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Abstract 

The development of algebraic reasoning from the earliest educational levels is an 

objective that has solid support both from the point of view of research and curricular 

development. Effectively incorporating algebraic content to enrich mathematical activity 

in schools requires considering the different degrees of generality of the objects and 

processes involved in algebraic practices. In this article, we present an expanded version 

of the model of levels of algebraization proposed within the framework of the Onto-

semiotic Approach, establishing sublevels that provide a more microscopic view of the 

structures involved and the processes of generalization, representation, and analytical 

calculation at stake. We exemplify the model with mathematical activities that can be 

approached from primary education, classified according to the different sublevels of 

algebraization. The use of this expanded model can facilitate the development of didactic-

mathematical knowledge of teachers in training on algebraic reasoning and its teaching. 
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Contribution to the literature 

Godino et al. (2014) proposed a model of elementary algebraic reasoning for primary 

education that establishes criteria for identifying purely arithmetic mathematical activity 

and distinguishing it from progressive levels of algebraization. In this paper, we propose 

an expanded version of that model considering sublevels based on a microscopic view of 

languages, their treatments, and conversions (Duval, 2017); degrees of generalization and 

functional reasoning (Blanton et al., 2015; Radford, 2010, 2021; Vergel et al., 2022, 

2023); mathematical structures and structural reasoning (Pittalis, 2023; Venkat et al., 

2019); and analytical calculation (Filloy et al., 2008; Kaput et al., 2008; Vergel et al., 

2022) 

1. INTRODUCTION 

Interest in the development of algebraic reasoning from the earliest levels of 

schooling is already a consolidated fact in the community of researchers in mathematics 



education (Kieran, 2022). Similarly, the need to adopt a broader perspective on the nature 

of school algebra is accepted (Godino et al., 2014; Malara and Navarra, 2018), 

understanding that the incorporation of algebraic content at early ages should aim to 

enrich school mathematical activity and facilitate the transition from arithmetic to algebra 

(Carraher and Schliemann, 2018). 

Algebraic reasoning differs from arithmetic in the form of mathematical practices 

that emerge from student activities (Hewitt, 2019). These practices involve dealing with 

indeterminate objects, designating them symbolically, and operating with them 

analytically (Radford, 2010). However, the presence of unknown quantities represented 

symbolically is not sufficient to consider an activity as algebraic (Kaput et al., 2008). 

Symbolic designation is considered algebraic if it is “in the service of expressing 

generalizations or in the systematic reasoning with symbolized generalizations” (Kaput 

et al, 2008, p. 49). Practices in which generalization is expressed through other symbol 

systems (not conventionally algebraic) are considered quasi-algebraic (Kaput et al., 

2008). 

Supported by theoretical tools of the Onto-semiotic Approach (OSA) to 

mathematical knowledge and instruction (Godino et al., 2019), Godino et al. (2014) 

proposed a model of algebraic reasoning for primary education. Their model establishes 

criteria that allow identification of purely arithmetic mathematical activity (level 0 of 

algebraization) and distinguishes it from progressive levels of algebraization. In line with 

the proposals of authors who research in the field of early algebra, two primary levels of 

proto-algebraic reasoning (levels 1 and 2) are considered to differentiate them from other 

stable or consolidated forms of algebraic reasoning (level 3). The key idea is to “make 

explicit the generality” in the field of binary relations (equivalence and order), structures, 

functions, and modeling of intra- or extra-mathematical situations while operating with 

that generality. For this purpose, the criteria for delimiting the different levels are based 

on the type of objects and mathematical processes involved in the mathematical activity, 

according to the OSA framework: types of representations used, processes of 

generalization involved, and analytical calculation that is engaged in the corresponding 

mathematical activity. 

The application of the levels of algebraization to the systems of practices allows 

“to characterize algebraic reasoning (institutional or epistemic perspective of algebra) and 

algebraic thinking (personal or cognitive perspective of algebra)” (Vergel et al, 2023, 

p.481), providing criteria to distinguish categories of meanings in the progressive 



construction of algebraic reasoning/thinking, which is not limited to a single context of 

application. This characterization offers criteria for curricular and instructional design 

and explains some conflicts in learning school algebra (Godino et al., 2014). However, 

given the onto-semiotic complexity of the objects and processes involved in elementary 

algebraic reasoning, “the boundaries between levels can sometimes be fuzzy” (Godino et 

al., 2014, p.212), and within each level, it is possible and useful to make distinctions that 

could lead to the proposal of new sublevels (Godino et al., 2014; Vergel et al., 2022). 

The aim of this article is to clarify the distinction between arithmetic, proto-

algebraic, and algebraic levels established in the model by Godino et al. (2014), 

considering sublevels based on a microscopic view of: a) languages, their treatments, and 

conversions (Duval, 2017); b) the different degrees of generalization and functional 

reasoning (Blanton et al., 2015; Radford, 2010, 2021; Vergel et al., 2022, 2023); c) the 

different structures and the structural reasoning involved (Pittalis, 2023; Venkat et al., 

2019); and d) the analytical calculation involved (Filloy et al., 2008; Kaput et al., 2008; 

Vergel et al., 2022). 

2. THEORETICAL FRAMEWORK 

2.1 Practices, objects, and processes in the analysis of mathematical activity 

From the viewpoint of the OSA, mathematical knowledge is constructed through 

problem-solving activity. The notion of mathematical practice, as an act or expression 

(verbal, graphic, etc.) carried out by someone to solve a mathematical problem, 

communicate their solution to others, validate it, or generalize it to new contexts and 

problems, is the starting point for the analysis of mathematical activity (Godino et al., 

2019; Font, et al., 2013). 

In systems of mathematical practices, different types of primary mathematical objects 

participate, that is, entities that can be individualized or separated according to their nature 

and function: problem situations, languages, concepts, propositions, procedures, and 

arguments. These objects emerge from systems of mathematical practices through their 

respective primary processes of problematization, communication, definition, 

enunciation, algorithmization, and argumentation (Godino et al., 2019). Processes such 

as modeling, problem solving, or problem creation are understood in the OSA as mega 

processes, given that they involve several of the former. 



The mathematical objects that intervene in mathematical practices and their 

outcomes, according to the language game in which they participate, can be considered 

from five dual facets that dialectically complement each other. These facets are 

considered attributes that, when applied to different primary objects, give rise to the 

following typology of secondary objects: ostensive (material, perceptible) – non-ostensive 

(abstract, ideal, immaterial); extensive (particular) – intensive (general); personal (related 

to individual subjects) – institutional (shared in an institution or community of practices); 

significant (expression, antecedent) – signified (content, consequent of a semiotic 

function1); unitary (considered globally as a whole) – systemic (considered as systems 

formed by structured components). Furthermore, both primary and secondary objects can 

be considered from the process-product perspective — that is, an object is an outcome 

(product) of sequences of practices (process) —, which provides criteria to distinguish 

types of primary and secondary mathematical processes. 

The realization of a mathematical practice mobilizes both the agent (institution or 

person) who develops it and the environment in which it is carried out (Font et al., 2010). 

Therefore, the analysis of mathematical activity involves both the description of the 

sequence of practices and the delimitation of the networks of objects and processes 

(ontosemiotic configurations) that enable such practices. 

2.2 Algebraic reasoning from the OSA perspective 

From the OSA, Elementary Algebraic Reasoning (EAR) is understood as the 

system of operative and discursive practices brought into play in solving tasks 

approachable from primary education in which algebraic objects and processes intervene. 

The types of algebraic objects considered (Godino et al., 2014) are as follows: a) binary 

relations —of equivalence or order— and their respective properties (reflexive, transitive, 

and symmetric or antisymmetric); b) operations and their properties, performed on 

elements of various object sets; c) functions, their operations and properties; and d) 

structures (semigroup, monoid, group, ring, field, vector space, etc.) and their types and 

properties. 

