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Abstract
Waste treatment and the simultaneous production of energy have gained great interest in the world. In the last decades, scientific
efforts have focused largely on improving and developing sustainable bioprocess solutions for energy recovery from challenging
waste. Anaerobic digestion (AD) has been developed as a low-cost organic waste treatment technology with a simple setup and
relatively limited investment and operating costs. Different technologies such as one-stage and two-stage AD have been devel-
oped. The viability and performance of these technologies have been extensively reported, showing the supremacy of two-stage
AD in terms of overall energy recovery from biomass under different substrates, temperatures, and pH conditions. However, a
comprehensive review of the advantages and disadvantages of these technologies is still lacking. Since microbial ecology is
critical to developing successful AD, many studies have shown the structure and dynamics of archaeal and bacterial communities
in this type of system. However, the role of Eukarya groups remains largely unknown to date. In this review, we provide a
comprehensive review of the role, abundance, dynamics, and structure of archaeal, bacterial, and eukaryal communities during
the AD process. The information provided could help researchers to select the adequate operational parameters to obtain the best
performance and biogas production results.
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Introduction

Energy production from renewable sources and efficient waste
treatment are two of the more relevant scientific and social
challenges nowadays (De Vrieze et al. 2017). In the last two
decades, anaerobic digestion (AD) has been proven to be a
valuable method able to solve both of these issues, combining

recycling of different waste materials with the production of
biogas (Oslaj et al. 2010; Tyagi and Lo 2013).Current systems
based on AD aim to convert organic matter into biogas.
During this process, hydrolyzing microorganisms hydrolyze
organic polymers (i.e., fats and proteins) producing simple
molecules (i.e., sugars, amino acids, and fatty acids);
acidogenic microorganisms consume free monomers generat-
ing volatile fatty acids (VFAs) and alcohols; acetogenic mi-
croorganisms transform VFA and alcohols into acetic acid,
CO2, and H2; methanogenic archaea consume acetic acid or
hydrogen to generate CH4 (Gonzalez-Martinez et al. 2016a;
Zhang et al. 2016b).

AD is a process that can be applied to almost any organic
waste. Many different substrates have been discussed in the
literature: agricultural waste, food waste, animal manure, feed
waste, energy crops, and plant residues, such as brewery
wastewater (Pozo et al. 2002; Chen et al. 2008; Meulepas
et al. 2010). In addition to the digestion of individual sub-
strates, AD reactors can be loaded with mixtures of different
residues. This approach, which is usually termed Bco-
digestion^ or Bco-fermentation,^ offers various technical and

Antonio Castellano-Hinojosa and Caterina Armato contributed equally to
this work.

* Jesús González-López
jgl@ugr.es

1 Department of Microbiology and Institute of Water Research,
University of Granada, Granada, Spain

2 Department of Public Health and Pediatrics, University of Torino,
Torino, Italy

3 Centre for Sustainable Future Technologies (CSFT@PoliTo), Istituto
Italiano di Tecnologia, Torino, Italy

4 Department of Built Environment, School of engineering, Aalto
University, Espoo, Finland

Applied Microbiology and Biotechnology (2018) 102:5065–5076
https://doi.org/10.1007/s00253-018-9039-9

New concepts in anaerobic digestion processes: recent advances
and biological aspects

http://crossmark.crossref.org/dialog/?doi=10.1007/s00253-018-9039-9&domain=pdf
http://orcid.org/0000-0003-0457-5453
mailto:jgl@ugr.es


commercial advantages. One example is the biostimulating
effect coming from the overproduction of nutrients, which
can accelerate the degradation of solid waste (Beyene et al.
2018). Moreover, the application of mono or co-digestion is
an efficient alternative to obtain a stabilized solid waste that
can be applied as soil conditioner (Rolando et al. 2011; Gómez
et al. 2006).

The aim of this review is threefold. First, we will discuss
relevant features of AD: the structure of the plants (one-stage
vs two-stage AD), the operational temperature (mesophilic vs
thermophilic), and other technologies in biogas production. A
second section will be devoted to describe the role of the
microbiome (Archaea, Bacteria, and Eukarya communities)
involved in AD and its link to operational and performance
parameters and biogas production. Finally, we will discuss
future implications and prospective biotechnologies in AD.

