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a b s t r a c t

Biological data, and in particular imaging data, have experienced an exponential growth in terms
of volume and complexity in the last few years, raising new challenges in the field of machine
learning. Unsupervised problems are of particular relevance, as the generation of labels for the data
is often labor-intensive, expensive or simply not possible. However, interpretability of the data and
the results is key to extract new valuable knowledge from the large-scale datasets that are studied.
This highlights the necessity of adequate unsupervised dimensionality reduction techniques that can
lower the computational workload necessary to process the dataset, while at the same time providing
information on its structure. This paper describes a framework that brings together previous proposals
on unsupervised feature clustering, with the goal of providing a scalable, interpretable and robust
dimensionality reduction on single-cell imaging data. The framework integrates several inter-feature
dissimilarity measures, clustering algorithms, quality criteria to select the best feature clustering, and
dimensionality reduction methods that are built on the clustering. For each of these components,
several approaches proposed in previous works have been tested and evaluated on three use cases
coming from two different imaging datasets, highlighting the best-performing components. Affinity
clustering is applied for feature clustering for the first time. The results were validated using statistical
tests, showing that many of the combinations tested lowered the complexity of the datasets while
maintaining or improving the accuracy yielded by classifiers applied on them. The analysis highlighted
affinity clustering as the best algorithm for feature clustering, with median differences of up to
8.9% and 0.9% in accuracy with respect to FSFS and hierarchical clustering. Representation entropy
obtained a median difference of 13.0% and 0.8% with respect to class separability and silhouette
index, respectively, as a robust unsupervised criterion to select the cluster set. Dissimilarities based
on Pearson’s correlation performed slightly better than the alternatives, with a median improvement
of 2.8% with respect to the cosine distance.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Few scientific areas have experimented a growth such as
computational biology has in the last few decades. As technology
evolves, the volume, complexity and variety of biological data
that are being generated have grown exponentially [1]. This has
allowed to reach crucial breakthroughs, but the proper analysis
of such amounts of data also poses a big challenge. Among the
various types of data that can be extracted from biological sam-
ples, images have always been the focus of active research [2,3].
Various types of technologies allow capturing images at different
scales, wavelengths and throughputs, such as microscopy [4],
histology [5] and imaging flow cytometry [6].
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Machine learning aims to extract valuable knowledge from
raw data [7]. Such algorithms are typically categorized into two
main groups: supervised methods, which require a label for each
input instance and attempt to predict the label for previously un-
seen instances, and unsupervised methods, which aim to describe
the intrinsic structure of the data without the use of labels. Most
of these algorithms require the instances to be represented as
a set of features; therefore, in the domain of imaging data, it is
very common to first extract a vector of features from each image
(Fig. 1) and then feed it to a machine learning algorithm. In a
biological context, this feature extraction step is crucial for two
main reasons. First, it will largely determine the performance of
the subsequent analysis; a set of features that does not reflect the
relevant characteristics of the image in relation to the problem
will not yield optimal results. Second, it allows the experts to
obtain an interpretable set of values that summarize an image,
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Fig. 1. Sketch of the feature extraction process.

which in turn allows them to highlight which properties of the
images are relevant to the problem.

Modern feature extraction algorithms and software [8] enable
the extraction of hundreds or even thousands of features per
image, or even per individual element (such as a cell) within an
image. The analysis of data at this scale by means of powerful
multi-dimensional algorithms has consistently yielded good re-
sults and new insights [9,10]. However, interpretability is often
crucial when solving a biological question. A very accurate clas-
sifier might be of no use if it is a black box from which no new
biological knowledge can be gained. Therefore, it is also important
to reduce the dimensionality of the feature vectors extracted from
the images by eliminating noisy or redundant features, so as to
maximize the performance of subsequently applied algorithms
and to enable a consistent interpretation of their results [11].
Moreover, dimensionality reduction leads to a reduction of the
computational workload of subsequently applied algorithms. This
is especially true for features extracted from biological images,
as many hundreds of highly correlated features can be extracted
from a single image.

Among the various families of dimensionality reduction ap-
proaches, feature clustering [12] is especially appealing in terms
of interpretability because the obtained clusters give additional
information about which groups of features are similar. Then,
these feature clusters are used as a starting point to reduce the
dimensionality of the data by one of the three classic approaches:
feature selection (selecting a subset of the original set of features),
feature extraction (computing a new, smaller set of features by
combining the original ones), and feature weighting (assigning
weights to each feature according to its importance). Naturally,
feature selection allows for a better interpretability because it
maintains the original features, which often have a definite mean-
ing or have been designed by experts. On the other hand, feature
extraction is more flexible and allows for a more fine-grained
elimination of redundancies in the features. One of the most
common feature extraction approaches is Principal Component
Analysis (PCA), which carries out a linear transformation of the
data that maximizes the variance along each new coordinate.
Even though feature weighting methods do not fall under a strict
definition of dimensionality reduction, they can be used to incor-
porate information about the relevance of the features, leading to
a simplification of the data processing by modifying the behavior
of dissimilarity measures, as demonstrated by positive results in
previous works [13–15].

Dimensionality reduction algorithms can be either supervised
or unsupervised. A multitude of different approaches have been
proposed in the scientific literature for the supervised case [16].
On the contrary, unsupervised feature selection did not receive
much attention until much more recently [17]. Feature clustering
has been used in few approaches so far, especially in the unsu-
pervised case. The proposals in the literature have been shown to
yield good results, but are usually aimed at specific problems –
such as spectral data [18] or machinery fault detection [19] – and
each proposal employs different clustering algorithms, dissimi-
larity measures, and criteria to select the number of clusters. A

family of these proposals are based on entropy measures, which
provide a statistically sound way of evaluating feature interde-
pendencies, but at the cost of their discretization, which can be a
complex process and can influence subsequent algorithms [20].

There is as yet no systematic study comparing the effect of
each individual component of these pipelines on the overall be-
havior of the feature clustering. Also, some high-performing and
efficient clustering algorithms (such as affinity clustering [21])
have never before been applied for feature clustering despite
being suitable to the task. Furthermore, little attention is paid
in the published literature to the robustness of the clustering
methods. The robustness of a clustering algorithm – which we see
here as the ability to return highly similar clusters in the case of
small changes in the hyperparameters or the samples – is crucial
for its applicability in previously unstudied problems. Finally,
feature clustering is by construction especially suited to datasets
where many features are highly similar to each other, because
these features are grouped with each other and reduced [22]. This
the case for features extracted from biological images without the
specific guidance of a domain expert [8,9]. In such cases, many at-
tributes are computed from each channel of the image regarding
different aspects such as size, area, texture, etc., often varying the
parameters of the extraction algorithms, which naturally leads to
correlated (although complementary) features.

The goal of this paper is to identify how to perform a ro-
bust, interpretable dimensionality reduction by means of feature
clustering in unsupervised problems. In this line, we present the
following contributions:

• A flexible framework to carry out an interpretable dimen-
sionality reduction by unsupervised feature clustering,
which is then used to evaluate the various components of
the process. For this purpose, we chose three well-known
clustering techniques (affinity clustering, agglomerative hi-
erarchical clustering and feature selection using feature sim-
ilarity), which were evaluated in combination with several
feature dissimilarity measures, which are in turn computed
using a scalable parallel algorithm.

• Applying affinity clustering [21] on the feature clustering
problem. To the best of the author’s knowledge, this is the
first application of affinity clustering in the feature domain,
rather than in the instance domain.

• Comparing different unsupervised criteria to pick the best
clustering among those yielded by different hyperparameter
configurations for each clustering algorithm. These hyperpa-
rameters typically involve the dissimilarity measure and the
number of clusters.

• An extensive experimental evaluation of the new sets of
features thus obtained. The entire study was replicated on
three use cases, built from two public single-cell imaging
datasets with very different characteristics. One use case
consists of the classification of cells according to their phase
in the mitosis cycle using imaging flow cytometry data,
the other two consist of a problem The study is done in
both an unsupervised and a supervised context, to evaluate
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the robustness of all the components of the dimensionality
reduction process against variations in the samples and the
hyperparameters of the algorithms.

• As a result, guidelines are given concerning the most robust
combinations of all the evaluated components.

The results obtained in the experiments highlighted affin-
ity clustering and representation entropy as the options which
yielded the most robust clusterings, as well as the highest classi-
fication accuracy in a supervised setting. Statistically significant
differences were observed between these components and the
alternatives that were tested. The analysis of different dissimi-
larity measures revealed no clear option better than the rest, but
did identify the cosine distance as the least performing measure.
Dissimilarities based on Pearson’s correlation performed slightly
better than the rest, with no overall statistical significance.

This paper is structured as follows. Section 2 introduces the
main published work about unsupervised feature clustering and
single-cell image processing. Section 3 describes the framework
designed in this paper for interpretable dimensionality reduction.
Section 4 explains the experimental setup designed to test all
considered components (namely dissimilarity, clustering, cluster-
ing selection criterion and dimensionality reduction method); the
results of the experiments are shown and analyzed in Section 5.
Finally, the conclusions of the study are presented in Section 6.

2. Background

This section provides an overview of the algorithms and main
approaches for unsupervised feature clustering (Section 2.1) and
the main types and characteristics of single-cell imaging data
(Section 2.2).

2.1. Unsupervised feature clustering

Given a dataset composed of a set of featuresA = {A1, . . . , Ap},
feature clustering consists on partitioning them into a set of K
disjoint clusters C = {C1, . . . , CK } such that

⋃K
k=1 Ck = A.

The most widely studied proposal in this field was described
by Mitra et al. [12]. They proposed a feature clustering algorithm
based on the Maximum Information Compression Index (MICI)
that receives a single parameter, which determines the size of
the biggest cluster. The first cluster is thus formed by choosing
the most compact group of features of that size. Then, in every
iteration the clusters are formed by grouping increasingly smaller
sets of features until no further cluster can be made. Li et al. [23]
follow a similar approach, grouping the features by a hierarchical
clustering algorithm in combination with MICI.