Binary relations are considered algebraic when used to define new mathematical 

concepts. The application of properties such as associative, distributive, existence of 

 
1 In the OSA, a semiotic function is understood as a relation between an antecedent object (expression, 

signifier) and a consequent object (content, signified) established by a subject (person or institution) 

according to a criterion or rule of correspondence (Godino et al., 2019). 



neutral and inverse elements, allow the application of specific algebraic calculation 

procedures to solve equations, inequalities, or systems of these, in which objects of 

indeterminate nature (variables, unknowns, or parameters) are treated analytically, that 

is, as if they were known numbers (Radford, 2010). Functions are relations or rules that 

associate the elements of one set with those of another, such that each element of the first 

set corresponds to one and only one of the second set. They establish and allow 

generalizing existing relations between quantities that covary together (Blanton and 

Kaput, 2004). Although the axiomatic study of structures is characteristic of higher 

algebra, from primary education students begin to familiarize themselves with the 

configurations of mathematical objects on which operations that comply with specific 

property systems are defined. That is, a structural treatment in mathematical activity is 

recognized. 

In addition to syntactic calculation, prototypical algebraic processes such as 

generalization, unitization, and representation are considered. The OSA regards 

generalization in terms of the identification of intensive objects involved in practices. 

The intensive object does not appear until the subject demonstrates the criterion or rule 

that is applied to delimit the constituent elements of the set. In addition to the 

generalization that gives rise to the set, a process of unitization can occur, whereby the 

set becomes something new, different from the elements that constitute it, a unitary entity 

that can be represented and participate in other practices to give rise to new intensive 

objects. To do so, the new unitary entity has to be materialized through a gesture, icon, 

name, or symbol. Thus, a process of representation accompanies generalization and 

unitization. Lastly, symbols detach from the referents they represent to become new 

objects on which syntactic, analytic, or formal operations are performed (Godino et al., 

2014). 

In the EAR model proposed by the OSA (Godino et al., 2012, 2014), the algebraic 

nature of a mathematical practice is linked to the subject performing the activity 

recognizing the rule that forms the intensive object (generalization), considering the 

generality as a new unitary entity (unitization), its materialization through any semiotic 

register (representation), and its subsequent analytical treatment. This way of 

understanding algebraic reasoning allows algebra to be articulated with the rest of 

mathematical knowledge: numbers, geometry, measurement, and stochasticity. Indeed, 

whenever the presence of intensive objects in a mathematical practice is recognized, at 

any of their levels of generality, a certain degree of algebraic reasoning can be attributed 



to them, whether the intensive is expressed symbolically or not. Furthermore, it is possible 

to distinguish the types of configurations of algebraic practices (relational, operational, 

functional, structural) based on the types of objects and algebraic processes described. 

Mathematical practices at level 0 of EAR are those that do not show algebraic 

characteristics: they involve extensive objects (particulars) or intensive objects of the first 

degree of generality (natural numbers) expressed through gestural, iconic, natural, or 

numeric languages. Symbols referring to an unknown value may be involved; however, 

such a value is obtained because of operations on particular objects. In functional tasks, 

the relationship is recognized only in particular cases (Godino et al., 2014). At the 

incipient proto-algebraic level, level 1 of EAR, intensive objects of the second degree 

participate, whose generality is explicitly recognized through iconic, gestural, natural, or 

numeric languages. The relations and properties of the operations are applied, and 

unknown quantities expressed symbolically may be involved; however, operations are 

not performed using these objects. Equality is used as equivalence. A higher proto-

algebraic level, level 2 of EAR, is determined by the use of unknowns or variables 

expressed with symbolic–literal language to refer to recognized intensives, though tied to 

spatial and contextual information. In structural practices, equations are of the form 𝐴𝑥 +

 𝐵 = 𝐶 (A, B, C ∈ ℝ). In functional practices, generality is recognized, but operations are 

not performed using variables to obtain canonical forms of expression. At the 

consolidated algebraic level, level 3 of EAR, intensive objects represented in a symbolic–

literal manner are generated and operated analytically without referring to contextual 

information. In structural practices, operations are performed with the unknown to solve 

equations of type 𝐴𝑥 +  𝐵 = 𝐶𝑥 + 𝐷 (A, B, C, D ∈ ℝ). Particular functions are involved, 

and operations are performed using the variables to obtain canonical forms of expression. 

3. LITERATURE REVIEW AND SYNTHESIS 

In this section, we present a review of the literature on essential aspects of algebraic 

reasoning that will allow us to have a more structured and analytical view of the levels of 

EAR. 

3.1. Generalization as a Distinctive Feature of Algebraic Reasoning 



Despite the diversity of ways to understand generalization, all of them agree that it leads 

to recognizing a regularity in a set of elements, generating new cases, and obtaining their 

respective expressions. 

Any effective generalization in the real of numerical and letter symbolism can be regarded 

from at least two aspects: one must be able to see a similar situation (where to apply it), 

and one must master the generalized type of solution, the generalized scheme of a proof 

or of and argument (what to apply). In either case one must abstract oneself from specific 

content and single out what is similar, general, and essential in the structures of objects, 

relationships, or operations (Krutetskii, 1976, p. 237). 

Generalization as a process involves: identifying the elements common to all 

cases, extending the reasoning beyond the range in which it originated, obtaining results 

broader than those of the particular cases, and providing a direct expression that allows 

the generation of any term (Ellis, 2007; Radford, 2013). 

Given the complexity associated with the process itself, authors such as Krutetskii 

(1976) and Radford (2010, 2018) believe that it is necessary to distinguish the levels of 

generalization. For Krutetskii (1976), it is possible to differentiate two levels in an 

individual's ability to generalize: 1) seeing something general and known to him in what 

is particular and concrete (subsuming a particular case under a known general object; 

recognizing and applying a known formula to a particular case) and 2) seeing something 

general and still unknown to him in what is isolated and particular (deducing a general 

formula, as a new object, based on different particular cases). On the other hand, in 

studying the types of numeric-geometric pattern generalization by students, Radford 

(2010) distinguishes between arithmetic generalization and algebraic generalization. In 

arithmetic generalization, the detected relationship is applied only locally, that is, only to 

some cases (near or far), without extending to other assumptions or using the observed 

information and without showing analytical reasoning (Radford, 2010). 

Recently, various authors have suggested the need to consider advanced forms of 

arithmetic generalization very close to the proto-forms of algebraic thinking (Ayala-

Altamirano and Molina, 2021; Cooper and Warren, 2011; Radford, 2021; Vergel et al., 

2022, 2023). Cooper and Warren (2011) proposed the idea of quasi-generalization as an 

advanced form of arithmetic generalization, as a process by which "students are able to 

express the generalization in terms of specific numbers" (p. 193). The general rule is 



perceived as a set of particular relationships that do not acquire a unified form (Cooper 

and Warren, 2011). 

Similarly, Ayala-Altamirano and Molina (2021) identify between arithmetic and 

algebraic generalization a form of generalization based on the incipient awareness of the 

sense of the indeterminate in students' reasoning in generalization processes. In 

generalization in action 

students through their actions seem to perceive the generality, but do not refer to 

indeterminate quantities analytically. However, the structural sense and the recognition 

of a structure associated with the problem situation is the evidence that allows inferring 

that they begin to reason analytically (Ayala-Altamirano and Molina, 2021, p. 215). 

In generalization in action, the student recognizes the common element, uses 

language to describe it, and is capable of employing this generality to determine other 

cases. However, the relationship is not made explicit at any time and fails to express 

indeterminate quantities by resorting to particular cases when asked about them (Ayala-

Altamirano and Molina, 2021). 

Vergel et al. (2022, 2023) used the term sophisticated arithmetic generalization, 

to differentiate this process from arithmetic generalization. In sophisticated arithmetic 

generalization, a structural view of the relationships is recognized that allows the use of 

the common characteristic (the generality) to determine any term of the sequence, 

although the generality is not explicitly expressed analytically (Vergel et al., 2022). 

