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Abstract: Railway track maintenance is a critical problem for any railway administrator. More precisely, preventive maintenance scheduling
is a nondeterministic polynomial time (NP)–hard problem, which additionally involves multiple objectives such as economic cost, maximum
capacity, serviceability, safety, and passenger comfort. This paper proposes a multiobjective optimization approach to this problem, combined
with a track deterioration model that takes into account the degradation caused by maintenance operations. The track behavior is simulated by
an exponential deterioration model based on a two-level segmentation. The maintenance schedule is built using a Pareto-based algorithm with
two objectives (cost and delay) and three constraints, on top of an initialization heuristic based on expert knowledge. The proposed approach
has been tested with two different algorithms (NSGA-II and AMOSA) over a model of a real track to create schedules for different horizons
ranging between 3 and 20 years. The solutions obtained by AMOSA outperform those designed by human experts both in terms of time delay
and economic cost, demonstrating the capability of the proposal to produce near-optimal long-term maintenance schedules. DOI: 10.1061/
(ASCE)CP.1943-5487.0000757. © 2018 American Society of Civil Engineers.

Introduction

Railway track maintenance represents an important challenge
for stakeholders in the railway sector, such as railway contractors
and infrastructure administrators, both in terms of money, resour-
ces, and safety (Ferreira and López-Pita 2015). The economic
cost of railway infrastructure maintenance is up to $150,000/km,
two-thirds of which are associated with the track maintenance.
Additionally, the nonredundancy of railway tracks implies that
maintenance has a direct impact on the level of service and safety

that can be provided by the trains. Therefore, the elaboration of
feasible maintenance plans is a critical issue for railway infrastruc-
ture administrators.

Traditionally, track maintenance can be corrective or preventive.
Preventive maintenance is sought after by the maintenance policies
in the industry world, and can lead to smaller costs and better qual-
ity of the track, while providing a higher flexibility and better man-
agement of the resources (Kong and Frangopol 2003). However,
the preventive maintenance scheduling problem is nondeterministic
polynomial time (NP)–hard (Budai et al. 2006; Gustavsson 2015).
A problem H belongs to the NP-hard family when every NP prob-
lem (i.e., problems for which a solution can be verified in polyno-
mial time) can be reduced in polynomial time toH, meaning thatH
is at least as complex as any NP problem (Garey and Johnson
1979). In practice, this implies that a globally optimal preventive
maintenance schedule cannot be computed in a feasible time.
Moreover, the difficulty of this task increases along with the time
span of the schedule. Therefore, it is crucial to develop algorithms
that can find near-optimal approximate solutions to this problem in
an acceptable time.

An adequate preventive maintenance requires an accurate track
deterioration model to anticipate future failures and demands. The
specialized literature includes several proposals to model the track
based on the workload of the rails and the ballast, either using linear
(Esveld 2001; Ramos and Fonseca 2011b; Wen et al. 2016) or non-
linear models (Jovanovic 2004; Zhao et al. 2006; Andrade and
Teixeira 2016). Other studies describe how maintenance operations
affect the degradation rate of the track (Ramos and Fonseca 2013;
Audley and Andrews 2013; Andrade and Teixeira 2016).

Traditional optimization algorithms aim at finding the solution
that minimizes (or maximizes) the value of a function for a given
problem. However, many real-world problems involve several ob-
jective functions. Multiobjective algorithms have been an impor-
tant research topic for the last decades, as they attempt to optimize
several objective functions altogether, allowing them to handle
a set of nondominated solutions (Deb 2001; Deb et al. 2002;
Bandyopadhyay et al. 2008).
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Multiobjective algorithms have been successfully applied on the
railway maintenance scheduling problem. In Caetano and Fonseca
(2013), the authors optimize the track lifecycle cost and the track
availability for scheduling the renewal strategy. In Ramos and
Fonseca (2011a), a biobjective approach optimizes the economic
cost and railway capacity after applying a maintenance plan, while
complying with some constraints. Some authors propose a different
way to tackle a similar problem, translating all the objectives into
terms of economic cost (Higgins et al. 1996; Arasteh Khouy et al.
2014). Another multiobjective approach is presented in Podofillini
et al. (2006), based on risks and on a Markov model to model the
inspection operations. Finally, Caetano and Teixeira (2016) apply
multiobjective algorithm to schedule tamping operations. However,
the authors have been unable to find in the literature any attempt to
combine a multiobjective strategy with a track deterioration model
that involves the degradation caused by both tamping and renewal
operations.

This paper describes a multiobjective optimization approach for
preventive track maintenance scheduling. Two objective functions
(cost and delay) and three sets of constraints (one for safety and two
for resources) are defined in order to model the problem. Two mul-
tiobjective algorithms are considered, to obtain a nondominated set
of maintenance plans that satisfy all constraints while minimizing
both cost and delay. Two possible initializations of the solution set,
based on expert knowledge, are proposed. Each candidate solution
to the problem is encoded into a binary vector that represents the
maintenance plan of a track over an arbitrary number of trimesters.
A nonlinear deterioration model that simulates the behavior of a
real track under the effects of time, tamping, and renewal opera-
tions underlies the entire optimization process.

This paper is structured as follows. First, the background informa-
tion about railway track maintenance and multiobjective algorithms is
presented. Then, the proposal is described. The experiments per-
formed and their results are then detailed. Finally, the conclusions
that can be reached through the current study are explained.