Digester configurations: advantages
and disadvantages

Since the appearance of AD, a wide variety of digester con-
figurations has been tested such as thermophilic/mesophilic
digestion, dry/wet digestion, one-phase/two-phase digestion,
or one-stage/two-stage digestion (Møller et al. 2009; Nizami
et al. 2009; Khalid et al. 2011; Mao et al. 2015; Sun et al.
2015; Chen et al. 2016). Among these, the most relevant com-
parison, as well as the one most debated in the literature, is that
based on the number of stages. However, independently of the
digester configuration to obtain a high digestion efficiency,
anaerobic bioreactors should allow a continuously high and
sustainable organic load rate operating with short (Khalid
et al. 2011) or long (Bergland et al. 2015) hydraulic retention
time (HRT) depending on the substrate.

The simplest possible configuration is the one-stage AD
batch reactor, in which the tank is filled with the feedstock
and let stand for a period after which it is emptied (Khalid et al.
2011). Although this kind of system has very low operational
cost, it exhibits some limitations such as high fluctuations in
gas production, biogas losses during emptying the bioreactors,
and restricted bioreactor heights (Khalid et al. 2011; Zhang
et al. 2015; Sunyoto et al. 2016). A more widely used type of
one-stage AD bioreactor is commonly defined Bone-stage
continuously fed systems^(Khalid et al. 2011). In one-stage
AD system, hydrolysis, acidogenesis, acetogenesis, and
methanogenesis take place in the same tank. This implies that
acidogenic and methanogenic microbiota have to cohabit de-
spite the existence of marked differences regarding growth
factors and kinetics, nutritional needs, and environmental con-
ditions such as pH and temperature (Gonzalez-Martinez et al.
2016b; De Gioannis et al. 2017). In this context, although the
ideal pH range for AD has been reported to be between 6.8
and 7.4, it is known that in one-stage AD bioreactor the

operational pH sometimes can affect the digestive progress
and products directly. However, two-stage AD process, sepa-
rating the hydrolysis/acidification and acetogenesis/
methanogenesis processes, provides optimal conditions for
each of the microbiota, since the optimal pH levels for
acidogenic (5.5–6.5) and methanogenic (7.0) microorganisms
can be controlled to increase the efficiency of the process
(Mao et al. 2015). Consequently, in these kinds of systems,
the different sub-processes of AD take place in separate se-
quential reactors. The most common configuration is the two-
stage continuously fed system, although three-stage systems
have been proposed (Angelidaki et al. 2003). Two-stage AD
were originally conceived by Pohland and Ghosh (1971), and
soon gained popularity, particularly for laboratory applica-
tions (Nizami et al. 2009). Although overall performance su-
premacy of two-stage AD has been variously reported in the
literature, one-stage AD are far from being replaced (Møller
et al. 2009). According to Rapport et al. (2012), 90% of the
total capacity of the full-scale AD plants installed in Europe at
that time was covered by one-stage systems. Themain reasons
behind this are probably the simpler structural features and
lower operating costs. On the other hand, two-stage AD pro-
vides higher substrate conversion and better energy recovery,
as well as better process stability, resilience, and reliability
(Salvador et al. 2013; De Gioannis et al. 2017; Shen et al.
2017).

Multiple-stage reactors have been developed to improve
process stability and efficiency (Achinas et al. 2017). In this
sense, Kim et al. (2011) demonstrated significantly higher
digestion efficiency of a four-stage AD system using activated
sludge than a single-stage system. Likewise, a novel alterna-
tive technique, based on a high working pressure (up to 100
bar), permits the production of biogas with more than 95%
methane content. This technique integrates in a single process
both biogas production and in situ increased-pressure purifi-
cation, generating a clean biogas (99% methane) that can be
fed directly into the natural gas networks. However, the effect
of the working pressure on microbiome structure is still un-
known (Lindeboom et al. 2011). The complexity and high cost
of this novel technologies are barriers to commercial use and
until date, few multiple-stage AD units operate on a commer-
cial scale.

Thermophilic and mesophilic conditions

A further relevant way to classify AD systems is to consider
their operating temperature. Although the biogas process can
proceed at different temperatures, mesophilic (30–40 °C) and
thermophilic (50–60 °C) conditions are commonly used
(Møller et al. 2009; Wang et al. 2018). Temperature is, indeed,
one of the main environmental factors affecting physical pa-
rameters such as viscosity, surface tension, and mass transfer
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properties. Moreover, small changes in the temperature can
result in a reduction in process efficiency, so its stability is
also important (Angelidaki et al. 2003). Above all, tempera-
ture must be considered in relation to microbial growth and
reactions (Amani et al. 2010; Gonzalez-Martinez et al. 2017)
and changes in the structure and dynamics of prokaryotic and
eukaryotic groups (see BDigester configurations: advantages
and disadvantages^ section). The groups of microbes that
have been identified for AD are mesophilic and thermophilic
strains. While great diversity exists between mesophilic and
thermophilic bacteria, with the latter showing both higher spe-
cific growth and decay rates, methanogen growth is mostly
favored by both mesophilic and thermophilic temperatures (Li
et al. 2016; Kundu et al. 2017).

