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Abstract—Ultra-dense networks (UDNs) are recognized as one
of the key enabling technologies of the fifth generation (5G)
networks, as they allow for an efficient spatial reuse of the
spectrum, which is required to meet the traffic demands foreseen
for the next coming years. However, the power consumption of
UDNs, with potentially hundreds of small base stations (SBSs)
within each macrocell, is a major concern for the cellular
operators, and has to be properly addressed prior to the actual
deployment of these 5G networks. Among the different existing
approaches to address this issue, a widely accepted strategy lies
in the selective deactivation of SBSs, but without compromising
the QoS provided to the User Equipments (UEs). This is known
as the Cell Switch-Off (CSO) problem. The typical formulation of
this problem is based on estimations of the traffic demand of the
User Equipments (UEs) within the network. But these estimations
could not be met. This work approaches these uncertain scenarios
by extending the CSO problem with additional objectives that
account for the robustness of the solutions to disturbances in these
traffic estimates. To do so, a computationally demanding Monte-
Carlo sampling is used to evaluate each solution. To manage such
an increasingly large computing cost, a parallel version of the
NSGA-II algorithm that is able to run on a computing platform
composed of more than 500 cores has been used. It is able to
compute in roughly 2 hours, an accumulated execution time of
more than 42 days, which is within the expected timeframe of
operators to make changes in the network configuration.

Index Terms—Robustness, parallelism, cell switch-off, multi-
objective optimization, metaheuristics.

I. INTRODUCTION

Switching off base stations is a well-known strategy for
saving the energy consumption of the newly envisioned fifth
generation (5G) cellular networks [1]. Indeed, it has been stan-
dardized by the 3rd Generation Partnership Project (3GPP) [2].
In order for these 5G networks to provide the foreseen
traffic demands and the massive connectivity featured, network
densification, i.e., the deployment of a large number of hetero-
geneous small base stations (SBSs) [3], [4], is a key enabler
technology, as it increases the spatial reuse of the spectrum and
thus the system capacity. The resulting networks are known
as ultra-dense networks (UDNs) [5].

But with such a large number of SBSs functioning in the
network, the energy consumption of UDNs clearly contrasts
with one of the main design issues required for 5G systems [6]:
they have to operate with 90% energy savings. In this context,
different approaches have been proposed in the literature

to address the problem of energy consumption [7]. Among
them, switching off a subset of SBSs within a UDN, known
as the CSO (Cell Switch-Off) problem, is one of the main
approaches. The CSO problem has been also addressed from
different perspectives, ranging from clustering techniques [8],
[9] to its formulation as an optimization problem [10]. As an
optimization problem, CSO has been tackled with both simple
heuristics [11], [12] and metaheuristics [13], [14], [15], [16]
algorithms. A common assumption in all these approaches
is that the traffic demand in the network, represented by
a number of mobile users or User Equipments (UEs), is
usually estimated [17]. As so, the optimization algorithms
are aimed to look for solutions, or the subset of SBSs to
be switched off, based on such estimates. The point is that,
if these estimates do have inaccuracies, the solutions found
might be useless as they could be quite overfitted and may
cause the network to start performing poorly, dropping the
QoS indicators down to unacceptable levels. Our approach
in this work is to make the solutions to the CSO problem
robust [18], i.e., to add them some degree of insensitivity
to disturbances [19] in the estimation of the traffic demands.
To do so, additional objectives that measure such robustness
are introduced, resulting in the definition of the Robust CSO
(RCSO) problem.

