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Palaeogeography and crustal evolution of the Ossa–Morena Zone, southwest
Iberia, and the North Gondwana margin during the Cambro-Ordovician: a
review of isotopic evidence
A. Cambeses , J. H. Scarrow , P. Montero , C. Lázaro and F. Bea

Department of Mineralogy and Petrology, Faculty of Sciences, University of Granada, Granada, Spain

ABSTRACT
Cambro-Ordovician palaeogeography and fragmentation of the North Gondwana margin is still not
very well understood. Here we address this question using isotopic data to consider the crustal
evolution and palaeogeographic position of the, North Gondwana, Iberian Massif Ossa–Morena Zone
(OMZ). The OMZ preserves a complex tectonomagmatic history: late Neoproterozoic Cadomian orogen-
esis (ca. 650–550 Ma); Cambro-Ordovician rifting (ca. 540–450 Ma); and Variscan orogenesis (ca.
390–305 Ma). We place this evolution in the context of recent North Gondwana Cambro-Ordovician
palaeogeographic reconstructions that suggest more easterly positions, adjacent to the Sahara
Metacraton, for other Iberian Massif zones. To do this we compiled an extensive new database of
published late Proterozoic–Palaeozoic Nd model ages and detrital and magmatic zircon age data for (i)
the Iberian Massif and (ii) North Gondwana Anti-Atlas West African Craton, Tuareg Shield, and Sahara
Metacraton. The Ndmodel ages of OMZ Cambro-Ordovician crustal-derivedmagmatism and Ediacaran-
Ordovician sedimentary rocks range from ca. 1.9 to 1.6 Ga, with a mode ca. 1.7 Ga. They show the
greatest affinity with the Tuareg Shield, with limited contribution of more juvenile material from the
Anti-Atlas West African Craton. This association is supported by detrital zircons that have Archaean,
Palaeoproterozic, and Neoproterozoic radiometric ages similar to the aforementioned Iberian Massif
zones. However, an OMZ Mesoproterozoic gap, with no ca. 1.0 Ga cluster, is different from other zones
but, oncemore, similar to thewesterly Tuareg Shield distribution. This places the OMZ in amore easterly
position than previously thought but still further west than other Iberian zones. It has been proposed
that in the Cambro-Ordovician the North Gondwana margin rifted as the Rheic Ocean opened
diachronously from west to east. Thus, the more extensive rift-related magmatism in the westerly
OMZ than in other, more easterly, Iberian Massif zones fits our new proposed palaeogeographic
reconstruction.
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1. Introduction

The Iberian Massif (Pérez-Estaún and Bea 2004 and refer-
ences therein) is the best preserved segment of the
European Variscides, the orogenic belt that resulted from
collision of Gondwana and Laurussia during the late
Palaeozoic (Bard et al. 1973, 1980; Burg et al. 1981; Matte
1986). The Iberian Massif consists of several zones with a
roughly symmetric disposition and distinct stratigraphic,
structural, magmatic, and metamorphic characteristics.
There are broadly from north to south: Cantabrian; West
Asturian-Leonese; Galicia-Tras-os-Montes; Central Iberian;
Ossa–Morena Zone (OMZ); and South Portuguese (Figures
1 and 2; Lotze 1945; Julivert et al. 1972; Ribeiro et al. 1990;
Martínez-Catalán et al. 1999).

New palaeogeographicmodels have recently been pub-
lished for several of the Iberian zones during the Ediacaran–

lower Palaeozoic. Bea et al. (2010) proposed a new position
for the Central Iberian Zone, north of the Sahara
Metacraton (Figure 1), further east than previously posi-
tioned (Eguiluz et al. 2000; Fernández-Suárez et al. 2000;
Gutiérrez-Alonso et al. 2003). Fernández-Suárez et al. (2014)
located the Cantabrian Zone next to the SaharaMetacraton
andArabianNubian Shield and suggested that it represents
a passive margin fragment of the northern fringe of
Gondwana (cf. Pastor-Galán et al. 2013a) (Figure 1). Shaw
et al. (2014) proposed a comparable position for the West
Asturian-Leonese Zone (Figure 1). Likewise, Díez-Fernández
et al. (2010) placed the Galicia Tras-os-Montes parau-
tochthonous units close to the Sahara Metacraton, whereas
allochthonous units are related to the Anti-Atlas (Albert
et al. 2015) or Avalonia (Henderson et al. 2016) (Figure 1).
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During the Cambro-Ordovician, the palaeogeographic
position of the OMZ and South Portuguese Zone, by con-
trast, are not so well constrained. The South Portuguese
Zone has been associated with the Avalonia microplate
(e.g. Ribeiro et al. 2007; Braid et al. 2011) (Figure 1). On the
other hand, the OMZ has been considered part of the
Armonica microplate (e.g. Matte 2001) or a continental
block that represents the most northern margin of
Gondwana (e.g. Robardet and Gutiérrez-Marco 2004). In
the latter model the OMZ is positioned close to the Anti-
Atlas West African Craton (Figure 1; e.g. Nance and
Murphy 1994; Linnemann et al. 2008; Pereira et al. 2011).

The objective of this study is to determine the Cambro-
Ordovician palaeogeographic position of the OMZ prior
to its amalgamation with other Iberian Massif zones dur-
ing the Variscan Orogeny. In particular we aim to under-
stand how the OMZ fits into new models of: (i) early
Palaeozoic palaeogeographic reconstructions that place
other Iberian zones further east than previously thought
(Figure 1); and (ii) Rheic Ocean opening (Linnemann et al.
2004, 2008; Nance et al. 2010, 2012).

To do this we compiled an extensive database (see
supplementary material I and II) of published geochemical

and geochronological data. The former includes major and
trace elements and Nd isotopic data. The latter comprises
Nd model ages, detrital zircon ages magmatic and pre-
magmatic zircon, and whole-rock ages. The data set
includes Ediacaran to Ordovician sedimentary rocks and
Cambro-Ordovician igneous rocks from: the OMZ, the
other Iberian Massif zones; and three main North
Gondwana, African, areas. These areas, from which the
OMZ may have detached, are the Anti-Atlas West African
Craton, the Tuareg Shield and the Sahara Metacraton. The
data have permitted us to develop new models for the
palaeogeographic position of the OMZ during the
Cambro-Ordovician.

2. Regional setting

The OMZ preserves evidence of complex evolution dur-
ing the late Neoproterozoic Cadomian Orogeny, ca.
650–550 Ma, and subsequent Cambro-Ordovician, ca.
510–480 Ma, extension (e.g. Quesada et al. 1991;
Eguiluz et al. 2000; Expósito et al. 2003; Sánchez-García
et al. 2003, 2010; Silva and Pereira 2004; Extebarria et al.
2006; Pereira et al. 2006; Chichorro et al. 2008; Montero

Figure 1. The Iberian Massif zones and their Cambro-Ordovician palaeographic positions with respect to the north African areas. The
cratonic region ages are taken from Avigad et al. (2003). Note that the Central Iberian Zone (CIZ), Cantabrian Zone (CZ) and West-
Asturian Leonese Zone (WALZ) are close to the Sahara Metacraton and Arabian Nubian Shield (Bea et al. 2010; Talavera et al. 2013;
Pastor-Galán et al. 2013a; Fernández-Suárez et al. 2014; Shaw et al. 2014). The parautochthonous units from the Galicia-Tras-os-
Montes Zone (GTOMZ) are located between the Sahara Metacraton and Tuareg Shield (Díez-Fernández et al. 2010) whereas the
allochthonous units are associated with the Anti-Atlas (Albert et al. 2015) or Avalonia (Henderson et al. 2016). The South Portuguese
Zone (SPZ) has been considered part of the Avalonia microplate (e.g. Ribeiro et al. 2007; Braid et al. 2011). The Ossa–Morena Zone
(OMZ) has traditionally been located close to the west Anti-Atlas West African Craton (Nance and Murphy 1994; Fernández-Suárez
et al. 2002; Linnemann et al. 2004, 2008; Pereira et al. 2008, 2011, 2012c).
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et al. 2009a). Furthermore, during the Carboniferous
Variscan Orogeny the region was deformed, as reflected
in two complex contacts that register convergence at its
northern and southern margins (Bard 1977; Bard and

Moine 1979; Quesada 1991; Matte 2001) (Figures 2
and 3).

The contact of the OMZwith the Central Iberian Zone, to
the north, is marked by the Badajoz–Córdoba shear zone.

Figure 2. Zones of the Iberian Massif indicating the distribution of granitoids, modified from Bea et al. (2006) and Martínez-Catalán (2011).

Figure 3. Chronostratigraphic sequence of the Ossa–Morena Zone also showing the different magmatic stages and the Ossa–Morena
Zone boundaries with the Central Iberian Zone and the South Portuguese Zone, modified from Gabaldón (2001).
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Some authors consider that this shear zone was originally
active during the Cadomian Orogeny and was then subse-
quently reactivated during the Variscan (Ábalos et al. 1991;
Quesada 1991; Ábalos and Díaz-Cusi 1995; Eguiluz et al.
1995, 2000). However, other authors consider it to be a
major intra-continental, solely Variscan, shear zone (e.g.
Burg et al. 1981; Azor et al. 1994; Pereira et al. 2007, 2009;
2010a, 2010b, 2012a). Identification of mid-ocean rigde
basalt (MORB)-like amphibolites, that represent metamor-
phosed early Palaeozoic proto-oceanic crust, led various
authors (Gómez-Pugnaire et al. 2003; Simancas et al. 2005)
to consider the shear zone as a ‘mini’ (cf. Dewey 1977)
Variscan suture (Figures 2 and 3).

The contact of the OMZ with the South Portuguese
Zone, to the south, is evidenced by the Beja–Acebuches
amphibolites and the South Iberia shear zone (Fonseca and
Ribeiro 1993; Quesada et al. 1994; Araujo et al. 2005; Azor
et al. 2008; Braid et al. 2010) (Figures 2 and 3). The amphi-
bolites have been interpreted as Rheic Ocean remnants
(e.g. Quesada et al. 1994; Castro et al. 1996a, 1996b).
However, more recently, this idea has been refuted. Azor
et al. (2008) dated the mafic protolith of the Beja–
Acebuches amphibolites at ca. 340–332 Ma, U–Pb
SHRIMP, remarkably close to the accepted exhumation
age, ca. 330 Ma amphibole, Ar–Ar (Dallmeyer et al. 1993;
Castro et al. 1999). Furthermore, MORB-like metabasalts
also crop out in a postulated subduction-related accretion-
ary prism, the Pulo do Lobo unit (e.g. Silva et al. 1990; Braid
et al. 2010). The MORB-like protoliths are the same age as
the Beja–Acebuches amphibolites ca. 341–333 Ma (Dahn
et al. 2014; Pérez-Cáceres et al. 2015). This age range, for
possible Rheic Ocean remnants, is significantly younger
than the date of the initial collision related to final closure
of this ocean during the latest Devonian–earliest
Carboniferous, ca. 370–355 Ma (cf. Nance et al. 2010,
2012; Braid et al. 2011; Pereira et al. 2012b). The MORB-
like magmatism preserved in the OMZ southern contact
was, rather, coeval with post-collisional, ca. 350–330 Ma,
ultramafic-mafic to intermediate-felsic magmatism in the
OMZ (Cambeses et al. 2015 and references therein).