Background

Railway Maintenance

In compliancewith the European standard (CEN 2010), there are two
possible reactions to insufficient track quality: lowering the maxi-
mum speed of service, and carrying out maintenance operations.
Although the former is cheaper in the short-term, eventually the qual-
ity would decrease under the minimum allowed by the law and the
safety constraints. The quality of the service could also deteriorate.
Additionally, lowering the speed lowers the maximum capacity of
the track. Therefore, an adequate maintenance plan aims at finding
a trade-off between maintenance costs and service capacity loss.
This trade-off strongly depends on the particular perspective of the
decision maker: maintenance subcontractors pursue a low cost, while
in general train companies seek to maximize the capacity.

The specialized literature shows two groups of methods to
optimize railway maintenance operations (Budai 2009). The first
approach starts from a fixed set of necessary operations and aims
at organizing them in an optimal schedule, taking into account re-
source restrictions (technological, production-related, human, and
organizational) (Budai et al. 2006; Macedo et al. 2017). The second
approach is more complex as it also involves modeling the deterio-
ration process and computing the necessary operations before
doing the scheduling (Vale and Ribeiro 2014; Wen et al. 2016).
Therefore, both the maintenance operations and their scheduling
have to be computed and optimized as a whole. The research carried

out in this paper falls within the second category. Some recent pro-
posals tackle the problem of scheduling the railway maintenance and
traffic altogether (Lidén and Joborn 2017; Luan et al. 2017). How-
ever, in practice they fall very often under the responsibility of differ-
ent agents (namely the maintenance contractor and the railway
operator). This paper focuses on the maintenance scheduling, and
takes into account an estimation of the total train delays that arise
from this scheduling in combination with the track deterioration.

Table 1 shows an overview of the different maintenance oper-
ations and how they are triggered (Patra et al. 2009). The operations
that are performed on a time or failure basis do not need any special
considerations to be scheduled; therefore, this paper focuses on op-
erations that are triggered by a certain condition, namely tamping,
ballast cleaning, and component renewal.

The effect of tamping has already been modeled in previous
research (Jovanovic 2004; Zhao et al. 2006). This modeling is
based on geometric data gathered from the tracks, which must
be properly aligned prior its use (Xu et al. 2015). However, mod-
eling the exact effect of renewal operations that only involve certain
components of the infrastructure proves to be more difficult (Lévi
2001). Following the approach of other studies on the topic, in this
paper a single renewal operation is assumed for all the elements of
the track, which leaves it in an as-good-as-new condition (Ramos
and Fonseca 2011a). Consequently, the remainder of this paper
considers two maintenance operations: tamping and renewal.

In this context, the aim of a maintenance schedule is to deter-
mine when and where to perform tamping and renewal operations
in an optimal way. This optimality can depend on many criteria that
may be contradictory of conflicting, and the exact criterion remains
in hands of the final decision maker, which is usually the railway
administrator. It is not desirable to automatically build a schedule
that optimizes a single criterion, or even a fixed combination of
them. The next section describes how multiobjective algorithms
can overcome this problem.

Multiobjective Algorithms

Let S be the set of all possible solutions to a given problem.
Single-objective optimization consists of looking for a solution
S� ∈ S that yields the best value of a function f, which can be
the minimum or the maximum, depending on the context (Deb
2001). Hence the problem is called minimization or maximization,
respectively. For the sake of simplicity, this paper focuses on min-
imization problems

fðS�Þ ≤ fðSÞ ∀S ∈ S ð1Þ
Conversely, a multiobjective problem involves a set of n objec-

tive functions F ¼ ff1; : : : ; fng. Thus, the optimization becomes
much more difficult, especially when these functions have

Table 1. Maintenance Operations and Their Triggers

Maintenance operation Trigger

Rail grinding —

Rail lubrication Time
Track inspection —
Tamping —
Ballast cleaning —

Rail renewal Condition
Ballast renewal —
Sleeper renewal —
Fasteners renewal —

Rail replacement Failure

© ASCE 04018014-2 J. Comput. Civ. Eng.
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conflicting behaviors, as it happens in most cases. Considering a
single objective at a time is not feasible; the remaining objectives
would get extremely bad values. There are two primary ways to
achieve multiobjective optimization (Deb 2001):
• Aggregating the objectives into a single function, thus convert-

ing the problem to a single-objective one; and
• Looking for nondominated solutions. A solution Sa dominates

Sb if fiðSaÞ ≤ fiðSbÞ, ∀ fi ∈ F . In that case, Sb can be safely
discarded because Sa is undoubtedly better. However, if a solu-
tion Sc is better than Sa for some functions but not for all of
them, Sc and Sa do not dominate each other and none of them
can be said to be better than the other. A set of nondominated
solutions is called a Pareto front.
Some proposals use the first approach to model the railway

maintenance problem. For example, in Arasteh Khouy et al. (2014)
all the objective functions are translated into an overall cost CT
that is optimized. Although this simplifies the handling of the
objectives, it forces one to establish a balance factor between the
objectives prior the execution of the algorithm, fixing their priority.
However, the decision criteria for railway maintenance can change
according to many factors, and such an approach could avoid
reaching potentially interesting solutions (Das and Dennis 1997).
Therefore, this paper focuses on approaches that use a Pareto front,
which have been proven to yield good results in similar problems
(Caetano and Teixeira 2016; Aminbakhsh and Sonmez 2017). The
primary advantage of this alternative is the flexibility of the result,
namely a set of solutions is made available under different balances
of the objectives, and the decision maker can select one of them
according to their specific needs.

Many real-world problems include constraints that restrict the
solution space. A solution that does not comply with the constraints
is said to be nonfeasible, and in general terms should not be taken
into account as a valid solution for the problem. Algorithms based
on Pareto front usually include the constraints into the dominance
criterion, so that a feasible solution always dominates a nonfeasible
one, independently of the value of the objective functions (Deb
et al. 2002; Bandyopadhyay et al. 2008).

