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� Abstract
Imaging flow cytometry (IFC) produces up to 12 spectrally distinct, information-rich
images of single cells at a throughput of 5,000 cells per second. Yet often, cell
populations are still studied using manual gating, a technique that has several draw-
backs, hence it would be advantageous to replace manual gating with an automated
process. Ideally, this automated process would be based on stain-free measurements, as
the currently used staining techniques are expensive and potentially confounding.
These stain-free measurements originate from the brightfield and darkfield image
channels, which capture transmitted and scattered light, respectively. To realize this
automated, stain-free approach, advanced machine learning (ML) methods are
required. Previous works have successfully tested this approach on cell cycle phase
classification with both a classical ML approach based on manually engineered fea-
tures, and a deep learning (DL) approach. In this work, we compare both approaches
extensively on the problem of white blood cell classification. Four human whole blood
samples were assayed on an ImageStream-X MK II imaging flow cytometer. Two sam-
ples were stained for the identification of eight white blood cell types, while two other
sample sets were stained for the identification of resting and active eosinophils. For
both data sets, four ML classifiers were evaluated on stain-free imagery with stratified
5-fold cross-validation. On the white blood cell data set, the best obtained results were
0.778 and 0.703 balanced accuracy for classical ML and DL, respectively. On the eosin-
ophil data set, this was 0.871 and 0.856 balanced accuracy. We conclude that classify-
ing cell types based on only stain-free images is possible with all four classifiers.
Noteworthy, we also find that the DL approaches tested in this work do not out-
perform the approaches based on manually engineered features. © 2019 International

Society for Advancement of Cytometry

� Key terms
Imaging flow cytometry; label-free, stain-free, deep learning, machine learning,
classification, white blood cells, leukocytes, eosinophils.

Imaging flow cytometry (IFC) produces up to 12 spectrally distinct, information-rich
images of single cells at a throughput of up to 5,000 cells per second with a resolu-
tion of 0.25 μm per pixel (60× magnification) (1). This includes at least two
stain-free image channels capturing transmitted (bright-field) and scattered light
(dark-field), and up to 10 images capturing fluorescence emitted by targeted fluores-
cent stains. These characteristics make IFC an ideal candidate for in-depth analyses
of cell populations as an approach to unlock the inherent heterogeneity contained
within all biological systems. For example, IFC has been used to detect rare circulat-
ing endothelial cells, which have been correlated with various disease states when
present in elevated levels (2). Furthermore, IFC allowed for more automation and
informative visualizations in the in vitro micronucleus assay, used to study geno and

1Data Mining and Modelling for
Biomedicine, VIB Center for
Inflammation Research, Ghent, Belgium
2Department of Applied Mathematics,
Computer Science and Statistics, Ghent
University, Belgium
3Institute of Cellular Medicine, Newcastle
University, Newcastle upon Tyne, UK
4Newcastle Upon Tyne Hospitals NHS
Foundation Trust, Newcastle upon Tyne, UK
5Great North Children’s Hospital,
Newcastle Upon Tyne Hospitals NHS
Foundation Trust, Newcastle upon
Tyne, UK
6Institute of Health and Society,
University of Newcastle, Newcastle
upon Tyne, UK

Received 21 May 2019; Revised 10
September 2019; Accepted 2
October 2019

Grant sponsor: Fonds Wetenschappelijk
Onderzoek, Grant number1SB9419; Grant
sponsor: Nvidia; Grant sponsor: Institu-
tional Strategic Support Fund

Additional Supporting Information may
be found in the online version of this
article.
*Correspondence to: Daniel Peralta Data
Mining and Modelling for Biomedicine,
VIB Center for Inflammation Research,
Ghent, Belgium. Email: daniel.peralta@
irc.vib-ugent.be
Andrew Filby Institute of Cellular Medi-
cine, Newcastle University, Newcastle
upon Tyne, UK. Email: Andrew.Filby@
newcastle.ac.uk

Cytometry Part A � 97A: 308–319, 2020

COMPUTATIONAL ARTICLE

https://orcid.org/0000-0002-9527-7162
https://orcid.org/0000-0001-8229-154X
https://orcid.org/0000-0002-0415-1506
https://orcid.org/0000-0002-7544-8411
mailto:
mailto:
mailto:
mailto:
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcyto.a.23920&domain=pdf&date_stamp=2019-11-05


cytotoxicity (3). IFC has also been used to study the par-
titioning of molecules across the plane of cell division in a
statistically robust manner (4–6).