Within algebraic generalization, Radford (2010) distinguishes three types: factual, 

contextual, and symbolic. Factual generalization refers to a generalization of actions in 

the form of an operational scheme that remains tied to the concrete level of using 

numerical symbols and to deictic terms and gestures as semiotic means of objectification; 

the general or the indeterminate remains unnamed, that is, indeterminacy does not reach 

the level of discourse. The general rule is a formula in action that allows students to 

successfully address particular cases. In contextual generalization, students observe a 

pattern and can explain it using mathematical elements for any figure within the sequence 

without it being described by a specific number. Not only are the actions generalized but 

also the objects resulting from the actions. There is a higher level of abstraction than in 

factual generalization; therefore, students refer to generality through specific expressions 

of indeterminacy. Although there are difficulties in appropriately expressing the variables 

and their relationships, there is a reduction in the semiotic means of objectification. The 



emerging abstract objects acquire entity through expressions such as "the figure," "the 

next figure," "for any number," etc. Finally, the expression through alphanumeric 

language of the general rule is associated with symbolic generalization. 

3.2. The role of language 

Mathematical objects, being ideal, abstract entities, need to be mediated by signs 

to represent and operate with them. The use of representations is inherent to algebra 

(Blanton et al., 2015); the system of signs and its own grammatical and syntactic rules 

allow algebra to express and manipulate generality in an unequivocal and compact 

manner (Drijvers et al., 2011). 

As Radford (2010) proposes, the levels or layers of generality that determine 

algebraic thinking are closely related to the semiotic representation systems used to 

express regularity. Although the use of symbolism facilitates the representation and 

manipulation of essential algebraic objects, it is not the only system for representing 

algebraic activity. Primary students can use gestural, figural, verbal (oral or written), 

numeric, tabular, diagrammatic, or graphic languages before or complementary to 

symbolic language to analytically refer to indeterminate quantities (Arzarello, 2006; 

Radford, 2011; Torres et al., 2022). 

Radford (2018) links a higher degree of sophistication in the expression of 

algebraic ideas to the idea of semiotic contraction, i.e., the concentration of meanings in 

the fewest number of signs through which generality is expressed. In this sense, 

diagrammatic, tabular, and graphic languages are attributed an increasing degree of 

contraction. Diagrammatic language facilitates relating variables and defining a 

correspondence through sagittal structures or line segments (Blanton, 2008). Diagrams 

play a decisive role in the development of algebraic reasoning, because they support or 

make possible the necessary process of particularization of the general rule, allowing 

conceptual objects to participate in practices from which new objects will emerge. 

However, more than the construction of a specific diagram, what is relevant in the 

development of algebraic reasoning is the implicit and hidden mathematical knowledge 

behind the diagrams used for their representation and manipulation (Giacomone et al., 

2022). 

Since the appearance of the first mathematical texts, there have been different 

types of tables: from structures that summarize empirical data to those representing 

mathematical functions. However, what they have in common is the expression of 



complex information in a two-dimensional form. "The structure of tables, the transition 

from a one-dimensional to two-dimensional layout in the location of information, has a 

far greater significance than might naively be expected" (Campbell-Kelly et al., 2003, 

p.2). Tables not only facilitate selection, categorization, and calculation with data 

(Campell-Kelly et al., 2003) but also allow establish and reason with the relationships and 

properties among the elements (variables), acquiring their use a functional character. 

Specifically, through tables, pairs of elements of the sets related by the function are 

organized, changes between variables are identified and described, and both covariation 

and correspondence relationships are perceived (Blanton, 2008). 

Kaput (1993) emphasized the need to study how the first graphical representations 

can serve as a means of reasoning about quantitative relationships and how they articulate 

with the symbolic representations of generalizations. For Radford et al. (2008), a graph 

is a complex mathematical sign that serves to specifically represent certain states of 

affairs. Graphs, particularly Cartesian graphs, are based on sophisticated syntax and a 

complex way of conveying relationships between elements that represent aspects of 

phenomena in the physical world; the Cartesian axes are critical elements of the 

representation, as are the variables represented on these axes (Johnson, 2022). 

Although starting to think algebraically does not require "complete" 

symbolization, that is, symbolization based on alphanumeric signs, for authors like 

Blanton et al. (2017) "algebraic reasoning ultimately involves reasoning with perhaps the 

most ubiquitous cultural artifact of algebra - the conventional symbol system based on 

variable notation" (p. 182). Alphanumeric symbolism offers multiple possibilities for 

performing calculations that may be difficult or impossible with other semiotic systems, 

such as gestural, pictorial, or verbal. It represents an effective language not only for 

expressing but also for manipulating generality, advancing the analytical nature of 

algebraic reasoning (Radford, 2018). 

3.3 Structures 

The term structure is used in abstract algebra to designate a set that is closed under one 

or more composition laws and a set of properties (axioms) that these operations can 

satisfy. Algebraic structures are classified according to the number and type of operations, 

as well as the properties that these fulfill: a) with a single internal composition law, such 

as, semigroups, monoids (ℕ, +), and groups; b) with two internal composition laws, such 

as rings (ℤ,+,·), fields (ℚ, ℝ), and lattices; c) with one internal composition law and 



another external, for example, vector spaces (ℝ2, ℝ3); d) with two internal composition 

laws and one external, the algebras (matrix algebra, function algebra), etc. In these 

structures, binary relations of preorder (reflexive, transitive), order (antisymmetric 

preorder), or equivalence (symmetric preorder) can be defined. For example, in every 

monoid, a preorder associated with its internal operation can be defined, as occurs with 

the divisibility relation in rings (ℤ, ·), or an order in the case of the ≤ relation in (ℕ, +). 

However, within the educational field, there are some ambiguities regarding the 

meaning of the term structure (Pittalis, 2023; Venkat et al., 2019). It is considered as the 

network of relations associated with order, addition, and multiplication structures, the 

identification of general properties that are specified in particular situations as relations 

between elements, or the recognition of properties within general forms (Pittalis, 2023). 

In any case, the notion of structure corresponds to the organization of parts of a whole, 

the entirety of the elements of a regularity, and the relation that exists between those 

elements (Kieran, 1989). Recognizing the structure in mathematical practices implies 

seeing an object or expression as a combination of recognizable parts along with 

connections that place the object as a particular example of a more general type (Hewitt, 

2019). It is not enough to recognize a link between two or more objects, but it is necessary 

to be aware of the use of properties and how they relate to consider that reasoning about 

the structure is occurring. That is, concluding that 2+5=5+2 is correct by performing 

calculations and checking the coincidence of the results on both sides of the expression 

is not evidence of structural reasoning, while it is to use the inherent structure of the 

operation to assert that the equality is true based on the commutative property of the sum 

of natural numbers (Hewitt, 2019). 

Pittalis (2023) distinguished the sense of structure in arithmetic and algebra. In 

arithmetic, it implies looking through numbers (recognizing the different ways in which 

they can be expressed) and performing numerical operations to decompose and 

recompose, identifying equivalence without calculation, based on their properties. In the 

case of algebra, this implies seeing relations and properties in an algebraic expression and 

transforming it accordingly into another equivalent expression. In that continuum that 

considers the transition from arithmetic to algebra, he introduces the sense of arithmetic-

algebraic structure as the ability to: 

see, recognize, conceptualize, utilize, generalize and make aware of structure in a variety 

of numeric, arithmetic, pattern, and functional situations, in respect to order, additive and 



multiplicative structural relations […] emerges by generalizing actions and processes that 

make possible the interplay from particular-local relations and properties to general ones, 

to conceive properties, regularities, and relations as mathematical objects (p. 1869). 

These mathematical objects for Pittalis (2023) can be numbers (or classes of 

them), operations with numbers, patterns (numeric or figural), functions, or variable 

quantities. A close relationship is observed between the structural sense and the ability to 

generalize, unify, and reify actions (Sfard, 2020). Thus, Venkat et al. (2019) consider that 

the difficulty in defining structure is that the term appears intertwined with others such as 

relations, generality/generalization, and properties that sometimes overlap but are 

considered different, while at other times they are seen as synonyms. Venkat et al. (2019) 

link (in the sense of Mason et al., 2009) the mathematical structure to the identification 

of general properties that manifest in particular situations as relations between elements. 

