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ABSTRACT ARTICLE HISTORY
This paper addresses the creation of patterns through an open- Received 1 April 2023
ended invention task. With a qualitative study, we aimed to  Accepted 13 April 2024
characterise the written answers of 76 primary education
students in fourth, fifth and sixth grades, identifying the type of
pattern they invented. We analysed the representations they used
and the structure followed in the sequences they created. In
addition, we determined whether there were differences in the
invention of patterns among the three school grades in the
sample. Results showed that students prefer creating growing
patterns using numerical and visual representations. They
generally involved a numerical structure more frequently than a
geometric one, using an increasing arithmetic progression. They
usually formed the pattern by involving a geometric structure,
building a figure based on an initial element to which they added
more elements to complete a particular figure. In fourth grade,
numerical representations were more common than pictorial
ones, while in sixth grade, the opposite was true. As age
increased, so did the frequency with which students invented a
pattern. Results also provided information on the complexity of
the types of geometric patterns invented.

KEYWORDS
Structure; pattern invention;
representation

1. Introduction

Several education curricula consider work with algebraic patterns in preschool and primary
education as a way to access school algebra (e.g. Ministerio de Educacién y Formacién Pro-
fesional, 2022; National Governors Association Center for Best Practices and Council of
Chief State School Officers, 2010; Ontario Ministry of Education and Training, 2020).
There are various reasons for promoting them. Castro-Rodriguez and Castro (2016)
pointed out that patterns allow generalisation; they help generate mathematical models
and solve problems while establishing the bases to develop algebraic skills. Rittle-
Johnson et al. (2017) and Wijns et al. (2021) remarked that patterns provide opportunities
to explore regularities and grasp structures, which helps develop numerical thinking.
Working with patterns includes a wide range of skills that can be measured with
various tasks and types of patterns. In previous studies, the most common tasks were
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based on activities that show the first terms of a pattern and then ask the resolvers to
copy, expand, complete, describe or generalise the pattern (e.g. Fujita & Yamamoto,
2011; Liitken, 2012; Morales et al., 2017; Papic et al., 2011; Rivera, 2013; Wijns et al,,
2021). Dorfler (2008) noted that, primarily, this type of task provides strong guidance;
the figurative clues and their layout practically exclude trying out other generalisations
or continuations; furthermore, they show and describe a previously prescribed general
structure, therefore implying there is only one way of continuing the sequence. Accord-
ingly, students solve the tasks by looking for a single, closed answer. He identified the
study of “free” generalisation tasks as an open line of research in which generalities
can be invented or built.

Overall, literature has highlighted the role of the invention as an opportunity to
promote flexible thinking and lead to a deeper understanding of mathematical contents
(Baumanns & Rott, 2022). Within the context of the development of algebraic thinking,
more studies are focusing on the invention of algebraic problems (e.g. Cai & Hwang,
2020; Canadas et al., 2018; Fernidndez-Millin & Molina, 2017) than on the invention
of patterns (e.g. Rivera & Rossi-Becker, 2016). Regarding the invention of problems,
we have found that this type of task is associated with high cognitive demand.
Whoever invents problems must reflect upon the situation’s structure more than on
the process of solving the problem (Cai et al., 2013). In the case of pattern invention,
Rivera and Rossi-Becker (2016) conducted a study with secondary education students
(aged 12.5), which concluded that the students could develop well-defined mathematical
structures and relate generalisation with visual aspects of the pattern. These researchers
indicated that a line of further research would be to work on patterns based on open-
ended tasks, making the activity with patterns more interesting and less predictable.

This paper presents a contribution to the open line of research as described by Dorfler
(2008) and Rivera and Rossi-Becker (2016). The study analysed responses to an open-
ended task focused on inventing patterns in free situations, where students were given
no restrictions for inventing. This choice of task was made because it allowed for the
examination of students’ spontaneous responses and the observation of how they
expressed their skills in recognising patterns and mathematical structures. The infor-
mation gathered from this study will be helpful for teachers seeking to understand
better and support the development of structural sense in tasks involving patterns
(Liuken, 2012).

2. Objectives of the study

This paper aimed to characterise primary education students’ answers when conducting
a pattern invention task. The research questions were the following:

¢ What are the representations that students use when inventing a pattern?
¢ What are the structures than students use when inventing pattern? Are there any
differences in the invented patterns created by school grade?

We are interested in the analysis of representations because they play a cruci al role in
the learning of mathematics; on the one hand, they allow us to understand how people
know and understand mathematical objects and, on the other hand, they allow us to
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make them present (Ayala-Altamirano & Molina, 2021). Using multiple representations
flexibly promotes a deeper understanding of mathematics (Blanton & Kaput, 2011).
Moreover, different representations highlight different aspects of the situation, leading
to a more comprehensive understanding of the mathematical concept (Blanton, 2017).
Observing how people assign meanings to mathematical structures and use them is
possible through representations. In studying patterns, it is crucial to consider structure
as a key aspect. Understanding the relationships between arithmetic or algebraic struc-
tures and their geometric dependence on the patterns depicted in a pictorial represen-
tation allows us to examine students’ comprehension (Outherd & Mitchelmore, 2000).
We highlighted the importance of inventing patterns as a resource to observe how stu-
dents understand mathematics. From the teachers’ perspective, the invention is a way to
evaluate students’ conception of a particular topic (Cai & Hwang, 2020; Fernandez-
Millin & Molina, 2017), and it allows students’ skills to apply mathematical knowledge
(Cariadas et al., 2018). Characterising the type of patterns invented could provide infor-
mation for teaching patterns by attending to both the representations that have been
closest to them and the structures with which they identify pattern creation. Moreover,
studying the differences between the school years could help to establish indicators to
design tasks longitudinally throughout primary education. Research is needed to determine
whether and when experiences with pattern invention work can help strengthen students’
ability to successfully tackle grade-level appropriate geometric and numerical pattern tasks
(Rivera & Rossi-Becker, 2016). A related concern is to determine the extent to which
different types of patterns come naturally to children through pattern invention.