Between the northern and southern margins the com-
plex evolution of the OMZ is preserved in structures related
to various transpressional and transtensional events from
the late Neoproterozoic, Cadomian Orogeny, to the early
Carboniferous, Variscan Orogeny (e.g. Abalos et al. 1991;
Simancas et al. 2001; Pereira et al. 2003; Silva and Pereira
2004). Pre-Variscan structures were overprinted by the
Variscan deformation producing complex structural rela-
tionships characteristic of the OMZ (e.g. Apalategui et al.
1990; Azor et al. 2004). The Variscan structures preserve
evidence of an initial collisional event between ca.
390–345 Ma (Simancas et al. 2001, 2003; Expósito et al.
2002; Braid et al. 2011; Pereira et al. 2012b). This was

followed, c.345–330 Ma, by extension/transtension (Apraiz
and Eguiluz 2002; Simancas et al. 2003; Pereira et al. 2007,
2009; Rosas et al. 2008) and a subsequent, c.330–305 Ma,
second collisional event (Simancas et al. 2003, 2006; Azor
et al. 2008).

These events are also recorded in the metamorphism
that affected the OMZ, this was generally low-grade
although some areas record high grade conditions:

(i) Pre-Variscan ca. 532–500Ma (Schäfer 1990; Oschner
1993; Ordóñez-Casado 1998; Montero et al. 1999,
2000) HT-LP conditions are preserved in the
Valuengo and Monesterio complexes (e.g. Apraiz
and Eguiluz 1996; Expósito et al. 2003; Simancas
et al. 2004). This high-grade metamorphism has
been related to a Cambro-Ordovician rifting context
associatedwith Rheic Ocean opening (e.g. Sánchez-
García et al. 2003, 2010; Nance et al. 2010, 2012).

(ii) Variscan ca. 390–370 Ma (Araujo et al. 2005; Moita
et al. 2005) LT/HT-HP collisional-related meta-
morphism has been identified in the Badajoz–
Cordoba shear zone: the Safira-Viana do Alentejo
eclogites; Moura Phyllonitic Complex; and the
Cubito-Moura unit (e.g. Fonseca et al. 1999;
López Sánchez-Vizcaíno et al. 2003; Araujo et al.
2005; Booth-Rea et al. 2006; Ribeiro et al. 2007;
Rubio-Pascual et al. 2013).

(iii) Variscan decompression and shearing meta-
morphism began later, at ca. 340 Ma, e.g. Campo
Maior–Arronches–Crato region (Pereira et al.
2010a, 2010b). Whereas younger Variscan ca.
340–323 Ma (e.g. Ordóñez-Casado 1998; Castro
et al. 1999; Pereira et al. 2009) extension/transten-
sion-related HT-LP metamorphism is preserved in
the Évora–Aracena–Lora del Rio metamorphic belt
(e.g. Chichorro et al. 2008; Pereira et al. 2009).

The sedimentary, stratigraphic, and igneous, tectono-
magmatic, records of crustal evolution of the OMZ are
discussed below.

3. Late Neoproterozoic to late Palaeozoic
crustal evolution of the Ossa–Morena Zone:
stratigraphic record

The OMZ stratigraphic succession includes Ediacaran to
early Carboniferous rocks (Figures 3 and 4).

3.1. Precambrian to Cambrian

The OMZ basement is formed of the Ediacaran Serie
Negra, which comprises black shales, quartzites, meta-
greywackes and intercalations of black cherts and
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tholeiitic basalts (Figures 3 and 4) (e.g. Alía 1963;
Carvalhosa 1965; Gonçalves 1971; Chacón et al. 1984;
Gonçalves and Oliveira 1986; Oliveira et al. 1991; Schäfer
et al. 1993; López-Guijarro 2006; Sánchez-García et al.
2016). The Serie Negra is composed of the Montemolín
Formation at the base, formed of passive margin sedi-
ments, and the Tentudía Formation at the top, consist-
ing of back-arc basin fill deposits (Eguiluz 1988;
Quesada et al. 1990a; Bandrés et al. 2002). Radiometric
U–Pb ages on detrital zircons indicate a maximum sedi-
mentation age of ca. 590 Ma for the Montemolín
Formation (Ordóñez-Casado 1998) and ca. 565–541 Ma
for the Tentudía Formation (Schäfer et al. 1993;
Linnemann et al. 2008).

The Serie Negra is overlain by the Malcocinado
Formation, which is composed of volcanoclastic materi-
als, metagreywackes, phyllites, sandstones and con-
glomerates, the last with Serie Negra pebbles
(Figure 4) (e.g. Fricke 1941; Sánchez-Carretero et al.
1989, 1990; Quesada et al. 1990a; Pereira and Silva
2002; Perejón et al. 2004; Pereira et al. 2006). The

Malcocinado Formation is locally intruded by late
Ediacaran to early Cambrian diorites to granites (e.g.
Sanchez-Carretero et al. 1989, 1990). The youngest det-
rital zircon from the Malcocinado Formation indicates a
maximum depositional age of ca. 522 Ma (Ordóñez-
Casado 1998).

3.2. Cambrian to Ordovician

The Precambrian to Cambrian transition is characterized
by an unconformable contact associated with the afore-
mentioned rifting (Figures 3 and 4) (e.g. Liñán 1978,
1984; Liñán and Quesada 1990; Liñan and Gámez-
Vitaned, 1993; Expósit-o et al. 2003; Sánchez-García
et al. 2003, 2010). The Cambrian rift-related succession
consists of four main components.

The first, the lower detrital formation, is early
Cambrian (Liñán and Quesada 1990; Liñán et al.
2002; Pereira et al. 2011) and is formed of fluvial to
shallow marine shelf deposits related to an early trans-
gression, e.g. the Torrearboles Formation (Figure 4, cf.

Figure 4. Summary of the Ossa–Morena Zone stratigraphic sequence (modified from Expósito 2000; Robardet and Gutiérrez-Marco
2004; Sánchez-García et al. 2010) showing the age, tectonic context, representative units and the lithologies in the area. Dashed lines
mark unconformities.
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Liñán 1984). The lower detrital formation is overlain by
the second component, an early Cambrian shallow
marine carbonate formation, e.g. the Alconera
Formation (Figure 4) (Liñán 1978; Liñán and Perejón
1981). This is overlain by a third early to middle
Cambrian upper detrital formation that consists of
turbiditic and shelf siliciclastic sediments deposited
during a collapse-related extensional process, e.g.
Jerez volcano-detrital Formation (Figure 4) (Liñán and
Quesada 1990; Sánchez-García et al. 2003). The upper-
most, fourth, part of the formation is a volcano-sedi-
mentary succession dated as middle Cambrian
(Figure 4) (Liñán and Quesada 1990; Pereira et al.
2006; López-Guijarro et al. 2008; Sánchez-García et al.
2008). In some units a late Cambrian age was attrib-
uted to this succession, e.g. Playon Beds (Palacios
1993). However, this age is poorly constrained, and a
middle Cambrian age is generally more accepted for
the succession (Figure 4; e.g. Liñán and Quesada 1990;
Sánchez-García et al. 2003). In fact, a gap in sedimen-
tation took place in the late Cambrian transition as the
result of a period in which the whole OMZ was
uplifted and eroded related to emplacement of exten-
sion-related magmatic bodies (Quesada 1991; Sánchez-
García et al. 2003, 2010; Quesada et al. 2006). Early
Cambrian sedimentary sandstone from the lower det-
rital formation, close to the boundary between the
OMZ and the CIZ, has a maximum sedimentation age
of ca. 567 Ma for the Oguela Detritic-Carbonate
Complex (Linnemann et al. 2008). Although Pereira
et al. (2011) recorded younger ages ca. 536–532 Ma
for the Freixo–Segóvia volcanic–sedimentary complex,
sandstone, and Ouguela Tectonic Unit, quartzite, from
the same region.

Early Ordovician deposits, with a basal erosive dis-
continuity marked by sandstones and conglomerates,
crop out above the Cambrian sedimentary rocks
(Figures 3 and 4; e.g. Oliveira 1983; Oliveira et al.
1992; Piçarra 1997; 2000; Giese et al. 1994a). Higher
in the series the Ordovician sedimentary rocks are
dominated by shales with intercalations of sandstones
and greywackes e.g. Barrancos Formation. (Figures 3
and 4) (e.g. Gutiérrez-Marco et al. 1984; Oliveira et al.
1992; Giese et al. 1994a; Gutiérrez-Marco and Robardet
2004). These sediments are considered to be passive
margin deposits (Figure 4) (Robardet 1981; Gutiérrez-
Marco et al. 1984, 1990, 2002). At the northern contact
of the OMZ, a siliciclastic deposit with a Central
Iberian Zone palaeogeographic affinity, the
Ordovician Armonican Quartzite Formation has a max-
imum sedimentation age of ca. 522 Ma, (Linnemann
et al. 2008).

3.3. Silurian to carboniferous

Overlying the Ordovician sedimentary rocks is a
monotonous series of Silurian, Landovery to Ludlow,
black shales and black cherts (Robardet and Gutiérrez-
Marco 1990a, 2004; Gutiérrez-Marco et al. 1998). This
is conformably covered by late Silurian, Ludlow–
Pridoli, to Early Devonian, Lochkovian, black shales
with intercalation of lutites and fine sandstones, e.g.
Xistos Raiados and Verdugo formations (Figure 4; e.g.
Schneider 1951; Jaeger and Robardet 1979; Perdigão
et al. 1982; Racheboeuf and Robardet 1986; Piçarra
1998; Robardet et al. 1998). An ensuing gap in sedi-
mentation occurred in the Middle–Late Devonian,
Eifelian–Famennian (Figure 4, e.g. Racheboeuf and
Robardet 1986; Robardet and Gutiérrez-Marco 1990a;
1990b; 2004). An unconformity separates the Siluro-
Devonian sedimentary rocks from a synorogenic suc-
cession of early Carboniferous greywackes, shales, and
volcano-sedimentary sequences (Wagner 1978;
Wagner et al. 1983; Quesada et al. 1990b; Giese
et al. 1994b; Pereira et al. 2012b). Early
Carboniferous turbidites, Tournaisian–Visean, in the
OMZ, Cabrela Formation, have a detrital zircon max-
imum sedimentation age of ca. 352 Ma (Pereira et al.
2012b).

4. Late Neoproterozoic to late Palaeozoic
crustal evolution of the Ossa–Morena Zone:
tectonomagmatic record

The age of the OMZ igneous rocks ranges from
Precambrian to Permian, thus recording the transition
from the Cadomian to Variscan orogenies. The OMZ
magmatism includes the following:

(i) Neoproterozoic–Cambrian (ca. 590–540 Ma)
Cadomian collisional magmatism (Figure 3) (e.g.
Oschner 1993; Linnemann et al. 2008; Henriques
et al. 2015; Sánchez-Lorda et al. 2016).

(ii) Early–middle Cambrian (ca. 540–500 Ma) conti-
nental extension-related magmatism (Figure 3)
(e.g. Expósito 2000; Sánchez-García et al. 2003,
2010; Simancas et al. 2004), which progressed
during the Cambro-Ordovician (ca.
490–470 Ma) to incipient ocean basin magma-
tism (Figure 3) (e.g. Quesada 1991; Sánchez-
García et al. 2003, 2016; Chichorro et al. 2008).

(iii) Carboniferous (ca. 350–330 Ma) Variscan colli-
sion-related magmatism (Figure 3) (e.g.
Dallmeyer et al. 1995; Ordóñez-Casado 1998;
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Montero et al. 2000; Gladney et al. 2014;
Cambeses et al. 2015; Pereira et al. 2015).