They understand properties as implicit behavior and internal relations in a given class of 

mathematical objects. This leads these authors to consider emerging structures, in which 

relations have a local nature, and differentiate them from mathematical structures, 

supported by general relations. Thus, emerging structures arise in a discourse of 

particularity (“the even number 6”), while mathematical structures arise in a discourse of 

generic (“an even number like 6”) /general (“any even number”) relations, applicable 

within some class of examples (Venkat et al., 2019).  

3.4. Analyticity 

Reasoning analytically, that is, treating unknown numbers the same as known numbers, 

is what distinguishes algebra from arithmetic. Analyticity is understood in terms of the 

operational character of indeterminate objects through the application of the properties of 

operations (commutative, associative, distributive of multiplication with respect to 

addition, etc.), which involve processes of deduction and generalization (Kaput et al., 

2008; Vergel et al., 2022). When deduction is incipient, in the sense that what is 

generalized is a procedure and not a direct expression (a formula, not necessarily 

symbolic), so that the relationship is not materialized with unknowns or variables, it is 

referred to as proto-analyticity (Vergel et al., 2022). 

Although there is considerable overlap and interaction between the structural and 

analytical dimensions in algebraic reasoning, analytical reasoning is specifically the type 

of reasoning that "underpins the transformations and equivalence aspects of equations 



and equation-solving" (Kieran, 2022, p. 1134). However, not all equations require the 

same analytical treatment. 

Given that to solve an equation of the type Ax + B = C (where A, B, and C are 

given particular numbers), students can simply reverse the operations (subtract B from C 

and divide by A), authors such as Filloy et al. (2008) do not consider equations of the type 

Ax + B = C as properly algebraic: 

In arithmetic terms, the left side of an equation corresponds to a sequence of operations 

that are carried out on numbers (whether known or not), and the right side corresponds to 

the result of having carried out those operations: this is what one might call an arithmetic 

notion of equality (or of an equation) (p.94) 

 

From the point of view of analytical calculus, there is a leap "FROM working with 

an unknown on only one side of the equal sign when it is enough to 'undo' the indicated 

operation" (arithmetic equation, Ax+ B = C) "TO dealing with equations where the 

unknown appears on both sides and therefore has to be operated on" (algebraic equation, 

Ax+ B = Cx+ D) (Kilhamm et al., 2019, p.6). 

the arithmetic notion of equality does not apply to an equation such as Ax ± B = Cx ± D 

(where A, B, C, and D are particular given numbers), and therefore its operational solution 

involves operations outside the scope of arithmetic, such as operating on the unknown. In 

order that such operations may acquire sense for the individual and so be brought into use 

in the process of solving an equation, equations such as those of the form described here 

(which we will call “non-arithmetic” equations) must in turn be provided with some 

meaning […] it must be understood that the expressions in both parts of the equality are 

of the same nature (or structure), and that there is a series of actions that give sense to the 

equality between them (such as the actions corresponding to the substitution of the 

numeric value of x) (Filloy et al., 2008, p. 94) 

 

For Sfard and Linchevski (1994), while an equation can be solved by treating the 

literal symbol as an unknown but fixed number, and each side of an equation as a concrete 

product of operations on this number, in an inequality, the letter plays the role of a 

variable and the component expressions are functions of this variable. "Unlike the equal 

sign, the symbol '>' cannot be interpreted as a 'do something' signal" (p. 110). In an 

inequality, it is necessary to compare the values of the component expressions for 

different literal symbol values. To solve an inequality of the type 𝐴𝑥 +  𝐵 <  𝐶, it is not 



enough to reverse the operations starting from C, to obtain the solution set of values. For 

example, the sign of A can change the direction of “<” in the sequence when describing 

the solution set. The inequality 𝐴𝑥 +  𝐵 <  𝐶𝑥 +  𝐷, can be interpreted through the 

comparison of two linear functions, so that solving it involves finding the set in which the 

values of the function 𝑓(𝑥) = 𝐴𝑥 +  𝐵, are below the values of the function 𝑔(𝑥) = 𝐶𝑥 +

 𝐷. 

3.5. Functions 

 

Functional reasoning is based on "building, describing, and reasoning with and about 

functions" (Pittalis et al., 2020, p. 632). This includes expressing the relationships 

between the quantities that vary together and using these expressions to analyze the 

behavior of a function (Blanton et al., 2011). 

Functional reasoning, a fundamental part of algebraic reasoning, is primarily 

evident when students establish covariation or correspondence relationships between the 

variables involved in problem situations. However, from the school perspective, it is 

appropriate to consider increasing levels of sophistication by differentiating: 1) the 

function as an assignment of input and output, 2) recursive patterns (particular, general), 

3) the function as a covariation relationship, 4) the function as a correspondence 

relationship, 5) the function as an object (Pittalis et al., 2020). The input and output 

approach refers to the operational and computational aspects of the function, as it does 

not require awareness of the causal relationship between input and output. The recursive 

pattern is built from the variation of the values of the dependent variable, which is 

determined on the basis of other determined or previously known values. Thus, it does 

not consider the variation of the independent variable, and to obtain the value of the latter, 

it is necessary to calculate all the previous values of the function (Blanton et al., 2011). 

Covariation analyzes how changes in one variable influence the other. A covariation 

relationship allows us to examine the function in terms of coordinating changes in the 

values of the dependent and independent variables. A correspondence relationship 

establishes a general rule that describes the relationship between quantities, allowing the 

analysis and prediction of the function's behavior and knowing a specific value of the 

dependent variable from the corresponding value of the independent variable, without 

needing to know other values of the function, offering a holistic view of the functional 

relationship (Pittalis et al., 2020). Finally, the vision of the function as an object is linked 



to the structural character, it is recognized as part of a family of functions, with its own 

representations and properties, subject to higher-order operations such as composition, 

inversion, etc. 

The analysis of children's ability to notice relationships between quantities, 

organize and represent data to make sense of and generalize functional relationships has 

led various authors to establish levels of sophistication, understood as "reference points" 

that mark progress in their learning of functions (Stephens et al., 2017). Blanton et al. 

(2015) identified eight levels of functional reasoning, attending to both the type of 

relationship recognized (recursive, functional) and the degree of generality (particular or 

general). Subsequently, Stephens et al. (2017) expanded this model to a total of ten levels 

of sophistication of functional reasoning, considering in addition to the type of 

relationship (variational, covariation, correspondence) and its generality, how they 

express (variables, words) such a relationship. 

 

4.  EXPANDED MODEL ELEMENTS OF THE EAR  

In the expansion of the EAR model, and based on the literature review, we consider the 

possibility of establishing different degrees of sophistication in the essential features of 

algebraic reasoning: generalization, representation, structural reasoning, and functional 

reasoning. 

4.1. Layers of generalization 

There are two key ideas that serve as operational criteria to distinguish arithmetic 

generalization from algebraic or proto-algebraic generalization: deduction and 

analyticity. For a generalization to be algebraic, there must be a deduction of an 

expression that allows the value of any term in a sequence to be calculated. On the other 

hand, the general term of the sequence being expressed in alphanumeric symbolism is not 

sufficient for the generalization to be the result of algebraic reasoning about the sequence 

(Radford, 2018), as what differentiates arithmetic reasoning from algebraic is "the 

analytical manner in which we think when we think algebraically" (p. 9). Therefore, for 

the generalization to be algebraic, it requires that abduction, that is, the recognition of the 

common characteristic as something plausible, is used analytically to deduce a formula 

that necessarily provides the value of any term (Vergel et al., 2022). Thus, we can 

distinguish three forms of generalization (Figure 1): pre-algebraic, when there is no 



deduction or analytical treatment, and abduction generates a procedure but not a direct 

expression of generality; proto-algebraic, when what is deduced, the common, is 

expressed through particular instances of the variable and incipient analytical traits are 

observed (proto-analyticity); and algebraic, when the generated formula is used 

analytically to deduce canonical forms of expression. 

 

Figure 1. Layers of pre-, proto-, and algebraic generalization. 