3. Patterns in primary education

This section describes the conceptual framework upon which the study is based and the
background leading to characterising patterns in primary education.

3.1. Characterisation of patterns

Establishing a precise and agreed definition of a pattern is complicated. However, there is
a consensus on two key characteristics: regularity and predictability (McGarvey, 2012;
Wijns et al,, 2019). A pattern is a sequence showing a regular and replicable repetition
of objects, numbers, sounds, movements or shapes (Castro-Rodriguez & Castro, 2016;
Papic et al.,, 2011). Regularity, the way elements are arranged and related in a sequence,
is termed the pattern structure (Mulligan & Mitchelmore, 2009). The structure involved is
predictable and entails logical, numerical and spatial relations (Liiken, 2012; Mulligan &
Mitchelmore, 2009).

In this study, we focused on growing patterns. In this type of pattern, every element
that is a part of the sequence is associated with a quantity that increases or decreases sys-
tematically according to a set rule, thus expanding or reducing the initial element
(Castro-Rodriguez & Castro, 2016; Wijns et al., 2021).

Previous studies (e.g. Pasnak, 2017; Wijns et al., 2021) concluded that growing pat-
terns were more complex than other patterns, such as those of repetition. One reason
is that the structure of growing patterns must be inferred by relating two consecutive
terms, which requires numerical skills such as counting or arithmetic calculation.
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3.2. Growing patterns and their representation

When focusing on how growing patterns are usually represented, three types can be
identified: (a) patterns with only numerical representation, (b) patterns with only pictor-
ial representation and (c) patterns with numerical and pictorial representation. The fol-
lowing sections delve into characterising each of these three forms of representation.

3.2.1. Patterns with only numerical representation

Patterns represented only with numbers are related to a more abstract approach. Figure 1
shows a task proposed in a 4th grade textbook (Hale, 2005). It shows only a sequence
whose terms are represented only by numbers.

Sometimes, a pattern is accompanied by another variable that can be a numerical rep-
resentation of the position of each term in a sequence or a different variable in a given
context. This type of pattern representation enables the correlation of two data sets
and is the initial step in understanding the concept of function. For example, Figure 2
illustrates a task where the pattern representing the amount of money saved (depicted
in the second row of the table) needs to be completed, with the first row showing the
number of days elapsed.

3.2.2. Patterns with only pictorial representation

Orton et al. (1999) suggest that using pictorial representations instead of number lists can
simplify problem-solving by providing a more geometric approach and adding meaning
to the task. However, when using visual aids in primary school tasks, it is important to
consider whether the pictorial representation is associated with the spatial organisation
of elements or not. For instance, in Figure 3, although the sequence is represented pic-
torially, the objects are not spatially organised, making it impossible to predict the
next object in the sequence. On the other hand, Figure 4 displays a pictorial represen-
tation with a clear pattern, allowing one to predict the next object in the sequence.

Find the pattern. Use the pattern to find the next three numbers in the sequence. Circle either
growing or decreasing fo indicate the type of pattern. Then use words to describe how to find the
next number in the pattern.

I. 15 26 37 us growing decreasing

Pattern description:

Figure 1. Example of a pattern task with numerical representation (Hale, 2005, p. 16).

2. Make a table showing how much money Jeremy will make over the first | 5 days if he takes
his mother’s offer.

# of days {23 |4 | 56|78 [Q]I0O[II[I12]I13]I4]15
total $ earned 2|1 4]6

Figure 2. Example of a pattern task with double numerical representation (Hale, 2005, p. 100).
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Figure 3. Example of patterns with pictorial representation without spatial organisation and numeri-
cal representation of position (Image credit: www.freepik.es).

Arcavi (2003) pointed out that pictorial representations should not only be for illustrative
purposes but also be acknowledged as crucial components of reasoning, problem-solving
or even proof. According to this author, visualisation favours implementing visual strat-
egies that help students understand the invisible in abstract situations; it can sharpen our
understanding or allow us to ask questions that would not be answered by merely
working with more abstract situations.

3.2.3. Patterns with numerical and pictorial representation

As we discussed in the previous section, patterns are often represented pictorially.
However, when a numerical representation accompanies a pictorial representation,
that numerical representation can serve a variety of purposes. For example, it might indi-
cate the number of elements that make up each term, or it might represent some other
variable, such as the position of the term in the sequence.

To illustrate this concept, consider Figure 4. This figure shows the number of oranges
being picked one at a time, without any spatial organisation. The numerical represen-
tation, in this case, indicates the order in which the oranges are being picked.

In Figure 4, the pictorial representation follows the spatial organisation, and numbers
are associated with the quantity of elements comprising each term. The patterns with
numerical and pictorial representation most frequently found in textbooks or
studies are those in which the pictorial representation has a spatial organisation, and
the numbers represent the stage in the sequence of each term (e.g. Hale, 2005;
Radford, 2010).

a. @ o0 000 0000
@ o0 000 0000 Pattern
o o0 000 000600
5] o0 000 0000 52
o o0 000 0000 ‘
5 10

Figure 4. Example of patterns with pictorial representation with spatial organisation and numerical
representation of the quantity of elements in each term (Ubilla & Cerda, 2020, p. 157).
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In the introduction of patterns with numerical and pictorial representation, it is
important to consider that students do not spontaneously relate these two aspects.
Radford (2011) showed in a longitudinal study that second grade students first
focused on the numerical aspects and ignored the spatial organisation in the visual rep-
resentation of each term. Considering both aspects, they reproduced and continued the
pattern with the teacher’s support. Then, from third to fourth grade, students considered
numerical and spatial aspects from the beginning.