In this and most other IFC research, cell populations are
studied with manual gating on features extracted from the
IFC data by specialized software. With manual gating, cells
are hierarchically divided into sub-populations by setting
boundaries, or gates, on 2D scatter-plots of cell measure-
ments. These measurements are usually a combination of
fluorescence intensities derived from a stain targeting a cell of
interest, and morphological characteristics derived from the
stain-free cell images. Although this approach has led to
numerous insights into cell population heterogeneity (7), it
has some serious drawbacks, mainly:

i. manual gating is hard to reproduce,
ii. manual gating is subjective and biased, and
iii. manual gating is time-consuming for large experi-

ments (8).

Manual gating is an expert-driven process, which intro-
duces two main sources of operator bias. First, gates set on
the scatter plots are highly subjective and can therefore differ
significantly between operators. The second source is specific
to IFC: The choice of which features to compute, and on
which area of interest in the image (referred to as mask; Fig. 1)
to compute them, greatly influence downstream analysis of
the data. The operator skill is again an important factor of
variability (9).

Analyzing IFC data with manual gating limits the poten-
tial of the information-rich, spatially registered data it pro-
vides. This is because gating is a bivariate hierarchical
analysis done on 2D scatter plots, which allow only two fea-
tures to be combined at once, whereas a multivariate
approach combining a multitude of features can reveal much
more intricate patterns in the same data.

Fluorescent stains have drawbacks as well. Firstly, the
staining process is expensive and has potential confounding
effects on the cells under study, influencing achieved results
(10,11). Secondly, usually several stains are required to pre-
cisely identify a cell (12), making the experimental workflow
labor intensive and slower. Because of these reasons stain-free
experiments have become of particular interest in the bio-
imaging field over the last decades (13–15).

A potential solution to overcome these drawbacks is to
automate the gating process with machine learning (ML) and
do this with only stain-free measurements. This approach
(1) combines all available features by using complex,
nonlinear ML models, (2) limits operator bias through auto-
mation, and (3) potentially obsoletes fluorescent staining by
only using stain-free measurements capturing inherent cell
morphology.

In previous work, several approaches have been explored
to apply ML for the classification of IFC data: Hennig et al.
(16) developed an open-source solution, which uses the soft-
ware package CellProfiler (17) to extract image features from
stain-free cell images, and classical supervised ML to classify
the cells in subpopulations. They were able to classify Jurkat
cells into five phases of the cell cycle.

Another example is the work by Eulenberg et al. (18), who
developed a deep learning (DL) model, termed DeepFlow. It is
able to reconstruct the cell cycle of Jurkat cells, as well as to
study the disease progression of diabetic retinopathy. DeepFlow
is a convolutional neural network (CNN), which autonomously
extracts relevant features from input images to perform a classifi-
cation, eliminating the requirement for specialized tools to
extract features. DL is currently widely used in image classifica-
tion and is increasingly being adopted in image cytometry.

In this work, we contribute to the problem of stain-free
cell classification by extensively comparing both classical ML
and DL, testing out two models per approach. This comparison
aims at giving clear insight into the value of novel DL tech-
niques in IFC analysis (Fig. 2). This is an important assessment
to make given the significant expertise and computational
power required to use DL classifiers. Additionally, we validate
the work by Eulenberg et al. on DeepFlow and suggest the use
of data augmentation to improve performance.

Our classification experiments are run on two high-quality
white blood cell data sets from healthy human whole blood
samples, acquired on the ImageStreamX MK-II platform.
Unlike the work mentioned above, these data sets do not focus
on the cell cycle of Jurkat cells, but on the identification of vari-
ous types of white blood cells (WBC). In addition, the first data
set contains specific cell subtypes (for example, CD4+ and CD8
+ T-cells). In the second data set, active and resting eosinophils
(EOS) are identified. Activation state is of importance as ele-
vated eosinophil activation is linked with allergic disease and
intrinsic asthma for example (19,20). The stain-free classifica-
tion of these more subtle cell types has not been attempted in
previous work and is challenging as differences in their stain-
free measurements are expected to be less pronounced.

In short, we use two high-quality IFC data sets to assess
whether a ML-aided approach can exploit morphological pat-
terns in bright- and darkfield measurements to enable stain-
free classification of various cell types.

We systematically compare both a classical and a DL-
based approach.

MATERIALS AND METHODS

Data sets

The data sets used in this work are both acquired from human
blood samples. In each data set, a different fluorescent staining
panel was used to phenotype immune cells. Fluorescence
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information was analyzed by expert manual gating to identify
the ground truth label for each cell in a sample, akin to
phenotyping by conventional flow cytometry. These ground
truth labels were used to train ML classifiers, as described later.

Ethical approval to obtain blood from healthy volunteers
was granted by the County Durham and Tees Valley Research
Ethics Committee (12/NE/0121). All data sets in this work
are available upon request.