In this way, the first level identified by Krutetskii (1976) —relating a particular 

case to a known general object, and recognizing and applying a given formula to a 

particular case— has a pre-algebraic character, while the second level —deducing a 

general formula as a new object— would have proto-algebraic or consolidated algebraic 

traits according to the analytical treatment applied. 

Within pre-algebraic generalization, we consider two successive layers: arithmetic 

generalization (Radford, 2010) and advanced forms of arithmetic generalization, such as 

sophisticated (Vergel et al., 2022), in-act (Ayala-Altamirano and Molina, 2021), and 

quasi-generalization (Cooper and Warren, 2011). 

We associate factual generalization with an incipient proto-algebraic character 

because generalization is carried out through actions on numbers and a proto-analytical 

treatment of indeterminacy (description of procedures or actions that are potentially 

carried out repetitively) occurs, though this is only expressed tacitly and not explicitly 

(Radford, 2018). In contextual generalization, although symbolic language has not yet 

been used, the numerical scheme takes a back seat, identifying and naming generality 



through locative and generic terms that refer to abstract objects, still conceptually, 

spatially, and temporally situated (Radford, 2018). Therefore, contextual generalization 

implies a proto-algebraic character superior to that of factual generalization. 

We consider symbolic-contextual generalization as proto-algebraic generalization 

in which, while a general formula is deduced that is expressed in alphanumeric language, 

such expression retains the contextual dimension of space and time and does not 

recognize the canonical form of generality. Finally, algebraic generalization refers to 

indeterminate quantities, involves analytical reasoning, and use various forms of 

representation. That is, what differentiates algebraic generalization from proto-algebraic 

generalization is that the general rule, the intensive, is recognized as a new unitary entity 

emerging from the system of practices, materializes symbolically, and becomes a new 

object upon which actions can be performed. In particular, symbols can be operated with 

to obtain equivalent or canonical forms of their representation. 

4.2. Use of language 

The criteria used to establish levels of sophistication in language use are based on 

both the degree of semiotic contraction of the registers —iconic, natural, diagrammatic, 

tabular, graphic, or alphanumeric (Radford, 2018)— and the nature of the transformations 

that different semiotic representations undergo. In this sense, we rely on Duval's (2006) 

theory of Semiotic Representation Registers (SRR). For this author, the real role of 

representation systems or languages is not to represent objects but to operate, that is, the 

transformation of these objects, conditioned by the rules that operate in the semiotic 

representation register used. He distinguishes two types of possible transformations 

between representations: treatment and conversion. Treatment involves transformation 

between representations of the same SRR. The decomposition of a number, the 

decomposition or reorganization of a diagram or geometric figure, or the manipulation of 

algebraic expressions are examples of treatment in the numeric, figural/graphic, and 

alphanumeric/algebraic SRRs. The treatments that can be performed vary according to 

the SRRs and mainly depend on the possible specific semiotic transformations of the 

selected register. Conversion involves transformation between representations of 

different SRRs without changing the represented object (Duval, 2006). Moving from a 

figurative representation of a pattern to its numerical representation, translating a 

statement in natural language into a symbolic expression (for example, from “the square 



of the difference of two numbers is the product of their sum by their difference” to 

“(𝑎 − 𝑏)2 = (𝑎 + 𝑏)(𝑎 − 𝑏)”) are examples of conversion. 

According to Duval (2006), the complexity of converting one representation to 

another depends on the degree of congruence between the initial and final representations. 

Two representations are congruent when they meet three conditions: semantic 

correspondence between the units of meaning; semantic univocity (each unit of meaning 

in the initial representation corresponds to a single unit of meaning in the final 

representation); and the same order of presentation of the units of meaning (Duval, 2006). 

Otherwise, they are considered non-congruent. In a conversion, the represented object 

does not change, however, the specific lexicon of the representation register must be 

articulated with the structural properties of the object made ostensive, thus conditioning 

whether the conversions are congruent or not. This is what determines that the conversion 

from “the set of points (𝑥, 𝑦) on the plane whose ordinate is greater than its abscissa” to 

“the set of points (𝑥, 𝑦) on the plane with 𝑦 > 𝑥” is congruent and that it is not the 

conversion from “the set of points (𝑥, 𝑦) on the plane whose coordinates have the same 

sign” to “the set of points (𝑥, 𝑦) on the plane with 𝑥𝑦 > 0” (Duval, 2006). 

Based on these ideas, in Figure 2, we establish different degrees of formalization 

in the use of SRRs. 

 

Figure 2. Layers of pre-, proto-, and algebraic SRR transformations. 

An increase in the degree of semiotic contraction characterizes the increase in the 

level of generalization. This contraction of semiotic means implies greater sophistication 



of the SRRs, which determines the hierarchy shown in Figure 2. In this case, we highlight 

that the conversion from any SRR to the symbolic constitutes a proto-algebraic type of 

conversion, as it does not necessarily involve analytical reasoning in this last system of 

representation, leaving the treatment of symbolic language as the only transformation of 

fully algebraic nature. 

4.3. Degrees of structural reasoning 

We consider that an algebraic structure is a systemic entity (in the sense of the 

OSA) determined by the following: a) mathematical objects (for example, natural 

numbers), b) binary relations among the objects (such as order or equivalence relations), 

c) operations among the objects (for example, the addition of natural numbers), d) 

properties of the relations (like the transitivity of order), e) properties of the operations 

(such as commutativity), and f) correlation between relations and operations (for 

example, compatibility between order and addition of natural numbers). 

In line with Venkat et al. (2019), we understand that structures can have different 

degrees of generality, as determined in our case by the degree of intension of the involved 

mathematical objects. This allows us to discuss about degree 1 structures (intensive 

objects of degree 1, i.e., structures on natural numbers), degree 2 structures (intensive 

objects of degree 2, i.e., on classes of natural numbers, on rational numbers), etc. 

Similarly, on the basis of our definition of algebraic structure, it is possible to establish 

layers of structural reasoning, which can be understood as reasoning with and about 

structures. 

We consider pseudo-structural reasoning as the use of numbers that exceeds 

merely arithmetic, in which numerical relations are intended to express generality. This 

assumes what authors like Kaput et al. (2008) call the algebraic use of numbers, that is, 

reasoning with numerical statements that are analyzed not for calculation purposes, but 

for their structure in search of a pattern or generalization. Also reasoning with what Fujii 

(2003) calls quasi-variables, i.e., numerical expressions "that indicate an underlying 

mathematical relationship which remains true whatever the numbers used are" (p. 59). 

Structural reasoning is incipient if the properties of operations and relations are 

applied locally, whereas it is considered partial when the properties of operations and 

relations are applied generally but the correlation between operations and binary relations 

is not involved. Structural reasoning is complete when the properties of the operations 

and binary relations are generally applied and correlated. 



 

4.4. Degrees of functional reasoning 

Considering the works of Blanton et al. (2015) and Stephens et al. (2017), to determine 

the layers of functional reasoning (Figure 3), we focus on the degree of intension 

(particular, general) and type (recursive pattern, covariation, correspondence) of the 

functional relationship. Moreover, we consider the contextual or not nature of the rule 

and the analytical treatment. 

 

 

Figure 3. Layers of functional reasoning 

We consider as pre-algebraic functional reasoning when the relationship is 

conceived as a set of particular instances. In particular recursive reasoning, a recursive 

pattern is conceptualized as a sequence of particular cases, without recognizing the 

regularity that defines the pattern as a generality in unitary form (Blanton et al., 2015). In 

particular functional reasoning, the functional relationship of covariation or 

correspondence, is concretized as a set of particular relations between specific 

corresponding values. It assumes a quasi-generalization (Cooper and Warren, 2011) in 

the functional context. 