This paper extends a previous work [14], where a multi-
objective formulation of the CSO problem has targeted, si-
multaneously, the minimization of power consumption and
the maximization of the total capacity that the network is
capable of providing to the UEs. The goal here is to provide
the solutions to this problem with robustness, that is, address-
ing the RCSO problem defined above. Since measuring the
robustness of a solution is a mathematically and challenging
task [20], an approximated procedure based on a probabilistic
sampling has been used (Monte Carlo integration) [21], [22].
It lies in evaluating every newly generated solution over
H different environments or, equivalently, over H different
traffic demands. Therefore, for each solution, we have H
different objective values from which its robustness has to be
computed. This is undertaken by extending the two-objective
CSO problem to a four-objective RCSO problem that aims at
minimizing the average power consumption and maximizing
the average capacity over the H samples, but also minimizing
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their two variances, as indicators of robustness. That is, the
lower the variance of the sample, the higher the insensitivity
of the solution to the variations of the traffic demands. To the
best of our knowledge, this is the very first time the RCSO
problem is addressed in the literature.

But modelling a UDN accurately involves computing com-
plex signal processing methods which, along with the high
dimension of the problem instances (thousands of SBSs and
UEs), provokes that evaluating just one single solution of the
problem is a computationally demanding task. Given that H
samples have to be evaluated to compute the objectives of
each solution, the resulting run times become unaffordable for
practical applications. We have addressed this issue by using
a parallel version of NSGA-II [23], named mwNSGA-II, that
is able to incorporate as many parallel computing nodes as
available, without changing substantially the evolutionary loop
of the algorithm. The results presented in this work are able
to use up to 500 processor cores and reduce the runtime of an
execution of a complex RCSO instance from 42 days to two
hours.

The rest of the paper is organized as follows. The next
section defines the RCSO problem, by detailing the UDN
modelling and the formulation of both the CSO and RCSO
problems. Section III describes the parallelization of the
NSGA-II algorithm. The experimentation performed and the
discussion of the results is included in Sect. IV. Finally, the
last section summarizes the main conclusions of the work as
well as the lines for future research.

II. THE ROBUST CSO PROBLEM

This section is devoted to detailing the UDN model used,
as well as the formulation of both the CSO and the RCSO
problems.

A. System modelling

We have a target service area of 500× 500 square meters,
which has been discretized using a grid of 100 × 100 points
(also called ”pixels” or area elements), each covering a 25 m2

area where the signal power is assumed to be constant. Ten
different regions have been defined with different propagation
conditions. In order to compute the received power at each
point, Prx[dBm], the following model has been used:

Prx[dBm] = Ptx[dBm] + PLoss[dB] (1)

where, Prx is the received power in dBm, Ptx is the trans-
mitted power in dBm, and PLoss are the global signal
losses, which depend on the given propagation region, and
are computed as:

PLoss[dB] = GA+ PA (2)

where GA is the total gain of both antennas, and PA are the
transmission losses in space, computed as:

PA[dB] =

(
λ

2 ∗ π ∗ d

)K
(3)

where d is the Euclidean distance to the SBS, K is the
exponent loss, which ranges randomly in [2.0, 4.0] for each
of the 10 different regions. The signal to interference plus
noise ratio (SINR) for UE k, is computed as:

SINRk =
Prx,j,k[mW ]∑M

i=1 Prx,i,k[mW ]− Prx,j,k[mW ] + Pn[mW ]
(4)

where Prx,j,k is the received power by UE k from SBS j, the
summation is the total received power by UE k from all the
SBSs operating at the same frequency that j, and Pn is the
noise power, computed as:

Pn = −174 + 10 log10BWj (5)

being BWj the bandwidth of SBS j, defined as 5% of the
SBS operating frequency (see Table I). Finally, the capacity
of the UE k is:

Cjk[bps] = BW j
k [Hz] ∗ log2(1 + SINRk) (6)

where BW j
k is the bandwidth assigned to UE k when con-

nected to SBS j, assuming a round robin scheduling, that is:

BW j
k =

BWj

Nj
(7)

where Nj is the number of UEs connected to SBS j, and UEs
are connected to the SBS with the highest SINR, regardless
of its type.