Many of the more recent approaches use entropy-related sim-
ilarity measures to compare the features. The method proposed
by Bandyopadhyay et al. [24] computes the normalized mutual
information between pairs of features to build a graph, and then
obtains the densest subgraph to build the clusters. Zhou and
Chan [25] describe an algorithm that uses the Maximal Informa-
tion Coefficient between pairs of features as similarity measure,
and then applies a K-modes algorithm. In Wang’s approach [26],
the mutual information between each pair of features is used to
classify the features into irrelevant, weakly relevant and strongly
relevant. Irrelevant features can be immediately removed from
the dataset; then, a directed acyclic graph with the relevant
features as nodes is used to determine which of them should
be maintained. Each subgraph corresponds to a feature cluster.
The main drawback of entropy-related measures is that they re-
quire the discretization of the continuous features of the dataset
as an additional preprocessing step. This process can be com-
plex and have a large influence in the behavior of subsequent
algorithms [20].

Other proposals employ different dissimilarity measures.
Pacheco et al. [19] propose the use of rough sets to charac-
terize the similarity of the features, which are then efficiently
clustered following a variant of K-means. However, the proposal
is restricted to an online setting within the problem of fault
severity classification of rotating machinery. Goswami et al. [27]
carries out a feature clustering based on the correlation between
the features, and use the entropy of each individual feature to
eliminate irrelevant features. For the final feature set, a single
feature is randomly picked from each cluster.

Despite the variety among the described methods, they all
follow a similar scheme:

1. Computing the inter-feature dissimilarity
2. Grouping the features into clusters, either by a specific or

general purpose clustering algorithm
3. Selecting one representative feature for each cluster

Moreover, in most of these methods a single hyperparameter
controls the size of the cluster set obtained; therefore, from an
external point of view, the search space of the problem is re-
duced from the combinatorial space of the feature subsets to the
one-dimensional space of the algorithmic hyperparameters. The
problem still remains as to which hyperparameter value yields
the optimal performance for a given dataset, a matter that is
usually not evaluated in the aforementioned works.

Finally, one important factor sets feature clustering methods
apart from other unsupervised dimensionality reduction tech-
niques: the only computation carried out at the instance level
is the generation of the inter-feature dissimilarity matrix. Their
computational complexity is linear on the number of instances,
and quadratic on the number of features, rather than the other
way around, which is the case for many instance-based or self-
representation methods. This enables an interpretable reduction
of the features within a reasonable computational time even for
datasets with extremely large numbers of instances. Naturally,
datasets with millions of features become intractable by these
methods, but this is not the case with data extracted from single-
cell images, where the number of features is typically around the
order of a few hundreds.

2.2. Single-cell imaging data

Recent technological advances have brought an explosion of
biological data, a trend that has been especially important in
the area of imaging [1]. New types of images are being gen-
erated, covering a wide range of biological problems such as
cancer detection [28], cell cycle classification [29] or compound
activity prediction [30]. In particular, most of these technologies
advance towards the generation of single-cell data [31], raising
new challenges for machine learning to extract new knowledge
from it.

The main types of imaging data that yield single-cell resolution
are the following:

• High-content screening (HCS) [32] automates the process
of preparing multiple samples in multi-well plates, and
acquiring images of each sample by high-throughput mi-
croscopy. As a result, hundreds of thousands of images can
be generated in a single screening study. Then, the images
can be further processed to extract data at the single-cell
level.

• Imaging flow cytometry (IFC) [6] allows researchers to
extract low-resolution images of individual cells at a high-
throughput rate as they sequentially pass between a laser
beam and a sensor. The main advance with respect to classic
flow cytometry technologies [33] – which produce a vector
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of intensities of certain fluorescent markers for each cell – is
the presence of morphological information, that reflects the
distribution of the markers across the cell.

In both cases, biological samples might be stained with flu-
orescent markers prior to capturing of the image in order to
highlight relevant proteins or structures in the cells. However,
both technologies support the acquisition of so-called label-free
samples, which do not contain any stains and yield pure morpho-
logical information about the cells [34].

When dealing with biological imaging data, the most common
approach consists of using specific algorithms to extract a single
vector of real-valued features from each image (or each cell
within the image). In this context, CellProfiler [8] is among the
most used libraries, with the advantage of being open source.
CellProfiler provides multiple modules that support the entire
pipeline for feature extraction from biological images. First,
primary-level objects (typically nuclei) are detected and seg-
mented; then, secondary-level objects (such as the cell edges
around each nucleus) are in turn searched around each primary
level object and used to segment the images into individual
cells. Finally, multiple features are extracted for each cell de-
scribing aspects such as its area, size, texture, intensity or pixel
correlation.

In this context, it is inevitable to refer to the enormous suc-
cess obtained by Deep Learning [35] in multiple tasks associated
with learning from raw images, avoiding the necessity of an
explicit feature extraction process [28,36,37]. However, these are
typically considered to be black boxes, and the elevated compu-
tational cost of their training often requires high performance
Graphics Processing Unit (GPU) platforms. Despite the strong
research current towards interpretability and feature attribution
in such models [38], it is still widely accepted that more in-
terpretable models are preferable for those problems in which
black boxes are not desirable, or do not provide an additional
accuracy [39].

3. A generic framework for unsupervised feature clustering

In this paper, we devise a workflow to carry out dimensional-
ity reduction on large-scale imaging datasets in a robust, scalable
and interpretable way. To achieve this goal, a parallel framework
to compute inter-feature correlations and dissimilarities has been
applied (Section 3.1). These dissimilarities can then be passed
to several feature clustering algorithms (Section 3.2). Several
unsupervised performance measures can be used to evaluate
the clusters generated by different algorithms or parameter con-
figurations (Section 3.3). Finally, three different dimensionality
reduction alternatives from the feature clusters are described in
Section 3.4. The basic scheme of the workflow is depicted in Fig. 2.

Note that, even though this framework has been designed
to address the challenges of single-cell imaging data, it could
be applied to other types of data with similar characteristics. In
general, it can tackle dense datasets within the order of hundreds
or thousands of features, with an arbitrarily large number of
instances, and because it requires no subsampling it is robust
against the presence of rare populations of instances, making it
suitable to deal with imbalanced data [40].

3.1. Computing feature dissimilarities

As described in Section 2.1, unsupervised feature clustering
algorithms that work on feature similarities are the most suited
to large-scale problems because they do not involve pairwise
instance comparisons. However, the computation of pairwise fea-
ture similarities can also be very time-consuming and even nu-
merically unstable when the number of instances becomes very
large [41].

To deal with these challenges, we have used a parallel frame-
work1 to compute first and second moment statistics of large
datasets [42]. The average, and the covariance and correlation
matrices of the features are computed by applying the general
updating formulae described in [41], which provides a better nu-
merical stability than the commonly used expressions to calculate
those statistics.

The parallelization is carried out in a two-level way: Mes-
sage Passing Interface (MPI)2 is used to split the computation
across several processes (typically, each process is run on a differ-
ent computer), while OpenMP3 manages multiple threads within
each process. The instances of the dataset are split across the
multiple processes and threads, so that each of these computes
partial results on a different chunk of the dataset. The results are
then aggregated by a master process.

Previously published papers on unsupervised feature selection
use various similarity and dissimilarity measures to compare two
features x1 and x2. In this study, several widely used measures are
considered:

• Pearson’s distance Eq. (1) is based on the well-known Pear-
son’s correlation, and is defined in the [0, 2] interval.

• Variant of Pearson’s distance Eq. (2): this measure al-
lows us to take into account that two inversely correlated
features, which therefore lie at a very high Pearson’s dis-
tance from each other, actually provide the same infor-
mation. Therefore, the measure is re-defined so that posi-
tive and negative correlation have the same effect on the
dissimilarity.

• Maximal Information Compression Index (MICI) Eq. (3) is
defined in [12], and unlike Pearson’s distance does not nor-
malize by the standard deviation of the individual features.

• Cosine distance Eq. (4) is commonly used to measure the
difference in the direction of vectors, rather than their mod-
ulus.

dPearson(x1, x2) = 1 − ρ(x1, x2) = 1 −
Cov[x1, x2]

σx1σx2
(1)

dPearsonA(x1, x2) = 1 − |ρ(x1, x2)| = 1 −

⏐⏐⏐⏐Cov[x1, x2]σx1σx2

⏐⏐⏐⏐ (2)

dMICI(x1, x2) = 0.5
[
σ 2
x1 + σ 2

x2 −

√
(σ 2

x1 − σ 2
x2 )

2 + 4Cov[x1, x2]2
]

(3)

dcosine(x1, x2) =
x1 · x2

∥x1∥ ∥x2∥
(4)

Note that, although the rest of these measures are distance
metrics, the chosen variant of Pearson’s distance does not com-
ply with the self-identity axiom (that is, two completely anti-
correlated features will have zero distance despite being different
features). This is not a requirement for most feature cluster-
ing algorithms, which merely require an arbitrary dissimilarity
measure between the features.

3.2. Feature clustering

Interpretability is one of the goals pursued in this study.
Feature clustering groups features that are similar to each other,

1 https://github.com/dperaltac/scalable-statistics.
2 http://www.mpi-forum.org/.
3 https://www.openmp.org/.
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Fig. 2. Proposed workflow for unsupervised dimensionality reduction.

which provides useful information about which features are rep-
resented by each feature of the final, reduced dataset. In principle,
any clustering algorithm that works on dissimilarity matrices is
applicable to build clusters of features. In this study we have
considered some of the most relevant ones, due to their efficiency,
robustness and their wide use by the scientific community:

• Hierarchical (agglomerative) clustering (HC) starts by as-
signing every feature to a separate cluster. Then, in each
iteration the two clusters that are the most similar to each
other are joined into a single, bigger cluster. The procedure
is carried on until all features belong to a single large cluster.
In other words, this algorithm builds a dendrogram-like
structure from the features, which in practice allows to
select any number of clusters just by fixing the depth at
which the dendrogram is cut. In this work, Ward’s minimum
variance method is used [43] to compare clusters with each
other.

• Affinity propagation clustering (AC) [21] selects a set of
representative features by a message-passing algorithm,
which iteratively computes the availability of a feature to
be a representative of a cluster along with the responsibility
of a feature to be represented by another. Unlike for the
agglomerative clustering, the number of clusters cannot
be directly chosen, but is instead indirectly determined
by a single parameter which sets the initialization of the
exemplar preferences.

• Feature selection using feature similarity (FSFS) [12] re-
ceives a single parameter, which determines the size of the
biggest cluster. This is the first cluster to be formed, by
choosing the most compact group of features of that size.
Then, in every iteration the clusters are formed by grouping
increasingly smaller sets of features until no further cluster
can be made.