Proto-algebraic functional reasoning is that in which the functional relationship is 

recognized in general, but neither the structure of the function is recognized nor the 



expression of the relationship is transformed. In general recursive reasoning, a recursive 

pattern is made explicit as a general rule between arbitrary successive values without 

reference to particular cases (Blanton et al., 2015). Although it is possible to identify 

features of contextual generalization (Radford, 2018) in practices in which a general 

recursive pattern is recognized, the function is not involved as a covariation or 

correspondence relationship. Incipient (general) functional reasoning leads to qualitative 

recognition of the general relationship (covariation or correspondence) or its recognition 

through a set of cases, but without giving an expression of the transformation between 

the specific quantities (primitive general-functional reasoning of Blanton et al., 2015; 

basic-functional of Stephens et al., 2017). In partial functional reasoning, the functional 

relationship is identified and the transformation between specific quantities is expressed, 

but domain, image, and correspondence rule are not articulated. There is no syntactic 

calculation involved in the rule's treatment. At this level, we consider features of the 

emerging general-functional and condensed general-functional reasoning of Blanton et 

al. (2015) and Stephens et al. (2017) when the function and its constituent parts retain a 

contextual dimension.  

Finally, algebraic functional reasoning involves considering the function as a 

structure. In complete (general) functional reasoning, the general relationship of 

correspondence between arbitrary quantities is recognized and explicitly recorded in 

symbolic form (non-contextual condensed general-functional). The limits of the 

generality of the relationship are perceived, i.e. in which set of values the relationship is 

maintained and when it ceases to be so (object-function for Blanton et al., 2015). Once 

the correspondence rule is constructed, it is possible to decompose its constituent parts, 

differentiating the variables from the operations in the context of the problem and 

transforming it to obtain equivalent expressions. In systemic functional reasoning, the 

function acts as an object, with its own properties and multiple representations, and the 

properties of operations and function relations are recognized and applied locally 

(incipient structural reasoning with real functions of a real variable). 

 

5. EXPANDED MODEL FOR THE EAR 

In this section, we expand the EAR model developed by Aké et al. (2013) and Godino et 

al. (2014) by distinguishing two sublevels of algebraic reasoning within each of the four 

levels proposed by these authors. Considering the intrinsic complexity of the elements of 



algebraic reasoning detailed in the previous section (generalization, representation, 

structural reasoning, and functional reasoning), we describe the characteristics of the 

mathematical practices that allow the definition of different sublevels within the 

arithmetic (pre-algebraic), proto-algebraic, and algebraic levels of the previous model. 

We illustrate the descriptions of the different sublevels through tasks that motivate 

functional-type practices, in which patterns and functions are involved (Problems 1 and 

4), and structural-type practices, involving the properties of operations, equations, and 

inequalities (Problems 2 and 3). These are described as follows: 

Problem 1. Ana entertains herself by making increasingly larger squares (linked 

to each other) with sticks as shown in the image. When she has nine squares, she 

wonders: how many sticks will I need to make the tenth square? 

Problem 2. There are six seats between chairs and stools. Chairs have four legs 

and stools have three. In total, there are 20 legs. How many chairs and stools are 

there? (Godino et al., 2014) 

Problem 3. Juan has 6 more pencils than Ana. Antonio has 8 more pencils than 

Juan. If Ana and Juan have more pencils than Antonio, how many pencils could 

Ana have? 

Problem 4. Laura has been given a toy worm made of pieces. The worm with the 

head and one piece measures 9 cm. The worm with the head and two pieces 

measures 13 cm.   

a) How many pieces did the worm have when it measured 25 cm? Explain 

your answer. 

b) Write in mathematical form the length of the worm when, in addition to 

the head, a given number of pieces are added. Explain your answer. 

First, we present a general description of each EAR level adapted from the 

proposal by Godino et al. (2014). Next, we describe the criteria that define the sublevels, 

focusing on the elements (generalization, representation, structural and functional 

reasoning) and degrees of sophistication described in Section 4. We exemplify the 



application of the new criteria to analyze the algebraic activity involved in solving these 

problems. When possible, we analyze practices developed by students; otherwise, we 

analyze solutions anticipated by the authors. 

5.1 Pre-algebraic activity. Level 0 of the EAR 

At the EAR level 0, practices involve and operate with extensive objects or first-degree 

of generality intensive objects expressed through gestural, iconic, natural, or numeric 

languages. Equality is used only in its operational sense. In functional practices or  

patterns, the relationship is recognized only in specific cases (Godino et al., 2014). 

5.1.1. Level 0.I. Arithmetic activity 

We propose the following criterion: 

Practices at level 0.I of EAR are those in which an arithmetic generalization occurs 

or a particular recursive reasoning is involved.  

Figure 4 includes a level 0.I solution to Problem 1.  

 

Figure 4. Solution of level 0.I to Problem 1. 

In the mathematical practices shown in Figure 4, a treatment in the iconic/figural 

register occurs leading to the decomposition of the figure into each square that composes 



it. The student detects the relationship (+3) and applies it locally only to some cases 

(arithmetic generalization). A recursive pattern is conceptualized (to calculate an element 

you need the value corresponding to the previous element) on particular elements, without 

explicitly stating the general rule in a unitary form, that is, particular recursive reasoning. 

Therefore, it is a mathematical activity of level 0.I. 

 

Figure 5. Solution of level 0.I to Problem 2. 

Figure 5 includes one student's solution to Problem 2. The student uses a trial-and-

error strategy to solve the problem, operating with first-degree intensive objects (natural 

numbers) using natural and numeric language. There is no structural treatment, and 

equality has only an operational sense. Therefore the mathematical activity is of level 0.I. 

5.1.2. Level 0. II. Sophisticated arithmetic activity 

We consider the following rule for assigning this level:  

EAR level 0.II practices are those in which sophisticated arithmetic generalization 

occurs. From a structural viewpoint, pseudo-structural reasoning is involved. In 

functional practices, particular functional reasoning (covariation or 

correspondence) is observed. 

Below, one possible level 0.II solution to Problem I is shown:  

Square 2 is obtained from 1 by adding 3. Similarly, square 3 is obtained from 2 

by adding 3. Counting in the drawing, I observe that for square 3, I need 10 sticks. 



The number of sticks I will need for element 10 will be the result of the sum: 

10+3+3+3+3+3+3+3= 31 sticks. 

In this solution, the relationship between particular values is conceptualized: the 

number of sticks needed for element 10 can be determined by adding 3 to the number of 

sticks needed for element 3 seven times. However, this relationship is not expressed as 

the multiplication of 3 by the difference between both values, never managing to 

explicitly express that generality analytically (Vergel et al., 2022). 

 

Figure 6. Solution of level 0.II to Problem 2. 

Figure 6 includes one student's solution to Problem 2. Through their practices, the 

student seems to recognize the structure associated with the situation (pseudo-structural 

use of numerical relationships): the first five multiples of 4 and the first five multiples of 

3 are obtained. Possible combinations corresponding to 6 seats are connected with lines 

(if there is 1 chair there would be 5 stools, if there are 2 chairs there would be 3 stools, 

etc.). The solution is obtained by selecting the only possible combination whose sum is 

20. The activity developed corresponds to a level 0.II. 

 

Figure 7. Solution of level 0.II to Problem 4 (a). 



Figure 7 shows one student's solution to the first part of Problem 4. The student 

conceptualizes the functional relationship between the number of pieces and the length 

of the worm as a set of particular relationships between the corresponding specific values 

(particular functional reasoning). In this way, the student determines which number of 

pieces corresponds to 25 cm in length. The mathematical activity in this case is level 0.II.  

 

5.2. Primary proto-algebraic activity. Level 1 of EAR 

At level 1 of EAR, second-degree intensive objects participate (classes of first-degree 

intensive objects), whose generality is explicitly recognized through natural, iconic, 

numeric, or diagrammatic languages. Equality is used as equivalence (Godino et al., 

2014). The types of structures, generalizations, and transformations between the registers 

involved allow differentiating the following sublevels. 

5.2.1. Level 1.I. Incipient proto-algebraic 

We propose the following criterion to assign the incipient proto-algebraic level: 

Conversions between natural and diagrammatic languages and treatment in 

diagrammatic language, are characteristics of level 1.I. From a structural 

perspective, incipient structural reasoning with first-degree structures is involved. 