In order to model an heterogeneous network, four different
types of cells of decreasing size are considered: femtocells,
picocells, microcells, and macrocells. Two subtypes of femto,
pico and microcells are also defined, summing up 7 cell
types. The SBSs are deployed using independent Poisson Point
Processes (PPP) with different densities (defined by λSBSP ).
UEs are also deployed using a PPP (defined by λUEP ), but
using social attractors (SAs), following the procedure defined
in [24]. This deployment scheme uses two factors, α and µβ ,
that indicate how strong SBSs attract SAs and how SAs attract
UEs. They have been set to α = µβ = 0.25.

The power consumption of a transmitter is computed based
on the model presented in [25], which considers that the device
is transmitting over the fiber backhauling. Hence, the regular
power consumption of SBS j, Pj , is expressed as:

Pj = α ∗ P + β + δ ∗ S + ρ (8)

where P denotes the transmitted or radiated power of the trans-
mitter, the coefficient α represents the efficiency of transmit
power produced by an radio-frequency amplifier and feeder
losses, the power dissipated owing to signal processing and
site cooling is denoted by β, the dynamic power consumption
per unit data is given by δ, being S the actual traffic demand
served by the SBS, and, finally, the power consumption of the
transmitting device is represented by the coefficient ρ.

The detailed parametrization of the scenarios addressed is
included in Table I, in which the column Eq. links the param-
eter to the corresponding equation in the formulation detailed
above. The names in the last two columns, XY, stand for the
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TABLE I: Model parameters for cells and users

Cell Parameter Eq. LL HH

macro

Gtx (2) 14
f (5) 2 GHz (BW = 100 MHz)
α (8) 21.45
β (8) 344440
δ (8) 2
ρ[W ] (8) 1

micro1

Gtx (2) 12
f (5) 3.5 GHz (BW = 175 MHz)
α (8) 15
β (8) 10000
δ (8) 1
ρ[W ] (8) 1
λmicro1
P [SBS/km2] 100 300

micro2

Gtx (2) 10
f (5) 5 GHz (BW = 250 MHz)
α (8) 15
β (8) 10000
δ (8) 1
ρ[W ] (8) 1
λmicro2
P [SBS/km2] 100 300

pico1

Gtx (2) 5
f (5) 10 GHz (BW = 500 MHz)
α (8) 9
β (8) 6800
δ (8) 0.5
ρ[W ] (8) 1
λpico1P [SBS/km2] 500 700

pico2

Gtx (2) 7
f (5) 14 GHz (BW = 700 MHz)
α (8) 9
β (8) 6800
δ (8) 0.5
ρ[W ] (8) 1
λpico2P [SBS/km2] 500 700

femto1

Gtx (2) 4
f (5) 28 GHz (BW = 1400 MHz)
α (8) 5.5
β (8) 4800
δ (8) 0.2
ρ[W ] (8) 1
λfemto1
P [SBS/km2] 1000 3000

femto2

Gtx (2) 3
f (5) 66 GHz (BW = 3300 MHz)
α (8) 5.5
β (8) 4800
δ (8) 0.2
ρ[W ] (8) 1
λfemto2
P [SBS/km2] 1000 3000

UEs λUE
P [UE/km2] 1000 3000

deployment densities of SBSs and UEs, respectively, so that
X = {L,H}, meaning either low or high density deployments
(λSBSP parameter of the PPP), and Y = {L,H}, indicates a
low or high density of deployed UEs (λUEP parameter of the
PPP), in the last row of the table. The parameters Gtx and
f of each type of cell refer to the transmission gain and
the operating frequency (and its available bandwidth) of the
antenna, respectively. Two instances have been used in this
work, namely LL and HH. In the former, a lower density for
both SBSs and UEs is applied, whereas the latter is setup with
a high density for SBSs and UEs.