3.3. Growing patterns and their structure

As pointed out earlier, the structure of growing patterns is related to a rule that system-
atically increases or decreases a pattern. If we focus on the numerical aspects involved in
the pattern, then our interest will lie in its numerical structure. If we focus on the spatial
aspects of the pattern, our interest will lie in the geometric structure.

3.3.1. Numerical structure of growing patterns

There are different types of growing patterns when focusing on the relationship between
two consecutive terms, for example, (a) arithmetic progression, whose difference between
two consecutive terms will always be the same; (b) geometric progression, where the ratio
between a term and the previous one is always the same; (c) Fibonacci progression where
each term (starting from the third one) is found by adding the two previous terms (or
applying another mathematical operation to the two previous terms); and (d) quadratic
sequence where the rule to find its elements follows a quadratic expression.

In all the types of growing patterns mentioned above, there are two types of structures:
(a) recursive structure, which allows predicting the next term of the sequence, and (b)
functional structure, which allows predicting any element in the sequence. The recursive
structure of the sequence shown in Figure 4 is to add five at a time, while its functional
structure is 5n, that is, multiplying the position of the term by five.

3.3.2. Geometric structure of growing patterns

We can establish two sub-categories of patterns with pictorial representation when
noting how individual elements are arranged in a two-dimensional space. From this per-
spective, first, we refer to patterns arranged not according to a geometric structure and,
further to Arcavi’s ideas (2003), this type of representation can be illustrative and acces-
sory (see Figure 3).

Second, we refer to the patterns following a structure based on the layout of each
element called geometric growing patterns (Warren & Cooper, 2008; Wijns et al,
2019). In this case, the structure given with a pictorial representation can help students
notice the relations due to their concrete and visual nature (Wilkie, 2022). Rivera and
Rossi-Becker (2016) found that representations involving more than one stage in a
single image imply a much higher level of difficulty (see Figure 5A) compared to those
representing stages independently (see Figure 5B).

Visualising and identifying structures to help students make abstractions and gener-
alisations has been key to developing their algebraic reasoning (Hunter & Miller, 2022).
According to Warren and Cooper (2008), geometric growing patterns should be included
in classrooms because (i) they are a visual representation of numerical patterns, (ii) they
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O @) — » | A. Embedded rectangular pattern

ooooo

ooo ooooao

o000 good gooooo » B Separate rectangular pattern

oo ooo oooo oopono

1 2 3 4

Figure 5. Example of a geometric growing pattern (Rivera & Rossi-Becker, 2016).

can be used as an informal introduction to the concept of variable, and (iii) they can be
used to generate equivalent expressions. These studies reached these conclusions by pre-
senting students with pictorial representation patterns and analysing the strategies to
perceive their structures.

3.4. Pattern invention tasks

Literature has highlighted the role of the invention as an opportunity to promote flexible
thinking and lead to a deeper understanding of mathematical contents (Baumanns &
Rott, 2022). However, it is essential to consider that there is not only one type of inven-
tion task, based on the ideas of Stoyanova (2000), who referred to problem-solving, dis-
tinguishing three categories of invention tasks: (a) free situations, (b) semi-structured
situations, and (c) structured situations. In the first one, students have no restrictions
to invent, while in the semi-structured ones, they are asked to consider patterns based
on some experience or in contexts expressed with pictures or texts. Finally, structured
situations are those which reformulate the patterns given or change their condition.
As mentioned above, in research on algebraic development, there are more studies on
the invention of algebraic problems related to an equation (e.g. Cai & Hwang, 2020;
Caiadas et al., 2018; Fernandez-Millan & Molina, 2017). One of the few studies focusing
on the invention of patterns was conducted by Rivera and Rossi-Becker (2016). They
offered secondary education students (aged 12.5) semi-structured activities called
semi-free patterning. In this type of task, the stages in a pattern are ambiguous, given
that they show two terms of the pattern and the sequence can be continued in
different ways. Therefore, there is not only one answer. Its objective is to study the
process of building and justifying structures. They concluded that open tasks encourage
students to develop well-defined mathematical structures. Furthermore, they noted that
students related visual structures (interpreted as whole or partial configurations) with
formulas generalising the numerical structure of the pattern. We aimed to broaden the



8 M. D. TORRES ET AL.

findings of the work conducted by Rivera and Rossi-Becker (2016) by analysing the
answers of fourth, fifth, and sixth-grade primary education students (aged 10-12),
who were presented with a free invention task without being shown the terms of the
pattern.

4, Method

We present a qualitative, exploratory and descriptive study to characterise the answers of
a group of students when inventing patterns.

4.1. Participants

In total, we worked with a sample of 76 students from three groups of different levels of
primary education in a school in Granada (Spain): 25 fourth grade students (aged nine-
10), 25 fifth grade students (aged 10-11) and 27 sixth grade students (aged 11-12).
Regarding the students’ prior knowledge directly related to our study objective, we
found that they had not worked on algebraic contents (patterns, generalisation, among
others) in their mathematics lessons, nor had they worked on invention tasks (open
tasks) nor used different representations to express relations.

This research conforms to the ethical guidelines, including compliance with the legal
requirements of the country of study (Spain). The subjects participating in this study
have given their informed consent to allow transcriptions. In the case of children,
parents have signed permission for the sessions and application of questionnaires.

4.2. Design and implementation of the work sessions

Four lesson sessions were conducted for each group, lasting between 45 and 60 min.
The sessions were conducted once a week, and a research team member fulfilled the
role of teacher-investigator. The sessions were video recorded.

Each session started with an introduction of the context to be worked on, which was
delved into through questionnaires which the students completed individually. Given
that the general objective of the four sessions was to work on different situations invol-
ving growing patterns, at each one, we presented different types of tasks: copy, expand,
complete, describe and generalise. Only the last session included pattern-inventing tasks.
Below is the information related to the contexts and patterns involved in the tasks before
the invention task was analysed for each school grade: fourth, fifth, and sixth.

