is assigned a rank of 1.

The first issue that clearly raises from the figures is that
the most determining parameter in the two algorithms is rp, a
consistent fact with the previous findings based on aggregated
values. The larger the value of rp, the better (lower) the rank in
all the nine UDN scenarios. However, the impact of ron, which

has shown to be slightly decisive in Section 5.3.1, has become
relevant within the DCMOCell-ACR algorithm. Indeed, it can be
seen in Fig. 6.b that smaller values of ron have better rankings.
Within the DNSGA-II-ACR framework, this tendency is not that
well defined and one can find actual counterexamples, such as
the MH instance that has a better rank for ron = 0.75 that
for ron = 0.5. Finally, the results for lon are on the same line
as discussed above, extending the effect of the ACR operator to
deactivated base stations that are further than nearby locations
of the network clearly scores the worst. Small differences are
found in DNSGA-II-ACR and DMOCell-ACR, as the ranks shows
that lon = 1 is the best setting for this parameter in the latter,
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Fig. 6. Average HV-based ranking of the different configurations of the ACR-enabled versions of (a) DNSGA-II and (b) DMOCell. They are grouped into three sections,
accounting for the ACR governing parameters rp , ron , and lon, respectively.

Table 6
Best ACR settings for each UDN scenario.
ACR rp ron lon
LL 0.95 0.75 1
LM 0.95 0.50 1
LH 0.95 0.25 1

ML 0.95 0.50 1
MM 0.95 0.50 1
MH 0.95 0.50 1

HL 0.95 1.00 1
HM 0.95 0.50 1
HH 0.95 0.50 1

whereas in DNSGA-II-ACR both lon = 1 and lon = 2 provide
similar effectiveness.

5.4. Comparison with other dynamic MOEAs

The final analysis of the results now targets actual algorithms,
not averaging over a set of different configurations. The compar-
ison basis is defined now by, first, the NRC versions of DNSGA-II
and DMOCell, which do no react to changes, and, second, the
A and B versions proposed in [28]. Two different configurations
of DNSGA-II-ACR and DMOCell-ACR has been included in the
comparison: the configuration that perform the best considering
the 9 UDN scenarios, which uses rp = 0.95, ron = 0.5, and lon = 1,
and a final comparison with the best algorithm for each instance.

Its parameters are included in Table 6. The average HV values
across all the 48 epochs of all these algorithms are included in
Tables 7, 8, and 9, where a gray colored background has been
used to highlight the algorithm that reported the best (higher)
HV value.

The main conclusion that can be drawn from these tables
is that the ACR versions of the algorithms have always better
approximated the Pareto fronts of the 9 considered instances
(higher HV values). Differences are significant with respect to
the A version, and a bit tighter in the B versions, in which the
configuration with rp = 0.95 has also performed quite well. In
order to better show the benefits of the ACR operator, Fig. 7
displays the gap between the HV value of the NRC version, which
acts as a comparing baseline, and the different dynamic MOEAs
that incorporates a reaction-to-change mechanism. It can clearly
seen that the two last columns in each group, which correspond
to the ACR-enable versions of the algorithms, have the larger
differences. Given the normalization procedure followed to com-
pute the HV values, these minimal differences induces substantial
changes in the approximated fronts.

On a more related analysis to highlight the benefits of the
ACR with respect to the B version, Fig. 8 shows the number
of epochs in which the HV value of both the B versions and
the ACR versions reach a higher HV value. The two subfigures
clearly indicates that our proposal better tracks the changing
Pareto fronts across the epochs. Of special importance are the
impact in DMOCell, which is the best performing algorithm in the
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Table 7
Comparison based on the average HV value over all the epochs for the different algorithms for the LL, LM and LH instances.