B. The CSO problem

Let B be the set of the SBSs deployed after the randomized
procedure described in the previous section. A solution to
the CSO problem is a binary string s ∈ {0, 1}|B|, where si
indicates whether SBS i is activated or not. The first objective
to be minimized is therefore computed as:

min fPower(s) =

|B|∑
i=1

siPi (9)

where Pi is the power consumption of SBS i (Eq. 8).
Let U be the set of the UEs also deployed as described in the

section above. In order to compute total capacity of the system,
the UEs are first assigned to the SBS that services it with the
highest SINR. LetA ∈ {0, 1}|U|x|B| be the matrix where aij =
1 if SBS j serves UE i with the highest SINR, and aij = 0
otherwise. Then, the second objective to be maximized, which
is the total capacity provided to all the UEs, is calculated as:

max fCap(s) =

|U|∑
i=1

|B|∑
j=1

aijBW
j
i (10)

where BW j
i is the shared bandwidth of SBS j provided to

UE i (Eq. 7).

C. Adding robustness

This work introduces the possibility of handling distur-
bances in the environmental variables of the CSO problem,
i.e., the traffic demand represented by the positions of the UEs
in the service area. These disturbances can be modelled by
using a multivariate random variable PUE = {p1, . . . , p|UE|}
that represents the positions of the UEs. Given a solution
s, the power consumption and the capacity of the UDN are
defined by a bivariate random variable T = (fPower, fCap) =
~f (s,PUE), that is, the evaluation of fPower and fCap depends
on the randomized positions of the UEs. In this work we
assume that pi can be uniformly randomly chosen from
[0, 500] × [0, 500], that is, the UEs can be randomly placed
everywhere on the service area.

As the evaluation of the solutions is now a random variable,
the concrete objective functions to be optimized are based
on statistics of T . The mean, µ, and the standard deviation,
σ, have been used respectively as location and dispersion
statistics. The former is a measure of the quality of the solution
according to the objective, whereas the latter is a measure
of its robustness. Unfortunately, these measures cannot be
computed analytically for reasonably complex problems, so
Monte Carlo integration is used to estimate them by sampling
over H simulations of U [20]. This means evaluating H times
more function evaluations, with the subsequent computational
cost. The four objective functions of the RCSO problem are
therefore:
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f1 = min{µfPower
} (11)

f2 = min{σfPower
} (12)

f3 = max{µfCap
} (13)

f4 = min{σfCap
} (14)

that is, minimize the power consumption of the UDN (f1),
maximize the capacity provided to the UEs (f3) and also look
for more robust solutions, i.e., those that are lesser sensitive to
disturbances, what means minimizing the standard deviation
over the H samples, namely f2 and f4.

III. THE PARALLEL NSGA-II ALGORITHM

The Non-Dominated Sorting Genetic Algorithm II, NSGA-
II, was proposed by Deb et al. [26]. It is a genetic algorithm
based on generating a new population from the original one
by applying the typical genetic operators (selection, crossover,
and mutation); then, the individuals in the new and old
population are sorted according to their rank, and the best
solutions are chosen to create a new population. In case of
having to select some individuals with the same rank, a density
estimation based on measuring the crowding distance to the
surrounding individuals belonging to the same rank is used to
get the most promising solutions.

The parallelization of NSGA-II, named as mwNSGA-II,
follows the classical master-worker paradigm, and is developed
within the framework presented in [23]. A multi-threaded
master uses a thread to handle the connection with each
worker, and communicate via tasks, which are just containers
of tentative solutions that are sent for remote evaluation. The
main advantage of this parallel framework is its capability to
take advantage of a higher number of computing elements
(processors, cores, etc.) than that of the population size of the
evolutionary algorithm, which usually is the limiting factor for
parallelism in the master-slave approach. That is, the remote
evaluation of the N solutions of the population. To do so,
the parallelization devised breaks down the synchronization
requirements imposed by the evolutionary loop of the sequen-
tial algorithms by generating as many solutions as workers
available, and incorporating the evaluated solutions into the
population regardless of the generation it was created. The
framework mentioned above is implemented in Java, and the
native socket interface is used as the technology for handling
the remote communications. Additional details can be found
in [23].