4.2.1. Description of the questionnaires

In the three grades, we began by presenting situations related to everyday contexts, such
as forming playgroups in the case of the 4th grade (sessions 1 and 2), the design of a green
area in the school in 5th and 6th grade (sessions 1 and 2), the layout of tables and chairs,
for all grades (session 3). The patterns of the first three sessions followed an arithmetic
progression. Table 1 shows the name of each context and the structures involved. Follow-
ing the ideas of Wijns et al. (2019), the questionnaires of the first three sessions presented
tasks with varying degrees of difficulty in the following order: copy, expand, extrapolate,
recognise and generalise.
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Table 1. Contexts of the sessions and questionnaires given.

Numerical Session  Session  Session
Context structure Geometric structure 1 2 3
Soccer match +5 [ o) D o0 anl [ o 4th 4th
y=5n n - oo o
a nl|lee " an| |20 n
Tiles around a +4 A - » ) 5th 5th
flowerpot y=4n+2 ¥ *®-® N % 6th 6th
/ / ' 4 7/ /
Guests seated +3 L ) 20t 0 0 4th
o L
around a table y=3n+2 @ ’{. .§ . 72NN . ;. —.\ . /o Z;E

In Session 4 for all grades, we administered a questionnaire with a mathematical
context focusing on the task had numerical and pictorial representations, specifically geo-
metric growing patterns. We tried to present different mathematical structures and geo-
metric representations. Although in the previous sessions, we only presented patterns
which followed an arithmetic progression, in the fourth session, we included a pattern
with a quadratic progression and another with a Fibonacci progression, as some students
referred to these during the classroom discussion. Table 2 describes the tasks presented.

Table 2. Questionnaire questions Session 4.

Spatial
ask propose: umerical structure structure ask objective
Task proposed N ical Task objecti
1 s N Quadratic Yes Expand and generalise
) prozgression
O y=n
==
| Ll \e )
1 4 9
2 \ Arithmetic Yes Expand and generalise
. s progression
) .. +4
* "’ o' .o \ y y=4n_3
1 ) 9
3, 4 v 10 13 Arithmetic No Expand and generalise
progression
+3
y=3n+1
4 , 2 2 4 6 10 Fibonacci No Expand and generalise
progression
5 Yes Invent
. (Semi-free)
Expand and generalise
1 3
6 . No Invent
(Semi-free)
Expand and generalise
2 4

7 Invent a sequence following any pattern you wish. Invent (free)
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4.2.2. Description of the pattern invention open task

This study analysed the pattern invention open task, the seventh task shown in Table 2.
This task elicited the free invention of a pattern without including any supporting rep-
resentation. We thus looked at the skill to invent. Although the task was open and
could provide various answers, only one was requested. Neither did we indicate which
method to follow, so it was also an open-method task (Yeo, 2017).

4.3. Data analysis

We qualitatively analysed the written answers of all students in the pattern invention task
following the process shown in Figure 6. The categories come from a deductive-inductive
process derived from literature and our interpretation of the data.

First, we focused on the representations used, following our frame of reference; they
could be (a) only numerical, (b) only pictorial, or (c) numerical and pictorial. In the case
of numerical representations, we also identified the role of the numbers involved: (a) rep-
resented the terms of the sequence; (b) represented the position of each term within the
sequence; (c) represented another variable.

We then analysed the answers, identifying whether they involved a structure or not.
To identify a numerical structure, we analysed each term of the sequences represented
both numerically and pictorially and noted whether there was an underlying rule to
describe the systematic increase or decrease of terms. Students sometimes explained
the rules they followed, and this information complemented our analyses. If no explicit
or implicit rule was detected to explain the increase or decrease of terms, we considered
no numerical structure was identified. Therefore, no numerical pattern could be
observed.

The geometric structure was found in those answers represented pictorially. In this
case, we analysed how the elements were arranged in the two-dimensional space. If
they were only decorative or illustrative pictures, these representations were classified
as a sequence without a geometric structure. Therefore, no geometric growing pattern
had been invented.

In the next phase, the sequences that did follow a structure were compared and
grouped again. Three categories arose from this comparison based on the construction
of the visual or geometric part. This is described in Table 3.

We considered that a student had created a pattern when, upon being given a rep-
resentation, whether numerical, pictorial or numerical and pictorial, a numerical regu-
larity or spatial arrangement of the elements could be inferred from it that allowed
continuing the sequence. We considered we had a pattern when there was a represen-
tation with a geometric or numerical structure. A student may have conducted a rep-
resentation without an implicit structure, and in this situation, we considered the
student had not managed to create a pattern. This study looked at the classification of
patterns which were evidenced.

The first author coded students’ answers as a first step. Next, the second and third
authors verified the categories assigned to each answer. To ensure the inter-reliability
of the coding, after the first author’s coding, we submitted the coding to a calibration
that included joint sessions for coding and discussion of disagreements.



RESEARCH IN MATHEMATICS EDUCATION 1

Representation

Numerical _ Both — Pictorial
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Geometric
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Fibonacci
' progression Type 3 —
Quadratic
sequence

Figure 6. Analysis process.

5. Results

These results were obtained from analysing the pattern invention task conducted by 4th,
5th and 6th-grade students in primary education regarding the representations used and
the structure involved. The task proposed did not ask for a particular type of pattern.
Therefore, students could propose repetition or growing patterns or create no pattern.
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Table 3. Categories for geometric structures.
Construction of a

geometric structure Description Example
Type 1 Starting with an initial element which is
repeated and to which the same is
added
Type 2 Starting with an initial element to which : . 5

other elements, different from the
original, are added, thus completing a
certain figure.

Type 3 The initial element is reproduced by : T e —
increasing it in all “to scale”
dimensions (2D expansion). Similar
figures are formed.

5.1. Representations used by students

When inventing a pattern, in general, we found that the students in the three grades more
frequently used numerical and pictorial representation together. The joint use of the pic-
torial and numerical representation prevailed more in the 5th grade (19 out of 25 stu-
dents, 76%) than in the 4th grade (11 out of 25 students, 44%) or the 6th grade (15
out of 26 students, 58%). This is shown in the chart in Table 4.