The Neoproterozoic–Cambrian, ca. 590–540 Ma, mag-
matism mainly comprises subduction-related diorites
to granites and basalts, the latter are preserved as
metabasite amphibolites (Bellon et al. 1979; Schäfer
1990; Oschner 1993; Henriques et al. 2015). This mag-
matism shows south to north N-MORB to calc-alkaline
magmatic polarity in the OMZ which led Sánchez-Lorda
et al. (2013a, 2013b) to postulate Gondwana-ward sub-
duction at that time.

During the early Cambrian magmatism changed from
collision- to extension-related (Sánchez-García et al.
2013). The last Cadomian arc manifestation is repre-
sented by the I-type Culebrin tonalite 532 ± 4 Ma
(Figures 5 and 6; Montero et al. 2000), which is roughly
coeval with peraluminous granitoids produced during
initiation of extension, the so-called ‘early rift-related
event’ (e.g. Galindo 1989; Ochsner 1993; Galindo and
Casquet 2004; Sánchez-García et al. 2010; 2013). This
magmatism was followed by A2-type granites (Figures 5
and 6), such as the Calera de León granite 524 ± 4 Ma
(Montero et al. 2000), associated with the initial extension
in the region (Sánchez-García et al. 2003; 2013).

The ca. 520–500 Ma ‘main rift-related event’ (Sánchez-
García et al. 2003, 2016) produced abundant plutonic and
volcanic rocks. The earliest magmatism associated with this
phase is E-MORB-like mafic lavas and tuffs with ages of ca.
517–512 Ma (Figure 7; Sánchez-García et al. 2008; 2010).
This was followed by widespread OIB-like, transitional alka-
line to tholeiitic, volcanic, and plutonic mafic magmatism
that occurred from ca. 512 to 505 Ma (Figure 7; Galindo
et al. 1990, Sánchez-García et al. 2010). This mafic magma-
tism has εNdt from 5.6 to 1.5 (Figure 8(b); Sánchez-García
et al. 2010; Sarrionandia et al. 2012). It apparently resulted
from asthenospheric upwelling and proto-ocean basin
development with variable amounts of crustal contamina-
tion (Ordóñez-Casado 1998; Chichorro et al. 2008). The
mafic magmatism was coeval with emplacement of crus-
tally-derived anatectic peraluminous intermediate to felsic
granitoids such as theMonesterio granodiorite (510 ± 4Ma,
Montero et al. 1999); mantle-derived extensional peralka-
line A-type complexes such as the bimodal Barcarrota plu-
tonic complex (505 ± 5 Ma Rb–Sr WR, Galindo et al. 1990;
501 + 5-2MaU–Pb TIMS; 501 + 5–2MaU–Pb TIMS, Oschner
1993); and the felsic Castillo granite (502 ± 8 Ma KOBER
method, Montero et al. 1999) (Figures 5 and 6). The A-type
magmatism also reflects the presence of a crustal compo-
nent (Figures 5 and 6) e.g. the Évora orthogneiss (517 ± 15
and 505 ± 5 Ma, U–Pb SHRIMP, Chichorro et al. 2008).

From ca. 490 to 470 Ma, the Cambro-Ordovician rift-
ing produced T- and N-MORB-like mafic rocks (Figure 7),

with εNdt from 10.9 to 1.4 with a main cluster at 6–7.5
(Figure 8(c); Ordóñez-Casado 1998; Gomez-Pugnaire
et al. 2003; Sola, 2007; Chichorro et al. 2008). These
rocks are notably more primitive than the ca.
520–500 Ma mafic magmatism (Figure 8(b)) (Sánchez-
García et al. 2010; Sarrionandia et al. 2012). Felsic mag-
matism during the ca. 490–470 Ma interval was also
extension-related: peralkaline anorogenic and peralumi-
nous anatectic (Figures 5 and 6) (Sánchez-Carretero
et al. 1999; Solá et al. 2008; Díez-Fernández et al.
2014). The former includes peralkaline and alkaline
A-type orthogneisses close to the northern boundary
of the OMZ (ca. 490–470 Ma, LA-ICP-MS, Díez-
Fernández et al. 2014). The most important manifesta-
tion of peraluminous crustal-derived magmatism is the
volcanic and subvolcanic Urra Formation (488 ± 5 Ma
U–Pb SHRIMP Solá et al. 2008). Mixing of mantle- and
crust-derived magmas occurred in this period (Figures 5
and 6). The Carrascal granite (486 ± 7 Ma, U–Pb LA-ICP-
MS, Solá 2007) and the Ribera del Fresno and Las
Minillas orthogneisses (473 + 2–3 Ma, U–Pb TIMS,
Schäfer unpublished data in Oschner 1993), for exam-
ple, are interpreted as crustally contaminated alkaline
magmas (Figure 6(e)) (Oschner 1993; Solá 2007).

At some point after ca. 450 Ma, ocean opening was
arrested in the OMZ prior to broad ocean basin develop-
ment. Then, before ca. 390 Ma, regional rift-related exten-
sion changed to collision (Simancas et al. 2001; Braid
et al. 2011; Pereira et al. 2012b). Carboniferous Variscan
collision-related magmatism comprises ultrabasic to acid,
metaluminous alkaline to calc-alkaline plutons and per-
aluminous dykes (e.g. Montero et al. 2000; Casquet and
Galindo 2004; Moita et al. 2009; Pereira et al. 2009;
Gladney et al. 2014; Cambeses et al. 2015, 2015).

5. Isotopic correlation of the Ossa–Morena
Zone Cambro-Ordovician palaeogeographic
position

With the aim of determining the Cambro-Ordovician
palaeogeographic position of the OMZ we combine
data from various geochronological data sets (see sup-
plementary material I and II):

(i) The Nd model ages of: OMZ Cambro-Ordovician
igneous rocks; OMZ Ediacaran to Ordovician
sedimentary rock; and, also, Ediacaran to
Cambrian sedimentary rocks from the other
Iberian zones (Figure 8).

(ii) The Nd model ages of potential sources for the
OMZ Ediacaran to Ordovician sediments, specifi-
cally Pan-African granitoids from the three North
Gondwana, African, areas: the Anti-Atlas West
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Figure 5. Whole-rock major element composition of the ca. 540–520 Ma, ca. 520–500 Ma, and ca. 490–470 Ma Ossa–Morena Zone
(OMZ) igneous rocks and OMZ sedimentary rocks from Serie Negra and Cambrian units. (a, c, e) TAS plots, note the discrimination of
alkaline and sub-alkaline compositions (fields from Le Maitre 1989). (b, d, f) Molar (Al2O3/(Na2O+K2O)) vs. molar (Al2O3/(CaO+Na2O
+K2O)) plots show the compositional variation of metaluminous, peralkaline and peraluminous samples (fields from Shand 1947).
Numbers in brackets correspond to the data sources in supplementary material I.
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African Craton; the Tuareg Shield; and the
Sahara Metacraton (Figure 8).

(iii) Single and population detrital zircon ages of
Ediacaran to Ordovician sedimentary rocks from
the OMZ, other Iberian zones (Figure 9) and the

three aforementioned North Gondwana, African,
areas (Figures 10 and 11).

(iv) Single and population pre-magmatic and mag-
matic zircon and whole-rock ages of Ediacaran
to Ordovician igneous rocks from the OMZ,

Figure 6. Granitoid discrimination diagrams. (a, c, e) The Nb vs. 1000*Ga/Al (Whalen et al. 1987) and (b, d, f) the Nb-Y-3 Ga (Eby
1992) show the ca. 540–520 Ma, ca. 520–500 Ma, and ca. 490–470 Ma Ossa–Morena Zone igneous rocks and sedimentary rocks from
Serie Negra and Cambrian units. Numbers in brackets correspond to the data sources in supplementary material I.
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Figure 7. Whole-rock minor and trace element diagrams for the Ossa–Morena Zone (OMZ) mafic igneous rocks ca. 540–512 Ma, ca.
512–500 Ma, and ca. 490–470 Ma. (a) Alkaline and tholeiitic compositions (after Floyd and Winchester 1975), (b, c) Mantle source
affinity of each group in Pearce (2008) plots. Chondrite-nomalized REE plots of (d) ca. 540–512 Ma E-MORB-like rocks, (e) ca.
512–500 Ma alkaline/tholeiitic OIB rocks, and (f) ca. 490–470 Ma T- and N-MORB rocks. Normalization values after McDonough and
Sun (1995), the reference mantle source patterns from Sun and McDonough (1989) are shown in(d)–(f). Numbers in brackets
correspond to the data sources in supplementary material I.
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Figure 8. (a)–(c) Nd isotope compositions of ca. 540–520 Ma, ca. 520–500 Ma, and ca. 490–470 Ma Ossa–Morena Zone (OMZ)
Cambro-Ordovician igneous rocks. In addition we include Nd isotopic data for OMZ basement metasedimentary rocks from the
Ediacaran Serie Negra and Cambro-Ordovician units as well as OMZ-Central Iberian Zone (CIZ) boundary metasediments from the
Ediacaran Schist-Greywacke Complex and Cambrian units. For all data, the Nd model ages were calculated based on the method of
DePaolo (1981) (TDM) and Goldstein et al. (1984) (TCR). This summary of Nd model (TDM) age distributions includes: (d) Histogram of
Cambro-Ordovician OMZ igneous rocks, note the variation in age according to mantle or crustal character; (e) Histogram of the OMZ
metasedimentary rocks, note the main peak at ca. 1.7 Ga similar to crust-derived or -contaminated igneous rocks in (d), the OMZ/CIZ
boundary metasediments are shown for comparison; and (f) Histogram of the Tuareg Shield Pan-African granitoids, a potential
source of OMZ sedimentary rocks (solid line and thick grey vertical band in (d)–(f)) and the other north African regions: The Anti-
Atlas West African Craton (dashed line); and the Sahara Metacraton (dotted line). Notably the Tuareg Shield also has a main peak at
ca. 1.7 Ga as detected in the OMZ basement in (e). Numbers in brackets correspond to the data sources in supplementary material I.
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other Iberian Massif zones (Figure 12) and the
three North Gondwana, African, areas (Figure 13).

5.1. Nd model ages

5.1.1. OMZ Cambro-Ordovician igneous rocks
TheNdmodel ages of theOMZCambro-Ordovician igneous
rocks range from ca. 2.0–0.5 Ga, with main clusters at ca.
1.7 Ga, ca. 1.5 Ga, ca. 1.3 Ga, ca. 1.1 Ga and ca. 0.5 Ga
(Figure 8(a–d)).

Mafic rocks may be divided into two main age
groups; on the one hand the rocks with the youngest
Nd model ages, ca. 0.6–0.5 Ga (Figure 8(d)), close to
the ca. 480 Ma crystallization age, are those with
primitive tholeiitic N-MORB compositions (Figure 8
(c)). By contrast, igneous rocks with E-MORB and OIB
compositions, with an apparently variable crustal
input, have older Nd model ages in the range ca.
1.2–0.8 Ga (Figure 8(d)).