IV. EXPERIMENTATION

This section includes the full description of the experimen-
tation conditions: first, the parallel computing platform used
to run the algorithms, and, second, the analysis of the results
obtained.

A. Parallel computing platforms

Two different platforms have been used. The first one,
named as DCC, is composed of the computers of the teaching
labs of the Department of Computer Science at the University
of Málaga (UMA). It has 320 machines with two cores (640 to-
tal cores), 8GB of RAM, Windows 10 (64 bits). There are two
types of machines: 192 with Pentium Dual-Core CPU E5500
2,80 GHz, and 128 with Pentium CPU G3220 3.60 GHZ. The
interconnection network is a 10GB Ethernet. The workers in
this platform are deployed with the the Condor system1. Given
the memory requirements of the UDN modelling with a large
number of SBSs and UEs, only the LL instance (see Table I)
has been able to be computed in this platform.

In order to run the HH instance, the facilities of the
Supercomputing and Bioinformatics center, namely Picasso,
of UMA has been used. It is composed of a 48 nodes x 2 E5-
2670 processors x 8 cores at 2.6 GHz and with 64GB of RAM
each, 7 shared memory machines with 2TB of RAM each (7 x
8 E7-4870 processors x 10 cores at 2.4 GHz), and 168 nodes
x 2 Intel E5-2670 processors x 8 cores at 2.6 GHz with 32
GB of RAM. The full hardware description can be found in
http://www.scbi.uma.es/site/scbi/hardware.
The total amount of resources is composed of 4016 cores
and an Infiniband QDR/FDR interconnection network, but
at most 512 can be used simultaneously. The deployment of
the workers within this platform is performed with the Slurm
workload manager2.

We want to remark that the two platforms are shared among
multiple users and, as a consequence, guaranteeing that the
same amount of resources (cores) is available for all the runs
has not been possible. Indeed, using 512 cores in Picasso has
been actually difficult, as the it provides service to both users
from UMA and from the Spanish Supercomputing Network.
Note also that both DCC and Picasso are composed of hetero-
geneous nodes, what is also a challenge for parallel algorithms,
but it is an issue properly addressed in the mwNSGA-II design.

B. Algorithmic settings

The mwNSGA-II algorithm uses, as genetic operators, Two
Point Crossover with a crossover rate of 0.9, and Bit Flip
mutation with a mutation rate of 1/L, where L = |B|, the
number of SBSs of the UDN. Binary tournament is the selec-
tion operator and the stopping condition is to compute 100000
function evaluations. The number of samples to compute the
robustness of the solutions is H = 100. The algorithm has
been implemented within the jMetal framework3. Given the
particularities of the parallel platforms, we have been limited
to run only 5 independent runs of the algorithms.

1https://research.cs.wisc.edu/htcondor/
2https://slurm.schedmd.com/
3https://github.com/jMetal/jMetal
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C. Results

This section has been further structured into three different
subsections for a better organization of the discussion of the
results. The first one shows the performance of the parallel
implementation on the two platforms described above. Then,
a visual inspection of the approximated Pareto fronts reached
and, finally, a sensitivity analysis of the robust solutions is
undertaken.

1) Parallel performance: In order to show the performance
reached by the parallel execution of mwNSGA-II, Table II
includes the following indicators. The wall-clock time, defined
as the actual runtime of the algorithm, which is computed by
the master node of the algorithm by substracting the initial
starting time of the run to the time when all the workers have
finished. The accumulated run time of all the workers involved
in the parallel computation to evaluate the 100000 function
evaluations. In order to measure this metric, the workers are
developed to write into a log file the time required to evaluate
every single solution it receives, then, from these log files, the
total aggregated runtime is summed up. The parallel efficiency,
computed as the percentage of the actual CPU usage of the
workers (without considering the communications overhead).
This is measured by substracting the value of the previous
metric to the total runtime of the workers (provided by the
time Linux command line tool). Finally, the number of
workers involved in the computation, which is reported either
by Slurm or Condor. All the results are averaged over 5
independent runs.