Neither of the two conditions (i.e., mesophilic or thermo-
philic) is absolutely preferable. Althoughmesophilic digestion
has some disadvantages (i.e., lower metabolic rate, lower rate
and efficiency of particulate matter hydrolysis, smaller degree
of pathogen deactivation, and lower biogas production yields)
(Liu et al. 2017), it has important advantages, such as a lower
VFA concentration in the final effluents, maintenance of a
higher organic loading rate (OLR) (Bayr et al. 2012), and a
more stable performance (Guo et al. 2014), compared to ther-
mophilic digestion (Appels et al. 2008; Wang et al. 2018). On
the other hand, thermophilic temperatures can produce large
quantities of dissolved solids in the digester supernatant and
more odors, and have acidification potential and higher energy
requirements. For these reasons, two-stage AD offers the op-
portunity to operate thermophilic hydrolysis/acidogenesis and
mesophilic methanogenesis, as a good compromise. Of note, a
different approach not requiring an extra heat supply, named
Bambient/seasonal temperature AD,^ has also been used for
organic waste. However, the changes in temperature induce
less stability and lower methane production compared with
the mesophilic process (Mao et al. 2015).

Biogas production

Currently, AD is implemented in various ways worldwide. In
the Western world there are, to date, about ten thousands of
operational AD plants (Yousuf et al. 2016; Vasco-Correa et al.
2018). A comparable amount can be found inAsia, where rural
communities use small-scale household digesters for domestic
necessities (Surendra et al. 2014). Similar small-scale digesters
have also been installed in rural regions of Latin America and
Africa during the last few years (REN21 2016). Laws on the
subject of environmental protection and waste treatment, as
well as new emerging candidate substrates and innovative
technologies, will surely guide the evolution of AD.

Different compositions of mixed substrates have been re-
ported to increase the production of biogas, such as mixing
municipal solid waste with industrial sludge (Ağdağ and

Sponza 2007) or olive mill wastewater with olive mill solid
waste (Fezzani and Cheikh 2010). In addition, co-digestion
has been proved to stabilize reactor performance (Lo et al.
2010; Beyene et al. 2018). Interestingly, the use of this ap-
proach with substrates rich in carbon has been proposed as a
solution to reduce ammonia and other toxic substances
(Rajagopal et al. 2013; Fitamo et al. 2017). Moreover, co-
digestion is an efficient strategy to degrade those kinds of
waste that are difficult to process as a unique substrate.
Recently, Park et al. (2016) tested different mixtures in order
to optimize the processing of sewage sludge, obtaining opti-
mal results in combination with food waste. As a further so-
lution, Shen et al. (2017) proved that the combination of sew-
age sludge and pyro-biochar can improve biomethane produc-
tion, compared with the digestion of sewage sludge alone.

As an example, the Korean government recently solicited
the use as an AD substrate of organic waste from ocean dump-
ing or landfill, with the aim to produce renewable energy; this
raises the issue of efficiently degrading septage and sewage
sludge, and the consequent investigation of different mixtures
for co-digestion approaches (Park et al. 2016). Otherwise,
good availability of a specific kind of waste can turn it into a
candidate substrate. In Colombia, for example, the massive
production of coffee generates a large amount of coffee mu-
cilage, a crop residue rich in carbohydrates. This organic mat-
ter has been successfully used in co-digestion with pig manure
to produce biohydrogen, taking advantage of two types of
organic waste readily available in the same geographical re-
gion (Hernández et al. 2014). Finally, technical innovations
will help the scale-up of currently experimental systems.

Biohythane is a promising sustainable alternative to
hythane. It is more environmentally friendly, requires a shorter
fermentation time, and offers better energy recovery than tra-
ditional biogas. Despite research interest in the production of
this gas, numerous challenges have still to be addressed in
order to allow large-scale production of biohythane by means
of AD (Liu et al. 2018). Similarly, technical improvements are
needed for the realization of full-scale three-stage AD plants.
Hitherto, an in-lab preliminary study has proved that this ap-
proach could considerably improve the production of methane
(Zhang et al. 2017). A further promising strategy to increase
biogas yield and system performance is the application of
selected microbial consortia, often taken from another operat-
ing plant. However, more accurate knowledge concerning ad-
aptation of the inoculum is required in order to maximize the
potential advantages of this approach (Wojcieszak et al. 2017).