Contemporaneous felsic igneous rocks fall into three
age groups. The first group are A-type peralkaline–

Figure 9. Frequency and density distribution of U–Pb SHRIMP and LA-ICP-MS age data for detrital zircons from: (a) Ossa–Morena
Zone (OMZ) Neoproterozoic and Cambro-Ordovician sedimentary rocks. (b) Central Iberian Zone Neoproterozoic and Cambro-
Ordovician sedimentary rocks. (c) Galicia-Tras-os-Montes Zone parautochthonous units latest Ediacaran to latest Cambrian sedimen-
tary rocks. (d) Cantabrian Zone Neoproterozoic and Cambro-Ordovician rocks. To facilitate comparison all plots include the kernel
density distribution of the OMZ ages (thick red/grey line), the Mezoproterozic age range (thick grey vertical band) and pie diagram.
Note that Mesoproterozoic zircons are abundant in the Central Iberian Zone and Cantabrian Zone, less abundant in the
parautochthonous units from Galicia-Tras-os-Montes Zone and absent in the OMZ. Numbers in brackets correspond to the data
sources in supplementary material II N corresponds to individual samples and n with zircon ages.
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Figure 10. Frequency and density distribution of U–Pb SHRIMP and LA-ICP-MS age data for detrital zircons from; (a) Anti-Atlas West
African Craton, Neoproterozoic to Cambrian sedimentary rocks. (b) Sahara Metacraton Cambro-Ordovician sedimentary rocks and (c)
Tuareg Shield Cambro-Ordovician rocks. To facilitate comparison, all plots include the kernel density distribution of the Ossa–Morena
Zone (OMZ) ages (thick red/grey line). Mezoproterozic age range (thick grey vertical band) and pie diagram as in Figure 9. Note the
coincidence of the OMZ and Tuareg Shield patterns, in both Mezoproterozic ages are absent. Numbers in brackets correspond to the
data sources in supplementary material II. N corresponds to individual samples and n with zircon ages.
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alkaline rocks with a Nd model age of ca. 0.8 Ga
(Figure 8(d)), e.g. the Almendral granite and Aceuchal–
Almendradejo orthogneiss (Oschner 1993; Casquet and
Galindo 2004). The second group of rocks have an older
ca. 1.0 Ga Nd model age (Figure 8(d)). This age, it seems,

is mixed, indicated by a transitional composition from
A-type ss. to OMZ basement (Figure 8), e.g. the Castillo
granite (Oschner 1993; Salman 2002) and the Loma del
Aire unit (Sánchez-García et al. 2016). The last group
contains coeval crust-derived and strongly crustally

Figure 11. Frequency and density distribution of U–Pb SHRIMP and LA-ICP-MS age data for detrital zircons from: (a) Ossa–Morena Zone
(OMZ) Cambro-Ordovician sedimentary rocks. (b) Tuareg Shield Cambro-Ordovician sedimentary rocks. (c) Anti-Atlas West African Craton,
Cambrian sedimentary rocks. Cumulative fraction diagrams from the same rocks of: (d) OMZ, (e) Tuareg Shield, and (f) Anti-Atlas West
African Craton. To facilitate comparison, all plots include the kernel density distribution of the OMZ ages in Figure (b) to (c) and cumulative
fraction in Figure (e) and (f) (thick red/grey line), the Mesoproterozic age range (thick grey vertical band) and pie diagram as in Figure 9.
Statistical parameters for zircon population and the Kolmogorov–Smirnov test (K-S) results for the OMZ and the Tuareg Shield and Anti-
Atlas sedimentary rocks in Figure d, e and f. Note the coincidence of the OMZ and Tuareg Shield patterns. Numbers in brackets correspond
to the data sources in supplementary material II. N corresponds to individual samples and n with zircon ages.
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contaminated OMZ magmatism with older Nd model
ages still, of ca. 2.0–1.3 Ga, with clusters at ca. 1.7 Ga, ca.
1.5 Ga, and ca. 1.3 Ga (Figure 8(d)), e.g. Monesterio
anatectic dome (Salman 2002) and Urra volcano–sedi-
mentary formation (Solá et al. 2008).

5.1.2. OMZ Ediacaran–Ordovician sedimentary rocks
The OMZ Ediacaran to Ordovician sedimentary rocks
have an Nd model age range of ca. 1.9–1.1 Ga
(Figure 8(e)) (Schäfer et al. 1993; Mullane 1998; cited in
Fernández-Suarez et al. 2002; López-Guijarro et al. 2008).

Figure 12. Frequency and density distribution of U–Pb ion microprobe, LA-ICP-MS and whole-rock ages of igneous rocks from: (a) Ossa–
Morena Zone Cambro-Ordovician rocks, note the three main magmatic peaks at ca. 540 Ma, ca. 512 Ma, and ca. 480 Ma. Ages older than ca.
570 Ma correspond to pre-magmatic zircons. (b) Galicia-Tras-os-Montes Zone parautochthonous units with a Cambro-Ordovician magmatic
event with an age range of ca. 490–470 Ma centred at ca. 480 Ma. Note the abundant pre-magmatic zircons at ca. 615 Ma. (c) Central Iberian
Zone Cambro-Ordovician igneous rocks, note the main ca. 480 Ma peak and the extraordinary abundance of pre-magmatic, here ages older
than ca. 490Ma are pre-magmatic, centred at ca. 615Ma. Pie diagram age sections as in Figure 9. Numbers in brackets correspond to the data
sources in supplementary material II. N corresponds to individual samples and n with whole-rock and zircon ages.
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Figure 13. Frequency and density distribution of U–Pb ion microprobe, LA-ICP-MS and whole-rock ages of igneous rocks from: (a)
Ossa–Morena Zone Cambro-Ordovician rocks, note the three main magmatic peaks at ca. 540 Ma, ca. 512 Ma, and ca. 480 Ma. Ages
older than ca. 570 Ma correspond to pre-magmatic zircons. change to: (b)Tuareg Shield granitoids whole-rock ages with a main peak
at ca. 525 Ma, here all ages are magmatic. (c) Anti-Atlas West African Craton granitoids with a main cluster at ca. 570 Ma and ca.
600 Ma, note the asymmetric distribution and that the ca. 480 Ma magmatic event is scarcely represented. (d) Sahara Metacraton
granitoids, migmatites, and orthogneisses ages, note the peak at ca. 615 Ma. Pie diagrams age periods as in Figure 9. Numbers in
brackets correspond to the data sources in suplementary material II. N corresponds to individual samples and n with whole-rock and
zircon ages.
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The Ediacaran Serie Negra has an older Nd model age
range of ca. 1.9–1.7 Ga, with a mode of ca. 1.7 Ga
(Schäfer et al. 1993; Casquet et al. 2001; Chichorro
et al. 2008; López-Guijarro et al. 2008). Passive margin
and back-arc basin contexts, both of which are consis-
tent with an input of continental crust, have been sug-
gested (Eguiluz 1988; Quesada 1991) for the formation
of these sedimentary rocks with an old crustal signature
(López-Guijarro et al. 2008). The Nd model age range
from the base to the top of the OMZ Ediacaran–early
Cambrian Malcocinado Formation is ca. 1.6–1.1 Ga
(López-Guijarro et al. 2008). The younger Nd model
ages of the Cambrian sedimentary rocks are a conse-
quence of progressive increase in input of juvenile crust
or mantle material associated with arc-related magma-
tism followed by rifting (López-Guijarro et al. 2008).
Ordovician–Early Devonian OMZ sedimentary rocks, by
contrast, have a Nd model age range of ca. 1.8–1.6 Ga,
related to continental crust input in a passive margin
context (López-Guijarro et al. 2008).

As noted above, some of the OMZ Cambro-
Ordovician mafic and felsic igneous rocks have an Nd
model age that corresponds to a mixture between old
material derived from the OMZ basement and young
mantle-derived magmatism, giving a composite main
Nd model age cluster at ca. 1.0 Ga (Figure 8(d)).
Therefore, the true Nd model age of the OMZ sediment
end-member should be older than ca. 1.0 Ga. So, of the
OMZ Ediacaran to Ordovician sedimentary rocks, the
best estimate Nd model age for the OMZ sediment
source may be the Serie Negra or the Ordovician sedi-
mentary rocks which have a range of ca. 1.9–1.6 Ga and
a mode at ca. 1.7 Ga (Figure 8(e)). Significantly, the
Cambro-Ordovician crust-derived magmatism has a
similar Nd model age range ca. 1.9–1.5 Ga with mode
of ca. 1.7 Ga (Figure 8(d)).

5.1.3. The other Iberian Massif zones Ediacaran–
Ordovician rocks
Neoproterozoic to Ordovician Central Iberian Zone and
Cantabrian Zone sedimentary rocks have Nd model
ages in the range ca. 2.0–1.3 Ga similar to comparable
age rocks in the OMZ, but with a younger cluster at ca.
1.5 Ga (Nägler et al. 1995; Fernández-Suarez et al. 1998;
Gutiérrez-Alonso et al. 2003; Bea et al. 2010; Pastor-
Galán et al. 2013b; Villaseca et al. 2014; Rubio-Ordóñez
et al. 2015; Fuenlabrada et al. 2016; Ugidos et al. 2016).
Furthermore, the Cambro-Ordovician crust-derived,
Central Iberian Zone Ollo de Sapo orthogneisses also
have a Nd model age mode of ca. 1.5 Ga (Bea et al.
2007, 2010; Montero et al. 2007; Talavera et al. 2013).
Even the southerly Central Iberian Zone Neoproterozoic
Greywacke Schist Complex and Cambro-Ordovician

sedimentary rocks just to the north of the boundary
with the OMZ have an Nd model age mode of ca.
1.5 Ga, within a range ca. 1.9–1.3 Ga (Figure 8(e))
(López-Guijarro et al. 2008).

5.1.4. North Gondwana, African, basement
granitoids
Bea et al. (2010) summarized published Nd model ages
of Pan-African granitoids from the three main north
African Gondwana areas: the Sahara Metacraton, the
Anti-Atlas West African Craton, and the Tuareg Shield.
These authors considered the Pan-African granitoids as
a potential source for the Central Iberian Zone
Ediacaran to Cambrian sedimentary rocks. Similarly, we
use the Nd model age data collated in the present work
to identify potential North Gondwana African sources of
the OMZ Ediacaran to Ordovician sedimentary rocks
(supplementary material I).

The Sahara Metacraton Pan-African granitoids have
Nd model ages with a mode of ca. 1.5 Ga in a range of
ca. 2.3–1.1 Ga and a minor older cluster at ca. 2.7 Ga
(Figure 8(f)) (Harms et al. 1990; Bea et al. 2010, 2011).
The Anti-Atlas West African Craton Pan-African grani-
toids have an asymmetric Nd model age distribution
with a continuous range from 1.8–0.8 Ga with a cluster
at ca. 1.0 Ga and small populations at ca. 2.2, ca. 2.7 and
ca. 3.0 Ga (Figure 8(f)) (e.g. Blanc et al. 1992; Gasquet
et al. 2005; Tahiri et al. 2010). The Tuareg Shield Pan-
African granitoids have Nd model ages from ca. 2.5–
1.0 Ga with a mode of ca. 1.7 Ga and a minor cluster at
ca. 3.1 Ga (Figure 8(f)) (e.g. Liégios et al. 1994; Ferré et al.
1996; Abdallah et al. 2007).

5.1.5. Comparison of the OMZ Nd model ages with
other Iberian Massif zones and the North Gondwana,
African, potential sources
It is worth mentioning that like Bea et al. (2010), we rule
out the Arabian Nubian Shield as a possible OMZ sedi-
ment source from the outset because its Nd model age
is too young, ca. 0.74 Ga (Stern 2002; Moreno et al.
2014). In addition, we also rule out the regions of the
Sahara Metacraton, West African Craton and Tuareg
Shield with crustal signatures older than ca. 2.5 Ga,
because they are scarce and older than the OMZ main
cluster ca. 1.7 Ga (Peucat et al. 1996, 2003, 2005; Barth
et al. 2002; Bea et al. 2014).