Practices that imply factual generalization are also typical of this first proto-

algebraic level. 

Figure 8 includes one student's solution to Problem 1, in which the mathematical 

activity is considered to be proto-algebraic of level 1.I. 

 

Figure 8. Solution of level 1.I to Problem 1. Factual generalization. 



In this solution, the indeterminate is not explicitly stated; rather, it is expressed 

through concrete actions. A factual type of generalization (Radford, 2018) occurs: which 

is generalized is the operational scheme that determines the number of sticks (multiplying 

by 4 the number corresponding to the square's position and subtracting the previous 

position which is the number of sticks shared with the previous figure), linked to the 

concrete level of specific numerical values. The practice corresponds to a level 1.I of 

EAR. 

 

 

Figure 9. Solution of level 1.I to Problem 2. Incipient structural reasoning with first-

degree structure. 

In the solution to Problem 2 included in Figure 9, incipient structural reasoning 

with first-degree structures is observed, as relations and properties of operations with 

first-degree intensive objects are explicitly stated and locally applied, specifically, the 

divisibility relation and its properties with natural numbers. Therefore, the mathematical 

activity corresponds to a level 1.I of EAR.  



 

Figure 10. Solution of level 1.I to Problem 3. Treatment in diagrammatic language. 

Figure 10 includes a solution to Problem 3 using the diagrammatic register. The 

segments represent the quantities of pencils of Ana, Juan (starting from Ana's) and 

Antonio (starting from Juan's). There are congruent conversions between the natural and 

the diagrammatic, as well as a treatment in the diagrammatic language to determine the 

relationships between the lengths of these segments. Solving the problem using this 

strategy may require several attempts to construct segments that fit the condition "Juan 

and Ana have more pencils than Antonio". The mathematical activity corresponds to level 

1.I of EAR. 

5.2.2. Level 1.II. Emergent proto-algebraic 

We propose the following criterion: 

Conversions between natural and tabular languages are characteristic of sublevel 

1.II, although the latter is used only as a record of particular values. Symbolic 

language can be used to express unknown quantities; however, it is not operated 

with. From a structural viewpoint, partial or complete structural reasoning of 



degree 1 is brought into play. From a functional perspective, general recursive 

reasoning is involved. 

The application of the properties of the order relation in the monoid of natural 

numbers and its relation with the addition operation can be used to solve Problem 3. 

 

Figure 11. Solution of level 1.II to Problem 3. Complete structural reasoning of degree 

1. 

The balance model allows the recognition of  the complete numerical relationship 

expressed in the inequality as it undergoes transformations (Linchevski and Herscovics, 

1996). In this solution, a complete structural reasoning with intensives of degree 1 is 

observed: the cancellation of identical terms on both sides of the inequality requires the 

articulation of the order relation and the properties of operations with natural numbers. 

Therefore, it is a practice of level 1.II. 



 

Figure 12. Solution of level 1.II to Problem 4 (a). General recursive reasoning. 

To determine the number of pieces the worm has in the first part of Problem 4, the 

student whose solution is included in Figure 12 determines the relation "for each piece 

added to the worm, 4 cm are added to it". We observe that the student, despite noting the 

covariation between the quantities compared, does not use it to determine the number of 

pieces the worm has with a length of 25 cm, but completes the series by adding these 4 

cm, until the required number of pieces is determined. Therefore, the solution falls on the 

recognition of a general recursive relation, which is characteristic of level I.II. 

5.3. Level 2 of EAR. Advanced proto-algebraic activity 

Level 2 of EAR is defined by the use of unknowns, generalized numbers, or variables 

that, although they may be expressed symbolically, remain tied to the context. 

Conversions between different SRRs occur. In functional practices, the function appears 

as a covariation or correspondence relationship. Generality is recognized, but variables 

are not operated with to obtain canonical forms of expression. In structural practices, 

arithmetic equations and inequalities are solved without operating with the unknown 

(Godino et al., 2014). 

5.3.1. Level 2.I. Consolidated proto-algebraic 

The consolidated proto-algebraic level is characterized as follows: 

Treatment in tabular language is characteristic of level 2.I. The tabular register is 

used as an icon of a structure of relationships, to identify and describe changes 

between variables, both in covariation and correspondence. Incipient structural 

reasoning with second-degree structures intervenes. In structural practices, 

equations of the form 𝐴𝑥 +  𝐵 = 𝐶 (A, B, C ∈ ℝ) are solved. This level includes 

practices that involve contextual generalization or incipient (general) functional 

reasoning. 



Below, a possible solution to Problem 1 is included, in which the mathematical 

activity is considered to be at level 2.I. 

To calculate the number of sticks needed to build a square in a given position, I 

always have to multiply the position of the square by 4 and subtract the position 

of the previous figure. For the square in position 10, I will need 4×10-9=31 sticks. 

In this solution, a general rule (“multiply the position of the square by 4 and 

subtract the position of the previous figure”) is obtained that allows determining the 

number of sticks to build a square without being restricted to numerical representation. It 

is expressed in generic terms but linked to the context (contextual generalization) 

(Radford, 2018). This is, as a result, an activity of level 2.I of EAR. 

 

Figure 13. Solution of level 2.I to Problem 2. Structural use of tabular register. 

In the solution proposed in Figure 13 to Problem 2, there is a conversion from 

natural language to tabular language. The table acts as a structure of relations, and its 

treatment allows obtaining knowledge about characteristics of the variables and how they 

covary. This is an activity of level 2.I.  



 

Figure 14. Solution of level 2.I to Problem 3. Incipient functional reasoning. 

In Figure 14, the student recognizes a generalized relationship between the 

number of pencils of Ana, Antonio, and Juan, but does not express it through 

mathematical transformation between generic quantities. In other words, a general 

correspondence is recognized in a primitive form (Blanton et al., 2015), showing incipient 

functional reasoning.  Mathematical activity is associated with EAR level II. 

At level 2.I, local relationships and the properties of operations on second-grade 

intensive objects are applied. In particular, mathematical practices in which the properties 

of ratios and proportions are locally used (for example, order or equivalence relationships 

between fractions) are associated with this level. Thus, in Problem 4, recognizing the 

direct proportionality relation between the number of pieces added after the worm's head 

and their total length, to establish and solve the equation 4x=20, where x is the number of 

pieces added, and 20 (=25-5) is the length of the worm without considering the head, is 

an activity of level 2.I. 

5.3.2. Level 2.II. Sophisticated proto-algebraic 

We propose the following criterion for assigning the sophisticated proto-algebraic level: 

Level 2.II includes treatment in graphical language. Partial or complete structural 

reasoning of degree two is involved. Inequalities of the form 𝐴𝑥 +  𝐵 < 𝐶 or 

𝐴𝑥 +  𝐵 > 𝐶 (A, B, C ∈ ℝ) are solved. This level also includes practices that 

involve symbolic-contextual generalization or partial functional reasoning. 

The analytical calculation involved in solving inequalities entails a greater 

ontosemiotic complexity than that required in solving equations, as the intervening and 



emerging objects from these systems of practices (variables) are of a higher level than 

those involved in solving equations (unknowns) (Aké et al., 2013).  

A solution to Problem 1 of level 2.II would be as follows: 

To calculate the number of sticks I need to build a square in position 𝑛, I determine 

the number of sticks that constitute the square, that is, 4𝑛 and subtract the number 

of sticks corresponding to one side of the previous square, that is, 𝑛 − 1. 

Therefore, we have 4𝑛 − (𝑛 − 1). For the square in position 10, I will need 

4 × 10 − (10 − 1) = 31 sticks. 

In the previous solution, a general formula that determines the number of sticks 

needed to construct the square at a given position n is deduced. This rule is expressed in 

symbolic language but retains the spatial-contextual dimension and does not operate with 

literal symbol to obtain a canonical form of generality. This type of generalization, which 

we have named symbolic-contextual, is characteristic of level 2.II of EAR. 