The number of objectives is one of many categorizations that
can be done of optimization algorithms. Another popular manner
to group them is according to how many solutions they handle at
a time (Blum and Roli 2003). Trajectory-based algorithms start
from a single solution and modify it looking for improvements
in the objective function(s). One of the most well-known algo-
rithms in this category for multiobjective optimization is the Simu-
lated Annealing-Based Multiobjective Optimization Algorithm
(AMOSA) (Bandyopadhyay et al. 2008). Conversely, population-
based algorithms maintain a pool of solutions and generate new
solutions from them, increasing the diversification of the search.
One of the most used ones is the Nondominated Sorting Genetic
Algorithm (NSGA-II) (Deb et al. 2002).

AMOSA
Simulated annealing (SA) (Kirkpatrick et al. 1983) is one of the
most popular trajectory-based algorithms. It starts with a randomly
generated solution Sc. Then, a new solution S 0

c is generated by
slightly modifying Sc. If S 0

c is better than Sc it is selected as current
solution; otherwise, it can still be picked according to a certain
probability on the basis of a temperature value, which is gradually
reduced as the search goes on until it reaches a minimum value,
signaling the end of the search.

The AMOSA (Bandyopadhyay et al. 2008) is a multiobjective
adaptation of SA. Instead of using a single current solution, it main-
tains a so-called archive of nondominated solutions. Therefore,
the archive is the Pareto front of the search. First, the archive is

randomly initialized, a hill-climbing algorithm is applied to its
members, and only the nondominated solutions are kept. Then,
a random solution is picked and SA is applied, introducing the
domination criterion. In addition to the basic domination definition
described earlier, AMOSA defines an amount of domination, which
takes into account the numeric difference between the values of the
objective functions. When the archive gets too large, similar solu-
tions are clustered to reduce its size.

The primary advantage of AMOSA is its capability to intensify
the search toward promising areas of the search space. This is
achieved first by the hill-climbing algorithm, which quickly im-
proves the fitness of the initial solutions. Then, SA is also based
on a hill-climbing procedure, although allowing for more ex-
ploratory capabilities thanks to the probability generated by the
temperature.

NSGA-II
Evolutionary algorithms use a population of solutions (called
individuals) that evolve together. New individuals are obtained
by combining (crossing) several individuals (generally two) and
introducing random mutations. A number of multiobjective evolu-
tionary algorithms have been suggested in the literature (Knowles
and Corne 2000). One of the most well-known is NSGA-II (Deb
et al. 2002).

The NSGA-II is based on the concept of nondominated sorting;
when a new population is generated, the individuals are grouped
into fronts according their domination. The first front corresponds
to the Pareto front; the second one includes the solutions that would
form the Pareto front if the first front was removed; and so
forth. The following steps summarize the NSGA-II algorithm
[for the full description, please refer to the original publication
(Deb et al. 2002)]:
1. Population initialization with N randomly generated

individuals;
2. Binary tournament: Select N random pairs of individuals and

pick the best of each pair;
3. Crossover: The N selected individuals are grouped in pairs.

Each pair is combined by a crossover operator that generates
two new individuals, for a total of N new individuals;

4. Mutation: Each new individual suffers a random mutation with a
given probability;

5. Evaluation of the new individuals;
6. Nondominated sorting: Sort old and new individuals together;
7. Selection of the new population: The fronts are included in the

new population in order until size N is reached. If the last se-
lected front does not fit entirely, select the individuals so that
they are as spread as possible across the front; and

8. Go to Step 2 until a stop criterion (typically a fixed number of
generations) is met.
The algorithm design is focused on reducing the computational

complexity of the nondominated and crowding sorting. The
NSGA-II favors a wide exploration of the search space rather
than a deep intensification toward already known areas. This makes
NSGA-II especially powerful when dealing with problems of
which little knowledge is possessed, or where the structure of the
search space is unknown or highly complex (El-Abbasy et al.
2017).

Proposal

This section describes the proposal for building maintenance plans
using optimization on the basis of multiobjective algorithms,
including a modeling of track to simulate the whole maintenance
process, the encoding of the generated maintenance plans, the

© ASCE 04018014-3 J. Comput. Civ. Eng.
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evaluation of the cost and delay functions, and the safety and re-
source constraints that are used to model the problem, the solution
initialization process, the operators, and other particular consider-
ations for the design and implementation of the algorithms and the
proof that the problem is NP-hard.

Railway Modeling

The core of a good optimization framework for any real-world
problem is an adequate representation. In this case, it must simulate
the response of the track over time and the different maintenance
operations that are performed on it. This section describes the rail-
way segmentation process, the deterioration model, and the mod-
eling of maintenance operations used in this paper.

Railway Segmentation
The behavior of the track depends on a wide variety of factors such
as curvature, traffic, ballast type, and previously applied mainte-
nance. Thus, the track cannot be modeled as a whole, it must be
segmented and each segment must be treated separately (Jovanovic
2004). There are two main types of segmentation strategies: static
segmentation divides the track into segments of the same length,
and dynamic segmentation takes into account the factors that affect
its behavior.

This paper describes a two-level segmentation procedure that
combines both approaches. First, the track is dynamically divided
into sections, according to the curvature, age, and type of the track,
previously applied maintenance operations, and the presence of el-
ements such as switches, bridges, or tunnels. This design ensures
that the characteristics of quality, deterioration, and maximum al-
lowed speed remain constant within each section. Then, each sec-
tion is statically divided into segments of lengths between 25 and
100 m. This approach allows one to accurately model a real track
where tamping and renewal operations have different ranges. For
instance, tamping is carried out throughout a segment while the
renewal is performed on an entire section. Note that the number
of segments within each section is variable because there is no con-
straint on the length of the sections.