WBC: This data set contains the measurement results from
WBC from two whole blood samples collected into citrate buffer.
For phenotyping experiments, 500 μl of whole blood was placed
in a 15 ml falcon tube, so that approximately 2 × 106 WBCs
were stained with the following antibody cocktail: CD15 FITC
(BD, cat no: 332778, clone MMA, 5 μl per test), Siglec8 Pe
(Biolegend, cat no: 347104, clone 7C9), CD14 PeCF594 (BD, cat
no: 562334, clone Mφ9, 5 μl per test), CD19 PerCP-CY5.5 (BD,
cat no 340951, clone SJ25C1, 20 μl per test), CD3 BV421 (BD,

cat no: 562426, clone UCHT1, 5 μl per test), CD45 V500 (BD,
cat no: 647450, clone 2D1, 5 μl per test), CD4 BV605 (BD, cat
no: 562658, clone RPA-T4, 5 μl per test), CD56 APC (BD, cat
no: 341025, clone NCAM16.2, 5 μl per test), and CD8 APC-
CY7 (BD, cat no: 557834, clone SK1, 5 μl test). Whole blood
was incubated with the staining cocktail for 1 h on ice after
which red blood cell (RBC) lysis was performed by the addition
of 4.5 ml of 1× BD FACS lysis solution (cat no: 349202) pre-
pared from a 10× stock in reagent grade water (SIGMA, cat
no: W4502). Lysis was carried out for 10 min at room tempera-
ture in the dark. Samples were then spun down at 500 g for
5 min and washed twice in 50 ml of wash buffer (PBS + 2%
FBS). Samples were resuspended in a final volume of 60 μl of
wash buffer and transferred to 1.5 ml Eppendorf tubes for
acquisition.

Eight different white blood cell types were phenotyped
with this panel: CD4+/CD8+ T-cells, neutrophils, monocytes,

Figure 1. The stain-free brightfield and darkfield images used in this work acquired with the Amnis ImageStream-X MKII for a random

cell, images for each channel and accompanying masks are shown, respectively, in the first and second column. The binary masks, which

are computed by IDEAS, are combined with the image, setting all background pixels to 0. The images are center-cropped to 90 × 90 pixels

to form the final input image for the convolutional neural networks, as seen in the last column. [Color figure can be viewed at

wileyonlinelibrary.com]
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B-cells, CD56+ NKT-cells, other NKT-cells and EOS. See
Figure 3 for an overview of the gating process.

The data set is imbalanced: it contains 17,358 CD4+ T-
cells, 8,022 CD8+ T-cells, 59,034 CD15+ neutrophils, 2,655
monocytes, 4,256 CD19+ B-cells, 2,214 CD56+ NKT-cells,
1,318 other NKT-cells, and 3,156 EOS.

EOS: This data set contains the measurement results
from WBC from 2 whole blood samples collected into Hepa-
rin buffer. For eosinophil activation experiments, 1 ml of
whole blood was transferred to 15 ml Falcon tubes, one for
each of the following conditions (1) Ex-vivo control that was
kept on ice for the duration of stimulation, (2) 20 min

Figure 2. Machine learning enables cell classification based on stain-free imaging flow cytometry imagery. White blood cells from healthy

humans are imaged by an imaging flow cytometer, in our case the ImageStream-X MK-II. Features are extracted from stain-free and

fluorescence imagery. These features are used in a manual gating procedure to obtain ground truth data. This ground truth and

accompanying stain-free images and features are used to train classical machine learning and deep learning models to perform cell

classification. [Color figure can be viewed at wileyonlinelibrary.com]
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stimulation, (3) 40 min stimulation, (4) 60 min stimulation,
(5) unstimulated control, incubated for the duration of stimu-
lation. In the first instance, stimulations were performed
using PMA/Ionomycin (eBiosciences Cell Stimulation Cock-
tail, cat no: 00–4,970-03) at a 1× working concentration. In
order to ensure all incubations ended at the same time, the
60 min stimulation was started first, then the 40 min stimula-
tion, 20 min later, and finally the 20 min stimulation a further
20 min later. At the end of the stimulation period, the sam-
ples were divided into two 15 ml Falcon tubes (500 μl in
each). One sample set was stained with the following antibody
cocktail: Siglec8 Pe (Biolegend, 5 μl per test), CCR3/CD192
BV421 (Biolegend, cat no: 310714, clone 5E8, 5 μl per test),
CD69 APC (BD, cat no: 555533, clone FN50, 20 μl per test),
and CD11b (Biolegend, cat no: 101226, clone M1/70, 5 μl
per test).

The other set of samples were left unstained to control for
the effects of antibody labelling. Samples were incubated for 1 h
on ice after which RBC lysis was performed as described for the
WBC panel. Again samples were washed 2 times in wash buffer
and finally resupsended in 60 μl of the same for transfer into
1.5 ml Eppendorf tubes prior to acquisition.