The Sahara Metacraton Pan-African granitoids Nd
model ages match the northwest Iberia Ediacaran to
Ordovician sedimentary rocks with a range of ca. 2.3–
1.0 Ga and a mode of ca. 1.5 Ga (e.g. Fernández-Suárez
et al. 2014) and those of the Central Iberian Zone
Cambro-Ordovician crust-derived Ollo de Sapo orthog-
neisses (Bea et al. 2010; Talavera et al. 2013).
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Accordingly, a link between the Central Iberian Zone
and the Sahara Metacraton was proposed (Bea et al.
2010; Talavera et al. 2013). The Central Iberian Zone
Ediacaran to Ordovician sedimentary Nd model age
main cluster is younger, ca. 1.5 Ga, than the same age
OMZ sedimentary rocks Nd model age distribution,
which is centred at ca. 1.7 Ga (Figure 8(e)). This leads
us to exclude the Sahara Metacraton as the source of
the OMZ sedimentary rocks (Figure 8(e,f)).

In comparison with the Anti-Atlas West African
Craton Pan-African granitoids, the OMZ Ediacaran to
Ordovician sedimentary rocks have generally older Nd
model ages (Figure 8(e,f)). The former have more abun-
dant relatively young ages centred at ca. 1.0 Ga
(Figure 8(f)). Moreover, ca. 1.9–1.6 Ga Nd model ages,
which are common in the OMZ, are scarce to non-
existent in the Anti-Atlas West African Craton granitoids
(Figure 8(f)). However, the OMZ Cambrian sedimentary
rocks do include some younger Nd model ages of ca.
1.6–1.1 Ga (López-Guijarro et al. 2008). These younger
ages may be explained by an input of juvenile material
from: (i) mixed mantle-crustal source consistent with the
OMZ Cambrian rifting or (ii) input of juvenile crust from
Cadomian arc sediments. The Anti-Atlas West African
Craton Pan-African granitoids are apparently not the
main source of the OMZ Ediacaran and Ordovician sedi-
mentary rocks old-crust signature. Nevertheless, we
consider that an input from these granitoids may
explain the juvenile-crust component character of the
OMZ Cambrian sedimentary rocks.

The Pan-African granitoids from the Tuareg Shield
show a wide range of Nd model ages, ca. 2.5–1.0 Ga,
centred at ca. 1.7 Ga (Figure 8(f)). These granitoids
match the main OMZ sedimentary rocks Nd model age
distribution. In addition, like the OMZ sedimentary
rocks, the Tuareg Shield Pan-African granitoids also
have a population of younger Nd model ages.
Considered together these characteristics make the
Tuareg Shield granitoids the best fit as a source for
the OMZ late Ediacaran to early Cambrian sedimentary
rocks (Figure 8(e,f)).

This, thus, implies that the OMZ was geographically
close to the Tuareg Shield but could also have received
a sediment contribution from the Anti-Atlas West
African Craton placing it to the north-northwest of the
former and northeast of the latter (present-day
coordinates).

5.2. Single and population zircon and whole-rock
ages

To clarify further the OMZ position during the Cambro-
Ordovician, we undertook a study of OMZ detrital

zircons from sedimentary rocks and pre-magmatic and
magmatic zircons from igneous rocks and compared
them with data from the autochthonous Central
Iberian Zone and Cantabrian Zone; the parautochtho-
nous Galicia-Tras-os-Montes Zone and North Gondwana
(supplementary material II).

5.2.1. Sedimentary rocks detrital zircons
5.2.1.1. The Ossa–Morena Zone. The U–Pb ion
microprobe and LA-ICP-MS age determinations on det-
rital zircons from the OMZ Neoproterozoic to Ordovician
sedimentary rocks reveal an abundance of
Neoproterozoic ages (Figure 9(a)). Some 51% of the
data are Cryogenian to Ediacaran, ca. 720–541 Ma.
These data have a Pan-African peak, so typical of
North Gondwana, at ca. 600 Ma (Figure 9(a)). Notably,
older Neoproterozoic Tonian ages, ca. 1.0–0.72 Ga,
represent 10% of data (Figure 9(a)). Palaeoproterozic,
ca. 2.5–1.6 Ga, and Archaean, >2.5 Ga, ages are also
abundant, 29% of the data, with main clusters at ca.
2.9, ca. 2.4, and ca. 1.6 Ga (Figure 9(a)). Remarkably,
Mesoproterozoic, ca. 1.0–1.6 Ga ages are lacking in the
OMZ sedimentary rocks (Figure 9(a)).

5.2.1.2. The other Iberian Massif zones. In the
Central Iberian Zone Neoproterozoic to Ordovician sedi-
mentary rocks, Neoproterozoic Cryogenian to Ediacaran
ages also abundant, 60% of the data, with a peak at ca.
615 Ma (Figure 9(b)). Tonian, 16%, and Mesoproterozoic,
8%, ages are also relatively common yielding a peak at
ca. 1.0 Ga (Figure 9(b)). Palaeoproterozic and Archaean
ages comprise 18% of data, but the main peaks are
tighter than in the OMZ, ca. 2.9–2.5 Ga and ca. 2.3–
1.9 Ga (Figure 9(b)).

In the Cantabrian Zone Neoproterozoic to Ordovician
sedimentary rocks, Cryogenian to Ediacaran
Neoprotezoic ages are again abundant, 58% of the
data, with a peak at ca. 620 Ma (Figure 9(d)). As in the
Central Iberian Zone, the Cantabrian Zone contains
both Tonian and Mesoproterozic zircon populations,
29% of the data, with a well-defined peak at ca. 1.0 Ga
(Figure 9(d)). Palaeoproterozoic and Archaean zircons
comprise 23% of the data, with peaks at ca. 2.7–2.4 Ga
and ca. 2.0 Ga (Figure 9(d)).

In the Galicia-Tras-os-Montes Zone, the ages of zir-
cons from the parautochthonous units sedimentary
rocks were considered. These rocks were deposited
from the latest Neoproterozoic to the latest Cambrian
(Díez-Fernández et al. 2010). Their zircon populations
include Neoproterozoic Cryogenian to Ediacaran ages,
52% of the data, with a main cluster at ca. 650 Ma
(Figure 9(c)). Tonian and Mesoproterozoic zircons are
also present, 6% of the data, but are less abundant
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than in the Central Iberian Zone or the Cantabrian Zone
(Figure 9(c)). In addition, Palaeoproterozoic zircons, 30%
of the data, are numerous with main populations at ca.
2.3–2.1 Ga and ca. 1.9 Ga (Figure 9(c)). Archaean zircons
comprise 9% of the data with a range of ca. 3.5–2.5 Ga
and a peak at ca. 2.7 Ga (Figure 9(c)).

5.2.1.3. The North Gondwana, African, areas. The
Sahara Metacraton, and the Arabian Nubian Shield,
Cambrian to Ordovician sedimentary rocks have abun-
dant Neoproterozoic zircons (Kolodner et al. 2006;
Meinhold et al. 2011; Morton et al. 2013; compiled in
Meinhold et al. 2013). Neoproterozoic Cryogenian and
Ediacaran ages comprise 40% of the data, with a main
peak at ca. 615 Ma (Figure 10(a)). The Sahara
Metacraton sedimentary rocks also have a significant
population of Mesoproterozoic and Tonian ages, 32%
of the data, with a main peak at ca. 1.0 Ga (Figure 10(a)).
They have abundant Palaeoproterozoic and Archaean
ages, some 23% of the data, with small peaks at ca.
2.8–2.5 Ga and ca. 2.2–1.7 Ga (Figure 10(a)).

The sediment detrital zircons age pattern of the
Neoproterozoic to Cambrian rocks from the Anti-Atlas
West African Craton, reveals even more abundant
Neoprotezoic Cryogenian and Ediacaran ages, 55% of
the data, with the typical Pan-African North Gondwana
peak at ca. 600 Ma (Figure 10(b)). Tonian, 5%, and
Mesoproterozic, 2%, zircons, although uncommon are
present (Figure 10(b)). Palaeoproterozic ages are abun-
dant, 35% of the data, with a main peak centred at ca.
2.2 Ga and a minor peak ca. 2.5 Ga (Figure 10(b))
whereas the Archaean zircon population is scarce, only
2% (Figure 10(b)).

The Tuareg Shield Cambro-Ordovician sedimentary
rocks present a bimodal detrital zircon age distribution.
Neoproterozoic Cryogenian and Ediacaran ages com-
prise 66% of the data with a peak at ca. 615 Ma
(Figure 10(c)). Tonian ages, 9% of the data, are present
but these sedimentary rocks also have a Mesoproterozic
gap: only 2% of data have an age of ca. 1.5 Ga, and
there is no detectable ca. 1.0 Ga peak (Figure 10(c)).
Palaeoproterozic and Archaean ages are abundant, 31%
of the data, with a main peak at ca. 2.2–1.5 Ga
(Figure 10(c)).

5.2.1.4. Comparison of the OMZ detrital zircon ages
with other Iberian Massif zones and the North
Gondwana, African, potential sources. Comparison
of detrital zircon populations in Neoproterozoic to
Ordovician sedimentary rocks from the Iberian Massif
zones with the north African areas (Figures 9 and 10)
revealed a northeast Gondwana (current coordinates)
source for the zircon populations. The Central Iberian

Zone, Cantabrian Zone and West-Asturian Leonese
Zone have been linked to the Sahara Metacraton (Bea
et al. 2010; Talavera et al. 2012; Henderson et al. 2016)
and the Arabian Nubian Shield (Fernández-Suárez et al.
2014; Shaw et al. 2014).

Díez-Fernández et al. (2010), on the other hand, sug-
gested an intermediate position between the Sahara
Metacraton and Anti-Atlas West African Craton, for the
Galicia-Tras-os-Montes Zone parautochthonous units.
Their new position was based on the abundance of
Cryogenian, Tonian and Mesoproterozoic ages, ca. 1.2–
0.75 Ga, which are less abundant in the Anti-Atlas West
African Craton, but well represented in the Sahara
Metacraton (Figures 10(a,b)).

The main differences between the OMZ and the
Central Iberian Zone, Cantabrian Zone, and Galicia-
Tras-os-Montes Zone parautochthonous units are that
the OMZ sedimentary rocks do not contain
Mesoproterozoic zircons, ca. 1.0 Ga, or an abundance
of Cryogenian and Tonian ages (Figure 9(a–d)). Thus the
Sahara Metacraton is once more ruled out as a possible
palaeogeographic source for the OMZ (Figure 10(a)).

The two other potential North Gondwana sources for
the OMZ detrital zircons are the Anti-Atlas West African
Craton and the Tuareg Shield (Figure 10(b,c)). The detri-
tal zircon age distributions of the Anti-Atlas West
African Craton and Tuareg Shield sedimentary rocks
are both similar to those of the OMZ, for example the
distribution of Neoproterozoic, Palaeoproterozoic, and
Archaean ages (Figure 10). Also, Mesoproterozoic ages,
ca. 1.0 Ga, are absent in the three areas (Figure 10(b,c)).
However, there are some differences between the Anti-
Atlas West African Craton and the OMZ to ‘zircon age
distributions’: Cryogenian and Tonian ages are more
abundant in the OMZ than the Anti-Atlas West African
Craton, in particular for comparable Ediacaran age sedi-
mentary rocks (Figure 10(b,c)). Also, the
Palaeoproterozic zircon distribution in the Anti-Atlas
West African Craton is centred at ca. 2.2 Ga with few
representative ages in the range ca. 1.9–1.5 Ga which
are common in the OMZ and also, notably, in the
Tuareg Shield (Figure 10(b,c)). Significantly, Linnemann
et al. (2011) noted that the ca. 1.9–1.5 Ga zircon popula-
tion is absent in the Anti-Atlas West African Craton but
is typical in rocks from the western Hoggar of the
Tuareg Shield (cf. Drost et al. 2011) (Figure 10(b,c)).