3.3. Performance measures

Naturally, the parameters that are used when computing the
feature clusters are critical to obtain a robust result. In a super-
vised context it is possible to compare the performance yielded

by different clusterings or dimensionality reductions by evaluat-
ing the accuracy of a classifier trained on the reduced data, or
by calculating the separability between instances from different
classes.

In an unsupervised context, however, the use of such measures
is not possible. It is necessary to use performance measures that
can be computed from the structure of the data without any
labels, which can then be used to select the more adequate
parameters for each algorithms, or to fix the number of feature
clusters that should be considered for a certain dataset. The
following performance measures are considered in this study:

• Silhouette index (SI) [44]: this index is computed for every
feature, and measures the ratio between intra-cluster and
inter-cluster dissimilarity (a(b) and b(k), respectively) as
shown in Eq. (5), yielding a value between −1 and 1. The
average silhouette index across one clustering can then be
used as a measure of quality of the clustering.

s(k) =
b(k) − a(k)

max{a(k), b(k)}
(5)

• Representation entropy (RE and REFS) [12]: it is defined
in Eq. (6), where λj are the eigenvalues of the d × d covari-
ance matrix of a feature set of size d. It reflects the level of
redundancy present in a dataset. In this paper, we apply it in
two different ways: on the one hand, the RE of each feature
cluster should be as low as possible; on the other hand,
the RE of the features obtained after the dimensionality
reduction (we will note this as REFS) should be as high as
possible.

λ̃j =
λj∑d
j=1 λj

RE = −

d∑
j=1

λ̃j log λ̃j

(6)
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• Redundancy rate (RR): it is the average correlation across
all pairs of features Eq. (7).

RR =
2

d(d − 1)

d∑
i=1

d∑
j=1
i̸=j

ρi,j (7)

• Variation of Information (VI) [45]: it is a metric distance
between two clusterings C and C′. Each clustering is de-
scribed in terms of a random variable P(k) Eq. (8) which
contains the proportion of features that are assigned to each
cluster Ck. Similarly, P(k, k′) represents the joint probability
that a feature belongs to cluster Ck in clustering C and
to cluster C ′

k′ in C′ Eq. (9). The mutual information be-
tween these variables I(C, C′) can now be defined as shown
in Eq. (10). Finally, the variation of information between C
and C′ is defined in Eq. (11), making use of the entropy
function H .

P(k) =
|Ck|

p
(8)

P(k, k′) =
|Ck

⋂
C ′

k′ |

p
(9)

I(C, C′) =

K∑
k=1

K ′∑
k′=1

P(k, k′) log
P(k, k′)
P(k)P(k′)

(10)

H(C) = −

K∑
k=1

P(k) log P(k)

VI(C, C′) = H(C) + H(C′) − 2I(C, C′)

(11)

• Class separability (CS): among the various definitions of this
supervised measure [46] we use the one shown in Eq. (12),
where Sw and Sb are respectively the within-class and
between-class scatter matrices, c is the number of classes,
πj is the proportion of instances belonging to class j, Sigmaj
is the covariance matrix within class j, µj is the mean vector
for class j and M0 is the mean vector across the entire
dataset. This definition of the class separability is used,
rather than the more general trace(S−1

w Sb), to avoid problems
when Sw is singular, which happens relatively often when
two very correlated features are selected in the set, or Sb
is singular, which happens when the number of classes is
lower than the number of features (because Sb is a linear
combination of one scatter matrix per class).

Sw =

c∑
j=1

πjΣj

Sb =

c∑
j=1

(µj − M0)(µj − M0)T = Σ − Sw

CS = trace(Sb)/trace(Sw)

(12)

Table 1 summarizes the measures described above showing
the context in which they are applied. Note that, even though the
ultimate goal is to evaluate the feature clusterings, some of the
measures are defined to be applied on feature subsets.

3.4. Dimensionality reduction from feature clusters

Once the features have been grouped into clusters, it is nec-
essary to produce a new set of features that will simplify the
input dataset. This can be done in several ways, out of which we
consider the following:

Table 1
Summary of the performance measures considered in the proposal.

Unsupervised Supervised

Feature clustering (per cluster) SI, RE
Feature clustering (per pair of clusterings) VI
Feature selection REFS, RR CS

• Feature selection: a single representative of each cluster
is selected. For AC and FSFS, the clustering algorithm itself
determines the representative of the clusters. For HC, we
select the feature which is the closest to the cluster centroid;
in other words, we select the feature that has a minimum
average distance to the other features of the cluster.

• Per-cluster Principal Component Analysis (PCA): it is also
possible to carry out a feature extraction from the features
within each cluster separately, so as to generate one new
feature per cluster. In this paper, we applied PCA to extract
the first principal component of each cluster. The resulting
set of features will be less interpretable than after a mere
feature selection where the original meaning of the features
is kept. However, it is still possible to know which clus-
ter originated each resulting feature, which yields a higher
interpretability than applying a PCA transformation on the
entire set of features.

• Feature weighting: this is a special case in which no dimen-
sionality reduction is carried out; instead, the features are
weighted according to the size of the cluster they belong to.
The weight for each feature within a cluster Ck is 1/|Ck| so as
to weight down large clusters that contain many features, so
that the overall contribution of all clusters is approximately
the same.

4. Experimental setup

This section describes the methodology followed to evaluate
the described proposal (Section 4.1) along with the datasets that
have been used for this purpose (Section 4.2).

4.1. Methodology

Throughout the paper, a stratified cross-validation scheme is
used to evaluate the proposal in the presence of datasets with
imbalanced classes [47]. The number of folds for each dataset
has been selected so as to use the same setting as previously
published works. For each of the obtained folds, the following
steps were applied to obtain the results analyzed:

1. Data normalization. This step is dataset-dependent; details
for particular datasets are provided in Section 4.2.

2. Save the full feature set
3. Compute a PCA dimensionality reduction from the full

feature set

(a) Compute PCA
(b) Keep the principal components accounting for 99% of

the variance

4. Evaluate the dimensionality reduction

(a) Computation of the dissimilarities (4 measures)
(b) Feature clustering (3 algorithms)
(c) Selection of the best clustering (3 criteria)
(d) Apply dimensionality reduction (3 methods):

• Feature selection
• Feature weighting
• Per-group PCA
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Fig. 3. Five classes of the JurkatIFC dataset.

5. For each of the datasets generated in steps 2, 3 and 4:

(a) Train the classifier
(b) Test the classifier

The results are analyzed both from an unsupervised and a
supervised perspective. First, Section 5.1 will evaluate the ro-
bustness of the different feature clustering algorithms and dis-
similarity measures tested in the experiments, along with the
performance of the dimensionality reduction from an unsuper-
vised point of view. Then, Section 5.2 will analyze the results
obtained when multiple different classifiers are applied on the
datasets after the dimensionality reduction procedure, therefore
describing a supervised setting. These results are compared with
those obtained when using the full feature set, and with a PCA
reduction keeping the principal components that account for 99%
of the total variance of the dataset.

4.2. Datasets

Throughout this study we used two public datasets to compare
the behavior of the tested dimensionality reduction methodology.
One of them is analyzed from two different points of view, thus
producing three separate use cases.

4.2.1. JurkatIFC
This dataset is composed of 32255 Jurkat cells measured by

imaging flow cytometry and first introduced in [29]. The cells
are labeled by their cycle phase, for a total of 7 different la-
bels (Prophase, Metaphase, Anaphase, Telophase, G1, S and G2).
However, in most works the 3 latter stages are grouped within a
single Interphase label, thus producing a 5-class problem, which
is the approach we also follow in the present paper (Fig. 3). We
represent the dataset by using the features as extracted by the
CellProfiler software [8]; in particular, only the 213 publicly avail-
able features4 considered in [29] are taken into account; features
referring to some non-informative metadata are removed. Each
feature is normalized by subtracting its average and dividing by
its standard deviation.

The main particularity of this dataset is that the classes are
heavily imbalanced, in correspondence with the relative dura-
tions of the cell cycle phases. Thus, most instances belong to the
Interphase class (31542), while very few belong to Anaphase and
Telophase (15 and 25, respectively). To avoid the problems that
arise with imbalanced datasets [48] without restraining the ex-
periments to a single approach, we applied two different prepro-
cessing methods: Random Undersampling (RUS) [49] and random
resampling with replacement. The experiments were carried out
following a 10-fold cross validation procedure, as previously done
by other authors [29,50,51].

4 http://cellprofiler.org/imagingflowcytometry/ (visited on 2019-09-03).

4.2.2. BBBC021
The BBBC021 dataset [9] is part of the Broad Bioimage Bench-

mark Collection [52]. It contains high-throughput microscopy
images of MCF-7 cells treated with different compounds at differ-
ent concentrations, some examples of which are shown in Fig. 4.
In compliance with previous papers that use this dataset, only
the labeled images are used in this study. These refer to 103
compound-concentration combinations (38 different compounds,
1–7 concentrations) that are categorized into 12 mechanisms of
action (MoA), in addition to the control wells. Furthermore, each
of these compound-concentration combinations is replicated 3
times. At the single-cell level, the dataset contains 454793 cells,
whose publicly available CellProfiler features5 have been used for
this study. For the sake of reproducibility, the same 453 features
used in [9] are used in this study.

In this dataset, every image contains multiple individual cells
and its label refers to the image as a whole. This is a case of
multiple instance data [53]. There are multiple approaches that
can be followed to deal with multiple instance data; the most
used one in single-cell contexts is profiling, which consists on
summarizing all the cells of each sample into a single vector.
In [9], where several profiling methods are compared using the
BBBC021 dataset, the best performing method consisted on per-
forming a factor analysis followed by averaging all cells within
each sample. However, feature extraction is beyond the scope of
this paper; therefore, in this study the profiling is carried out by
averaging all cells of each sample, which is the most frequently
applied method in the literature [54]. Then, the median of the
profiles of the 3 replicates for each compound-concentration in
the dataset is obtained, yielding the final representation for the
data.

Both the normalization and the cross-validation have been
applied as described in [9]. The data was linearly scaled so that
the first percentile of the control cells was set to 0 and the 99th
percentile was set to 1 for each plate. A leave-one-compound-
out cross-validation procedure was applied, yielding a total of 38
folds.