Active and resting EOS were phenotyped with this panel.
See Figure 3 for an overview of the gating process.

The data set is imbalanced: it contains 1,291 active and
2,595 resting EOS, and 186,671 non-EOS.

Acquisition Details for ImageStreamX MKII Imaging

Flow Cytometer

IFC was performed using an ImageStreamx MKII (Luminex
Corporation, Seattle, WA) system. The system was fully
calibrated with ASSIST (Automated Suite of System-wide
ImageStreamX Tests) using the INSPIRE software. ASSIST
performs specific calibrations and tests, measuring, evaluat-
ing and storing thousands of values to ensure all subsys-
tems are operating within normal limits. It is run daily to
ensure optimal performance of the ImageStreamX instru-
ment (21).

The following acquisition configuration was used:
100 mW 488 nm blue laser, 120 mW 450 nm violet laser, and
a 642 nm 150 mW red laser. In all cases, maximum excitation
laser powers were employed in order to achieve best signal to
noise without any pixel saturation (raw max pixel values
below 4,096). Bright-field imagery was collected using an LED
array with wavelengths of 420 nm to 480 nm in channel
1 (brightfield 1) and 570 nm to 595 nm in channel
9 (brightfield 2). Side scatter was collected in channel 6 using
a dedicated 758 nm laser, again set to maximize signal and
avoid saturation. FITC emission was collected in CH2, Pe in
CH3, PeCF594 in CH4, PerCP-CY5.5 in CH5, BV421 in
CH7, V500 in CH8, BV605 in CH10, APC in CH11, and
APC-CY7 in CH12. The images were acquired in the highest
sensitivity mode and using the 60× magnification.

Figure 3. The “ground truth” gating strategy based on fluorescence antibody information. Briefly, WBCs were gated based on CD45 V500

fluorescence and darkfield (DF). Single cells were identified based on the Area and Aspect ratio of the bright-field image in channel (BF1).

Focused cells were identified based on the Gradient RMS feature (>50AU). NK, NKT, and T cells were then identified based on CD3 and

CD56 fluorescence with the T-cell population further subdivided into CD4 and CD8 subsets. The remaining cells were identified as either B

cells (CD19 positivity), Eosinophils (Siglec 8 positivity), Monocytes (CD14 positivity), or Neutrophils (CD15 positivity). Example

multispectral, compensated images are shown for each class of immune cell identified at 60× magnification. It should also be noted that

for ML/DL, cells were always compensated and samples were preprocessed to the stage of CD45 positive, single in focus cells, as shown

above. [Color figure can be viewed at wileyonlinelibrary.com]
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Each of the stained and unstained samples were acquired
with excitation lasers on and off to control for any potential resid-
ual fluorescence spill-over into label-free channels after spectral
correction. Default spectral correction was performed using the
built-in wizard in the IDEAS analysis software package. This
includes a correction based on the flat-field and dark-current cali-
bration values obtained from the daily ASSIST tests. There is also
the application of the compensation matrix derived from the sin-
gle stained bead controls: Antibody capture beads (ABC total cap-
ture beads, Thermo scientific, cat no: A10513) were used to
prepare single stained controls by adding 1 drop of positive, 1 drop
of negative, and then 1 test amount of each individual antibody
per tube. These controls were acquired with the bright-field and
side scatter illumination turned off in order to generate the spill-
over matrix. This matrix was then applied to fully stained samples.

Classification Models

Models in this work were divided into two categories:
(1) models which take precomputed manually engineered fea-
tures as input, and (2) models which take images as input.
The latter type of models automatically learns and extracts
required features from the input images. These models, usu-
ally CNNs, have been applied successfully in many image
classification tasks (22–24). Using models with automatically
engineered features further reduces the influence of expert
knowledge on the gating process, at the cost of an increase in
the computational effort required to train the model.

In total four classification models were tested, two per
model category. For the first model category, referred to as
classical ML, we tested a random forest (RF) (25) and gradi-
ent boosting (GB) classifier (26). Both models are ensembles
of weak decision trees, which are widely used and successful
in classification settings (27,28). The number of used trees
was set to 500 for random forest and 100 for gradient boo-
sting. All other hyper-parameters were kept at default values
provided by the scikit-learn library (29).

For the second model type, we tested two DL CNN
architectures: ResNet18 (RN) (23) and DeepFlow (DF) (30).

ResNet is a state-of-the-art architecture in image classifica-
tion. It eases optimization of the network’s weights by
reformulating convolutional layers as learning residual functions,
with reference to the layer inputs. ResNet has obtained the first
place on the ImageNet Large-Scale Visual Recognition Challenge
2015, an important competition in the field of computer vision
(23). In this work, a variant of 18 layers deep is used.