To look in more detail at the similarities and differ-
ences in the distribution of the detrital zircon ages, we
focussed on the zircon populations in just the Cambro-
Ordovician sedimentary rocks from the OMZ, Tuareg
Shield, and Anti-Atlas West African Craton (Figure 11).
The zircon age distribution in the OMZ Cambro-
Ordovician sedimentary rocks is quite similar to the
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whole detrital zircon population that also includes the
Ediacaran sedimentary rocks (Figures 9(a) and 11(a)).
This is not the case for the Anti-Atlas West African
Craton Ediacaran and Cambro-Ordovician sedimentary
rocks zircon populations (Figures 10(b) and 11(c)). The
OMZ detrital zircon age distribution matches the Tuareg
Shield ages better than those of the Anti-Atlas West
African Craton (Figure 11(b)). The differences are parti-
cularly appreciable in the Anti-Atlas West African Craton
Neoproterozoic, late Cryogenian to early
Mesoproterozic ages, ca. 1.2–0.95 Ga, which are scarce
to absent in both the OMZ and the Tuareg Shield
(Figure 11(b,c)). The Palaeoproterozic zircons are more
abundant in the OMZ and the Tuareg Shield, ca. 28% of
the data, than in the Anti-Atlas West African Craton,
19% of the data. This difference in Palaeoproterozic
variation is also marked by the aforementioned gap in
the range ca. 1.9–1.5 Ga in the Anti-Atlas West African
Craton compared with the other regions (e.g. Abati et al.
2010a; Linnemann et al. 2011; Avigad et al. 2012)
(Figure 11(a–c)). Another important difference is in the
Archaean zircons, which make up 6% of the OMZ data
and are present, although scarce, in the Tuareg Shield,
2%, but virtually absent, ca. 1%, in the Anti-Atlas West
African Craton Cambro-Ordovician sedimentary rocks
(Figure 11(a–c)).

The differences between the zircon populations in
the three zones are clear in cumulative fraction plots
(Figure 11(d–f)). We used the two-sample Kolmogorov–
Smirnov (K-S) test to make a quantitative comparison of
the zircon populations (cf. Berry et al. 2001). This test
compares the maximum difference of the cumulative
fraction function for two different distributions, i.e.
here, the detrital zircon age distributions. When the
maximum difference between two populations (D) is
significant, the null hypothesis is rejected, thus, the
two distributions come from different populations. The
D value of two distribution depends on the number of
observations, n > 20, as well as on the similar abun-
dance of observations in the compared distributions
(Guynn and Gehrels 2010). Two populations can be
considered to be from the same source if the probability
value (p) corresponds to a confidence level of 95%
(p ≥ 0.05) (Guynn and Gehrels 2010). Shaw et al.
(2014) performed a K-S test on the Ordovician Central
Iberian Zone, Cantabrian Zone and West-Asturian
Leonese Zone Amorican quartzite. The results showed
that potential source areas are the Sahara Metacraton
and Arabian Nubian Shield.

In the present work we carried out this test to assess
the similarities and differences between the OMZ, Anti-
Atlas West African Craton and Tuareg Shield. We took
into account the analytical error of each measurement

(cf. Guynn and Gehrels 2010). Another factor that had to
be considered was the relative abundance of Cambrian
zircons in the OMZ compared with similar age rocks
from the Tuareg Shield and Anti-Atlas West African
Craton. So the K-S test was only performed on
Precambrian >541 Ma detrital zircons from the
Cambro-Ordovician sedimentary rocks from the three
regions (Figure 11(d–f)).

The K-S test revealed a great affinity between the
Precambrian detrital zircon age distribution in the OMZ
and Tuareg Shield Cambro-Ordovician sedimentary
rocks (D 0.100, p 0.06), and so supports the connection
between these two regions observed in the age histo-
grams and density distributions (Figure 11(e)). The Anti-
Atlas West African Craton Cambrian sedimentary rocks
detrital zircons, by contrast, have a cumulative distribu-
tion different from the OMZ and Tuareg Shield and the
K-S test rejects the possibility that this population had
the same source as those regions (D 0.197, p < 0.001)
(Figure 11(f)).

5.2.2. Igneous rocks pre-magmatic and magmatic
zircons
To complement the Nd model age and detrital zircon
data, we also consider the pre-magmatic and magmatic
zircon age data from the Cambro-Ordovician extension-
related igneous rocks from the OMZ, Central Iberian
Zone and Galicia-Tras-os-Montes Zone parautochtho-
nous units. The compiled geochronological data also
includes Rb–Sr WR and U–Pb population zircon ages.
These data are compared with similar data from the
three north African areas (supplementary material II).

5.2.2.1. The Ossa–Morena Zone. Cadomian-arc and
rift-related magmatic events were recorded by the
OMZ zircons with peaks at ca. 550 Ma, ca. 520 Ma and
ca. 480 Ma, 75% of the data (Figure 12(a)). The OMZ pre-
magmatic ages include Neoproterozoic, Tonian,
Cryogenian, and mostly Ediacaran centred at ca.
615 Ma 19% of the data, as well as less common
Palaeoproterozoic ages, 3%, conspicuously once more
Mesoproterozoic ages are absent (Figure 12(a)).

5.2.2.2. The other Iberian Massif zones. In the
Galicia-Tras-os-Montes Zone parautochthonous units,
Cambro-Ordovician magmatism comprises varied calc-
alkaline, peraluminous, alkaline and peralkaline meta-
granites and metavolcanic rocks (e.g. Arenas 1984;
Montero et al. 1998). The magmatism occurred from
ca. 500 to 470 Ma (Figure 12(b)). There was a change
in the composition of the magmatism over time: (i) Calc-
alkaline ca. 500–490 Ma (Rodríguez et al. 2007; Abati
et al. 2010b) and (ii) Peraluminous felsic ca. 498–462 Ma
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(Talavera et al. 2013) coeval with alkaline to peralkaline
felsic ca. 475–470 Ma (Montero et al. 2009b; Díez-
Fernandez et al. 2012). The latter event is comparable
with the Central Iberian Zone that had a magmatic peak
at ca. 480 Ma, 34% of the data (Figure 12(b)) (Montero
et al. 2009b; Abati et al. 2010b; Díez-Fernandez et al.
2012; Talavera et al. 2013; Gutierrez-Alonso et al. 2016).
The Galician peraluminous metagranites and metavol-
canic rocks also have abundant pre-magmatic zircons
(Figure 12(b)). These include: lower to upper Cambrian
ages, 21% of the data (Figure 13(b)); Neoproterozoic
Tonian, Cryogenian and Ediacaran ages, 23% of data
centred at ca. 615 Ma; Mesoproterozoic, Stenian ages
5% of the data, in the range ca. 1.2–1.0 Ga (Figure 12
(b)); and Palaeoproterozoic ages of ca. 2.3–1.6 Ga, 9%,
are also present (Figure 12(b)).

In the Central Iberian Zone, Cambro-Ordovician mag-
matism is only preserved in the peraluminous metavol-
canic rocks and metagranites of the Ollo de Sapo
Formation (Parga-Pondal et al. 1964; Montero et al.
2009a; Díez-Montes et al. 2010). The magmatism
occurred from ca. 496 to 474 Ma with the peak of
activity, marked by new zircon formation, at ca.
480 Ma, 18% of the data (Figure 12(c)) (Bea et al. 2007;
Montero et al. 2007; Talavera et al. 2013). Pre-magmatic
ages are extraordinarily abundant in these rocks. They
include lower to upper Cambrian ages, 29% of the data
(Figure 13(c)); Neoproterozoic ages, again Tonian,
Cryogenian and Ediacaran centred at ca. 615 Ma that
comprise 40% of the data (Figure 12(c));
Mesoproterozoic ages are also recognizable, 3% of the
data, centred at ca. 1.1 Ga; as well as Palaeoproterozoic
ages, 8% of the data (Figure 12(c)).

5.2.2.3. The North Gondwana, African, areas. The
Sahara Metacraton granitoids do not record Cambro-
Ordovician magmatism but have Neoproterozoic mag-
matic zircon ages, 78% of data centred at ca. 615 Ma
(Figure 13(c)). Zircons with these ages are also found,
pre-magmatic, in the OMZ, Central Iberian Zone and
Galicia-Tras-os-Montes Zone parautochthonous units.
Furthermore, the Sahara Metacraton granitoids also
contain abundant Palaeoproterozoic and Archaean
ages, 19% of data (Figure 13).

The Neoproterozoic to lower Cambrian magmatic
events recorded in the Anti-Atlas West African Craton
have an asymmetric distribution, with main Ediacaran
peaks at ca. 600 Ma and ca. 560 Ma, 58% of the data
(Figure 13(c)). A few middle Cambrian magmatic ages,
5% of data, are also detected (Figure 13(c)). This region
also records abundant Palaeoproterozoic magmatism at
ca. 2.0 Ga, 28% of the data, that is not present in the

OMZ (cf. Barbey et al. 2004; Peucat et al. 2005)
(Figure 13(c)).

Regarding the Tuareg Shield, the first thing to men-
tion is that, unfortunately, there are few published sin-
gle zircon ages. As mentioned above like in the other
regions, the compiled geochronological data also
includes Rb–Sr WR and U–Pb population zircon ages
(Figure 13(b)).

The youngest igneous event in the Tuareg Shield was
a major latest Neoproterozoic–Cambrian intrusion form-
ing the alkaline–peralkaline Iforas province, ca. 556 Ma,
the Tisselliline pluton, ca. 555 Ma, and the Taourirt
magmatic province at ca. 525 Ma (Figure 13(b)).
Azzouni-Sekkal et al. (2003) interpreted these as post-
collisional alkaline magmatism related to the transten-
sional mega-shear zones that provoked asthenosphere
upwelling and melting. Bertrand et al. (1986) dated
Ediacaran, ca. 615 Ma, granitoids in the north of the
region, contemporaneous magmatism was also dated in
Central Hoggar (Liégeois et al. 2003; Abdallah et al.
2007) and in the Eastern Nigeria province at ca.
650–570 Ma (e.g. Ferré et al. 1996; Ekwueme and
Kröner 1998). Other regional Neoproterozoic, mainly
Cryogenian, magmatism includes granitoids in the
Nigerian Air region, ca. 750–650 Ma (Liégeois et al.
1994) (Figure 13(b)). Somewhat older Neoproterozoic
Tonian ca. 870–800 Ma, granitoids crop out in wes-
tern-central Hoggar as do Palaeoproterozoic Eburnean,
ca. 2.5 and ca. 2.0 Ga granitoids (Figure 12(b)) (e.g. Caby
2003). In addition, Palaeoproterozoic zircons, ca. 1.9–
1.8 Ga, were described in the western Hoggar high-
temperature metamorphic rocks (Peucat et al. 1996,
2003; Bruguier et al. 2008). Archaean zircons, ca.
3.5 Ga, are present as pre-magmatic ages in Pan-
African granites from the Hoggar (Abdallah et al. 2007)
and some West Nigeria outcrops (Kröner et al. 2001).