5. Analysis of the experimental results

This section presents the results of the experiments carried out
for this study. First, Section 5.1 analyzes the characteristics of the
computed feature clusters from an unsupervised point of view.
Then, Section 5.2 presents the results obtained when applying
various classifiers on the datasets before and after dimensionality
reduction. Due to the varied nature of the datasets, a separate
analysis is carried out for each of them.

5.1. Feature clustering and dimensionality reduction

In this section, the behavior of the feature clustering algo-
rithms and the dimensionality reduction is analyzed, focusing
on the robustness of the clustering 5.1.1 and on several quality
measures used to select the best clusterings 5.1.2.

5 https://data.broadinstitute.org/bbbc/BBBC021/.

http://cellprofiler.org/imagingflowcytometry/
https://data.broadinstitute.org/bbbc/BBBC021/
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Fig. 4. Four examples of the BBBC021 dataset.

Fig. 5. Number of clusters obtained with different parameters for the feature clustering algorithms.

5.1.1. Robustness of the feature clustering
Fig. 5 shows the number of clusters obtained with the different

feature clustering algorithms used, as a function of the specific
parameters used for each algorithm. Vertical bars depict the
standard deviation across the cross-validation folds. Note that HC
is not shown, because the number of clusters is a parameter of
the algorithm. For all tested algorithms, the number of clusters
is almost monotonically determined by a single parameter with
a very low variability across the different folds. The general be-
havior shown in the plots is similar for all clustering algorithms
and distances, with the exception of MICI. This distance yields
very few clusters when used with AC on BBBC021 and JurkatIFC;
on the other hand, when used with FSFS on the same datasets,
it always produces a single big cluster and encases the rest of
the features into as many clusters of size 1. This behavior is
inherent to the algorithm, as described in the original paper of the
algorithm [12]; however, it might not yield optimal results when
the goal is to achieve a significant dimensionality reduction.

Although Fig. 5 shows a very low variability of the number
of clusters across the cross-validation folds, it is also relevant
to determine whether these clusters contain different sets of
features. Fig. 6 shows the variation of information (as defined
in [45]) of the feature clusters across the cross-validation folds.
It can be seen in the plots that the variability is higher for FSFS
than for HC and AC. The most stable clusters are produced by
HC, especially against small variations of the parameters, which
was expected due to the nature of the algorithm which builds
bigger clusters by joining pairs of smaller clusters. The different
dissimilarity measures yield similar results in this case.

5.1.2. Unsupervised performance measures: analysis and criteria for
feature selection

Figs. 7–10 show the variability of the five performance mea-
sures used in this study, as described in Section 3.3. In general, the
behavior of the different performance measures is fairly similar
for all datasets, clustering algorithms and distance measures.
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Fig. 6. Variation of information across cross-validation folds.

However, different measures behave differently with respect to
the number of feature clusters.

The average silhouette index (Fig. 7) reaches its peak when a
medium number of feature clusters are built. When the number
of clusters is very high the SI converges to zero, reflecting that
most clusters contain a single feature. FSFS produces lower SI
values for all datasets; this is due to its tendency to build few
large clusters along with many single-feature clusters. It is note-
worthy that in some cases this produces negative values of the SI,
indicating that some features do not belong to the cluster that is
at the smallest average distance from them. A similar behavior
is obtained when MICI is used, due to the dependency of this
distance on the variance of the features, which causes features
with low variance to lie at a small distance to all others, while
features with high variance are far from all others.

The average intra-cluster representation entropy (Fig. 8),
which measures the redundancy of the features within the same
cluster, decreases as the number of clusters increases. The REFS
shows a very similar behavior: it increases along with the number
of clusters, indicating that the amount of information present in
the set of selected features increases. However, it is noteworthy
that this measure reaches a plateau or peak for low to aver-
age number of clusters, which reflects that, beyond that point,
selected features only add redundancy to the dataset.

The redundancy rate (Fig. 9) turns out not to be very illus-
trative for the purpose of this study, because it maintains an
almost constant value around zero. This might be due to the large
amount of features in our datasets: even though there might be a
high redundancy within different groups of features, the overall
average redundancy is close to zero.

Finally, the class separability (Fig. 10) shows a more varied
behavior. For a large number of clusters, the CS tends to stabilize;
however, when there are few large feature clusters, it is possible
to reach a better CS due to the elimination of highly redundant or
noisy features. Note that CS values are much larger for BBBC021
than for the other datasets, which is an indication of their higher
complexity.

When these performance measures are examined jointly, we
can see that the optimal number of clusters is different in each
case. Low numbers of clusters produce good median RE and CS,
intermediate numbers produce the best SI and REFS. Therefore,
although it is not possible to select a single optimal number of
clusters, it appears that medium to heavy dimensionality reduc-
tion is able to simplify the structure of the data both from an
unsupervised and a supervised point of view, which is a very
desirable property in terms of interpretability of the data.

When comparing the performance obtained with different
distance measures between the features, the first observation that
can be made is the more erratic behavior of MICI. There are no big
differences among the behavior of the other measures; however,
in most cases the cosine distance produces results slightly less
promising than those based on Pearson’s correlation.

5.2. Classification

The analysis realized in the previous section highlighted SI and
REFS are the most adequate criteria to fix a number of feature
clusters, because they showed a stable behavior that peaked at
a non-trivial number of clusters. In this section, we use these
two criteria to reduce the dimensionality of the datasets, and we
apply several classifiers to evaluate the performance yielded by
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Fig. 7. Average silhouette index of the feature clusters.

Fig. 8. Representation entropy measures.

the different studied combinations for dimensionality reduction.
CS is also used as a selection criterion, in order to complete the
analysis with a supervised measure. The balanced accuracy (that
is, the average accuracy across all classes) is used as supervised
performance metric for all datasets because of its compatibility
with multi-class scenarios and its robustness to class imbalance.

The following classifiers are applied on all datasets:

• k-nearest neighbors (1NN) [55], with k = 1 and cosine
distance, following the procedure applied in [9].

• Random Forest (RF) [56], with 1000 trees.
• Support Vector Machines (SVM) [57]: we use a linear kernel,

which according to [58] performs better and faster than the
well-known RBF kernel when working on high dimensional
data.

In this section, the performance of the different tested dimen-
sionality reduction schemes is evaluated on the three considered

datasets: JurkatIFC (Section 5.2.1), BBBC021 (Section 5.2.2) and
BBBC021sc (Section 5.2.3). The full tables displaying the balanced
accuracy for all experiments are shown in Appendix.

5.2.1. JurkatIFC: cell cycle classification from imaging flow cytometry
data

As explained in Section 4.2.1, the classes of this dataset are not
balanced. When not properly handled, this imbalance can hinder
the performance of machine learning algorithms that are applied
on the data. In this study, we applied three different techniques
to deal with the class imbalance:

• Random Undersampling (RUS) [49] consists on randomly
removing instances of the majority classes.

• Random sampling with replacement produces a dataset of
the same size as the input, with a uniform class distribution.
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Fig. 9. Redundancy rate after feature selection.

Fig. 10. Class separability after feature selection.

• RUSBoost [59] combines RUS with a boosting algorithm
to efficiently train an ensemble of classifiers on multiple
samples of the original dataset.

The first two techniques are applied as a preprocessing step
prior to training of the classifiers, whereas RUSBoost encapsulates
the preprocessing and the classifier training as a single process.

Fig. 11 shows the average accuracy obtained with all the com-
binations of feature clustering, inter-feature dissimilarity, quality
measure, preprocessing and classifier. It can be clearly seen that
the best results were obtained when using dissimilarities based
on Pearson’s correlation, both of which yielded an improvement
for all classifiers. Moreover, when REFS was used as a criterion to
fix the number of feature clusters, improvements were observed
for all combinations of classifiers and distances, assessing the
robustness of this approach. It is especially noteworthy that REFS,
an unsupervised criterion, was able to yield results as good or
even better than the supervised CS.

Table 2 shows the balanced accuracy obtained, restricted to
those combinations involving PearsonA and REFS (the tables con-
taining all results are provided in Appendix). The difference
between the tested dimensionality reduction procedures is, in
general, small, but there is some indication that AC performs
better than the other tested clusterings.

Fig. 12 depicts the same accuracies shown in Fig. 11, this
time grouped by dimensionality reduction method and classi-
fier, as a function of the number of feature clusters that was
judged as best by the different unsupervised quality criterion
employed. The plots show how low number of features lead to
a low accuracy, but as soon as the number of feature clusters
reaches a certain size, the accuracy becomes equal or better than
that obtained without any dimensionality reduction (which is
depicted as dashed lines in the figure). This highlights why CS,
which favors few large clusters, obtains a lower accuracy than
SI and REFS. On the contrary, REFS tends to select clusterings
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Fig. 11. Balanced accuracy on JurkatIFC. The dashed line depicts the identity function.

Table 2
Balanced accuracy for all classifiers, clustering algorithms and dimensionality reduction methods when using PearsonA dissimilarity and REFS as selection criterion.
The highest accuracy in each line is bold-stressed.
Classifier Preprocessing All features PCA (99% var.) Affinity clustering FSFS Hierarchical clustering

FS FW PCA FS FW PCA FS FW PCA

1NN None 0.62 0.62 0.64 0.64 0.64 0.64 0.64 0.63 0.64 0.63 0.62
1NN RESAMPLE 0.69 0.68 0.70 0.70 0.69 0.71 0.72 0.70 0.70 0.69 0.69
1NN RUS 0.68 0.66 0.69 0.68 0.69 0.68 0.66 0.67 0.70 0.66 0.66
RUSBoost None 0.80 0.75 0.80 0.81 0.81 0.79 0.82 0.80 0.79 0.81 0.79
RandomForest RESAMPLE 0.56 0.51 0.55 0.55 0.55 0.55 0.55 0.56 0.55 0.54 0.56
RandomForest RUS 0.72 0.74 0.76 0.71 0.75 0.76 0.72 0.76 0.78 0.72 0.75
SVM-Linear RESAMPLE 0.71 0.71 0.80 0.73 0.77 0.77 0.74 0.79 0.73 0.74 0.77
SVM-Linear RUS 0.68 0.64 0.66 0.70 0.70 0.68 0.64 0.62 0.69 0.69 0.69
SVM-RBF RESAMPLE 0.68 0.49 0.65 0.75 0.66 0.68 0.74 0.67 0.67 0.73 0.66
SVM-RBF RUS 0.75 0.67 0.74 0.77 0.77 0.74 0.75 0.73 0.75 0.73 0.74

with an intermediate number of clusters, leading to a reasonable
trade-off between accuracy and data reduction.