Archaea, Bacteria, and Eukarya communities
in anaerobic digestion processes

Integration of microbial aspects within the framework of AD
is critical to achieve the desired performance and biogas
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production. The microbiome as an entity does not work as a
randomized mix, and scientific efforts focus largely on linking
operational and performance parameters with the structure of
microbial communities. Here, we highlight engineering of the
microbiome, focusing on the most crucial Archaea, Bacteria,
and Eukarya groups.

Abundance, structure, and dynamics
of the microbiome in anaerobic digestion
processes

Microbial ecologists and engineers have shown increasing
interest concerning insight into the microbiome in anaerobic
digesters. So far, the most crucial microorganisms have been
identified although few authors have linked operational and
performance parameters and microbiome response at labora-
tory or full-scale conditions (Carballa et al. 2011;Werner et al.
2011; Carballa et al. 2015; Gonzalez-Martinez et al. 2016b;
De Vrieze et al. 2017; Kundu et al. 2017; Wang et al. 2018).
Since a strong syntrophic relationship exists between
acetogenic and methanogenic organisms involved in AD, bio-
monitoring of the system could be an important feature for
engineers to obtain a highly efficient microbiome and to pre-
dict and prevent system failure (Amani et al. 2010). For ex-
ample, Kundu et al. (2013) showed that a high degree of
microbial diversity could be indicative of stable AD perfor-
mance. Recently, a methodological approach to link microbial
and operational data has also been described (de Los Reyes III
et al. 2015).

The development of next-generation sequencing technolo-
gies has offered an opportunity to describe the microorgan-
isms present (DNA) or active (RNA) in engineered ecosys-
tems as well as their abundance (Muñoz-Palazon et al. 2018).
Nevertheless, a combined DNA–RNA approach would result
in a more accurate methodology to link the microbial
community’s structure and its metabolic ability requirements
(Kaever et al. 2014; Maus et al. 2016). Identification of the
critical representative species by means of these techniques
can help to increase the efficiency and stability of AD
(Venkiteshwaran et al. 2015; Dang et al. 2017). In this sense,
the presence of sulfate-reducing bacteria in AD can decrease
methane production because of substrate competition and sul-
fide inhibition of the methanogenic community (Chen et al.
2008; Sasaki et al. 2011). Thus, biomonitoring tools can help
to prevent inefficiencies in AD.

The AD process comprises four interdependent steps in
which microorganisms responsible for a specific stage pro-
vide the intermediates for the next. Microbial community
structure and dynamics are important to sustain functional
redundancy and to maintain a well-balanced process
(Allison and Martiny 2008; Ziganshin et al. 2013).
Archaea, Bacteria, and Eukarya communities form the

microbiome of the anaerobic digester and change during
the stages of the AD process (Matsubayashi et al. 2017).

Archaea play a central role during methanogenic processes
of AD, and it has been reported that these microorganisms can
be related to different operational parameters (Zhang et al.
2012; Smith et al. 2014; Hao et al. 2016). Synthesis of CH4

is carried out both by acetoclastic (e.g., Methanosaeta,
Methanosarcina, and Methanothrix) and hydrogenotrophic
methanogens (e.g., Methanobacterium, Methanomicrobium,
Methanococcus, Methanobrevibacter, Methanomassilii, and
Methanospirillum) using acetic acid, or by using H2 and
CO2 or methyl compounds to synthesize CH4 (Calderón
et al. 2013; Gonzalez-Martinez et al. 2016b). The characteris-
tics and properties of the main methanogens involved in an
AD as well as their substrates and products have been reported
(McHugh et al. 2003; Amani et al. 2010; Goswami et al. 2016;
Kundu et al. 2017). In most of the studies in the literature,
Archaea diversity decreases with temperature elevation
(Kundu et al. 2012; Guo et al. 2014), an effect more remark-
able than changes in OLRwhich abrupt increase (from 1 to 8 g
vs L−1 day−1) seemed to have little influence on the microbial
community (Gou et al. 2014). Hao et al. (2016) compared the
effect of total solid (TS) concentrations on archaeal diversity
in sludge-fed digesters. Under high TS conditions (TS > 44 g/
L), the relative abundance of Methanosarcinaceae and
Methanobacteriaceae families increased, whereas when di-
gesters operated at lower TS (TS ≤ 44 g/L) only
Methanosaetaceae family was favored. Under the use of con-
tinuous lab and full-scale reactors and food waste substrate the
genusMethanosarcina is dominant under thermophilic condi-
tions, with abundance higher than 80%, although
Methanothermobacter and Methanoculleus are also favored
(Cho et al. 2013; Wang et al. 2018), whereas Methanosaeta
is dominant under mesophilic conditions (accounting for >
25% of relative abundance) (Gonzalez-Martinez et al.
2016b). On the other hand, Methanosaeta instead of
Methanosarcina is favored under low acid concentrations.
Since VFA accumulation results in lower values for pH, Guo
et al. (2014) showed a decrease in archaeal diversity when
VFAs produced in the hydrolytic step are not consumed by
methanogens. In fact, acetoclastic methanoarchaea have a
positive correlation with VFAs and NH4