In the three primary education grades, we found that the numerical representation,
together with the pictorial one, helped present the quantity of the elements arranged
in the pattern. However, there were four cases, in the three school grades, which four
cases in the three school grades used numerical representation to identify a position
and not the quantity of elements. We consider it of relevance because by managing to
identify the position of the elements and the elements, it is evidenced that the child
has identified two sets of data that he/she relates simultaneously. This can be related
to the transition to functional thinking (Torres et al., 2023). This is an open line
within the field of algebraic thinking that would be worth further investigation.

As for the nuances related to the grade differences, we noted independent differences
in the choice of numerical or pictorial representation (see Figure 7). We noted that
among 4th-grade students, there was a most abundant of patterns with numerical rep-
resentation, but as students advanced in grade, this changed, and there were more picto-
rially represented patterns. Thus, we found that in the 4th grade, the numerical
representations were the most frequent (eight students versus pictorial with six students).
In the 5th grade, the quantity of numerical representations versus pictorial ones was the

Table 4. Representations involved in the creation of a pattern.

Representation 4th grade 5th grade 6th grade
Pictorial 6 3 7
Numerical 8 3 4

Pictorial and numerical 1 19 15
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Figure 7. Numerical structure in a decreasing arithmetic progression (5th grade).

same (3 students), and in the 6th grade, they preferred the pictorial representation (7 stu-
dents) over the numerical one (4 students).

The representations were formed in a primarily abstract or mathematical context save
for a few exceptions, four cases in the 5th grade and one in the 6th, where students used
real contexts such as a bunch of grapes, the petals on a flower, or tiles on the floor, to
arrange the elements of their pattern.

5.2. Structures used by students

When characterising a pattern, the replicability and predictability of the sequence is
important (McGarvey, 2012; Wijns et al,, 2019), that is where structure plays a key
role. We considered there was no evidence of having created a pattern when students
formed a representation without a numerical or geometric structure.

From the sample, 76% of the students created a growing pattern (58 out of 76 stu-
dents). The remaining students (11 in 4th grade, 4 in 5th and 3 in 6th) showed no struc-
ture in their proposed sequence. In all grades, there was a most abundant of patterns that
followed only numerical structure: in 4th grade, 64% of the answers (9 out of 14 stu-
dents); in 5th grade, 62% of the answers (13 out of 21 students) and in 6th grade, 57%
of the answers (13 out of 23 students).

The presence of patterns in the students’ answers increased as their school level rose.
This is shown in the Table 5. When analysing the results grade by grade, in the 4th grade,
56% of the students created a pattern (14 out of 25 students); in the 5th grade, 84% of the
students (21 out of 25) and in the 6th grade, 88% of the students (23 out of 26).

In all grades, there were most abundant patterns that followed an only numerical struc-
ture: in 4th grade, 64% of the answers (9 out of 14 students); in 5th grade, 62% of the
answers (13 out of 21 students) and in 6th grade, 57% of the answers (13 out of 23 stu-
dents). The highest percentage of patterns following a geometric structure was found in
the 6th grade (43%) compared to the lower grades. In the 4th and 5th grades, we found
a similar percentage of answers showing a pattern (36% and 38%, respectively).

Below are details of the results obtained for the numerical and geometric structures
followed by the students.

Table 5. Structures evidenced in the patterns.

Structure 4th grade 5th grade 6th grade
Without structure 1 4 3
Geometric 5 8 10

Numerical 9 13 13
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5.2.1. Numerical structures followed

The type of numerical structure chosen for the invention task was mostly a growing
arithmetic progression structure in the three primary education grades, 4th, 5th and
6th. The numerical structure characterising the arithmetic progression was +3 for the
4th grade (9 students), +2 (5 students) y +3 and +8 (4 students) in the 5th grade, and
+2 (6 students), +1 (5 students) y +5 (4 students) in the 6th grade.

Only six students (1 in 4th grade and 5 in 5th) chose a decreasing arithmetic pro-
gression. An example can be seen in Figure 7, whose recursive structure is subtracting
14, as the pupil explains.

Out of all the students who created a pattern, only 2 proposed a geometric pro-
gression: one in the 5th grade and another in the 6th. Figure 8 shows a 6th-grade stu-
dent’s answer explaining that the rule was to multiply by two every time.

In the Table 6 reflects students’ choices based on the type of structure involved. We
found no other type of patterns appearing spontaneously in the previous sessions,
such as Fibonacci progressions or quadratic sequences.

5.2.2. Geometric structures followed

A geometric structure exists in a pattern when the visual arrangement of the elements
involved in the construction of the pattern generates regularities, and its continuity is
predictable. At other times, the arrangement of the visual or pictorial elements shows
no regularities, and the sequence cannot be continued singly. Figure 9 is an example
of a pattern whose recursive numerical structure is to add two, but its pictorial represen-
tation does not follow a geometric structure.

Twenty-three students proposed patterns following a geometric structure. The variety
of geometric structures in the growing patterns provided a more detailed characterisation
than counting elements or arithmetic calculations (Pasnak, 2017; Wijns et al., 2021). Stu-
dents applied several strategies to create a geometric structure. For example, see
Figure 10. Students completed rows with dots, creating an increasing/growing pattern
(+3). While both followed the same numerical structure, the geometric structure was
different. The student in the 4th grade added a row with three dots (Figure 13a).
While the student in the 6th grade added a dot at each end of the figure (Figure 13b).

This is how the categories described in Table 3 emerged from comparing these pat-
terns. Figure 13a shows the type 1 construction by six students (2 in each grade). This
construction consisted of starting with an initial element (three dots) and repeating in
the following term to which the same starting initial element is added.

‘ This sequence follows multiplying the number x2 every time.