TABLE II: Parallel performance indicators for mwNSGA-II

LLDCC LLPicasso HHPicasso

Wall-clock time (h) 1.29 0.90 2.10
Accumulated run time (h) 316.25 321.04 1015.09
Parallel efficiency (%) 98.52 95.32 99.28
Average number of workers 245.20 375.20 486.60

Let us first analyze the first two rows of the table. The
mwNSGA-II algorithm has been able to reduce the computa-
tional time of the search from dozens of days to roughly 1-2
hours. This reduction is specially relevant in the HH instance
in the Picasso platform, in which the algorithm computed
100000 function evaluations in 2.10 hours. Aggregating the
runtime of all the 486 workers involved in the computation,
that is, if only one single core had been used, it would have
taken 42.30 days (1015.09 hours). It is remarkable that the
results are consistent regardless of the underlying parallel
computing platform, as mwNSGA-II reaches an equivalent
performance on both DCC and Picasso, even with when a
different number of workers is involved in the computation.
Indeed, the accumulated runtime is almost the same (316.25
and 321.04 hours, respectively). To corroborate this fact, we
have measured the average evaluation time of a single RCSO
solution (the computation of the H = 100 samples) in the two
platforms: it is 11.62 and 12.39 seconds in DCC and Picasso,
respectively, for the LL instance, and 35.15 seconds for the
HH instance in Picasso.

The truly interesting point is the parallel efficiency attained
by mwNSGA-II. This indicator shows how the algorithm
takes full advantage of the computational power provided
by the platforms. It can be seen that the three experiments
have reached a parallel efficiency over 95%, with special
attention to the results of the HH instance in Picasso. In this
case, mwNSGA-II has achieved a performance of 99.28%,
involving almost 500 heterogeneous processing elements in
the computation. This can be justified by two facts. On
the one hand, as stated above, one single evaluation of the
HH instance in the RCSO formulation takes 35.15 seconds
on average and, taking into account that the interconnection
network in Picasso uses 100 Gbps Infinibad fiber links, the
ratio communication/computation is very favourable for the
algorithm to reach such a performance. On the other hand, the
algorithmic design of mwNSGA-II is able to profit from the
parallel platform by avoiding bottlenecks in the master node,
which is the most critical one in the master/worker paradigm to
determine its performance. It can be therefore concluded that
the communications are well overlapped by the computation
and the load balancing mechanism is efficient.

2) What type of solutions does provide the RCSO problem?:
Recall that the RCSO problem formulation has four objectives,
namely the mean and standard deviation of the power con-
sumption and the capacity of the UDN over H = 100 samples,
thus visually inspecting the approximated Pareto fronts means
plotting 4D data. We have addressed this issue by displaying
boxes, in which the position of the center of the boxes is
defined by the average values of the power, µfPower

, and the
capacity, µfCap

, whereas the width and the height are set
up with the standard deviation, σfPower

and σfCap
. As the

values of the objectives differ several orders of magnitude, the
values shown are actually coefficients of variations in order to
properly improve its readability. The idea is that, the higher the
area, the lower the robustness. Figure 1 displays the result of a
representative execution of mwNSGA-II for the HH instance
using the described approach.