DeepFlow is an adaptation of the Inception architecture
(31), optimized for classification of IFC data. It was previ-
ously applied to reconstruct the cell cycle of Jurkat cells, as
well as to study the disease progression of diabetic retinopa-
thy, using stain-free IFC imagery.

The DL models were trained for 100 epochs with the
Adam optimization algorithm (32). Adam is an adaptive
learning rate optimizer. This type of optimizer risks getting
stuck in a local optimum in the initial optimization phase. To
avoid this, we used a warm-up phase (33,34): for 6 epochs the
learning rate was set to 10−5. Afterward, the learning rate was
increased to 10−3 and 10−4 for white blood cell and

eosinophil classification, respectively. To allow the optimiza-
tion to converge, the learning rate was reduced with a factor
of 0.8 each time a monitored validation metric stopped
improving for 5 epochs. The resulting learning rate schedules
are shown in Supporting Information Figures S3 and S2.
L2-regularization was also applied with recommended weights
of 10−4 for ResNet18, and 5 × 10−4 for DeepFlow. For effi-
ciency reasons, early stopping was implemented, as well: if a
monitored metric did not improve for 20 epochs training was
interrupted. The early stopping and learning rate reduction
metric was computed on a held-out set of samples.

Both DL models were implemented in the Keras-
Tensorflow Python library (version 1.13.1) (35). DeepFlow
implementation was based on code from the DeepFlow
Github Repository.1 ResNet18 implementation was taken
from the Keras-ResNet Github Repository.2 All code used to
generate results in this work is publicly available on Github.3

Data Preparation

To run the experiments, we needed all stain-free imagery and
accompanying masks, features computed on stain-free imag-
ery, and ground truth cell type labels.

After spectral compensation (see Supporting Information
Table S3 for compensation matrix), the IDEAS software pro-
duces one compensated image file (CIF) per biological sam-
ple, containing compensated imagery for all channels, as well
as the accompanying masks. These masks indicate the area of
the image containing only the pixels of interest in a certain
channel. In the case of brightfield images, the mask typically
encloses the entire cell. By masking the images, we avoid
influence of background noise or irrelevant information sur-
rounding the cell (36) (see Fig. 1).

In order to work efficiently with these images and masks,
they were read and decoded from the CIF format using the
Python Bio-Formats library (37) and saved to an HDF5 data
set. As the CNNs require all images to have uniform dimen-
sions, each channel and corresponding mask for each image
was also center-cropped to 90 by 90 pixels. To perform these
steps a custom command line tool was written in Python. By
decoding the images once and saving them in decoded form,
we can significantly speed up the training of the neural net-
work, as decoding images is a costly operation. The code for
this tool is made publicly available on GitHub.4

After preparation of the images the final input dimen-
sion to the CNNs was 90 × 90 × 3. The three input channels
were brightfield 1, brightfield 2, and darkfield. Before being
fed to the CNN, masks were applied to the images to set all
background pixels to 0 (see Fig. 1).

1 https://github.com/theislab/deepflow, last accessed on 7th of
May 2019.
2 https://github.com/raghakot/keras-resnet, last accessed on 7th of
May 2019.
3 https://github.com/saeyslab/DeepLearning_for_ImagingFlowCytometry,
last accessed on 7th of May 2019.
4 http://github.com/saeyslab/cifconvert, last accessed on 7th of
May 2019.
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The manually engineered feature set was computed in
IDEAS. The software computes 76 base features per image
channel that are divided into five categories: size, location,
shape, texture, and signal strength. Detailed feature defini-
tions can be found in the IDEAS documentation (36). An
overview of all features used in this work is given in
Supporting Information Table S4.

Data Augmentation

Many classifiers, including the ones used in this work, are
sensitive to class imbalance (38). Therefore, we augmented
the data sets before training in order to balance the class
occurrence frequencies. For the two classical ML algorithms
considered in this article, this was done by randomly
oversampling minority classes.

An image-based data augmentation approach is
implemented for the CNN classifiers. As is commonly done
for CNNs, we applied random label-saving image transforma-
tions to existing training instances, supplementing the data
manifold (22,39). We used random horizontal or vertical flips,
rotations (with a randomly chosen angle between −180

�
and

180
�
), and translations (with a randomly chosen amount of

pixels in the x- and y-direction between −6 and 6).
Eulenberg et al. do not apply data augmentation in their

work on DeepFlow (30). However, in Supporting Information
Figure S1, we show that this leads to poor generalization per-
formance on our data sets. Therefore, we apply data augmen-
tation during training for the remainder of our experiments.