Figure 8. Numerical structure in geometric growing (6th grade).
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Table 6. Types of numerical structures evidenced.

Structure Numerical 4th grade 5th grade 6th grade
Growing arithmetic 7 6 1
Decreasing arithmetics 1 5 0
Growing geometric 1 2 1

Figure 9. Pattern without a geometric structure (4th grade).

Another sort of construction, type 2, is shown in Figure 11. This spatial construction
consists of starting with an initial element (three squares) and gradually adding elements,
not the initial one, to complete a certain figure. In this case, it appears to form a snake.
The patterns with type 2 geometric structures are the most common in all grades (3 in the
4th, 5 in the 5th and 5 in the 6th) based upon the completion of a figure.

The last type of spatial construction amounts to type 3. This construction consists of
reproducing an initial element (the four dots forming a square) and increasing it in all
dimensions “to scale” (2D expansion). An example of this type is shown in Figure 12.
This structure appeared in the productions of 5 students (2 in 5th grade and 3 in 6th
grade).

Considering the construction of the geometric structure, we came up with the follow-
ing chart (Table 7) according to the data analysed. The patterns students in all school
levels preferred to create were those of type 2, followed by type 1 and then type 3. As
for the differences among grades, there were none in type 1. Type 3 patterns have
been manifested in the upper grades. This may be because this type of construction
requires a higher cognitive demand when working with the two dimensions of scale
and magnification.
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Figure 10. Patterns with a geometric structure (4th and 6th grades, respectively).
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‘ The pattern followed is:
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Figure 11. Pattern with type 2 geometric structure.

5.3. Relationship between the representation and the structures used by
students

When a pattern was pictorially and numerically represented, it was impossible to clearly
establish whether the geometric structure prevailed somehow over the numerical one or
vice versa. We found examples of pictorial representations, which were auxiliary or
derivative, that appeared to be used by students to represent the quantity of elements
they already had predetermined with a numerical structure (for example, Figure 13).
In this case, the pictorial representation is subordinated to the numerical structure
implied in the pattern and does not imply a spatial arrangement responding to a geo-
metric structure.

On the other hand, we also found auxiliary or derivative numerical representations
that appeared to have been developed after considering the spatial structure of the
pattern (Figure 14). The associated numerical structure (difference three arithmetic
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Figure 12. Pattern with type 3 geometric structure.
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Table 7. Types of geometric structures evidenced.

Structure Geometric 4th grade 5th grade 6th grade
Type 1 2 2 2
Type 2 3 5 5
Type 3 0 2 3

Three grapes are eaten each time.

Figure 13. Example of pattern with only numerical structure.

progression) appeared due to the construction of a figure considering a concrete form,
giving the pictorial representation and the geometric structure a significant role in the
pattern.

6. Discussion and conclusion

In our study, we focused on characterising how students responded when given tasks that
involved inventing patterns. Such tasks are considered to have a high cognitive demand,
but they are also an effective way to learn about a student’s understanding and skills in
mathematics (Cai & Hwang, 2020; Caiadas et al., 2018). Our study emphasizes the
importance of pattern invention as a tool for assessing a student’s mathematical compre-
hension. We examined the spontaneous responses of students to understand how they
represented growing patterns and identified the structures involved. Additionally, we
found some differences in pattern construction based on the grade level of the students
in our sample; these differences will be discussed transversely in the next two sections.
One of the study’s contributions is to describe the process followed when identitying pat-
terns and provide evidence on the importance of focusing attention both on the represen-
tation and the numerical and geometric structure.

L ' :’\ 5 O i

Iz goes in 3s, and they are added to continue the previous ones|

Figure 14. The pattern in which the geometric structure prevails over the numerical one.
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6.1. Representations used in the invented patterns

We are interested in the analysis of representations because they allow us to
understand how people know and understand mathematical objects and, on the other
hand, they allow us to make them present to others and to oneself (Rico, 2009). In
this study in the representations of patterns, we found that students mostly used pictorial
and numerical representations together. These were formed in a primarily abstract or
mathematical context, save for a few exceptions where students used real contexts.
This can be explained by considering the tasks immediately before the analysis task,
which was all focused on a mathematical context and represented both pictorially and
numerically. Previous research has indicated that the types of problems students are
capable of inventing can be influenced by the nature of the tasks they have previously
been exposed to (Torres et al., 2023). This demonstrates that the invention and the rep-
resentation used are based on previously solved cases, emphasizing the importance of
presenting varied representations in classroom interventions.

In all grades, a preference has been found for the use of pictorial and numerical rep-
resentation together. When focusing on answers which involved only numerical or only
pictorial representations, it was interesting to note that in the lowest grade (4th), they
tended to focus first on the numerical (Radford, 2011) while the pictorial prevailed in
the highest grade. These cases could be due to the fact that students are traditionally
trained much more on tasks with a numerical rather than a visual component.

The importance of the representations provided by the students in this type of tasks plays
a key role in the interpretation of the structure. The evidence of the structure in the work
with patterns is positioned as key to be able to understand the reasoning of students in
the search for regularities. This topic will be further discussed in the following section.

6.2. Structure implied in the invented patterns

The key characteristics of identifying algebraic patterns are their regularity and predict-
ability. Therefore, the structure is key to distinguishing between what is or is not a
pattern. In the 4th grade, we found that 11 out of 25 students had not invented a
pattern, as neither a numerical nor a geometric structure was involved in the represen-
tation. In the following grades, the percentage of students who did not invent a pattern
was lower: in the 5th grade, 4 out of 25 students and in the 6th grade, 3 out of 26 students.
The difficulty observed in the 4th grade could be because the cognitive demand for inven-
tion is high in younger students. Cai et al. (2013) pointed out in the context of invention
of problems that this type of task is highly demanding as it requires reflecting upon the
structure of the problems. This could explain our results and broaden the outcome of this
research to the context of the invention of patterns.