5.2.2. BBBC021: mechanism of action classification in
high-throughput microscopy

It has already been stated in [29] that the results obtained on
this dataset are better when linear combinations of the features
are used instead of a subset of the original ones. Still, it is inter-
esting to evaluate the behavior of our approach on this dataset,
which has been used as a benchmark by several authors since its
publication.

Fig. 13 shows the balanced accuracy obtained with all tested
combinations of algorithms and measures, as a function of the
number of clusters. There is a clear drop in the accuracy with
respect to the results obtained for JurkatIFC, because BBBC021
is a complex multi-class problem, and after the aggregation of

all the cells within each sample the final size of the dataset
is of 103 instances. This reduces the stability of most machine
learning algorithms, which become more prone to over-fitting.
Consistent classifiers (such as k-NN and SVM [60]) produce a
better accuracy as the number of training instances increases. It
also becomes clear that, for this dataset, a heavy dimensionality
reduction yielded a low accuracy. This is particularly the case
for CS, which favors few feature clusters. However, most of the
combinations that kept approximately one third of the features
produced an accuracy as good as that of the original dataset and
above that of PCA. Moreover, it can be seen that feature selection
and per-group PCA produced very similar results.

The results of combining PearsonA and REFS (Table 3) also
show less improvements from the dimensionality reduction with
respect to the original set of features. Some of the classifiers
show a behavior in accordance with the previous study in [29]
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Fig. 12. Balanced accuracy on JurkatIFC after RUS, as a function of the number of feature clusters.

(which only used 1NN), in which PCA obtains better results than
using the original features. However, the proposed dimensionality
reduction can reach close results while reducing the total number
of features.

5.2.3. BBBC021sc: mechanism of action classification in
high-throughput microscopy at single-cell resolution

In order to delve deeper into the behavior of the different
dimensionality reduction approaches, we have repeated the study
on the BBBC021 dataset without aggregating the cells of each
well. Therefore, in this case the goal is to classify each individual
cell into the mechanism of action of the compound that has been
applied to it. Obviously, this problem is much more difficult than
when the cells are aggregated in wells. Many individual cells
might not have been affected enough by the compounds so as to
show any phenotypical changes, and the variability between cells
– which disappears when the cells are aggregated – makes the
classification even more difficult. Moreover, the three replicates
of each sample which were median-aggregated in the standard
BBBC021 are used separately in this case.

To the best of our knowledge, at the time of writing this
manuscript there is only one published work that makes use
of this dataset at the single-cell level [61]. The purpose of the
authors was to evaluate transfer learning; therefore, they split the
problem into two disjoint groups of treatments, therefore obtain-
ing two separate 6-class problems. As a result, results presented
in [61] are not comparable to our analysis, which consider the
whole 12-class problem.

Fig. 14 depicts the balanced accuracy obtained on the
BBBC021sc dataset with all the tested combinations. The val-
ues were much lower than those obtained with the aggregated
dataset, which was obviously expected due to the much higher
difficulty of classifying single cells. However, it can also be seen in
the plots that some of the dimensionality reduction alternatives
were able to increase the accuracy obtained, in a similar way
as it was observed for JurkatIFC, instead of just maintaining the
same accuracy values (as was generally the case for BBBC021).
In particular, the performance of the SVM classifier was the most
improved one, and both SI and REFS appeared to be robust criteria
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Table 3
Balanced accuracy for all classifiers, clustering algorithms and dimensionality reduction methods when using PearsonA dissimilarity and REFS as selection criterion.
The highest accuracy in each line is bold-stressed.
Classifier All features PCA (99% var.) Affinity clustering FSFS Hierarchical clustering

FS FW PCA FS FW PCA FS FW PCA

1NN 0.82 0.84 0.76 0.66 0.74 0.68 0.62 0.65 0.76 0.72 0.73
RandomForest 0.81 0.70 0.77 0.81 0.80 0.77 0.80 0.74 0.82 0.81 0.80
SVM-Linear 0.88 0.86 0.83 0.82 0.87 0.83 0.76 0.77 0.86 0.81 0.86
SVM-RBF 0.72 0.86 0.69 0.03 0.64 0.52 0.01 0.44 0.70 0.02 0.67

Fig. 13. Balanced accuracy on BBBC021 as a function of the number of feature clusters.

to select the feature clusters, as well as MICI and both Pearson’s
dissimilarities.

Complementarily, Table 4 show the results when using Pear-
sonA and REFS. In accordance to the patterns shown in the figure,
the dimensionality reduction reaches accuracies similar or higher
to those using the original set of features.

It can also be seen that the peak accuracy was reached with
about half the features with SVM, which enabled an improvement
of the results obtained without any dimensionality reduction. It

is also noteworthy that SVM reached a higher accuracy than both
RandomForest and k-NN in this problem; therefore, the results
obtained after the dimensionality reduction were the best of this
use case. Both k-NN and RandomForest reach similar accuracy to
the baseline when using about 25% of the features.

It is also observed, as for the previous datasets, that CS favored
the creation of few large clusters, which deteriorated the final
classification performance due to a too heavy dimensionality
reduction. Therefore, REFS and SI yielded more acceptable results.
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Table 4
Balanced accuracy for all classifiers, clustering algorithms and dimensionality reduction methods when using PearsonA dissimilarity and REFS as selection criterion.
The highest accuracy in each line is bold-stressed.
Classifier All features PCA (99% var.) Affinity clustering FSFS Hierarchical clustering

FS FW PCA FS FW PCA FS FW PCA

1NN 0.26 0.26 0.22 0.17 0.25 0.23 0.21 0.26 0.24 0.22 0.26
RandomForest 0.20 0.07 0.17 0.20 0.17 0.18 0.20 0.17 0.18 0.20 0.19
SVM-Linear 0.35 0.33 0.33 0.39 0.32 0.32 0.38 0.40 0.33 0.36 0.31

Fig. 14. Balanced accuracy on BBBC021sc as a function of the number of feature clusters. Horizontal lines show the accuracy of the classifiers without any
dimensionality reduction.

5.3. Analysis with statistical tests

In order to provide a meaningful and robust evaluation of
all the tested methods, it is necessary to go beyond the raw
performance measures by carrying out statistical tests that allow
us to determine which alternatives are consistently more suited
to the task than others. The balanced accuracy is used throughout

this section as the reference performance measure for the clas-
sification, because it can be used across datasets with different
class imbalance ratios. Results with a p-value lower than 0.01 are
bold-stressed in the tables throughout this section.

Tables 5–8 show the results of the pairwise Wilcoxon test
when comparing the balanced accuracy obtained by different
clustering algorithms, dissimilarities, clustering quality criteria
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Table 5
Results of the Wilcoxon test for different feature clustering algorithms
(Bonferroni-corrected p-values between parentheses).

AC FSFS

HC −0.0094 (6.89e−04) 0.0278 (7.84e−18)
AC 0.0890 (1.6e−33)

Table 6
Results of the Wilcoxon test for the dissimilarity measures (Bonferroni-corrected
p-values between parentheses).

MICI Pearson PearsonA

Cosine −0.0187 (8.79e−05) −0.028 (1.04e−13) −0.0243 (1.47e−11)
MICI −0.0045 (> 1) −0.0079 (0.105)
Pearson 0.0022 (> 1)

Table 7
Results of the Wilcoxon test for the clustering quality criteria (Bonferroni-
corrected p-values between parentheses).

REFS SI

CS −0.1297 (3.65e−58) −0.0756 (1.08e−43)
REFS 0.0076 (7.4e−05)

Table 8
Results of the Wilcoxon test for the feature selection algorithm (Bonferroni-
corrected p-values between parentheses).

Feature weighting Per-cluster PCA

Feature selection −0.0229 (3.34e−13) 0.004 (0.00758)
Feature weighting 0.0273 (7.11e−15)

and dimensionality reduction procedures, respectively. This non-
parametric test [62] determines whether two samples come from
different distributions, where the null hypothesis is that the me-
dians of the distributions of the samples are the same. A Bonfer-
roni correction is also applied to the results of the test.

It can be seen that in many cases, statistically significant differ-
ences were observed between different alternatives. AC obtained
slightly but consistently better results than HC, while FSFS was
the worst ranked of the 3 tested algorithms. There were also
some differences between dissimilarity measures: both measures
based on Pearson’s correlation were statistically similar, and were
ranked above both MICI, which in turn performed better than the
cosine distance. REFS was the best option as a criterion to select
the best feature clusters, closely followed by SI. Interestingly, CS
was ranked as the worst option despite being supervised; this

highlights that the dataset manifold is more complex than the lin-
early separable structures that are assumed by this measure, and
also the adequacy of the unsupervised criteria used in this paper.
Finally, the feature weighting procedure yielded a better balanced
accuracy than the feature selection and group-wise PCA thanks
to the advantage of performing well even for a low number of
feature clusters, as no features are removed from the dataset. In-
terestingly, feature selection consistently obtained slightly better
results than per-group PCA, with a low p-value. This allows us
to highlight feature selection as the preferred method, due to its
better interpretability and lower computational requirements.

It is also necessary to compare the methods with the perfor-
mance obtained on the original dataset, when no dimensionality
reduction is applied. For this purpose, we applied Friedman’s
test [63] with Holm’s correction to compare the results of the dif-
ferent combinations of clustering algorithm, dissimilarity, qual-
ity criterion and dimensionality reduction, when applied on the
tested datasets using each classifier. The results that yielded a cer-
tain statistical significance (p-value < 0.05) are shown in Table 9,
where it can be seen that all combinations actually damaged the
performance with respect to using all features. In particular, all
such combinations include either CS as selection criterion, or FSFS
as clustering algorithm. Therefore, it can be inferred that for all
combinations that do not include these elements, no significant
differences have been found with respect to using the original
dataset, despite the gain of time obtained after the dimensionality
reduction.