Deterioration Model
Deterioration models can be categorized into mechanistic and
stochastic approaches (Cárdenas-Gallo et al. 2017). Mechanistic
models are based on a simulation of the track geometry taking
into account physical factors such as ballast and sleeper type,
weather conditions, workload, and wheel geometry. These models
provide insight into the behavior of different components of the
railway infrastructure from a physical point of view; however, their
use for predictive modeling is hindered by large uncertainties

(Nguyen et al. 2016). Stochastic approaches produce a model from
data measured from the tracks themselves. These can be broadly
classified into linear (Esveld 2001; Ramos and Fonseca 2011b;
Wen et al. 2016) and nonlinear models (Jovanovic 2004; Zhao
et al. 2006; Andrade and Teixeira 2016). The latter assume the
deterioration of the track to be inversely proportional to the current
quality, which reflects the behavior measured from the tracks more
accurately (Hummitzsch 2009). Furthermore, maintenance opera-
tions also affect this degradation rate (Ramos and Fonseca 2013;
Audley and Andrews 2013; Andrade and Teixeira 2016).

For this approach, the authors consider an exponential fitting
model (Hummitzsch 2009) combined with a mixed maintenance
model where tamping operations restore the quality of the track
while increasing the deterioration rate and renewals restore the
track to its maximum quality, as suggested in Ramos and Fonseca
(2011a). This is shown in Eq. (2), where Q0 = initial quality;
b = deterioration rate; and t = time (in days). Although all track
segments are based on the same exponential model, the parameters
Q0 and b are different for each segment. These parameters can be
estimated from geometric auscultation data

dQðtÞ
dt

¼ b · QðtÞ ⇔ QðtÞ ¼ Q0 · ebt ð2Þ

This study considers the standard deviation of longitudinal
Level D1 (σ) as the quality measure, following European regula-
tions (CEN 2010). Therefore, Eq. (3) gives the quality σijk of seg-
ment j of section i in trimester k, considering that no maintenance
operations have been performed in that time period. Fig. 1 shows
the exponential behavior of a segment between successive tamping
operations

σijk ¼ σij0 · ebijkð90tÞ ð3Þ

Maintenance Operations Modeling
When the quality level attains a certain threshold, maintenance op-
erations are performed in order to take it to an appropriate value.
This introduces a break in the model, as the quality is changed.
Moreover, maintenance operations also change the deterioration
rate (Ramos and Fonseca 2013; Audley and Andrews 2013), which
makes the modeling problem much more difficult, in particular
with respect to the estimation of Q0 and b.

Previous studies in the literature consider that tamping induces a
constant change in the first derivative of the exponential deteriora-
tion model curve (Hummitzsch 2009). This model starts from the
first derivative of σ in trimester k ¼ 0 [Eq. (4)] and assumes a con-
stant ratio c between this value before and after a tamping [Eq. (5)].

5 10 15 20 25

0
1

2
3

4
5

6

Year

S
ig

m
a

Threshold: σ = 3.1
Threshold: σ = 2.9

Fig. 1. Example of quality simulation with the deterioration model; both lines simulate the same segment, with a slightly different quality threshold
for tamping
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Then, it estimates σijðkþ1Þ with a linear fitting using the age of the
track, so that the new deterioration rate is given by Eq. (6)

σ 0
ij0 ¼ σij0 · bij0 ð4Þ

σ 0
ijðkþ1Þ ¼ c · σ 0

ijk ð5Þ

bijðkþ1Þ ¼
σ 0
ijðkþ1Þ

σijðkþ1Þ
ð6Þ

Fig. 1 depicts an example of the quality of a segment over the
years after successive tamping operations, for two slightly different
quality thresholds. It is shown that the more tampings are per-
formed, the faster the track deteriorates, and the smaller the quality
gain is. Moreover, the small difference in the threshold causes seri-
ous disturbances of the degradation forecast for large time horizons.
This highlights the difficulty of the tackled problem, namely deci-
sions that are made for early stages of the scheduling might have
important long-term effects on the track behavior.

The modeling of a renewal operation is simpler. It is considered
to be applied to a whole section of the track, whose quality is re-
stored to some level Qbest, with a certain deterioration rate bbest.
This operation resets the deterioration model to the optimal state
of a new track.

Solution Modeling

Maintenance operations can be encoded as a vector of binary values
that indicate if the operation is performed or not at a certain time
and location. Focusing on tamping operations, the vector is of the
form x ¼ fxijkg, where i = track section; j = segment within a sec-
tion; and k = trimester. Likewise, complete renewal operations are
represented as a vector y ¼ fyikg.

The length of these vectors is NgNk and NsNk, respectively,
where Ns, Ng, and Nk are the number of sections, segments,
and trimesters. Each solution to the scheduling problem is repre-
sented by the concatenation of x and y, as shown in Fig. 2, where
Ni is the number of segments in section i. Note that each section
can be split into a different number of segments, according to the
segmentation procedure previously described. This gives an over-
view of the difficulty of the problem, which involves a very high
dimensionality. More precisely, the size of the search space is
2NkðNsþNgÞ, making brute force or even exact approaches unfeasible.