Model Validation

To validate the classification performance of the trained
models, a stratified 5-fold cross validation (CV) strategy is
used. For each fold, training data were augmented to balance
the class occurrence frequencies and used to train a model.
The model was then validated using non-augmented instances
from the validation set. The predictions made on the valida-
tion data were summarized in a confusion matrix per fold.
The obtained matrices were summed together, giving one rep-
resentative confusion matrix per CV experiment.

Together with the confusion matrix, the balanced accu-
racy was reported. The balanced accuracy is the arithmetic
mean of class-specific accuracies. It can be computed from
the confusion matrix and is formalized as follows:

1
n

Xn

i= 1

θi ð1Þ

where θi is the class-specific accuracy, and n is the num-
ber of classes. The balanced accuracy is suited for imbalanced
validation sets, as it does not suffer from the accuracy para-
dox. This means it will not favor a classifier that exploits class
imbalance by biasing toward the majority class (40).

Visualizing Feature Spaces

Dimensionality reduction techniques can be used to give an
insight into high-dimensional spaces, by projecting them onto

a low-dimensional space. In this work, we applied Uniform
Manifold Approximation and Projection (UMAP) (41) on the
high-dimensional, manually engineered feature space
exported from IDEAS, and the feature space automatically
learned by the DeepFlow CNN.

UMAP provides scalable dimensionality reduction,
which preserves global and local structures of the high-
dimensional input space. It does so by converting high- and
low-dimensional representations of the input to topological
representations, and then minimizing the cross-entropy
between them. We choose this method over others such as t-
SNE, due to its scalability and wide-spread application in bio-
informatics (41).

The feature space learned by a CNN is encoded by the
intermediate activation pattern following the last con-
volutional layer of the network, referred to as the code. The
code is the representation of an input image, which is fed to
the fully-connected layers of the CNN that perform the actual
classification. The codes are extracted from the network by
forward-propagating images through it, and recording their
corresponding codes (Fig. 4).

All ML experiments were run on a 12-core machine,
with an Intel Xeon CPU (model E5-1650 v2) running at
3.50GHz. The machine has 64 GB of RAM. DL experiments
were run on an NVIDIA Titan X GPU with 12 GB of VRAM.
Code used for extracting imagery and masks from the CIFs,
and for training and validation of the models is made public
on GitHub at https://github.com/saeyslab/DeepLearning_for_
ImagingFlowCytometry.

RESULTS

We started by setting a baseline classification performance on
the EOS and WBC data sets, using well-established models,
trained on expert driven, manually engineered features. We
then applied DL to the same classification tasks and found
that they achieved baseline performance for the EOS data set,
but not for the WBC data set.

Classifying Cell Types with Manually Engineered

Features

Both classical ML classifiers were able to classify cell types based
on manually engineered features (see Figs. 5 and 6). For the
WBC data set, especially neutrophils, monocytes, and EOS were
accurately classified by both classifiers with recalls, respectively,
higher than 0.981, 0.955, and 0.965 for all classifiers. For the
EOS data set, separation between non-EOS and EOS was very
accurate, with recalls respectively higher than 0.998 and 0.990
(computed by treating active and resting EOS as one class).

Both classifiers struggled to reliably subtype cell types.
Recalls for the subtypes are consistently lower than for other
classes (see Supporting Information Tables S1 and S2. For the
WBC data set, confusion was present between CD4+ and
CD8+ T-cells for example, as well as between T-cells and
NKT-cells (see Fig. 5). Also for the EOS data set, confusion
was present between active and resting EOS (see Fig. 6).
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We found that the GB and RF classifier behaved simi-
larly, with a more pronounced advantage for the GB classifier
on the EOS data set. Their respective balanced accuracies
were 0.774 versus 0.778 for the WBC data set, and 0.825 ver-
sus 0.871 for the EOS data set (see Figs. 5 and 6). The main
advantage of the GB over the RF classifier was the better sub-
typing performance, which is clearly seen in the classification
of active versus resting EOS, and CD4+ versus CD8+ T-cells.

Automating Feature Extraction with Deep Learning

DL classifiers are able to autonomously extract relevant infor-
mation from stain-free imagery to classify WBCs and EOS
(see Figs. 5 and 6). Their performance differed between both
data sets: for the EOS data set, DeepFlow improved slightly
upon the baseline performance set by both classical methods
(see Fig. 6). However, for the WBC data set none of the DL
classifiers reached baseline performance (DF: 0.703, versus
GB: 0.778 balanced accuracy) (see Fig. 5).

As with the classical models, the DL models did not
reach satisfactory performance for cell subtyping. For the
WBC data set, recalls for CD4+ and CD8+ T-cells did not
exceed 0.476 and 0.304, respectively. NKT-cell subtyping suf-
fered less of a drop in recall compared to classical methods,
with recall values reaching 0.683 and 0.599 for CD56+ and
other NKT-cells, respectively.