LL LM LH

DNSGA-II DMOCell DNSGA-II DMOCell DNSGA-II DMOCell

NRC 0.1101±0.0113 0.1197±0.0126 0.1116±0.0108 0.1205±0.0123 0.1140±0.0116 0.1216±0.0123

A

rp = 0.05 0.1169±0.0143 0.1406±0.0151 0.1180±0.0147 0.1402±0.0145 0.1197±0.0144 0.1424±0.0144
rp = 0.25 0.1143±0.0121 0.1261±0.0124 0.1154±0.0134 0.1267±0.0132 0.1161±0.0138 0.1278±0.0124
rp = 0.50 0.1153±0.0135 0.1288±0.0141 0.1171±0.0138 0.1277±0.0129 0.1181±0.0132 0.1287±0.0126
rp = 0.75 0.1148±0.0122 0.1248±0.0118 0.1175±0.0135 0.1271±0.0129 0.1183±0.0135 0.1281±0.0132
rp = 0.95 0.1155±0.0131 0.1263±0.0128 0.1166±0.0127 0.1262±0.0131 0.1186±0.0134 0.1297±0.0127

B

rp = 0.05 0.2433±0.0350 0.2733±0.0354 0.2454±0.0321 0.2707±0.0321 0.2485±0.0338 0.2764±0.0318
rp = 0.25 0.2677±0.0330 0.3003±0.0325 0.2708±0.0365 0.3028±0.0376 0.2747±0.0319 0.3070±0.0307
rp = 0.50 0.2786±0.0335 0.3204±0.0388 0.2820±0.0356 0.3244±0.0354 0.2844±0.0331 0.3272±0.0332
rp = 0.75 0.2854±0.0342 0.3375±0.0363 0.2863±0.0341 0.3409±0.0383 0.2926±0.0336 0.3473±0.0334
rp = 0.95 0.2879±0.0331 0.3504±0.0377 0.2901±0.0364 0.3522±0.0381 0.2972±0.0349 0.3636±0.0369

ACR 0.2941±0.0354 0.3566±0.0365 0.2960±0.0305 0.3612±0.0344 0.3020±0.0292 0.3698±0.0327
ACRbest 0.3581±0.03825 0.3612±0.04175 0.3718±0.03735

Table 8
Comparison based on the average HV value over all the epochs for the different algorithms for the ML, MM and MH instances.

ML MM MH

DNSGA-II DMOCell DNSGA-II DMOCell DNSGA-II DMOCell

NRC 0.0781±0.0152 0.1001±0.0123 0.0760±0.0136 0.0981±0.0106 0.0771±0.0130 0.0991±0.0112

A

rp = 0.05 0.1265±0.0135 0.1567±0.0139 0.1284±0.0131 0.1591±0.0143 0.1289±0.0135 0.1619±0.0145
rp = 0.25 0.1262±0.0122 0.1406±0.0110 0.1261±0.0112 0.1418±0.0115 0.1274±0.0127 0.1422±0.0117
rp = 0.50 0.1274±0.0125 0.1412±0.0109 0.1268±0.0124 0.1423±0.0102 0.1283±0.0139 0.1431±0.0120
rp = 0.75 0.1275±0.0114 0.1413±0.0114 0.1280±0.0122 0.1426±0.0109 0.1285±0.0128 0.1438±0.0122
rp = 0.95 0.1282±0.0125 0.1414±0.0109 0.1283±0.0115 0.1419±0.0114 0.1301±0.0135 0.1436±0.0118

B

rp = 0.05 0.2736±0.0362 0.3123±0.0344 0.2727±0.0313 0.3141±0.0329 0.2756±0.0362 0.3159±0.0338
rp = 0.25 0.2990±0.0346 0.3428±0.0327 0.3002±0.0341 0.3437±0.0307 0.3029±0.0352 0.3482±0.0320
rp = 0.50 0.3103±0.0378 0.3700±0.0343 0.3096±0.0359 0.3698±0.0293 0.3126±0.0349 0.3738±0.0335
rp = 0.75 0.3165±0.0328 0.3952±0.0378 0.3163±0.0346 0.3936±0.0334 0.3197±0.0380 0.3973±0.0335
rp = 0.95 0.3189±0.0320 0.4122±0.0383 0.3219±0.0353 0.4104±0.0325 0.3243±0.0350 0.4153±0.0373

ACR 0.3237±0.0349 0.4172±0.0335 0.3237±0.0328 0.4164±0.0350 0.3246±0.0337 0.4202±0.0357
ACRbest 0.4172±0.03990 0.4164±0.0335 0.4202±0.03639

Table 9
Comparison based on the average HV value over all the epochs for the different algorithms for the HL, HM and HH instances.