+ (Lin et al. 2012).
Methanogen diversity is also sensitive to a pH value lower
than 6.5, particularly during acid and acetate accumulation
(Bräuer et al. 2006). In general, lower hydraulic retention time
values decrease archaeal diversity by selecting organisms with
a high growth rate and poor substrate affinity. In this sense,
Methanosaetaceae (slower growth rate) predominate when
HRT > 5 d a y s , w h i l e Me t h a n o s a r c i n a c e a e ,
Methanobacteriales, and Methanomicrobiales (faster growth
rate) become dominant at HRT < 2 days (Padmasiri et al.
2007; Chelliapan et al. 2011). Regueiro et al. (2014) reported
that Methanosaeta is crucial for reaching stable reactor
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performance although the archaeal community structure is
affected by substrate type. Moreover, taking into account op-
erational performance parameters, Kundu et al. (2017) indi-
catedMethanosaetaceae as the best candidate for biomonitor-
ing based on its sensitivity to fluctuations in the AD process.

The presence of bacterial genera such asDesulfotomaculum,
Desulfovibrio , Syntrophobacter, Syntrophomonas ,
Syntrophospora, Clostridium, Bacteroides, Bifidobacterium,
Butyrivibrio, Pseudomonas, Bacillus, Streptococcus, and
Eubacterium has been related to acid formation and hydrogen
release (Yamada et al. 2006; Gonzalez-Martinez et al. 2016a),
and synergistic cooperationwithmethanogenic archaeal groups
in methanogenesis bioreactors has also been considered
(Demirel and Scherer 2008). Gonzalez-Martinez et al.
(2016b) studied archaeal and bacterial community dynamics
of a bench-scale two-stage anaerobic digester. An overview
of the response of key archaeal and bacterial phylotypes to
changes in performance parameters is presented in Fig. 1a, b,
respectively.

In the acidogenic phase, organic matter is biodegraded to
VFAs by bacterial communities. During this phase,
Bacteroidetes, Chloroflexi, Cloacimonetes, Firmicutes, and
Proteobacteria are the predominant phyla. Moreover,
Microthrix spp. are usually associated with operational dys-
function while Firmicutes species in the digesters are impor-
tant acetogens utilizing simple and complex carbohydrates
(Tracy et al. 2012). Synergistetes spp. can utilize amino acids
as an energy source to produce VFAs for methanogens
(Vartoukian et al. 2007), whereas Proteobacteria have been
recognized as one of the main consumers of VFAs (Ariesyady
et al. 2007). Moreover, Syntrophomonas strains are present
during this phase and are able to syntrophically degrade
straight-chain fatty acids (4–8 carbon atoms) into propionate,
acetate, and methane in co-culture with methanogens (Zhang
et al. 2005).

Changes in operational and performance parameters
influence bacterial diversity. Hao et al. (2016) found that un-
der high TS conditions, the relative abundance of
Thermoanaerobacteraceae , Syntrophomonadaceae,
R h o d o b a c t e r a c e a e , C om am o n a d a c e a e , a n d
Xanthomonadaceae families were enriched. In contrast, di-
g e s t e r s a t l owe r TS f a vo r e d S yn t ro ph a c e a e ,
Syntrophobacteraceae, Anaerolineaceae, Rikenellaceae and
WCHB01-69, and Candidatus Cloacamonas families. Under
thermophilic and mesophilic conditions, Guo et al. (2014)
found that Firmicutes was the common phylum appearing at
both temperatures, accounting for 10–20% of relative abun-
dance. Thermotogae (60–80% of relative abundance) and
Bacteroidetes (5–45% of relative abundance) were the domi-
nant taxa under both conditions, respectively. Proteobacteria
were present in limited amounts and only in thermophilic AD,
whereas Synergistetes appeared in both reactors. Although the
relative abundance of Chloroflexi, Actinobacteria, and

Spirochaetes was higher than that in thermophilic AD, they
were poorly represented, accounting for < 3% of relative
abundance. Finally, Gelria, uncultured Lachnospiraceae,
Ruminococcaceae Incertae Sedis, Sporanaerobacter,
Tepidanaerobacter, Petrobacter, and Anaerobaculumwere re-
lated to performance variations with OLR elevation.