Overall, the DF architecture outperformed the RN archi-
tecture. The difference was most pronounced for the WBC
data set (RN: 0.649, versus DF: 0.703 balanced accuracy).

Recalls for all cell types were higher for DF. The biggest
improvement over RN occurred in CD4+ T-cell classification
(RN: 0.333, versus DF: 0.476 recall) and CD56+ NKT-cell
classification (RN: 0.554, versus DF: 0.684 recall). For the
EOS data set, the improvement from DF over RN was smaller
(RN: 0.831, versus DF: 0.871 balanced accuracy).

Comparing Feature Spaces with Uniform Manifold

Approximation and Projection

Visualizing the feature spaces on which the classifiers are
trained, provided a visual validation of classification confu-
sion occurring between certain cell types (see Fig. 4). UMAP
clustered cells of similar cell types together in the low-
dimensional representation. We found that clusters of cell
types overlapped for the types with which classifiers struggled.
For example, for the WBC data set, confusion occurred
between CD4+ and CD8+ T-cells (see Fig. 5). This is clearly
reflected in the UMAP visualization by the overlapping clus-
ters of CD4+ and CD8+ T-cells, both for automatically and
manually engineered features. On the other hand, accurately
classified cell types, such has the EOS, were also well sepa-
rated in the low-dimensional space. The same occurred for
the EOS data set for the confusion between active and resting
EOS (see Fig. 4).

DISCUSSION

Manual gating in its current form has three main drawbacks:
manual gating is hard to reproduce, it is subjective and

Figure 4. Dimensionality reduction of manually and automatically engineered feature spaces confirmed confusion in cell type

classification. High-dimensional feature spaces were projected to a 2D space using uniform manifold approximation and projection. Data

points were plotted in the 2D space and colored according to cell type. This revealed that cells of the same cell type cluster together.

Clusters of cells types that overlapped were also found challenging to distinguish in the classification experiments. For example, CD4+

and CD8+ T-cells overlapped significantly in the white blood cell data set and also show high confusion in the classification. The same is

seen for the active and resting eosinophils in the eosinophil data set.
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biased, and it is time-consuming for large experiments. To
overcome these drawbacks, we extensively studied and com-
pared several ML approaches, which only make use of stain-
free information to perform automated cell classification.

In the experimental setting of this work, stains do not
seem vital for classifying cell types such as monocytes or
neutrophils. However, to reliably subtype cells, stains are
still required. This is shown in Figure 5 and Supporting
Information Table S1. The best performing model, a gradi-
ent boosting classifier, has an overall T-cell recall of 0.787,
but for the CD4+ and CD8+ T-cell subtypes, recall rates
drop to 0.609 and 0.588, respectively. This means that visu-
ally, based on the stain-free images, no distinction can be
made between CD4+ and CD8+ T-cells. The same pattern
can be observed in Figure 6 and Supporting Information
Table S2 for active and resting EOS. Other works have con-
cluded also that classifying distinct cell types using stain-free

information is possible (42), as well as classifying cell cycle
phases (43). To the best of our knowledge, this contribution
is the first attempt to classifying cell subtypes using purely
stain-free information.

The unreliable cell subtyping might be attributed to two
data-related issues: class imbalance and low image resolution.
Firstly, all data sets in this work suffer from class imbalance.
For example, the EOS data set contains about 187,000 non-
EOS, and only about 3,900 EOS, with a 30 versus 70% ratio
of active and resting EOS. Especially in DL settings, large and
balanced data sets are important, as overfitting occurs regu-
larly (44). In this work, we employ basic data augmentation
techniques to counter this problem, which seem to have
improved performance to a certain degree. Since acquiring
more data is not always an option, developing or employing
more advanced data augmentation techniques could improve
performance.

Figure 5. Confusion matrices and mean balanced accuracy scores with standard deviation (indicated by bars) obtained from cross-

validation experiments on the white blood cell data set. As seen in the confusion matrices, neutrophils, monocytes, and eosinophils are

consistently classified correctly by all classifiers. All classifiers confuse T-cells and NKT-cells. In terms of balanced accuracy, the classical

machine learning classifiers (1) behave similarly and outperform the deep learning classifiers (2) by a relatively large margin. In the

confusion matrices, we can see that this is mainly due to better T-cell classification by the classical approaches. [Color figure can be

viewed at wileyonlinelibrary.com]
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Secondly, because of the relatively low-image resolution
of current imaging flow cytometers, necessary data for cell
subtyping is potentially not captured in the stain-free imag-
ery. A solution, which does not eliminate but reduces the nec-
essary staining, might be to design hybrid experiments. These
would rely on stain-free information to identify cell types and
use a limited amount of stains to further subtype cells. For
example, in the WBC data set lymphocytes (NKT-, T-, and
B-cells), granulocytes (neutrophils and EOS), and monocytes
can be accurately separated using only stain-free information
with the models trained in this work. The fluorescence chan-
nels that are normally reserved for identifying these larger
populations can then be employed for reliably subtyping cells
using targeted staining, therefore increasing the possible num-
ber of cell populations that can be identified with the same
instrumentation.