6. Conclusions and future work

In this paper, we established a framework to evaluate multiple
approaches for a robust unsupervised dimensionality reduction of
large-scale datasets, focusing on the interpretability for biological
single-cell imaging data. The elements conforming the dimen-
sionality reduction were identified, including inter-feature dis-
similarity measures, clustering algorithms, unsupervised quality
metrics to evaluate the obtained clusters, and different dimen-
sionality reduction procedures such as feature selection, feature
weighting, and PCA. For each of these categories, the main strate-
gies in the scientific literature were implemented and tested to
evaluate their behavior in a general case.

The experiments carried out involved two recent imaging
datasets of different types (namely imaging flow cytometry and

Table 9
Estimate of Friedman’s test comparing each combination to the same dataset and classifier without dimensionality reduction.
Clustering Distance Quality measure Dimensionality reduction p-value Summary statistic

FSFS Cosine SI Per-cluster PCA 4.69e−09 0.1997
FSFS Cosine SI Feature selection 6.68e−09 0.2175
FSFS Cosine CS Per-cluster PCA 1.57e−08 0.1906
HC PearsonA CS Per-cluster PCA 3.95e−08 0.2655
FSFS Cosine CS Feature selection 4.73e−08 0.2611
FSFS Pearson CS Per-cluster PCA 7.46e−08 0.2820
HC PearsonA CS Feature selection 1.15e−07 0.2838
HC Pearson CS Feature selection 1.54e−07 0.3005
HC Pearson CS Per-cluster PCA 2.52e−07 0.3041
FSFS PearsonA CS Per-cluster PCA 2.58e−07 0.3074
FSFS Pearson CS Feature selection 4.78e−07 0.3236
FSFS PearsonA CS Feature selection 5.94e−07 0.3327
HC Cosine CS Feature selection 3.12e−05 0.4143
FSFS MICI CS Feature selection 3.89e−05 0.4005
HC Cosine CS Per-cluster PCA 4.07e−05 0.4080
FSFS MICI CS Per-cluster PCA 5.34e−05 0.4172
HC MICI CS Feature selection 1.21e−04 0.4869
HC MICI CS Per-cluster PCA 1.57e−04 0.4899
FSFS MICI SI Per-cluster PCA 3.46e−04 0.4040
FSFS MICI SI Feature selection 3.51e−04 0.4005
AC Cosine CS Per-cluster PCA 3.65e−04 0.4439
AC Cosine CS Feature selection 3.78e−03 0.4858
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Table A.10
Balanced accuracy obtained on JurkatIFC (Affinity clustering).
Distance Measure Dim. red. No preprocessing RESAMPLE RUS

1NN RUSBoost 1NN RF SVM-Lin. SVM-RBF 1NN RF SVM-Lin. SVM-RBF

Pearson

SI
FS 0.5943 0.7939 0.6864 0.5763 0.7645 0.6383 0.6796 0.7565 0.6191 0.7326
FW 0.5945 0.8031 0.6791 0.5593 0.7270 0.7586 0.6848 0.6767 0.6555 0.7067
PCA 0.6325 0.7977 0.6890 0.5869 0.7622 0.6238 0.6534 0.7437 0.7197 0.7192

REFS
FS 0.6281 0.7801 0.6793 0.5380 0.7493 0.6752 0.6518 0.7509 0.6741 0.7446
FW 0.6339 0.8104 0.6893 0.5601 0.7413 0.7178 0.6758 0.7200 0.6397 0.7396
PCA 0.6232 0.8170 0.6898 0.5244 0.7492 0.6462 0.6586 0.7414 0.6704 0.7109

CS
FS 0.5883 0.7785 0.6648 0.5588 0.7476 0.6333 0.6857 0.7543 0.6601 0.7306
FW 0.5757 0.8127 0.6422 0.5582 0.7402 0.7254 0.6600 0.7136 0.6500 0.6957
PCA 0.6257 0.7928 0.6904 0.5617 0.7107 0.6245 0.6819 0.7511 0.6771 0.7040

PearsonA

SI
FS 0.6268 0.8000 0.6975 0.5629 0.7492 0.6413 0.6701 0.7467 0.6212 0.7093
FW 0.5969 0.7854 0.6425 0.5582 0.7607 0.7311 0.6578 0.7471 0.6956 0.7367
PCA 0.6245 0.7717 0.6955 0.5371 0.7237 0.6342 0.6546 0.7543 0.6571 0.7068

REFS
FS 0.6370 0.7964 0.7017 0.5498 0.7976 0.6506 0.6920 0.7553 0.6552 0.7371
FW 0.6407 0.8123 0.6994 0.5469 0.7340 0.7514 0.6829 0.7088 0.6962 0.7716
PCA 0.6370 0.8082 0.6857 0.5467 0.7700 0.6642 0.6853 0.7536 0.7020 0.7692

CS
FS 0.5739 0.7606 0.6314 0.5751 0.7390 0.6218 0.6456 0.7372 0.6169 0.6835
FW 0.5065 0.7741 0.5915 0.5614 0.7339 0.7652 0.6313 0.7515 0.6973 0.6889
PCA 0.5509 0.7517 0.6258 0.5774 0.7274 0.5777 0.6475 0.7534 0.6396 0.6940

MICI

SI
FS 0.6212 0.7995 0.6910 0.5421 0.7213 0.6753 0.6929 0.7509 0.6595 0.7301
FW 0.6216 0.8080 0.6790 0.5514 0.7289 0.6830 0.6750 0.7455 0.6355 0.7260
PCA 0.6216 0.8107 0.6831 0.5579 0.7292 0.6702 0.6328 0.7020 0.6374 0.7040

REFS
FS 0.6212 0.7821 0.6736 0.5743 0.7360 0.6906 0.6875 0.7412 0.6457 0.7108
FW 0.6216 0.7873 0.6827 0.5738 0.7052 0.6812 0.6477 0.7416 0.6230 0.7014
PCA 0.6216 0.7894 0.6791 0.5588 0.7015 0.6658 0.7008 0.7282 0.6054 0.7277

CS
FS 0.6212 0.7989 0.6807 0.5583 0.6865 0.6799 0.6575 0.6828 0.6325 0.7196
FW 0.6216 0.7982 0.6747 0.5750 0.7052 0.6823 0.6524 0.7182 0.6666 0.7082
PCA 0.6216 0.7827 0.6948 0.5582 0.7353 0.6648 0.6297 0.7272 0.6288 0.7074

Cosine

SI
FS 0.5756 0.7735 0.6579 0.5079 0.7512 0.6476 0.6599 0.7120 0.6788 0.7174
FW 0.5526 0.7836 0.6066 0.5481 0.7144 0.6598 0.6335 0.7265 0.6595 0.7073
PCA 0.5652 0.7663 0.6368 0.5008 0.7398 0.6366 0.6459 0.6925 0.6472 0.7042

REFS
FS 0.5834 0.7947 0.6403 0.5056 0.7908 0.6233 0.6570 0.7074 0.6327 0.7037
FW 0.5649 0.8020 0.6302 0.5587 0.7571 0.7102 0.6790 0.7347 0.6377 0.7329
PCA 0.5827 0.7860 0.6384 0.5184 0.7472 0.6332 0.6688 0.7418 0.6489 0.6963

CS
FS 0.5092 0.7644 0.5477 0.5509 0.7178 0.5936 0.5976 0.6749 0.5795 0.6700
FW 0.5191 0.8115 0.5808 0.5454 0.7302 0.6865 0.6322 0.7510 0.6573 0.7120
PCA 0.4350 0.7085 0.4842 0.5055 0.6747 0.5275 0.5315 0.6766 0.6084 0.6166

Table A.11
Balanced accuracy obtained on JurkatIFC (FSFS).
Distance Measure Dim. red. No preprocessing RESAMPLE RUS

1NN RUSBoost 1NN RF SVM-Lin. SVM-RBF 1NN RF SVM-Lin. SVM-RBF

Pearson

SI
FS 0.6630 0.7864 0.7272 0.5481 0.7621 0.6635 0.6613 0.7371 0.6670 0.7304
FW 0.6589 0.8150 0.7148 0.5594 0.7561 0.7436 0.6564 0.7615 0.6844 0.7244
PCA 0.6526 0.7726 0.7148 0.5630 0.7371 0.6662 0.6704 0.7538 0.6753 0.7261

REFS
FS 0.6430 0.8033 0.7295 0.5585 0.7484 0.6607 0.6746 0.7592 0.6486 0.7202
FW 0.6538 0.8015 0.7272 0.5626 0.7450 0.7291 0.6847 0.7223 0.6787 0.7502
PCA 0.6424 0.7793 0.7078 0.5416 0.7737 0.6630 0.6707 0.7473 0.6486 0.7494

CS
FS 0.3026 0.5372 0.3605 0.4233 0.5197 0.4402 0.4958 0.5274 0.4896 0.4888
FW 0.3834 0.7825 0.4533 0.5564 0.7682 0.7561 0.5412 0.7524 0.7411 0.5956
PCA 0.2128 0.4745 0.2620 0.2852 0.4362 0.3563 0.3765 0.4502 0.4660 0.4345

PearsonA

SI
FS 0.6262 0.7805 0.7063 0.5476 0.7512 0.6746 0.6682 0.7254 0.6263 0.7137
FW 0.6434 0.8031 0.6924 0.5578 0.7227 0.7190 0.6881 0.7362 0.6750 0.7590
PCA 0.6273 0.7882 0.7237 0.5604 0.7401 0.6679 0.7007 0.7489 0.6846 0.7232

REFS
FS 0.6387 0.7901 0.7132 0.5531 0.7701 0.6777 0.6776 0.7611 0.6842 0.7445
FW 0.6431 0.8230 0.7156 0.5520 0.7434 0.7407 0.6630 0.7225 0.6365 0.7452
PCA 0.6284 0.7991 0.7013 0.5628 0.7924 0.6688 0.6702 0.7554 0.6160 0.7345

CS
FS 0.2679 0.5936 0.3323 0.4502 0.5651 0.4367 0.5126 0.5847 0.5385 0.5403
FW 0.3497 0.7847 0.4475 0.5708 0.7853 0.6993 0.5265 0.7378 0.6103 0.5117
PCA 0.2769 0.5363 0.3545 0.3950 0.5836 0.4499 0.4628 0.4760 0.4550 0.4714