5.2.2.4. Comparison of the OMZ igneous pre-mag-
matic and magmatic zircon ages with other Iberian
Massif zones and the North Gondwana, African,
areas potential sources. The pattern of Central
Iberian Zone and Galicia-Tras-os-Montes Zone parau-
tochthonous units magmatic ages is quite different
from the OMZ. The first two only show a magmatic
peak at ca. 480 Ma whereas the OMZ, in addition to a
ca. 480 Ma peak, also has older peaks at ca. 520 Ma and
ca. 550 Ma (Figure 12). The difference in the age of the
magmatic events led Montero et al. (2009a) to propose
a different, albeit unspecified, palaeogeographic posi-
tion for the OMZ relative to the Central Iberian Zone.
This suggestion is also supported by the pre-magmatic
age data, as stated previously the Central Iberian Zone
and Galicia-Tras-os-Montes Zone both have
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Mesoproterozoic ages that are very sparse in the OMZ
(Figure 12).

Bea et al. (2010) compared pre-magmatic and mag-
matic zircon age data from the Central Iberian Zone
orthogneisses and north African granitoids in their
study of the early Palaeozoic palaeographic position of
the Central Iberian Zone. Based on this and the afore-
mentioned Nd model ages they concluded that, at that
time, the Central Iberian Zone was located further east
than had previously been thought, next to the Sahara
Metacraton. A similar scenario was proposed for the
Galicia-Tras-os-Montes Zone parautochthonous units
based on the compositional characteristics of the per-
aluminous magmatism (Talavera et al. 2013).

Considering other regions, the Anti-Atlas West
African Craton magmatic events are not a good fit
with the timing of the OMZ events (Figure 13).
Cambrian events preserved in the former are older
than in the OMZ or any of the other Iberian Massif
zones (Figure 13). Furthermore, the Ordovician ca.
480 Ma magmatic event identified in the OMZ, Central
Iberian Zone, and Galicia-Tras-os-Montes Zone parau-
tochthonous units is hardly represented in the Anti-
Atlas West African Craton magmatic rocks (Figure 13
(c)). In fact, the Anti-Atlas West African Craton and
OMZ rift-related magmatism was, seemingly, diachro-
nous. It began in the latest Ediacaran in the former
(Thomas et al. 2002, 2004; Walsh et al. 2012) but later,
in the Cambrian ‘early and main rift-related events’, in
the latter (Sánchez-García et al. 2008, 2010).

Revealingly perhaps, the youngest Tuareg Shield
Taourit magmatic province alkaline event (Azzouni-
Sekkal et al. 2003) was contemporaneous with the
OMZ ‘early rift-related event’ at ca. 540–520 Ma
(Sánchez-García et al. 2008, 2010). Consistent with this,
the OMZ magmatism has an alkaline composition with a
clear crustal contribution that, we have suggested,
resulted in a mixed Nd model age range of ca. 1.7–
1.0 Ga (Figure 8(a)). This is in agreement with the
mixed origin suggested by Azzouni-Sekkal et al. (2003)
for the Tuareg Shield alkaline magmatism. The recogni-
tion of a comparable coeval tectonomagmatic event in
both the OMZ and the Tuareg Shield provides further
support for the suggestion that the regions were prox-
imal during the Cambro-Ordovician.

6. The palaeogeographic position of the Ossa–
Morena Zone during the Cambro-Ordovician

Stampfli et al. (2013) and Torsvik and Cocks (2013)
considered an early Palaeozoic rifting event in the
northern part of Gondwana in the transition between
the Cadomian and Variscan orogenies. Associated

magmatism has been suggested to be a consequence
of west to east (present-day coordinates) Rheic ocean
opening and associated separation of a ribbon conti-
nent from the northern margin of Gondwana (Figure 14
(a)) (Murphy et al. 2006; Nance et al. 2010, 2012).

The question is then, whether the new palaeogeo-
graphic positions recently suggested for the Iberian
Massif zones, as detailed above, and the interpretation
of their Cambro-Ordovician crustal evolution, in particu-
lar magmatism, are consistent with this scenario. We
consider this and also the Cambro-Ordovician strati-
graphic similarities and differences between the OMZ
and the other Iberian Massif zones and the north African
areas. Geochronological data combined with magmatic
and stratigraphic interpretations permits us to propose
a tectonomagmatic scenario for the OMZ during the
Cambro-Ordovician.

6.1. The previously accepted palaeogeographic
position of the Ossa–Morena Zone

The OMZ has been linked with the western region of
the Anti-Atlas West African Craton during the Cambro-
Ordovician (Murphy and Nance 1989; Nance and
Murphy 1996). This scenario was proposed based on
palaeontological data that indicated the OMZ and
other regions of Cadomia had fauna typical of the per-
iphery of Gondwana (Robardet et al. 1994; Robardet and
Gutiérrez-Marco 2004). Palaeomagnetic data, albeit
inconclusive, was also interpreted to suggest a north
Africa position for the OMZ and other Cadomian regions
at that time (e.g. Torsvik et al. 1992; Stampfli et al. 2002).
Other data that led to the suggestion that the OMZ was
positioned close to the Anti-Atlas West African Craton,
was the age distribution of the detrital zircon popula-
tion in the sedimentary rocks (Nance and Murphy 1994;
Fernández-Suárez et al. 2002; Linnemann et al. 2008;
Pereira et al. 2011, 2012c). As noted above, this connec-
tion was based on the abundance of OMZ
Neoproterozoic, Palaeoproterozoic, and Archaean ages
and the lack of Mesoproterozoic ages, ca. 1.0 Ga in the
two regions (Figure (10)).

6.2. Towards a new palaeogeographic position for
the Ossa–Morena Zone

Álvaro et al. (2014) reviewed the relationship between
the western sector of the Anti-Atlas West African Craton
and the OMZ. They noted that there was a difference in
the age and timing of several important lithologies.
First, in the western Anti-Atlas West African Craton
Cryogenian and Ediacaran sedimentary sequences are
well developed, whereas in the OMZ only Ediacaran,
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Serie Negra, sedimentary rocks crop out. Second, the
two regions have different zircon ages in arc-related
syn-orogenic basins, specifically the Ediacaran sedimen-
tary rocks in both areas have different maximum sedi-
mentation ages: ca. 630–610 Ma in the Anti-Atlas West
African Craton and ca. 590–545 Ma in the OMZ. Third,

they noted a variation in the timing of key tectonomag-
matic events, such as calc-alkaline arc-related magma-
tism, in the Anti-Atlas West African Craton, ca.
615–579 Ma, and the OMZ, ca. 582–535 Ma (Figure 13
(a,c)). Also, as noted above, the post-collisional magma-
tism in the Anti-Atlas West African Craton occurred at

Figure 14. Palaeogeographic reconstructions of northern Gondwana: (a) Transition from continental arc to west-to-east Rheic Ocean
opening that resulted in ribbon continent separation from northern Gondwana during the Precambrian–Cambrian transition (based
on Linnemann et al. 2008; Torsvik and Cocks 2013). (b) Middle to late Cambrian rift progression provoked the separation of peri-
Gondwana terranes Avalonia, South Portuguese Zone-like (SPZ?) then Cadomia (AM: Armonican Massif; SXZ: Saxo-Thuringian Zone;
TBU: Tepla-Barrandian Unit) (after Linnemann et al. 2008). This ca. 520–500 Ma period, contemporaneous with the ‘main rift-related
event’ in the Ossa–Morena Zone (OMZ), is associated with initiation of a ‘Gondwana-ward’ branch of the Rheic Ocean to the west
(palaeogeographic position) of the OMZ close to Tuareg Shield. Our new more easterly palaeoposition for the OMZ is adjacent to that
recently defined for the Galicia-Tras-os-Montes Zone parautochthonous units (GTOMZ*), West-Asturian Leonese Zone (WALZ),
Cantabrian Zone (CZ) and Central Iberian Zone (CIZ) close to the Sahara Metacraton. (c) Ordovician, ca. 490–470 Ma, rifting evolution
with passive margin formation that resulted in generation of oceanic crust in the west in the OMZ, whereas in the Galicia-Tras-os-
Montes Zone and Central Iberian Zone magmatism was incipient rift propagation related. For clarity, we include the main detrital
zircon ages of the OMZ, Central Iberian Zone and the three north African areas as well as a summary of magmatism during Rheic
Ocean branch opening from west to east. In addition, shallow and deep ocean and land morphology are shown, from Torsvik and
Cocks (2013) as is the bathimetric gradient established for the OMZ and Central Iberian Zone after Robardet and Gutiérrez-Marco
(2004). Thick dashed lines in (b) and (c) correspond to Figure 15 cross-sections. Cratonic regions age ranges are taken from the
compilation in the present work and from compilations by Pereira et al. (2008) and Drost et al. (2011). Sediment transport directions
are from Avigad et al. (2003) and Shaw et al. (2014).
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ca. 577–552 Ma, whereas in the OMZ comparable mag-
matism, i.e. the ‘early rift-related event’, happened later
at ca. 530–527 Ma (Figure 13(a,c)). Notably, Bea et al.
(2015) dated the first evidence of peralkaline magma-
tism generated in an intraplate rifting environment in
the West African Craton at ca. 527–517 Ma. This mag-
matism is compositionally comparable to the peralka-
line magmatism associated with rifting progression in
the OMZ at ca. 490–470 Ma. Rift propagation in both
areas marks a southwest to northeast trend, present-day
coordinates.

So, the Cambro-Ordovician progression of events in
the Anti-Atlas West African Craton and the OMZ was
apparently diachronous from the southwest to the north-
east. This leads us to propose that if the OMZ was close
to the Anti-Atlas West African Craton then it would have
been in a more northeasterly rather than westerly posi-
tion. In agreement with this, the data presented here link
the OMZ and the Tuareg Shield. All available geochrono-
logical data, be it Nd model ages, dates of detrital zircons
in sedimentary rocks, or pre-magmatic and magmatic
ages, is consistent with the OMZ having a clear input
from, and being adjacent to, the Tuareg Shield during
the early Palaeozoic (Figure 14(b)).

Furthermore, similarities can be established between
the sedimentary sequences in the OMZ and Tuareg
Shield Tassili Ouan Ahaggar basin. In both cases the
sedimentation record reflects an important change from
continental deposits to marine deposition with a clear
input of Pan-African rocks (Beuf et al. 1971; Liñán and
Quesada 1990; Ghienne et al. 2007a, 2007b). Moreover,
Cambrian deposits unconformably overlie Precambrian

basement. The early Cambrian series in the OMZ and
the Tuareg Shield are fluvial to shallow marine deposits
that have been related to a Rheic Ocean rifting context
(cf. Sánchez-García et al. 2010; Linnemann et al. 2011).
Also, early Ordovician deposits, in both the OMZ and
Tuareg Shield Tassili Ouan Ahaggar basin, are detrital to
open marine sediments although these are somewhat
deeper in the former (Beuf et al. 1971; Giese et al.
1994a). Similarly, late Ordovician to Silurian deposits in
both the Tuareg Shield Tassili Ouan Ahaggar basin and
the OMZ are characterized by monotonous black marine
shelf shales (Beuf et al. 1971; Gutiérrez-Marco et al. 1998),
which subsequently progressed to more shallow-marine
Early Devonian terrigenous series (Beuf et al. 1971;
Oliveira et al. 1991).