DL approaches are able to autonomously extract relevant
information from stain-free imagery, a conclusion that is
supported by previous work (30). However, they do not out-
perform the classical approaches, which achieve the best
results for both data sets. For the WBC dataset, the improve-
ment over DL approaches was fairly large (GB: 0.778 vs DF:
0.703 balanced accuracy); for the EOS data set, it was smaller
(GB: 0.871 vs. DF: 0.856). We could state that in this regard
the tested DL approaches cannot improve classification per-
formance on the tasks tackled in this work.

The lack of improvement of DL approaches over classical
ones could be attributed to a diverse set of reasons. It could
be due to purely technical reasons: insufficient or too imbal-
anced data, a use of too simple or complex architectures,
choice of optimizer, and so on. Or, it could be that the expert
knowledge embedded in the manual feature engineering is
truly vital for stain-free classification. Therefore, if possible,

we advise to not only rely on DL approaches when tackling
classification tasks like the ones discussed in this work.

However, DL remains an interesting tool that makes cell
classification a less manual, and expert-driven process, as no
manual feature engineering is required. We must note that
optimizing neural networks is not straight forward. It requires
the user to overcome obstacles such as overfitting, hyper-
parameter tuning, handling big data, and dealing with a
shortage of, or imbalance in labeled data (18,45). Different
methods to deal with these issues, such as transfer learning or
data augmentation, need to be made accessible and easy to
use. Therefore, we have made our code and trained models
publicly available on Github.5 In order to increase accessibil-
ity of this solution, we consider developing an extension for
the CellProfiler software, which has gained considerable pop-
ularity in the bio-imaging field.

An interesting difference between automatically and
manually engineered feature spaces is shown by the UMAP
dimensionality reduction. It shows that the manually
engineered feature set is better suited for exploring the het-
erogeneity of cells within a data set. This is because the auto-
matically engineered feature spaces from the DeepFlow and
ResNet18 CNNs are only optimized to distinguish between
the ground truth cell types in the data set. On the other hand,
the manually engineered feature set from IDEAS is more gen-
eral. This is demonstrated by the UMAP reductions for the
EOS data set in Figure 4: the non-EOS are clustered in one
homogeneous cluster in the DL feature space, whereas several
clusters can be distinguished within the non-EOS in the

Figure 6. Confusion matrices and mean balanced accuracy scores with standard deviation (indicated by bars) obtained from cross-validation

experiments on the eosinophil data set. As seen in the confusion matrices, separation between eosinophils and non-eosinophils is consistently

done correctly by all classifiers. Confusion is present in all classifiers when separating between active and resting eosinophils; especially the

random forest struggled to make a good distinction. Unlike results of the white blood cell data set, classical classifiers (1) do not outperform

deep learning classifiers (2) unanimously. [Color figure can be viewed at wileyonlinelibrary.com]

5 https://github.com/saeyslab/DeepLearning_for_ImagingFlowCytometry,
last accessed on 7th of May 2019.
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IDEAS feature space. The IDEAS features therefore seem to
capture more of the heterogeneity within this population.

File formats produced by the Amnis ImageStream platform
are closed source, and therefore unsuitable for data science appli-
cations. In previous work, an approach was proposed, which
requires the user to create many image montages from the
images in the original CIF, using a custom script (16). These
montages can then be processed by image analysis software, such
as CellProfiler. This is a cumbersome and non-user-friendly pro-
cess. In this work, we have accommodated for this inconvenience
by writing a script that decodes images and masks from the origi-
nal CIF and stores them in one HDF5 data set to be used during
further processing. This way we have significantly reduced
processing time of the CIFs, opening the possibility to train and
test ML models on hundreds of samples. The script is publicly
available on Github.6

In conclusion, we have found that IFC lends itself well to
ML applications due to its information rich data and high-
throughput nature. We have shown that besides cell cycle
phase classification, white blood cell type classification is also
feasible for certain immune cell types, creating the potential
to apply this approach in immunodeficiency diagnosis, for
example. For the data sets and classification methods studied
here we conclude that the limit of this classification approach
currently lies at the level of the cell type, and that subtyping
remains a challenge for future work.
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