MICI

SI
FS 0.2621 0.4376 0.3295 0.3217 0.4626 0.5069 0.3721 0.3637 0.4234 0.4709
FW 0.5541 0.7945 0.6263 0.5618 0.7938 0.8019 0.6614 0.7412 0.7484 0.4680
PCA 0.2649 0.5226 0.2992 0.3154 0.4850 0.4288 0.4260 0.4096 0.4788 0.4447

REFS
FS 0.4840 0.7752 0.5587 0.5418 0.6564 0.6229 0.6451 0.7656 0.6732 0.7314

(continued on next page)
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Table A.11 (continued).
Distance Measure Dim. red. No preprocessing RESAMPLE RUS

1NN RUSBoost 1NN RF SVM-Lin. SVM-RBF 1NN RF SVM-Lin. SVM-RBF

FW 0.5107 0.8004 0.6200 0.5444 0.7176 0.6386 0.6303 0.7415 0.6769 0.7072
PCA 0.6244 0.7961 0.6908 0.5717 0.6843 0.6887 0.6880 0.7367 0.6995 0.7188

CS
FS 0.2646 0.5074 0.3117 0.3765 0.5414 0.4945 0.4344 0.4414 0.5542 0.5105
FW 0.4185 0.7696 0.4940 0.5588 0.8073 0.7764 0.5239 0.7226 0.7336 0.5270
PCA 0.2503 0.5661 0.3326 0.3477 0.5593 0.5529 0.4799 0.5489 0.5468 0.5116

Cosine

SI
FS 0.1988 0.3774 0.2041 0.2041 0.3053 0.3933 0.2802 0.2728 0.3120 0.3497
FW 0.3972 0.7890 0.4601 0.5728 0.8179 0.8017 0.5177 0.7117 0.6667 0.3628
PCA 0.2013 0.3201 0.1985 0.2038 0.3312 0.3013 0.2320 0.2682 0.3217 0.2929

REFS
FS 0.5942 0.7791 0.6494 0.5188 0.7299 0.6234 0.6840 0.7123 0.6304 0.7169
FW 0.5780 0.7981 0.6261 0.5439 0.7698 0.6849 0.6376 0.7428 0.5798 0.7119
PCA 0.5727 0.7579 0.6288 0.4802 0.7147 0.6156 0.6472 0.7198 0.6272 0.6984

CS
FS 0.2001 0.3918 0.2164 0.3460 0.4322 0.3190 0.3460 0.4216 0.3926 0.3448
FW 0.3096 0.8003 0.3754 0.5560 0.7980 0.7894 0.4392 0.7227 0.6482 0.2975
PCA 0.2143 0.2538 0.2115 0.2042 0.2980 0.2119 0.2416 0.2004 0.2001 0.2308

Table A.12
Balanced accuracy obtained on JurkatIFC (Hierarchical clustering).
Distance Measure Dim. red. No preprocessing RESAMPLE RUS

1NN RUSBoost 1NN RF SVM-Lin. SVM-RBF 1NN RF SVM-Lin. SVM-RBF

Pearson

SI
FS 0.6158 0.7833 0.6731 0.6068 0.7998 0.6761 0.6783 0.7551 0.6649 0.7410
FW 0.6468 0.8066 0.6857 0.5648 0.7428 0.7358 0.7099 0.7355 0.6839 0.7609
PCA 0.6456 0.7750 0.6984 0.5856 0.8093 0.6168 0.6773 0.7902 0.6558 0.7370

REFS
FS 0.6426 0.7853 0.6982 0.5642 0.7408 0.6771 0.6701 0.7420 0.6227 0.7155
FW 0.6342 0.8103 0.6832 0.5727 0.7546 0.7180 0.6541 0.7437 0.6380 0.7121
PCA 0.6253 0.8149 0.6979 0.5598 0.7793 0.6517 0.6508 0.7607 0.6611 0.7302

CS
FS 0.2174 0.4971 0.2801 0.3140 0.5057 0.3467 0.3954 0.4509 0.4392 0.4410
FW 0.5503 0.8172 0.6025 0.5600 0.7496 0.7884 0.6801 0.7469 0.7499 0.6507
PCA 0.2186 0.4623 0.3124 0.3074 0.5034 0.3938 0.4055 0.4432 0.4682 0.5111

PearsonA

SI
FS 0.6207 0.7862 0.6843 0.5755 0.8031 0.6558 0.6901 0.7739 0.6907 0.7503
FW 0.6408 0.8081 0.7004 0.5591 0.7285 0.7198 0.7128 0.7557 0.6821 0.7408
PCA 0.6407 0.8098 0.6939 0.5831 0.7882 0.6327 0.6860 0.7616 0.6356 0.7016

REFS
FS 0.6374 0.7950 0.7017 0.5542 0.7263 0.6738 0.7041 0.7815 0.6862 0.7498
FW 0.6342 0.8058 0.6899 0.5432 0.7387 0.7278 0.6557 0.7214 0.6944 0.7329
PCA 0.6201 0.7932 0.6881 0.5561 0.7672 0.6631 0.6598 0.7516 0.6942 0.7404

CS
FS 0.2085 0.4906 0.2549 0.2750 0.4805 0.3806 0.3838 0.4579 0.4502 0.3419
FW 0.5330 0.8110 0.5914 0.5598 0.7692 0.8234 0.6293 0.7384 0.7138 0.5434
PCA 0.2093 0.5072 0.2337 0.2729 0.4507 0.3608 0.3626 0.4187 0.4522 0.3745

MICI

SI
FS 0.4679 0.7533 0.5381 0.5204 0.7020 0.5736 0.5976 0.6812 0.5821 0.6478
FW 0.4747 0.7826 0.5340 0.5559 0.7432 0.7174 0.6111 0.7287 0.6504 0.6777
PCA 0.4503 0.7401 0.5359 0.5129 0.6966 0.5727 0.6568 0.6787 0.6316 0.6799

REFS
FS 0.6215 0.8231 0.6800 0.5611 0.7050 0.6824 0.6307 0.7242 0.6837 0.7091
FW 0.6212 0.7996 0.6690 0.5466 0.7165 0.6800 0.6720 0.7208 0.6524 0.7396
PCA 0.6212 0.8026 0.6814 0.5587 0.7182 0.6706 0.6346 0.7496 0.6619 0.7205

CS
FS 0.3765 0.6578 0.4296 0.4860 0.5954 0.5294 0.4977 0.6336 0.5066 0.6036
FW 0.4687 0.7881 0.5557 0.5444 0.7598 0.7864 0.5712 0.7450 0.7008 0.5818
PCA 0.3855 0.6218 0.4314 0.4843 0.6136 0.4915 0.5306 0.5757 0.5342 0.6400

Cosine

SI
FS 0.6182 0.7816 0.6580 0.5216 0.7566 0.6561 0.6763 0.7229 0.6333 0.7198
FW 0.5799 0.7960 0.6251 0.5468 0.7116 0.7087 0.6734 0.7512 0.6565 0.7018
PCA 0.5887 0.7678 0.6499 0.5331 0.7142 0.6337 0.6381 0.6897 0.6160 0.6958

REFS
FS 0.6037 0.7927 0.6484 0.5113 0.7748 0.6317 0.6478 0.7556 0.6923 0.7268
FW 0.5655 0.7931 0.6395 0.5611 0.7352 0.6943 0.6878 0.7391 0.6725 0.7424
PCA 0.5837 0.7689 0.6492 0.5230 0.7393 0.6233 0.6626 0.7319 0.6483 0.6920

CS
FS 0.5194 0.7256 0.5629 0.5078 0.6992 0.6083 0.6025 0.6954 0.6003 0.6815
FW 0.5305 0.7686 0.5959 0.5597 0.7439 0.7394 0.6614 0.7315 0.6817 0.7055
PCA 0.4785 0.7142 0.5336 0.5288 0.7344 0.5646 0.6186 0.6726 0.5604 0.6335

high-content screening) that are publicly available and used by
other authors in the field. One of those datasets was evaluated
both after profiling the samples (as is usually done by other
authors) and also at the single-cell level, an experimental set-
ting that had not been tested on this dataset before due to its
large scale. All combinations of the previously described compo-
nent of the pipeline were tested on several well-known classi-
fiers in order to obtain sufficient results for a proper statistical
analysis.

The results obtained in the experiments highlighted the higher
robustness and accuracy yield of some of the components, such
as Affinity Clustering as feature clustering algorithm, the Repre-
sentation Entropy as a quality measure for feature clusterings, or
inter-feature dissimilarities based on Pearson’s correlation. It was
also shown that, when the right combinations of elements were
used, unsupervised dimensionality reduction was able to lower
the complexity of the datasets without reducing the accuracy or
even improving it in some cases.
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A natural future research line following this paper involves
the application of these same concepts to deep neural networks.
A feature clustering such as proposed in this paper, combined
with an adequate unsupervised quality criterion, could poten-
tially enhance both the training process of the network and the
posterior feature attribution. This approach could be valuable in
the case of highly complex problems, for which neural networks
obtain an accuracy much higher than other, more interpretable
classifiers. Another line that immediately follows from our work
is the development of quality criteria that would be directly
embedded in the clustering algorithm. The results in this paper
highlighted representation entropy as an especially promising
robust criterion to evaluate clusterings; as such, embedding the
computation of the RE directly within the clustering procedure
could perhaps lead to enhanced feature clusters.
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Appendix. Balanced accuracy results

This section contains the full results used to produce the plots
and statistical tests analyzed in Section 5. Table A.10 shows the
balanced accuracy obtained on the JurkatIFC dataset when using
affinity clustering along with all combinations of dissimilarities,
quality measures, dimensionality reduction, preprocessing and
classifiers. Tables A.11 and A.12 show similar results for FSFS and
hierarchical clustering, respectively. Finally, Tables A.13 and A.14
show the balanced accuracy for BBBC021 and BBBC021_sc.