7. Cambro-Ordovician rifting of the North
Gondwana margin related to west to east
opening of the Rheic Ocean

7.1. Stratigraphic and palaeontological data

The indication of a somewhat deeper marine sedimen-
tation in the OMZ than in the Tuareg Shield is consis-
tent with a more northerly marginal palaeoposition
relative to the northern margin of Gondwana. It also
fits with a Cambro-Ordovician northeasterly sediment
transport direction (Beuf et al. 1971). So, the overall
correlation between the two regions outlined above
and established here link them to Cambro-Ordovician
rifting and Rheic Ocean opening off North Gondwana
(Murphy et al. 2006; Nance et al. 2010).

Figure 14. (Continuted).
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Figure 15. Model for the formation of the ‘Gondwana-ward’ Rheic Ocean branch that propagated from west to east during: (a)
Cambrian ca. 520–500 Ma, ‘main rift-related event’ period during which there was: generation of A-type, S-type, mantle-crust mixed
and E-MORB to OIB mafic magmatism in the Ossa–Morena Zone (OMZ); and, collapse-related extension that affected Cambrian
sedimentary successions. Notably this magmatic event is absent in the Galicia-Tras-os-Montes Zone parautochthonous units
(GTOMZ*) and the Central Iberian Zone (CIZ) that were further east close to the Sahara Metacraton. (b) Cambro-Ordovician, ca.
490–470 Ma, oceanic crust generation in the OMZ resulted from rift progression, with generation of A- and S-type magmatism
further east in the GTOMZ*, whereas in the CIZ more limited rifting generated S-type magmatism during the same period. Note that
during the Ordovician a deeper marine context is suggested for the OMZ and shallow deposition conditions were defined for the CIZ
from Armorican quartzite sedimentation (Robardet and Gutiérrez-Marco 2004.
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Analogous, albeit diachronous, rifting is also
recorded elsewhere along the North Gondwana margin.
The stratigraphic sequences of the Anti-Atlas West
African Craton and part of the European Variscan
Massif preserve evidence of an early Cambrian rifting
stage that evolved to a passive margin context during
the Ordovician (Drost et al. 2011; Álvaro et al. 2014). In
addition, Cambro-Ordovician rifting, admittedly not as
extensively developed as in the OMZ, has also been
described in other Iberian Massif zones, for example in
the Central Iberian Zone and Cantabrian Zone (cf.
Robardet and Gutiérrez-Marco 2004; Pastor-Galán et al.
2013a). Early Cambrian Central Iberian Zone shallow
marine deposits (Liñán et al. 2002) are coeval with the
OMZ Cambrian marine carbonate unit and upper detri-
tal formation (Liñán and Quesada 1990). However, these
rocks have been interpreted differently in the two
regions. In the Central Iberian Zone calm shallow-mar-
ine deposition is suggested to have occurred prior to
Cambro-Ordovician rifting (Simancas et al. 2004)
whereas in the OMZ coeval sedimentation apparently
resulted from turbiditic and shelf siliciclastic deposition
during a collapse-related extensional process (Figure 14
(b,a)) (cf. Sánchez-García et al. 2003).

Drawing on palaeontological data, Robardet and
Gutiérrez-Marco (1990a, 1990b, 2004) concluded there
was no doubt that both the OMZ and Central Iberian
Zone have North Gondwana type sediments and faunas.
However, whereas the Cambrian sedimentation was
similar in the two regions, the lower Ordovician–Lower
Devonian successions differ appreciably. The strati-
graphic and palaeontological indications suggest that
the OMZ was situated in a deep ocean that shallowed
eastward to the Galicia-Tras-os-Montes Zone and
became shallower still further east in the West-
Asturian Leonese Zone, Cantabrian Zone, and Central
Iberian Zone (Figures 14(c) and 15(b)).

Arguments for the eastward shallowing also include
the lower Ordovician, ca. 477–465 Ma, Armorican
Quartzite (e.g. Gutiérrez-Marco et al. 2002). This facies
is interpreted as an off-shore Gondwana passive margin
unit deposited on a wide stable shallow marine plat-
form. The quartzite is well-exposed in the Central
Iberian Zone and Cantabrian Zone. It is not present,
however, in the OMZ (Figures 14(c) and 15(b))
(Robardet and Gutiérrez-Marco 1990a, 1990b, 2004)
because there the succession comprises deeper water
shaley and silty deposits characteristic of a more distal
deeper marine environment (Figures 14(c) and 15(b)).
Accordingly, a bathimetric gradient has been estab-
lished from deeper, OMZ, to shallow, Central Iberian
Zone (Figures 14(b–c) and 15(a,b)) (Hammann and
Henry 1978; Gutiérrez-Marco et al. 1998). This earlier

initiation and more extensive progression of rifting is,
once more, consistent with the west-to-east opening of
the Rheic Ocean (cf. Nance et al. 2012).

Linking back to geochronological constraints, Shaw
et al. (2014) studied U–Pb detrital zircon age data from
the Armorican Quartzite to determine the provenance
variability of the Cantabrian Zone, West-Asturian
Leonese Zone, and Central Iberian Zone along the
early Ordovician North Gondwana margin. They con-
cluded that their data were consistent with the pro-
posed easterly off-shore Sahara Metacraton and
Arabian Nubian Shield location of the zones proposed
by Bea et al. (2010), Pastor-Galán et al. (2013a), Talavera
et al. (2013), and Fernández-Suárez et al. (2014).

7.2. Magmatic data

It is worth underlining that the timing and composition
of early Palaeozoic magmatism in the Iberian Massif
zones detailed above are equally consistent with the
west-to-east opening of the Rheic Ocean and also with
the new palaeogeographic positions. As can be
deduced from the range of magmatic ages presented,
Cambro-Ordovician magmatism began earlier and was
more protracted in the more westerly OMZ than the
more easterly, Cambro-Ordovician coordinates, Central
Iberian Zone (Figure 15(a)). Magmatism was also more
prolonged in the OMZ than in the Galicia-Tras-os-
Montes Zone parautochthonous units, which have also
recently been situated in an eastern position off the
Sahara Metacraton (Figures 14(b) and 15(a)).

The OMZ Cambro-Ordovician plutonic rocks, ca.
520–470 Ma, which include peralkaline anorogenic
magmatism, are related to progression of extension
that started in the early Cambrian (Figure 15). This
extensional event is characterized by bimodal magma-
tism comprising mafic and felsic rocks best exposed in
the west of the OMZ, and by the generation of alkaline
magmas, (Figure 15(a,b)).

The Central Iberian Zone magmatism during the
same period is restricted to ca. 480 Ma calc-alkaline to
peraluminous S-type rocks preserved as metagranite
and metavolcanic orthogneisses that contain abundant
pre-magmatic zircons. Bea et al. (2007) interpreted the
numerous inherited zircons to reflect fast crustal melt
magma generation and emplacement related to intru-
sion of mantle-derived mafic magmas at the base of the
crust in an extensional environment (Figure 15(b)) (cf.
Díez-Montes et al. 2010; Talavera et al. 2013). This led
Bea et al. (2007) to conclude that their model was
consistent with the hypothesis of separation and dis-
persal of ribbon-continent fragments from the northern
margin of Gondwana. Accordingly, Rubio-Ordóñez et al.
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(2012) recently identified an early Ordovician tonalitic-
granodioritic belt in the Central Iberian Zone.

Similar to the Central Iberian Zone, the Galicia-Tras-
os-Montes Zone parautochthonous units contain ca.
480 Ma S-type and A1-type granites, no coeval mafic
rocks crop out indicating that rifting did not progress as
much as in the OMZ (Figure 15(b)). The weaker
Ordovician magmatic expression in the Galicia-Tras-os-
Montes Zone and Central Iberian Zone father east,
Cambro-Ordovician coordinates, than the OMZ, is con-
sistent with production related to an eastward propa-
gating rift.

The pattern of the OMZ Cambro-Ordovician mag-
matism is consistent, temporally and compositionally,
with the diachronous development of a narrow ocean
basin related to a rifted volcanic margin, comparable
say to the Ethiopian rift Red Sea type model (Pearce
2008). There, the progression was from E-MORB tho-
leiitic to OIB-like alkaline and finally T- and N-MORB
with a declining crustal input over a period of some
30 million years. Initial felsic magmatism, comparable
to the OMZ ‘early rift-related event’ at ca. 540–520 Ma,
changed to predominantly intermediate and then
bimodal basic-felsic as rifting proceeded, equivalent
to the OMZ ‘main rift-related event’ at ca.
520–500 Ma. Finally, the Red Sea context evolved
from continental to oceanic crust generation
(Wolfenden et al. 2005), as preserved in the OMZ in
the ca. 490–470 Ma T- and N-MORB mafic and alkaline
and peralkaline felsic magmatism. We suggest that the
OMZ preserves a Gondwana-ward southerly branch of
the Rheic Ocean that opened diachronously from west
to east rather than the main ocean (cf. Linnemann
et al. 2008) (Figures 14 and 15). Further east, in the
Galicia-Tras-os-Montes Zone, coeval extension is
reflected by Ordovician mantle-derived A1-type gran-
ites and subsequent crustal melt S-type granitoids
(Figures 14 and 15). Further eastward still in the
Central Iberian Zone, where rifting did not progress
so extensively, no mantle-derived magmatic expres-
sion is described other than provocation of a crustal
partial melting event that produced the S-type Ollo de
Sapo orthogneisses with abundant pre-magmatic zir-
cons (Figures 14 and 15).

The sedimentological and magmatic data lead us
to suggest that the OMZ was located to the west of
the other Iberian Massif zones during the Cambro-
Ordovician. Nevertheless, stratigraphic data, as
detailed above, and the apparent sedimentary con-
tributions from both the Tuareg Shield and the Anti-
Atlas West African Craton, place it further east than
its previously accepted palaeogeographic position off
the western Anti-Atlas West African Craton (Murphy

and Nance 1991; Nance and Murphy 1994; Sánchez-
García et al. 2008; Pereira et al. 2012c) (Figure 14(b)).
Recent Cambro-Ordovician palaeogeographic recon-
structions of North Gondwana establish a more east-
erly palaeogeographic position for Cadomia (Stampfli
et al. 2002; Simancas et al. 2009; Torsvik and Cocks
2013). This is consistent with our new scenario that
suggests a more easterly northeast Anti-Atlas West
African Craton to northwest Tuareg Shield, Cambro-
Ordovician palaeogeographic position of the OMZ.

8. Conclusions

(i) Isotopic data, including Nd model ages, dates of
detrital zircons in Ediacaran to Ordovician sedimentary
rocks and pre-magmatic and magmatic zircons in
Cambro-Ordovician igneous rocks permit the reinterpre-
tation of the palaeogeographic position of the OMZ
during the Cambro-Ordovician. At that time the OMZ
was situated adjacent to the Tuareg Shield and to the
northeast, present-day coordinates, of the Anti-Atlas
West African Craton. This new position is consistent
with recent Cambro-Ordovician palaeogeographic
reconstructions of North Gondwana that also place
other Iberian zones further east, present-day coordi-
nates, than previously thought.

(ii) Along the North Gondwana margin, a rifting con-
text was recorded during the Cambro-Ordovician asso-
ciated with Rheic Ocean opening diachronously from
west to east. The magmatic expression of this extension
is weaker in the more easterly Iberian Massif zones than
the westerly location of the OMZ proposed in the pre-
sent work. These differences are reflected in: the more
prolonged mafic and felsic magmatism in the OMZ (ca.
540–470 Ma); the temporally more restricted peralka-
line-alkaline and peraluminous magmatism in the para-
utochthonous units from the Galicia-Tras-os-Montes
Zone; and, calc-alkaline to peraluminous magmatism
in the Central Iberian Zone (ca. 480 Ma).
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