Adaptation of bacterial communities during the start-up
stage of thermophilic and mesophilic AD was explored by
Wu et al. (2016) and Gonzalez-Martinez et al. (2016b), re-
spectively. Under thermophilic conditions, the relative abun-
dance of Firmicutes increased gradually; on the contrary,
Proteobacteria and Thermotogae decreased. Under
mesophilic conditions, the more abundant microorganisms
were related to Clostridiaceae (21.49%), Treponema
(5.10%), Synergistetes (4.11%), and Paenibacillaceae
(3.25%) whereasCloacamonas andComamonaswere present
at > 3% abundance only at the beginning of AD, decreasing
after that. Zhang et al. (2016a) analyzed the microbial com-
munity in the anaerobic co-digestion of food waste and sew-
age sludge. Firmicutes, Proteobacteria, Bacteroidetes, and
Actinobacteria were found as the predominant phyla in the
bacterial community. Firmicutes increased significantly on
day 5 at acidification phase corresponding to VFAs accumu-
lation. After that, the abundance of Firmicutes and
Bacteroidetes increased much more from day 12 at the active
methane produc t ion phase . Proteobac ter ia and
Actinobacteria decreased significantly during the experimen-
tal period. The greatest changes in these four dominant phyla
all appeared on day 5, which could be an indicator of the
acidification phase corresponding to VFA accumulation.
Hydrolytic bacteria are known to have a lower sensitivity to
changes in environmental factors, such as pH and tempera-
ture, than methanogens.

Although the role of eukaryotes in performance, predation
on bacteria, and excess sludge production has been reported
during aerobic treatment processes (Ntougias et al. 2011), it is
also important to investigate the diversity, roles, and functions
of eukaryotes in AD. Few authors have reported on diversity
and roles/functions in AD (Luo et al. 2005; Matsubayashi
et al. 2017). Under mesophilic AD, Rotifera and
Phragmoplastophyta are the most representative phyla and
the majority of eukaryal phylotypes belong to Fungi
(42.2%), followed by Animalia (28.8%), Protista (13.3%),
and finally Plantae (8.9%). In addition, Luo et al. (2005) de-
scribed the microeukaryotic community in anaerobic
sulphide- and sulfur-rich springs, whereas Matsubayashi
et al. (2017) constructed clone libraries by sequencing the
18S rRNA gene in anaerobic sludge digesters (Table 1). The
latter study suggested that prokaryotic and eukaryotic commu-
nity structures do not work independently, and that the func-
tional features of both communities are closely related.

Very limited information on the physiology of anaerobic or
facultative anaerobic eukaryotic organisms is available to
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date. Some of the Fungi found in AD contribute to the degra-
dation of some organic matter in anaerobic environments and
they could be implicated in the hydrolysis of organic matter in
anaerobic sludge digestion processes. Previous studies have
demonstrated that phylotypes in Plantae, Animalia, and Fungi
can produce CH4 (Liu et al. 2015; Gorrasi et al. 2014).

Regarding the dynamics of the microbiome during AD,
contrasting results have been obtained, showing large changes
(> 25%) from bench-scale mesophilic anaerobic digesters in-
oculated with sludge from wastewater treatment plants
(Schauer-Gimenez et al. 2010; De Vrieze et al. 2013) or high
consistency from reactors with an upflow configuration with
anaerobic granular biomass (Werner et al. 2011). Given the
presence of a wide variety of microorganisms in the influent of
AD, dynamic changes in community diversity are likely the

result of proliferation of organisms that are adapted to the
selective pressures in each bioreactor. However, a core
microbiome dominates the reactors, showing the strong selec-
tive pressures present in this type of environment (Town et al.
2014; Gonzalez-Martinez et al. 2016b). Maspolim et al.
(2015) compared the microbial community dynamics in
single-stage and 2-phase anaerobic AD systems treating mu-
nicipal sludge, and the analysis revealed that microbial adap-
tation occurred as the sludge formed a different community in
each reactor at 30-day HRT but no significant microbial
changes occurred at lower HRTs. Engineering of the
microbiome by adjusting operational parameters leads to a
stable microbial structure (Vanwonterghem et al. 2014; De
Vrieze et al. 2016). Accurate monitoring of the microbial com-
munity requires that the metabolic potential and mode of