Table A.13
Balanced accuracy obtained on BBBC021.
Distance Measure Dim. red. AC FSFS HC

1NN RF SVM-Lin. SVM-RBF 1NN RF SVM-Lin. SVM-RBF 1NN RF SVM-Lin. SVM-RBF

Pearson

SI
FS 0.7770 0.8317 0.8909 0.6991 0.4212 0.4844 0.4476 0.3475 0.8041 0.8460 0.8686 0.7145
FW 0.7395 0.8132 0.8492 0.0327 0.8146 0.8120 0.4459 0.1691 0.7818 0.8094 0.8719 0.0609
PCA 0.7382 0.8356 0.8819 0.6622 0.4354 0.5550 0.4837 0.3609 0.7980 0.8437 0.9075 0.7124

REFS
FS 0.7559 0.8131 0.8513 0.6665 0.6953 0.7960 0.8071 0.5105 0.7995 0.8369 0.9008 0.7145
FW 0.6743 0.8053 0.8278 0.0292 0.6324 0.8075 0.7971 0.0060 0.7372 0.8042 0.8154 0.0476
PCA 0.7220 0.8346 0.8696 0.6145 0.6879 0.8025 0.7896 0.5192 0.7468 0.8206 0.8815 0.6704

CS
FS 0.7089 0.7226 0.7307 0.5978 0.2838 0.2588 0.1247 0.1078 0.2149 0.3754 0.2401 0.2209
FW 0.7902 0.8160 0.4997 0.0179 0.6224 0.7994 0.0918 0.0179 0.8400 0.8121 0.0417 0.0179
PCA 0.6465 0.6791 0.6723 0.5647 0.2767 0.3617 0.1481 0.0728 0.2562 0.3322 0.1825 0.1911

PearsonA

SI
FS 0.7992 0.7652 0.8477 0.6639 0.7863 0.8291 0.8825 0.7249 0.7818 0.8208 0.8600 0.7198
FW 0.7043 0.8097 0.8573 0.0327 0.7443 0.8081 0.8789 0.2608 0.7818 0.8094 0.8666 0.0536
PCA 0.7441 0.8252 0.8854 0.6619 0.7818 0.8379 0.8898 0.7238 0.7861 0.8128 0.9017 0.6975

REFS
FS 0.7559 0.7660 0.8278 0.6855 0.6813 0.7703 0.8265 0.5203 0.7595 0.8223 0.8557 0.7041
FW 0.6566 0.8095 0.8172 0.0319 0.6208 0.8037 0.7552 0.0060 0.7187 0.8096 0.8119 0.0208
PCA 0.7372 0.8022 0.8715 0.6366 0.6464 0.7436 0.7677 0.4358 0.7349 0.8002 0.8561 0.6681

CS
FS 0.8111 0.7926 0.8750 0.7215 0.2168 0.3585 0.0486 0.0539 0.2158 0.3638 0.1042 0.2166
FW 0.8215 0.8019 0.8708 0.6069 0.5385 0.8111 0.0208 0.0060 0.8281 0.8032 0.0217 0.0179
PCA 0.8111 0.8016 0.8788 0.6902 0.2403 0.2478 0.0498 0.0514 0.2984 0.2841 0.0430 0.0498

MICI

SI
FS 0.7311 0.7117 0.7079 0.5833 0.5026 0.5838 0.5324 0.4221 0.7947 0.7070 0.8538 0.7310
FW 0.7449 0.8130 0.7067 0.5774 0.6949 0.8091 0.5378 0.4281 0.7714 0.8008 0.7835 0.0812
PCA 0.6813 0.6813 0.7118 0.5890 0.4921 0.5416 0.5417 0.4239 0.8007 0.7497 0.8590 0.6935

REFS
FS 0.6468 0.6501 0.7231 0.4533 0.6560 0.6746 0.7987 0.6260 0.6771 0.7129 0.7015 0.5879
FW 0.6274 0.8134 0.6433 0.0927 0.6560 0.7983 0.7935 0.1870 0.6480 0.7967 0.6793 0.0119
PCA 0.6363 0.7083 0.7501 0.4604 0.6560 0.6703 0.7984 0.6239 0.6960 0.7693 0.7314 0.6263

CS
FS 0.8215 0.7795 0.8880 0.7155 0.4353 0.4436 0.4398 0.3339 0.7373 0.6684 0.7071 0.5311
FW 0.8215 0.8067 0.8831 0.7155 0.7020 0.8075 0.4206 0.2764 0.8355 0.8112 0.6439 0.3036
PCA 0.8215 0.7954 0.8918 0.7155 0.4593 0.4840 0.4211 0.3382 0.7355 0.6656 0.7254 0.5737

Cosine

SI
FS 0.7562 0.7462 0.8649 0.7708 0.1785 0.3610 0.0312 0.1236 0.7173 0.6751 0.7915 0.6794
FW 0.6791 0.7984 0.8160 0.0466 0.3101 0.8114 0.0268 0.0179 0.7669 0.7946 0.7680 0.0785
PCA 0.7631 0.7758 0.8785 0.7753 0.1276 0.2799 0.0572 0.1739 0.7147 0.7879 0.7997 0.7320

REFS
FS 0.8215 0.8104 0.8864 0.7155 0.8215 0.8091 0.8899 0.7155 0.8215 0.8100 0.8781 0.7155
FW 0.8215 0.8108 0.8839 0.7155 0.8215 0.8064 0.8861 0.7155 0.8215 0.7961 0.8824 0.7155
PCA 0.8215 0.7953 0.8777 0.7155 0.8215 0.8067 0.8833 0.7155 0.8215 0.8031 0.8825 0.7155

CS
FS 0.4464 0.4042 0.2731 0.3140 0.1526 0.3634 0.0312 0.1264 0.1523 0.2124 0.0833 0.1138
FW 0.6891 0.7979 0.1074 0.0179 0.2842 0.8078 0.0268 0.0179 0.7839 0.8052 0.0119 0.0179
PCA 0.3355 0.2762 0.2938 0.2352 0.1276 0.2776 0.0387 0.1666 0.1336 0.2285 0.0370 0.1340
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Table A.14
Balanced accuracy obtained on BBBC021sc.
Distance Measure Dim. red. AC FSFS HC

1NN RF SVM-Lin. 1NN RF SVM-Lin. 1NN RF SVM-Lin.

Pearson

SI
FS 0.2309 0.1791 0.3371 0.2241 0.1662 0.3541 0.2392 0.1794 0.3473
FW 0.2079 0.1961 0.3929 0.2028 0.1976 0.3950 0.2152 0.1969 0.3902
PCA 0.2355 0.1755 0.2923 0.2573 0.1592 0.3443 0.2591 0.1819 0.3277

REFS
FS 0.2195 0.1800 0.3555 0.2292 0.1736 0.3500 0.2367 0.1799 0.3684
FW 0.1715 0.1975 0.3876 0.2063 0.1967 0.3943 0.2125 0.1964 0.3880
PCA 0.2478 0.1742 0.2909 0.2618 0.1671 0.3346 0.2569 0.1768 0.3349

CS
FS 0.2220 0.1690 0.1957 0.0759 0.0539 0.0109 0.0792 0.0660 0.0249
FW 0.2271 0.1971 0.4086 0.1403 0.1973 0.2969 0.2647 0.1964 0.3372
PCA 0.2079 0.1567 0.1981 0.0854 0.0688 0.0261 0.0812 0.0722 0.0276

PearsonA

SI
FS 0.2267 0.1788 0.3233 0.2239 0.1722 0.3137 0.2363 0.1787 0.3253
FW 0.1930 0.1973 0.3959 0.1991 0.1967 0.3896 0.2076 0.1967 0.3920
PCA 0.2402 0.1739 0.2619 0.2608 0.1704 0.3277 0.2576 0.1807 0.2984

REFS
FS 0.2192 0.1749 0.3285 0.2321 0.1804 0.3199 0.2429 0.1846 0.3284
FW 0.1716 0.1972 0.3924 0.2109 0.1978 0.3800 0.2184 0.1976 0.3601
PCA 0.2496 0.1700 0.3212 0.2634 0.1720 0.4014 0.2644 0.1869 0.3074

CS
FS 0.2362 0.1735 0.2841 0.0734 0.0445 0.0379 0.0839 0.0765 0.0405
FW 0.2212 0.1973 0.3910 0.1459 0.1970 0.2644 0.2699 0.1978 0.3472
PCA 0.2310 0.1785 0.2620 0.0753 0.0642 0.0358 0.0866 0.0762 0.0318

MICI

SI
FS 0.2190 0.1770 0.3292 0.2345 0.1861 0.3971 0.2393 0.1911 0.3283
FW 0.1848 0.1971 0.3875 0.2242 0.1970 0.3783 0.2177 0.1971 0.3881
PCA 0.2498 0.1808 0.3059 0.2567 0.1837 0.3540 0.2495 0.1926 0.3272

REFS
FS 0.2215 0.1882 0.3375 0.2240 0.1840 0.3422 0.2446 0.1830 0.3286
FW 0.1845 0.1969 0.3865 0.2040 0.1970 0.3391 0.2244 0.1966 0.3825
PCA 0.2514 0.1882 0.3059 0.2589 0.1787 0.3165 0.2608 0.1865 0.3132

CS
FS 0.1811 0.1389 0.1317 0.2313 0.1677 0.3197 0.1321 0.1111 0.0744
FW 0.2496 0.1961 0.4008 0.2579 0.1972 0.3246 0.2716 0.1956 0.3887
PCA 0.1878 0.1498 0.1376 0.2306 0.1689 0.2948 0.1380 0.1201 0.0612

Cosine

SI
FS 0.2296 0.1835 0.3046 0.0621 0.0262 0.0179 0.2474 0.1934 0.3674
FW 0.1967 0.1968 0.3889 0.2300 0.1969 0.2446 0.2280 0.1969 0.3812
PCA 0.2418 0.1819 0.2969 0.0664 0.0187 0.0003 0.2513 0.1914 0.3199

REFS
FS 0.2326 0.1909 0.3354 0.2417 0.1943 0.3502 0.2513 0.1902 0.3545
FW 0.2024 0.1970 0.3861 0.2274 0.1982 0.3528 0.2382 0.1972 0.3600
PCA 0.2520 0.1868 0.3396 0.2591 0.1884 0.3694 0.2577 0.1877 0.3403

CS
FS 0.2315 0.1842 0.1991 0.1438 0.1176 0.0940 0.1237 0.0995 0.0549
FW 0.2575 0.1976 0.4062 0.1565 0.1965 0.2749 0.2780 0.1964 0.3805
PCA 0.2321 0.1850 0.2197 0.1356 0.1265 0.1006 0.1394 0.1257 0.0978
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