The conclusions that this figure shows are of great interest
for the network operators. It can be seen that solutions with
a low power consumption (the left hand side of the plot) tend
to be more robust (the area of the squares are smaller) and,
as long as the UDN has to provide higher capacity to the
UEs (right part), solutions become more sensitive to the traffic
data (less robust). That is, the UDN configurations that leave
more SBS switched on are more sensitive to changes in the
traffic demands, what is expected as UEs are random placed
when computing the H disturbances and provokes stronger
variations in the capacity as well, specially if they are located
close to SBSs with a large available bandwidth. A second
interesting finding is that solutions are much more robust
with respect to the power consumption than with respect to
the capacity. This is reflected as the width of the boxes is
smaller than their height, that is, σfPower

much smaller than
σfCap

. Indeed, the ratio σfPower

µfPower
= 6.51e − 9 averaged over

all the solution of the approximated front shown in Fig. 1,
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Fig. 1: A representative approximate Pareto front of the HH instance of the RCSO problem.

whereas the ratio
σfCap

µfCap
= 12.50. In any case, this set of

solutions provides the network operator with a highly valuable
information on how rather close configurations may better
react to unexpected traffic demands.

3) Sensitivity analysis: In order to evaluate the impact
of introducing robustness in the CSO problem formulation,
that is, the definition of the RCSO problem, this section
develops a sensibility analysis of the solutions obtained by
a sequential run of NSGA-II that only considers one traffic
demand scenario. To do so, we have generated a completely
different traffic demand pattern in which users follow the
well known random waypoint mobility model. Under this
new demand, the robust solutions, i.e., the switching off plan
of small base stations, of the RCSO problem computed by
mwNSGA-II and those in which robustness is not taken into
consideration.

TABLE III: Average power consumption and capacity over a
randomly generated mobile traffic pattern in the HH instance

CSO RCSO
Average power 1.55e-02 9.67e-03

Average capacity 1.39e+01 2.62e+01

Table III includes the average power and average capacity
of 100 time steps of the UEs moving within the service area
of the HH instance, that is, 100 different traffic demands.
These averages are computed with the solutions provided by
the CSO and the RCSO formulations of the problems. Here,
the conclusions are also quite direct. The solutions provided by
the RCSO problem reach not only a lower power consumption,

but also a higher capacity. That is, if the problem of switching
off SBSs of UDNs is addressed from a robust optimization
approach, unexpected or missestimated traffic demands can
be better serviced by the network, thus increasing the QoS
and also the user experience.

V. CONCLUSIONS AND FUTURE WORK

This work has addressed the robust version of the Cell
Switch-Off problem that is, to the best of our knowledge, the
very first time it has been defined in the literature. It encom-
passes the task of how the power consumption and the capacity
of UDN networks vary when the traffic demand estimates have
disturbances. In order to provide the solutions with robustness,
the approach used lies in using Monte Carlo integration to
measure their expected performance under different scenarios.
The original bi-objective CSO problem has been extended to
the four-objective RCSO problem in which both the mean
and the standard deviation of the power consumption and the
capacity of the network are to be optimized. The the stan-
dard deviation is the indicator that accounts for the solution
robustness.

But the RCSO formulation has provoked a considerable
increase in the computation time, because each solution has to
be evaluated over H different traffic demands. To address this
issue, this work has used a parallel version of the NSGA-II
algorithm, mwNSGA-II, that follows a master-slave approach.
The results over two different instances and on two different
parallel computing platforms have provided very promising
solutions. Indeed, the algorithm is able to reach more than
95% of parallel efficiency, and is able to reduce the total
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expected computation time of the algorithm from 42.3 days
to 2.1 hours in the larger HH problem instance. As to the
analysis of the solution quality, the solutions reached are more
robust in regions of low power consumption configurations
of the search space. The larger the capacity of the network,
the lower the expected robustness. A sensibility analysis has
also shown that the solutions of the RCSO problem are less
sensitive to disturbances than those computed by the original
CSO formulation.

Future lines of research lies in further providing the so-
lutions with increasing robustness by designing specialized
search operators that thoroughly explore search space. We also
want to use realistic traffic information from cellular operators
to evaluate the impact of the RCSO solutions with real-world
data. The evaluation of other multi-objective metaheuristics
and the impact of a higher values of the sampling (H >> 100)
is also under research.
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