Objective Functions and Constraints

The proposed approach to the optimization of maintenance plans
uses two different objective functions: economic cost of the main-
tenance, and time delay of the trains. This design complies with
other approaches (Patra et al. 2009; Ramos and Fonseca 2011a).
Other secondary objectives are considered to be included within
these, such as the durability of the track (reflected as a higher cost),
or level of service (which reflects the deterioration state in the same
way as the delay). However, two more factors must be taken into
account: safety and resources. These have been implemented as
constraints, so that a solution that violates any constraint is said
to be nonfeasible.

Cost
The economic cost of railway maintenance includes costs of track
inspection and maintenance operations. In the literature, various
approaches to assess these costs can be found (Patra et al. 2009;
Guler 2013), which involve duration and length of the operations
and cost of the workforce and equipment. Based on the cost func-
tions defined in Patra et al. (2009) and Guler (2013), the mainte-
nance cost is defined as the sum of tamping cost (CT ) and renewal
cost (CR) for all sections, segments, and trimesters, as shown
in Eq. (7), where Ct = cost of a tamping operation per meter;
Lij = segment length; Cr = renewal cost per meter; Li = section
length; and r = discount rate (which models the economic impact
of the investment). Eq. (7) is the first objective function for the
modeling of the problem, and it is to be minimized

f1ðx; yÞ ¼ CT þ CR ¼
X
k

P
ijðCt · Lij · xijkÞ þ

P
i
ðCr · Li · yikÞ

ð1þ rÞk
ð7Þ

Delay
The other primary objective for railway maintenance is the maxi-
mization of the track availability and capacity. Usually, mainte-
nance operations are performed when no trains are scheduled, so
that the availability is not affected. As for the capacity, it can be
translated into terms of overall time delay of the trains (Ramos
and Fonseca 2011a). Table 2 shows the maximum speed of the
track depending on its measured quality, according to European
standards (CEN 2010).

In order to calculate the delay, the maximum permissible nomi-
nal speed smax

i of section i is defined as the minimum speed across

Fig. 2. Representation of a single solution to the maintenance scheduling problem
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every segment j within the section, considering that the track is in
perfect condition, and depends primarily on the curvature of the
track. Accordingly, the maximum speed that a train t, whose aver-
age speed is smean

t , can attain within section i is denoted sti. Eq. (8)
presents the maximum speed for a train t in section i and trimester k,
where sikðσikÞ is the maximum speed in the section taking into
account the deterioration state of the track (σik ¼ max

j
fσijkg), as

defined in Table 2

stik ¼ minfsti; sikðσikÞg; sti ¼ minfsmax
i ; smean

t g;
smax
i ¼ min

j
fsmax

ij g ð8Þ

Based on these equations, the second objective function is de-
fined by calculating the overall delay in hours, as detailed in
Eq. (9), where Nt = number of trains; and Li = length of the section.
Note that x and y are not explicitly shown, but they are used to
calculate σik. For each train, each trimester, and each section,
the time difference is calculated with respect to the same track
in perfect conditions. Therefore, the time delay would be zero
in such a case where all σik are low enough to allow sikðσikÞ ≥
sti ∀i; k; t

f2ðx; yÞ ¼
X
ik

XNt

t¼1

Li

1000

�
1

sti
− 1

stik

�
ð9Þ

Safety and Resource Constraints
Even though a low quality of the track can be palliated by reducing
the speed, each segment has to be kept above the acceptable mini-
mum determined by the legal and technical normative for safety
reasons. Table 2 shows the quality limit values for each speed
in the experiments, which were extracted from CEN (2010). Thus,
the safety constraint can be represented as shown in Eq. (10)

1 − σijk

maxfLQN3g
≥ 0 ∀ i; j; k ð10Þ

The other constraint to be included into the model refers to the
available resources. In particular, the limits of the resources for
tamping and renewal operations [Eqs. (11) and (12), respectively]
are modeled by establishing a maximum extent of operations per
trimester (maxt and maxr, respectively), measured in meters

1 −
P

ijLijxijk
maxt

≥ 0 ∀ k ð11Þ

1 −
P

iLiyik
maxr

≥ 0 ∀ k ð12Þ

Proof That Railway Maintenance Planning Is NP-Hard
The problem defined previously can be proven to be NP-hard.
Consider a simplification of the problem that involves only tamping
operations (y ¼ 0, Cr ¼ 0), the cost function f1 with no discount

rate (r ¼ 0) as a single objective, and a deterioration model where
tamping does not change the deterioration rate (c ¼ 1). With these
conditions, the safety constraint is held if and only if the period
between two consecutive tampings on the same segment is kept
under a threshold Tij.

This simplification can be expressed as an integer linear pro-
gramming problem with a binary decision variable x [Eq. (13)].
As integer programming problems are known to be NP-hard
(Garey and Johnson 1979), this simplified version of railway main-
tenance scheduling is also NP-hard, and so is the full nonlinear
multiobjective problem that is tackled in this paper

Minimize∶ Ct

X
ijk

Lijxijk ðcostfunctionÞ

Subject to∶ XNk−Tij

k¼lþ1

xijk ≥1 ∀ l¼0; : : : ;Nk ðsafetyconstraintÞ
X
ij

Lijxijk ≤maxt ∀ k¼1; : : : ;Nk ðresourceconstraintÞ

ð13Þ

Solution Initialization

The search space of the tackled optimization problem has two pri-
mary difficulties, namely its very high dimensionality [NkðNsþNgÞ
dimensions], and its complexity due to the constraints that restrict
the feasibility of the solutions. Moreover, the objectives of a main-
tenance plan differ depending on the horizon of the schedule;
a short-term scheduling usually prioritizes tamping operations while
a long-term approach must make an adequate use of renewal
operations.