Comparing the structures of the patterns created in all grades, we found that the pre-
vailing structure was the numerical one. However, the use of geometric structures
increased with the grades (5, 9 and 10 students, respectively, in the 4th, 5th and 6th
grades). This finding arising from the context of the invention of patterns is consistent
with the study by Radford (2011), showing how students, over the years, consider
both the numerical and the spatial aspects when solving tasks that require completing
or continuing patterns. Managing to invent a pattern with two different types of
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structures evidences cognitive flexibility in students. This highlights the role of the inven-
tion as an opportunity to promote flexible thinking and lead to a deep understanding of
mathematical contents (Baumanns & Rott, 2022).

A contribution to this study is the characterisation of the three types of geometric struc-
tures we analysed and their apparent degree of complexity, with patterns with a type 3
structure being the most complex and used, preferably in the 6th grade. These findings
complement previous research, such as that by Rivera and Rossi-Becker (2016), who
described the difficulty of visual representations when stating that those which involve
more than one stage in a single image are the most complex. In our case, no differences
in the complexity of type 1 geometric patterns were found by always adding the same
initial element. However, it was more complex according to age by adding elements to
complete certain figures, expanding the initial one.

These results provide indicators to teach patterns in the highest grades of Primary
Education. On the one hand, they show the potential of students to work simultaneously
with pictorial and numerical representations (Orton et al., 1999) and to identify less
complex numerical and geometric structures. On the other hand, the differences
observed among the grades could recommend implementing teaching strategies
favouring the use of different numerical patterns from arithmetic progressions and the
use in the lower grades of geometric structures of the various types to familiarise students
with a greater wealth of patterns and establish various strategies to identify them (Pasnak,
2017; Wijns et al., 2021).

In this regard, an open line of research would be exploring the existence of auxiliary rep-
resentations when a numerical or geometric structure related to the figure aspects of a
pattern prevails (Rivera & Rossi-Becker, 2016). The numerical structure could appear as
a result of the geometric construction. That is, the pictorial representation and the geometric
structure would take on a significant role in the invention of a pattern. This could be helpful
for knowledge focused on visual skills and also to understand algebraic thinking regarding
the relationships established between geometric and numeric structures. Moreover, the
teaching implications of this study lie upon the invention of problems. This type of tasks
do not only provide students the opportunity of demonstrating their knowledge and
what they can do with it (Baumanns & Rott, 2022), but they also allow teachers to
observe patterns in students’ learning and mathematical thinking.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work has been developed within the projects with references Agencia Estatal de Investigacion
[grant number PID2020-113601GB-100] financed by MCIN/AEI/10.13039/501100011033.

ORCID

Maria D. Torres & http://orcid.org/0000-0001-6491-1151
Cristina Ayala-Altamirano ‘© http://orcid.org/0000-0002-9165-9470
Rafael Ramirez- Uclés (© http://orcid.org/0000-0002-8462-5897



20 M. D. TORRES ET AL.

References

Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational
Studies in Mathematics, 52(3), 215-241. https://doi.org/10.1023/A:1024312321077

Ayala-Altamirano, C., & Molina, M. (2021). Fourth-graders’ justifications in early algebra tasks
involving a functional relationship. Educational Studies in Mathematics, 107(2), 359-382.
https://doi.org/10.1007/510649-021-10036-1

Baumanns, L., & Rott, B. (2022). The process of problem posing: development of a descriptive
phase model of problem posing. Educational Studies in Mathematics, 110, 251-269. https://
doi.org/10.1007/s10649-021-10136-y

Blanton, M. L. (2017). Algebraic reasoning in Grades 3-5. In M. Battista (Ed.), Reasoning and sense
making in grades 3-5 (pp. 67-102). NCTM.

Blanton, M. L., & Kaput, J. J. (2011). Functional thinking as a route into algebra in the elementary
grades. In J. Cai & E. Knuth (Eds.), Early algebraization, advances in mathematics education: A
global dialogue from multiple perspective (pp. 5-23). Springer. https://doi.org/10.1007/978-3-
642-17735-4_2

Cai, J., & Hwang, S. (2020). Learning to teach through mathematical problem posing: Theoretical
considerations, methodology, and directions for future research. International Journal of
Educational Research, 102, 101391. https://doi.org/10.1016/j.ijer.2019.01.001

Cai, J., Moyer, J. C., Wang, N, Hwang, S., Nie, B., & Garber, T. (2013). Mathematical problem
posing as a measure of curricular effect on students’ learning. Educational Studies in
Mathematics, 83(1), 57-69. https://doi.org/10.1007/s10649-012-9429-3

Caiadas, M. C., Molina, M., & del Rio, A. (2018). Meanings given to algebraic symbolism in
problem-posing. Educational Studies in Mathematics, 98(1), 19-37. https://doi.org/10.1007/
$10649-017-9797-9

Castro-Rodriguez, E., & Castro, E. (2016). Pensamiento légico-matematico. In E. Castro & E. Castro
(Eds.), Ensefianza y aprendizaje de las matemdticas en educacion infantil (pp. 87-108). Piramide.

Doérfler, W. (2008). En route from patterns to algebra: Comments and reflections. ZDM, 40(1),
143-160. https://doi.org/10.1007/s11858-007-0071-y

Fernandez-Millan, E., & Molina, M. (2017). Secondary students’ implicit conceptual knowledge of
algebraic symbolism. An exploratory study through problem posing. International Electronic
Journal of Mathematics Education, 12(3), 799-826. https://doi.org/10.29333/iejme/649

Fujita, T., & Yamamoto, S. (2011). The development of children’s understanding of mathematical
patterns through mathematical activities. Research in Mathematics Education, 13(3), 249-267.
https://doi.org/10.1080/14794802.2011.624730

Hale, M. W. (2005). Using the standards. Algebra, Grade 4. Frank Schaffer Publications.