HL HM HH

DNSGA-II DMOCell DNSGA-II DMOCell DNSGA-II DMOCell

NRC 0.0185±0.0136 0.0482±0.0123 0.0161±0.0115 0.0466±0.0117 0.0141±0.0131 0.0433±0.0134

A

rp = 0.05 0.1183±0.0147 0.1552±0.0143 0.1223±0.0164 0.1561±0.0179 0.1199±0.0146 0.1539±0.0166
rp = 0.25 0.1177±0.0139 0.1383±0.0140 0.1253±0.0136 0.1377±0.0162 0.1201±0.0141 0.1359±0.0150
rp = 0.50 0.1194±0.0135 0.1354±0.0137 0.1253±0.0150 0.1386±0.0159 0.1215±0.0132 0.1366±0.0154
rp = 0.75 0.1203±0.0148 0.1358±0.0140 0.1294±0.0151 0.1389±0.0157 0.1210±0.0132 0.1364±0.0150
rp = 0.95 0.1205±0.0143 0.1358±0.0138 0.1245±0.0158 0.1394±0.0166 0.1223±0.0160 0.1372±0.0146

B

rp = 0.05 0.2552±0.0364 0.2979±0.0309 0.2606±0.0414 0.3057±0.0316 0.2554±0.0328 0.3020±0.0296
rp = 0.25 0.2785±0.0378 0.3270±0.0295 0.2835±0.0351 0.3339±0.0348 0.2782±0.0342 0.3279±0.0321
rp = 0.50 0.2879±0.0393 0.3487±0.0326 0.2920±0.0355 0.3539±0.0382 0.2872±0.0380 0.3469±0.0328
rp = 0.75 0.2932±0.0369 0.3712±0.0374 0.2986±0.0371 0.3775±0.0416 0.2935±0.0315 0.3706±0.0378
rp = 0.95 0.2968±0.0362 0.3869±0.0408 0.3026±0.0388 0.3922±0.0453 0.2972±0.0354 0.3852±0.0402

ACR 0.3014±0.0342 0.3887±0.0300 0.3075±0.0373 0.3955±0.0343 0.3005±0.0296 0.3879±0.0310
ACRbest 0.3902±0.04199 0.3955±0.04614 0.3879±0.04150

experimentation conducted. This algorithm is able to fully profit
from the genetic material the ACR operator passes on to the next
epoch, approximating the Pareto fronts accurately.

6. Conclusions and future work

This work has approached the Cell-Switch Off problem in
ultra-dense 5G networks from a dynamic evolutionary multi-
objective optimization perspective. By considering a set of epochs
between which the traffic demand changes, but remains con-
stant within each epoch, the optimization algorithms have been
endowed with mechanisms to react to these changes in order
to better track the newly induced Pareto front. To improve this

tracking, a new restart operator based on exploiting the contin-
uous mobility of the users within a cellular network has been
devised. This operator, called Adjacent Cell Restart (ACR), can
be easily included in any dynamic MOEA. An extensive and sys-
tematic experimentation has been conducted to fully evaluate
the impact of the ACR operator in the search of two algorithms:
DNSGA-II and DMOCell. The results over nine different UDN sce-
narios have shown that ACR clearly aids the search of these two
algorithms towards better approximations of the Pareto fronts of
the considered epochs.

As future research, this work clearly opens promising lines to
be further explored. First of all, the evaluation of the ACR oper-
ator in other existing MOEAs and additional problem instances
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Fig. 7. Average HV gap of the best performing dynamic MOEAs (B version and ACR-enabled) with respect to the NRC version, grouped into the nine scenarios
addressed with increasing densification.

Fig. 8. Number of winner epochs out of the 48 preconfigured, for the B and ACR versions of (a) DNSGA-II and (b) DMOCell. The column values are grouped into
the nine scenarios addressed.

will identify target scenarios in which it may perform better.
With respect to the ACR design, it can be extended to exploit
not only the spatial continuity of the users, but also to purely
add diversity to the search of the algorithms, in a hybrid-like
approach with the B versions, which has also shown to perform

well. Both memory and prediction based enhanced mechanisms
for reacting to change are of great interest. Finally, a further
characterization of the impact of the ACR with different settings
of the dynamic MOEA (different crossover and mutation rates,
different population sizes, etc.) also deserves attention.
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