Conversely, there are experts on railway maintenance schedul-
ing that possess information about how to build good maintenance
plans. Therefore, this proposal does not use a randomly generated
initial set of solutions. Instead, those solutions are generated fol-
lowing certain heuristic rules given by experts to conform an initial
set of feasible and reasonably good solutions. Then, it falls on the
algorithm to improve those solutions and obtain maintenance plans
that are better than those designed by the experts. This design
ensures that the quality of the obtained solutions to the problem
will be at least as high as that of the human-designed initial set.
Furthermore, the improvement can be measured by simply evalu-
ating the differences between the initial solution set and the final
Pareto front.

When considering short-term scheduling, each solution is
initialized as follows:
1. For the first trimester, tamping is programmed in the segments

whose deterioration is above the threshold (maxfLQN3g);
• If the tamping capacity is insufficient, a renewal is performed

in the section with the largest number of segments needing
action;

• Otherwise, and if there is some remaining tamping capacity,
a random number of tampings are programed in the segments
with worst quality among those that do not have tamping
scheduled;

• The same operation is performed for the remaining renewal
capacity;

2. After the maintenance of the first trimester has been scheduled,
the deterioration model simulates the quality for the second tri-
mester, and the operations are scheduled following Step 1. This
procedure is iteratively applied for the whole simulation time
span; and

3. If no renewal is planned, it is randomly determined if a single
renewal should be introduced into the solution.

Table 2. Maximum Speed and Minimum Quality Values according to EN
13848-5

Standard deviation in
longitudinal level D1 (mm) Speed (km=h) LQN3

2.3–3.0 s ≤ 80 3.1
1.8–2.7 80 < s ≤ 120 2.7
1.4–2.4 120 < s ≤ 160 2.2
1.2–1.9 160 < s ≤ 230 2.0
1.0–1.5 230 < s ≤ 300 1.7

© ASCE 04018014-6 J. Comput. Civ. Eng.
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This procedure aims to ensure the generation of feasible solu-
tions. Note that there may be cases in which the track is in such a
bad state that the available resources do not suffice to mend it
within a single trimester. This situation can also arise when the first
trimesters are assigned a low amount of tampings and renewals. In
extremely bad quality tracks, feasible solutions might be entirely
nonexistent. However, this kind of solutions could also be interest-
ing as a starting point for the algorithm, because they introduce
diversity into the search. Eventually, as nonfeasible solutions are
dominated by feasible ones, these solutions will disappear from
the population, but their information could have been used to gen-
erate new promising solutions.

Different rules apply for long-term horizons, as renewal must
often be preferred over tamping in order to obtain feasible sched-
ules. Therefore, a different initialization heuristic was used:
1. The total number of renewals is randomly fixed between the

maximum and half of the maximum;
2. These operations are randomly distributed among all the trime-

sters in the schedule;
3. For each trimester:

a. The deterioration model is applied;
b. If this trimester had a renewal operation scheduled, it is

performed over the most deteriorated section in terms of
dQðtÞ=dt [Eq. (2)];

c. Tamping is applied over any section above the threshold
(maxfLQN3g); and

d. If there is any remaining tamping capacity, a random fraction
of it is used to schedule tamping over the sections with worst
quality.

Operators and Implementation Particularities

The NSGA-II uses single-point crossover and bitwise mutation, as
suggested in the original paper for binary problems (Deb et al.
2002). The AMOSA uses only the bitwise mutation, as it does
not involve any crossover operations.

The primary difference in the implementation with respect to
the originally published algorithms lies in the hill-climbing tech-
nique for AMOSA. Although the same algorithm was imple-
mented, an additional criterion was added to allow for handling
such a high dimension problem [note that the number of dimen-
sions is 2NkðNs þ NgÞ; see Table 5 for the dimensionality of the
track evaluated in this paper]. Instead of performing the hill-
climbing procedure until no improvement is reached, the procedure
is interrupted when the solution has been improved more than a
fixed number of times maxHC. Otherwise, the search space for the
hill-climbing procedure would be too large to be used as initial
greedy algorithm to improve the solutions.

Experiments and Results

Case Study and Parameters

Two multiobjective algorithms have been used for the experimental
framework of this paper: NSGA-II and AMOSA. Both algorithms
have been executed up to a total of 500,000 evaluations of the ob-
jective functions, and the corresponding parameters have been set
up accordingly (Table 3). The horizon of the prediction was 3 years,
which corresponds to an average contract period for maintenance
contractors. Both algorithms started from the same set of initial so-
lutions. The value for maxHC was chosen so as to invest approx-
imately 2,000 evaluations for the hill-climbing procedure, and the
remaining evaluations for the simulated annealing optimization.

The experiments have been performed on a model of a real rail-
way track from the Swedish Iron Ore Line, which is 152 km long
and runs in the northern part of Sweden, subject to temperatures
between −40 and 25°C and heavy snowfalls during winter. A total
of 19 geometrical auscultations with a resolution of 25 cm per-
formed between 2007 and 2012 are available. These data were spa-
tially aligned to match the measurements taken at different points in
time, using correlation-based alignment on the curvature. This in-
formation was used to estimate the initial Q0 and b for every seg-
ment of the track by an exponential fitting. Tables 4 and 5 contain
the parameters that define the track modeling and the solutions to
the problem for this case study, respectively.

To complete the study and give an overview of the potential of
the proposed multiobjective approach, a complementary study is
presented in a subsequent section, with horizons longer than 3 years
for the maintenance plans, namely 5, 10, and 20 years. Because of
the computational constraints, the number of evaluations was re-
duced to 20,000 for these tests.