Hunter, J., & Miller, J. (2022). The use of cultural contexts for patterning tasks: Supporting young
diverse students to identify structures and generalise. ZDM - Mathematics Education, 54(6),
1349-1362. https://doi.org/10.1007/s11858-022-01386-y

Liiken, M. M. (2012). Young children’s structure sense. Journal Fiir Mathematik-Didaktik, 33(2),
263-285. https://doi.org/10.1007/s13138-012-0036-8

McGarvey, L. M. (2012). What is a pattern? Criteria used by teachers and young children.
Mathematical Thinking and Learning, 14(4), 310-337. https://doi.org/10.1080/10986065.2012.
717380

Ministerio de Educacion y Formacion Profesional. (2022). Real Decreto 157/2022 de 01 de marzo,
por el que se establece la ordenacién y enseflanzas minimas de la Educacién Primaria [Royal
Decree 157/2022 of March 01, which establishes the basic curriculum of primary education].
BOE, 52, 24386-24504.

Morales, R., Canadas, M. C., & Castro, E. (2017). Creation and continuation of patterns by two 6-7
year-old students in sequences task. PNA. Revista de Investigacion en Diddctica de la
Matemdtica, 11(4), 233-252. https://doi.org/10.30827/pna.v11i4.6241

Mulligan, J., & Mitchelmore, M. (2009). Awareness of pattern and structure in early mathematical
development. Mathematics Education Research Journal, 21(2), 33-49. https://doi.org/10.1007/
BF03217544



RESEARCH IN MATHEMATICS EDUCATION 21

National Governors Association Center for Best Practices & Council of Chief State School Officers.
(2010). Common core state standards for mathematics. NGA & CCSSO.

Ontario Ministry of Education and Training. (2020). The Ontario curriculum grades 1-8:
Mathematics. Ministry of Education.

Orton, J., Orton, A., & Roper, T. (1999). Pictorial and practical contexts and the perception of
pattern. In A. Orton (Ed.), Pattern in the teaching and learning of mathematics (pp. 121-
136). Continuum.

Outhred, L., & y Mitchelmore, M. (2000). Young children’s intuitive understanding of rec-
tangular area measurement. En Journal for Research in Mathematics Education, 31(2),
168-190.

Papic, M. M., Mulligan, J. T., & Mitchelmore, M. C. (2011). Assessing the development of pre-
schoolers’ mathematical patterning. Journal for Research in Mathematics Education, 42(3),
237-268. https://doi.org/10.5951/jresematheduc.42.3.0237

Pasnak, R. (2017). Empirical studies of patterning. Psychology (Savannah, Ga ), 08(13), 2276-2293.
https://doi.org/10.4236/psych.2017.813144

Radford, L. (2010). Algebraic thinking from a cultural semiotic perspective. Research in
Mathematics Education, 12(1), 1-19. https://doi.org/10.1080/14794800903569741

Radford, L. (2011). Embodiment, perception and symbols in the development of early algebraic
thinking. In B. Ubuz (Ed.), 35th conference of the international group for the psychology of math-
ematics education developing mathematical thinking (Vol. 4, pp. 17-24). PME.

Rico, L. (2009). Sobre las nociones de representacién y comprensién en la investigaciénen
educacién matematica. PNA, 4(1), 1-14.

Rittle-Johnson, B., Fyfe, E. R., Hofer, K. G., & Farran, D. C. (2017). Early math trajectories: Low-
income children’s mathematics knowledge from ages 4 to 11. Child Development, 88(5), 1727~
1742. https://doi.org/10.1111/cdev.12662

Rivera, F. (2013). Teaching and learning patterns in school mathematics: Psychological and pedago-
gical considerations. Springer.

Rivera, F., & Rossi-Becker, J. (2016). Middle school students’ patterning performance on semi-free
generalization tasks. The Journal of Mathematical Behavior, 43(1), 53-69. https://doi.org/10.
1016/j.jmathb.2016.05.002

Stoyanova, E. (2000). Empowering students’ problem solving via problem posing: The art of
framing ‘good’ questions. Australian Mathematics Teacher, 56(1), 33-37.

Torres, M. D., Moreno, A., Vergel, R., & Cafiadas, M. C. (2023). The evolution from “I think it plus
three” towards “I think it is always plus three.” transition from arithmetic generalization to alge-
braic generalization. International Journal of Science and Mathematics Education. https://doi.
org/10.1007/s10763-023-10414-6

Ubilla, C., & Cerda, V. (2020). Texto del Estudiante Matemdtica 2° bdsico. Santillana.

Warren, E., & Cooper, T. J. (2008). Patterns that support early algebraic thinking in elementary
school. In C. E. Greenes & R. Rubenstein (Eds.), Algebra and algebraic thinking in school math-
ematics (pp. 113-126). NCTM.

Wijns, N., Torbeyns, J., De Smedt, B., & Verschaffel, L. (2019). Young children’s patterning com-
petencies and mathematical development: A review. In K. M. Robinson, H. P. Osana, & D.
Kotsopoulos (Eds.), Mathematical learning and cognition in early childhood (pp. 139-161).
Springer International Publishing. https://doi.org/10.1007/978-3-030-12895-1_9

Wijns, N., Verschaffel, L., De Smedt, B., & Torbeyns, J. (2021). Associations between repeating pat-
terning, growing patterning, and numerical ability: A longitudinal panel study in 4- to 6-year
olds. Child Development, 92(4), 1354-1368. https://doi.org/10.1111/cdev.13490

Wilkie, K. J. (2022). Generalization of quadratic figural patterns: Shifts in student noticing.
The Journal of Mathematical Behavior, 65, 100917. https://doi.org/10.1016/j.jmathb.2021.
100917

Yeo, J. B. W. (2017). Development of a framework to characterise the openness of mathematical
tasks. International Journal of Science and Mathematics Education, 15(1), 175-191. https://doi.
0rg/10.1007/s10763-015-9675-9