Fig. 1 Multivariate redundancy analyses relating performance
parameters (dried sludge, volatile dried sludge, pH, acid/alkalinity ratio
AC/AL, O2, CO2 CH4, and biogas production) with changes in diversity

or abundance of the most representative archaeal (a) and bacterial (b)
phylotypes in anaerobic digestion. Data were taken from Gonzalez-
Martinez et al. (2016b)
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interaction between the different microorganisms are distin-
guished from sudden unwanted changes related to unfavor-
able operational conditions. While generalist microorganisms
are able to occupy a broad range of niches based on their
greater phenotypic plasticity (van Tienderen 1997), specialists
occupy only a limited number of niches and show high levels
of specificity. The former can be considered as keepers of
process stability (Matias et al. 2013), whereas the latter may
drive evolution towards new traits in the microbial community
and could be of direct interest in the search for new potential.

The dynamics of prokaryotic organisms have been de-
scribed during the start-up stage of AD (Gonzalez-Martinez
et al. 2016b) as showing substantial changes under unstable
conditions. Thus, a challenge exists to develop a useful bio-
monitoring tool for environmental engineers. Many studies
have indicated that Methanosaeta and Methanosarcina are
competitive genera in the AD process. During the acidifica-
tion phase, Methanosaeta, an acetoclastic methanogen, is the
dominant genus but its abundance decreases significantly dur-
ing the methane production phase. In the latter phase, the
acetoclastic methanogen Methanosarcina increases

significantly. Methanosarcina is more tolerant to inhibitors
than Methanosaeta (Cho et al. 2013). At the end of AD,
Methanoculleus, a hydrogenotrophic methanogen, becomes
dominant because of the exhaustion of acetic acid. Previous
studies have reported that for continuous and fed-batch sys-
tems, bacterial community dynamics show larger changes
than those for the archaeal community, but there is similar
diversity, and VFA-producers show greater relative abun-
dance. Generally considered, the hydrolysing bacterial groups
Bacteroides , Cloacamonas , Clostr id iaceae , and
Rikenellaceae are dominant at the beginning ofAD and finally
change to other bacterial groups such as Clostridiaceae,
Fervidobacterium, Paenibacillus, and Spirochaetes
(Ghasimi et al. 2015; Gonzalez-Martinez et al. 2016b).

Microbial and Eukaryal groups involved
in biogas production

AD for methane production has already been widely adopted
(Cavinato et al. 2013; Carrere et al. 2016) using methanogenic

Table 1 Main eukaryal
phylotypes found in anaerobic
digesters. Data were taken from
Matsubayashi et al. (2017)

Kingdom/superphylum Phylum

Alveolata Perkinsozoa A31

Amoebozoa Discosea Order Dactylopodida

Gastrotricha Chaetonotus cf.

Animalia Gastrotricha Chaetonotus cf.

Archaeplastida Chlorophyta ANI-3

Chlorophyta Family Chlorellaceae

Chlorophyta Prototheca zopfi

Ciliophora Acaryophrya sp.

Ciliophora Vorticellides aquadulcis

Fungi Arthropoda Allonothrus sp.

Arthropoda Boletoglyphus sp.

Arthropoda Naidacarus arboricola

Arthropoda Rhizoglyphus sp.

Ascomycota Candida sp.

Ascomycota Exophiala equine

Ascomycota Family Dipodascaceae

Ascomycota Penicillium chrysogenum

Ascomycota Phoma sp.

Ascomycota Xenobotrytis sp.

Basidiomycota Lentinus sp.

Basidiomycota Trichosporum cutaneum

Cryptomycota LKM11

Cryptomycota LKM15

Metazoa Platyhelminthes Gieysztoria sp.

Rotifera Brachionus calyciflorus

Rhizaria Cercozoa Rhogostoma minus

Stramenopiles Hyphochytriomycetes Rhizidiomyces apophysatus
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microorganisms able to utilize simple organic substrates, such
as acetate, CO2/H2, methanol, and formate (de Bok et al.
2004). A deep insight into the main archaeal and bacterial
phylotypes of AD involved in biogas production under differ-
ent operational conditions can be seen in Hao et al. (2016).
There are three main types of methanogen, namely
acetoclastic, hydrogenotrophic, and methylotrophic. Most ar-
chaea produce methane by the hydrogenotrophic route and
only those belonging to the orderMethanosarcinales produce
i t by the acetoclas t ic route . Methanobacter ium ,
Methanothermobacter, and Methanospirillum are the most
commonly identified hydrogenotrophic methanogens in the
AD process. Acetoclastic methanogens belong to two genera:
Methanosaeta and Methanosarcina (Venkiteshwaran et al.
2015; Gonzalez-Martinez et al. 2016b). Methanosaeta can
be considered a key methanogen in the AD process, given
its unique morphology and physiology (De Vrieze et al.
2012, 2015), catalyzing renewable energy production from
organic waste streams.