Scheduling for 3 Years

Tables 6 and 7 present a summary of the solutions in the final Pareto
fronts obtained by NSGA-II and AMOSA, respectively. These

Table 4. Parameters Concerning the Considered Track

Parameter Description Value

Ct Tamping costa 10
Cr Renewal costb 150
maxt Maximum tamping (m) 5,100
maxr Maximum renewal (m) 12,000
smean
t Average speed of train (km/h) 60–135
r Discount rate 0.03
Ns Number of sections 24
Ng Number of segments 1,435
aThousands of euros per segment.
bThousands of euros per section.

Table 5. Parameters Concerning the Solutions

Parameter Description

Horizon

3 years 5 years 10 years 20 years

Nk Number of trimesters 12 20 40 80
NgNk Length of x 17,220 28,700 57,400 114,800
NsNk Length of y 288 480 960 1,920
NkðNsþNgÞ Length of the solution 17,508 29,180 58,360 116,720

Table 3. Parameters for the Optimization Algorithms

Algorithm Parameter Value

NSGA-II Size of the population 104
Number of generations 4,810
Crossover probability 0.6
Mutation probability 0.3

AMOSA HL 104
SL 104
γ 1

α 0.9183544
maxHC 20

Initial temperature 500
Minimum temperature 0.1

Iterations per temperature 5,000

© ASCE 04018014-7 J. Comput. Civ. Eng.
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show clearly that renewal and tamping operations increase the
maintenance cost and decrease the time delay. They also reflect that
renewal improves the track quality more than tamping, allowing for
a higher nominal speed.

Table 7 shows the flexibility provided by the Pareto front. The
difference between the two extremes of the Pareto (first and last
rows of the table) states that the delay can be reduced by 55%
by increasing the cost by around 23%. However, railway mainte-
nance companies may be more interested in the intermediate re-
sults, seeking a trade-off between cost and delay. The approach
proposed in this paper allows for consideration of a wide set of
nondominated solutions that provides a rich decision support for
railway maintenance companies.

Fig. 3 depicts the initial population and the final Pareto fronts of
NSGA-II and AMOSA. At first sight, it is observed that the
AMOSA Pareto front outperforms that of NSGA-II. This behavior
arises because the initial local search performed by AMOSA proves
to be crucial for the algorithm convergence. The initial population
of solutions is not random; quite the contrary, it has been generated
according to directions and constraints given by experts, so they all
have a reasonable quality. The AMOSA’s local search focuses on
further improving these solutions, rather than exploring entirely
new areas of the search space for unknown solutions to the prob-
lem, which is the strategy followed by NSGA-II. Thus, AMOSA
starts its exploratory search from a set of already optimized solu-
tions, which yields far better results, as demonstrated by the dis-
tance between the initial population and the Pareto front in Fig. 3.
The solution of minimal cost is reduced from approximately 6.2 to
5.7 million Euro, and minimal delay is improved from 100 to 62 h.
Moreover, it is able to explore solutions with different amounts of
renewals than initially provided in the expert-based solutions, dem-
onstrating a considerable diversification of the search as well. Note
that the solutions with the lowest delays, which involve 10 renewal
operations, also involve a high number of tampings. This highlights
the heavy maintenance that would be required to keep the track at
an optimal quality at all times. Conversely, it can be seen that the
combinations of existing solutions favored by NSGA-II do not suf-
fice to reach the performance of AMOSA.

To further illustrate this behavior, Fig. 4 gives an overall view of
all the 500,000 solutions explored by AMOSA. It shows that even
though AMOSA focuses on improving the good solutions, a good
deal of exploration effort is made. This plot also shows the structure
of the problems; each of the vertical stripes represents a certain
number of renewals (the three stripes with solutions in the Pareto
correspond, from left to right, to 8, 9, and 10, respectively), and
each additional renewal increases the cost of the maintenance plan,
but reduces the delay. It is shown that the search explored feasible
maintenance plans with 11 renewals, but they did not yield better
delays than solutions with 10 renewals. Some plans with seven or
six renewals and a very low cost were also generated, but they did
not comply with the constraints and therefore were not included
into the final set of solutions. To summarize, the proposed approach
has been shown to greatly improve the quality of solutions in both
objectives. In addition, by design the obtained solutions will never
be worse than those obtained by human experts. While metaheur-
istics have no guarantee for quality assurance, they are usually bet-
ter than other simpler methods. In addition, because of the large
budgets of the maintenance contracts, the improvement in solutions
easily leads to large economic savings.

Long-Term Scheduling

It is well-known that models and solutions for long-term horizons
are subject to important uncertainties and therefore cannot be con-
sidered as an exact forecast (Ramos and Fonseca 2011b). However,
the results presented in this complementary study are useful to il-
lustrate the behavior of the multiobjective approach, and they re-
present the long-term point of view of the railway owner. A similar
study is presented in Ramos and Fonseca (2011a), in which a small
custom track is simulated over 30 years; the authors are able to
generate nine nondominated feasible solutions. Nevertheless, the
results cannot be compared to those obtained in this paper because
they do not take into account the deterioration caused by tamping
operations, which simplifies the problem and the search space they
consider.

This section presents the results obtained after additional exe-
cutions of the algorithms for a simulation of the track over 5,

Table 6. Summary of the Pareto Front Obtained by NSGA-II

Cost (Euros) Delay (h) Tampings Renewals

6,215,034 334.01 501 9
6,224,578 263.46 517 9
6,235,872 239.43 536 9
6,251,445 212.07 551 9
6,259,503 207.73 568 9
6,259,854 178.66 556 9
6,287,670 172.05 608 9
6,293,251 164.96 601 9
6,299,343 159.31 618 9
6,305,647 158.21 629 9
6,305,650 148.29 631 9
6,318,460 148.12 648 9
6,326,540 138.54 667 9
6,329,879 127.06 672 9
6,345,281 121.64 695 9
6,362,485 100.86 725 9

Table 7. Summary of the Pareto Front Obtained by AMOSA

Cost (Euros) Delay (h) Tampings Renewals

5,689,494 137.98 665 8
5,690,557 126.63 667 8
6,286,985 126.63 623 9
6,289,973 126.14 625 9
6,293,171 119.84 630 9
6,293,924 118.34 630 9
6,297,452 116.68 636 9
6,299,088 113.50 640 9
6,321,768 110.84 663 9
6,323,540 110.83 666 9
6,325,447 109.16 670 9
6,325,871 103.03 669 9
6,326,664 100.72 668 9
6,335,103 99.06 680 9
6,339,205 99.03 689 9
6,343,664 96.25 691 9
6,345,849 93.09 694 9
6,347,311 91.43 696 9
6,350,716 89.45 699 9
6,351,128 86.29 702 9
6,364,458 86.26 723 9
6,364,458 86.26 724 9
6,369,357 84.75 729 9
6,382,535 84.68 758 9
6,393,818 81.53 774 9
6,397,428 78.81 780 9
6,996,854 72.01 839 10
7,006,133 68.85 852 10
7,007,671 62.06 855 10
7,007,671 62.06 856 10
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10, and 20 years. This is reflected in a linear increase in the size of
the solutions and therefore an exponential growth of the search
space. The initialization rules for the population are also different,
as human experts follow different scheduling patterns for such
long-term situations. Because of the higher computational cost
of the objective and constraint functions, only 20,000 evaluations
of the objective functions were performed for each horizon and
algorithm. Note that the difficulty of the problem is such that
NSGA-II did not obtain any improvement with respect to the initial
population; therefore, only the results from AMOSA are presented
in this paper.

Fig. 5 represents the initial populations and the Pareto fronts ob-
tained by AMOSA, in terms of average cost and delay per year. For
the sake of simplicity, only feasible solutions are shown in the initial
populations. The plot shows great improvements on both objectives
for all three horizons. The initial solutions are in general worse for

distant horizons because the complexity of the scheduling (which is
an NP-hard problem) increases greatly as the horizon grows.

However, the Pareto fronts surprisingly follow the opposite
behavior, namely the larger the horizon, the better the final Pareto
front of solutions. This means that the proposed scheduling pro-
cedure works best with more distant horizons than with small ones,
despite the exponential growth of the search space. This behavior
arises because for long-term simulations, the cost of the renewal
operations can be amortized over the years, yielding better quality
railways at lower costs per year, which in turn leads to lower aver-
age delays. In this manner, this approach has been able to improve
altogether two objectives that are a priori opposed to each other.
Furthermore, it implies an improvement of the average track quality
after applying the computed maintenance schedules with respect to
the current state of the tracks, which is the result of a maintenance
plan carefully designed by experts.
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Fig. 3. Initial population and Pareto fronts of NSGA-II and AMOSA
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The case with the largest horizon is especially illustrative; both
the average cost per year and the average delay are reduced by a
factor of at least 20. This reflects the advantages of the proposed
metaheuristics over human-designed approaches and assesses the
quality of the obtained solutions.

The limiting factors for most optimization algorithms are the
size of the solution space and the number of evaluations. The re-
sults in this paper demonstrate that the proposal is able to explore
very large solution spaces and reach good solutions in very few
iterations. As an example, the number of possible solutions for
the considered railway for 20 years is more than 1035000, and the
proposed method is able to provide high-quality solutions after
evaluating only 20,000 of them.

Conclusions

In this paper, a multiobjective approach has been described to
tackle the railway track maintenance scheduling problem. Two ob-
jective functions have been considered (maintenance costs and train
delays), as well as three sets of constraints that model safety limits
and resources. The proposal includes a deterioration model based
on exponential fitting and a two-level segmentation, that takes into
account the variations in the deterioration curve caused by tamping
and renewal operations. Two multiobjective algorithms (AMOSA
and NSGA-II) have been applied to the problem, starting from an
initial population of solutions generated heuristically according to
expert knowledge.

The described approach has been tested over a model of a real
railway from northern Sweden to generate a maintenance schedule
for 3 years. Both algorithms have been run with equivalent param-
eters and started from the same initial population. Then, an addi-
tional set of experiments for longer horizons (namely 5, 10, and
20 years) has been performed.

As for the results obtained, AMOSA outperformed NSGA-II
because of its stronger intensification strategy. Furthermore, both
the Pareto front and the solution space explored by AMOSA
showed that a wide range of solutions were analyzed, providing
the decision maker with a fair variety of possible maintenance
schedules. All the solutions provided in the Pareto front for the

3 years horizon were nonconstrained, which stresses the adequacy
of the proposed scheme. Moreover, the results obtained for long-
term horizons show a very important decrease of the cost and delay,
and this decrease is higher for more distant horizons, assessing the
capabilities of the proposed scheme to schedule railway mainte-
nance plans.

The primary limitation of the proposal is the computational
complexity of simulating of the degradation model for each gen-
erated schedule, which limits the number of evaluations that can be
carried out during the optimization algorithm. Therefore, even
though the obtained solutions were of very high quality, it would
be of interest to develop new approaches that can make use of par-
allel computing infrastructures to solve this problem, which would
allow the authors to deal with longer railways (which would have
an impact on the dimensionality of the search space and the com-
plexity of the problem). Another possibility of extending the work
consists of considering more complex maintenance schedules, in-
cluding availability of human and material resources and time slots.
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