Bacteria can support methane production during the pro-
cess of methanogenesis by hydrolysation of organic matter.
Positive correlation of Cytophaga, Herbaspirillum,
Symbiobacterium, Comamonas, and Allochromatium with
biogas production has been found (Gonzalez-Martinez et al.
2016b). The genera Cytophaga and Symbiobacterium are im-
portant organic matter degraders in AD in the hydrolysis and
acidogenesis processes, respectively (Panichnumsin et al.
2012; Yi et al. 2014).The importance of Herbaspirillum sp.
remains widely unclear due to its inability to carry out fermen-
tation (Schmid et al. 2006), but its relationship to biogas pro-
duction (Gonzalez-Martinez et al. 2016b) and degradation of
complex organic matter has been reported (Guo et al. 2015).

The role of Eukarya in the production of methane remains
largely unknown although Plantae, Animalia, and Fungi
eukaryal phylotypes have been reported to direct produce
CH4, even in the presence of oxygen (Liu et al. 2015;
Gorrasi et al. 2014). However, the mechanisms involved in
this pathway remain largely unclear and it has been proposed
that CH4 originates from organic methyl-type compounds in
response to environmental stresses. Although it is estimated
that plants could contribute around 3–24% to the global CH4

budget, an estimate of CH4 production by animals and fungi is
still lacking. Consequently, Eukarya are not considered as a
CH4 source by the Intergovernmental Panel on Climate
Change (IPCC), and their role in biogas production could be
useful for better quantitation of the global CH4 budget. The
influence of rumen fungi for improvement of biogas produc-
tion from animal manure on anaerobic digesters has gained
attention as a biological pre-treatment option of various poly-
meric substances. These microorganisms are able to effective-
ly digest lignocellulosic compounds, providing energy due to
symbiotic associations with rumen microorganisms (Yıldırım
et al. 2017). For instance, Gorrasi et al. (2014) demonstrated

the potential application of chitinolytic fungi to obtain H and
Ma et al. (2015) determined that rumen microorganisms have
higher hydrolytic and acidogenic activity than other microbial
species using lignocellulosic biomass as substrates.

Future implications and prospective
biotechnologies

New advances in monitoring AD will require the application
of control strategies to redirect the microbiome to reach a
stable functionality. Until now, microbial process control ac-
tions have usually taken place by altering basic operational
parameters, such as pH and temperature. For example, in-
creases in AD efficiency were done using different ways: bio-
augmentation, as a suitable alternative to increase VFA re-
moval (Town and Dumonceaux 2016) or hydrolysis (Martin-
Ryals et al. 2015); microwave (MW) pre-treatment, as an ef-
fective way of enhancing biogas production and solids remov-
al (Coelho et al. 2011). However, to engage direct steering of
the microbiome to sustain process stability, this knowledge
has to be integrated into advanced monitoring and control
strategies. For example, the ratio of syntrophic acetate-
oxidizing bacteria or methanogenic archaea to total bacteria
has been suggested as a possible microbial community mon-
itoring strategy for AD (De Vrieze et al. 2012). This has to be
based on specific genes and/or their transcripts, such as the
methyl co-enzyme M reductase (mcrA) gene for methanogens
(Wilkins et al. 2015) and the formyl tetrahydrofolate synthe-
tase (FTHFS) gene for syntrophic acetate-oxidizing bacteria
(Akuzawa et al. 2011; Hori et al. 2011).

The study of biogeochemical cycles in natural ecosystems
can drive innovation in bioenergetics applications to support
improvements of AD. In this sense, Izzo et al. (2014) explored
the potentials offered by the structural and functional micro-
bial biodiversity in hypertrophic lagoons characterized by rap-
id and huge biomass blooms and decomposition. They select-
ed the microbial communities as inoculum and successfully
tested for hydrogen production on different kinds of organic
wastes.

To decrease the cost of the treatment is of vital importance
in AD. This can be achieved by using raw material with lower
water content and running the process with a higher dry matter
content. The biogas produced can often be utilized to cover
the need for process energy. Thus, the economy of a biogas
plant is directly linked to the amount of biogas produced per
unit of rawmaterial treated in the plant. In short, advanced and
direct monitoring of the microbiome is possible through the
application of different microbial techniques. Accurate and
quick decision tools have to be developed. The integration
of existing physicochemical techniques and microbiome-
based monitoring is necessary to increase product recovery
and the overall energy efficiency of microbial processes.
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