In Figure 15, a possible solution to Problem 3 is included, which involves the 

conversion from numeric to graphic languages and the treatment in this last register to 

interpret the graphs of two affine functions.  



 

Figure 15. Solution of level 2.II to Problem 3. Graphical conversion and treatment. 

The student must choose which variable (in this case, Ana's pencils) and what 

values will be represented on the x-axis. Then, the functions (number of pencils of Ana 

and Juan, number of pencils of Antonio), whose domain and range take discrete values, 

are represented. Deciding what number of pencils Ana can have so that together with 

Juan's they add up to more than Antonio's, involves interpreting the graph of the functions, 

and the meaning of one being above the other in a certain range of the variable (treatment 

in the graphic register). The mathematical activity is considered to be of level 2.II. 



 

Figure 16. Solution of level 2.II to Problem 4 (b). Partial functional reasoning. 

Figure 16 shows the response of a student to the second part of Problem 4. The 

student correctly expresses the rule symbolically, but does not correctly articulate it with 

the meaning of the variables. The independent variable a is "any number," referring to 

the number of pieces of the worm (natural number). Then they indicate that 4×a is the 

"number of pieces the worm has" and not the length. Therefore, this is a case of partial 

functional reasoning, and the algebraic activity carried out by the student is of level 2.II. 

5.4. Level 3 of EAR. Algebraic activity  

In level 3 of EAR, intensive objects represented in symbolic-literal form are generated, 

which participate in analytical calculations without referring to contextual information 

(treatment in symbolic language). Unknowns, generalized numbers, and specific 

functions are involved, and variables are operated with to obtain canonical forms of 

expression (Godino et al., 2014). 

5.4.1. Level 3.I. Incipient algebraic 

We propose the following criterion for assigning Level 3.I: 

In structural practices of level 3.I, the unknown is operated with to solve equations 

of the type 𝐴𝑥 +  𝐵 = 𝐶𝑥 + 𝐷 (A, B, C, D ∈ ℝ). Practices that involve symbolic 

generalization and those in which complete functional reasoning appears are also 

considered at this level. 

Below, we show a solution to Problem 1, where the mathematical activity is 

considered to be of level 3.I. 

To calculate the number of sticks needed to construct a square in position 𝑛, I 

determine the number of sticks necessary to form the complete square,  



i.e. 4𝑛, and subtract the number of sticks corresponding to one side (shared) of the 

previous squares, i.e. 𝑛 − 1. Thus, we obtain 4𝑛 − (𝑛 − 1) = 4𝑛 − 𝑛 + 1 =

3𝑛 + 1. For the square at position 10, I will need 3 × 10 − 1 = 31 sticks. 

In this solution to Problem 1, the general correspondence relationship is 

recognized in symbolic language, operating with literal symbols to obtain the canonical 

form of representation. Therefore, the activity is of level 3.I.   

Next, we show a possible solution to Problem 2 of level 3.I. 

Each chair has 4 legs and each stool has 3. If we call S the number of chairs and 

T the number of stools, we can express the total number of legs as 

4𝑆 + 3𝑇 = 20. 

Moreover, since there are 6 seats, 𝑇 + 𝑆 = 6, or equivalently, 𝑇 = 6 − 𝑆. 

Substituting in the expression for the total number of legs gives 𝑆 + 3(6 − 𝑆) =

20, from where 𝑆 + 18 = 20, then 𝑆 = 2. If there are two chairs, then there are 4 

stools.  

In the above mathematical practices, a system of two equations with two 

unknowns, the number of chairs and the number of stools, (conversion from natural to 

symbolic language) is posed, and a substitution technique is used to solve it (treatment in 

the symbolic register). Therefore, the activity is of level 3.I. 

Figure 17 shows one level 3.I solution to Problem 3 given by a secondary 

education student.  



 

Figure 17. Solution of level 3.I to Problem 3. 

There is a conversion between the natural and symbolic registers. The student 

assigns a literal symbol to the number of pencils of each child (Ana’s, x; Juan’s, y; 

Antonio’s, z) and symbolically establishes the relationship between them (for example, 

“Juan has 6 more pencils than Ana” goes to “ 𝑦 = 𝑥 + 6”). Although the student comes 

to pose the inequality, they do not operate with the unknown to solve it, but they do so to 

canonically express the total number of pencils that Ana and Juan have (𝑥 + 𝑥 + 6 as 

2𝑥 + 6), showing that they detach the literal symbol from the context (treatment in 

symbolic language). Solving the inequality by operating with the unknown is 

characteristic of a consolidated algebraic level, as described below. 

5.4.2. Level 3.II. Consolidated algebraic 

We propose the following criterion for assigning Level 3.II: 

Structural practices in which the unknown is operated with to solve inequalities 

of type 𝐴𝑥 +  𝐵 < 𝐶𝑥 + 𝐷 (A, B, C, D ∈ ℝ) are considered to be of level 3.I. From 

a functional perspective, this level involves systemic functional reasoning. 

The student whose solution to Problem 3 is included in Figure 13 could have 

solved the inequality 2𝑥 +  6 > 𝑥 + 14:  



2𝑥 +  6 > 𝑥 + 14
 

⇒ 2𝑥 − 𝑥 > 14 − 6
 

⇒ 𝑥 > 8, 

to conclude that Ana should have more than 8 pencils. In this case, the mathematical 

activity is of level 3.II. 

The first functions that students name in secondary education are linear and affine 

functions. Recognizing a function as part of one of these families and locally applying its 

properties (systemic functional reasoning) is associated with EAR level 3.II. Thus, at the 

beginning of secondary education, a solution to the second part of Problem 4 such as the 

one included in Figure 18, can be expected. 

 

Figure 18. Solution of level 3.II to Problem 4 (b). Systemic functional reasoning. 

Once the student recognizes the affine function that relates the number of pieces  

worm can have and its total length it is expressed as 

𝑙(𝑛) = 4𝑛 + 5 

they can determine the inverse function of the previous one  𝑛(𝑙) =
𝑙−5

4
, which allows 

obtaining the number of pieces knowing the length of the worm. Therefore, the student 

could know the number of pieces the worm had when it was 25 cm long and solve the 

first part of Problem 4: 

𝑛(25) =
25 − 5

4
= 5 pieces. 

The treatment of the function as an object, which can be inverted, is typical of EAR level 

3.II. 



5. SYNTHESIS AND IMPLICATIONS  

To ensure adequate teaching of algebra in primary education, it is necessary to develop 

tools that can be incorporated into teacher training programs that guide the analysis and 

design of tasks that promote algebraic reasoning in schoolchildren (Hohensee, 2017; 

Zapatera and Quevedo, 2021). This involves training future teachers to: a) encourage the 

search for regularities and properties and generalization through patterns; b) recognize 

functional relationships; c) develop relational thinking; d) familiarize students with the 

idea of unknowns and variables; e) use multiple representations (diagrams, tables, graphs) 

to help students develop ways of algebraic thinking and their consideration in modeling 

and problem solving; and f) advance in the use of symbolic language as a way of thinking 

(Carraher and Schlieman, 2018; Malara and Navarra, 2018; Warren, et al., 2016). 

Generalization is at the heart of algebraic reasoning, and involves recognizing a 

regularity, generating new cases, and obtaining the expression of the general rule 

(Radford, 2010). However, as we have shown, there is not a single form of generalization, 

but different layers closely related to the scope of the rule, the semiotic representation 

registers used to elaborate the expression of the regularity, and its analyticity. On the one 

hand, what is generalized in most of the early algebraic activity are the structural aspects 

of the relationships and numerical patterns (Kieran et al., 2017); before generalizing, it is 

necessary to examine the structure of the mathematical situation. Teachers should not 

tacitly assume that prior work with arithmetic allows the recognition of underlying 

structures as entities (Radford, 2011). This reflection leads us to consider different types 

of structures, attending to the degree of intention of the objects on which properties, 

operations, and relationships are built, and to consider different degrees of structural 

reasoning according to how many of these elements of the structure are involved and how 

they are used.  

On the other hand, it is not possible to separate the activity of generalization from 

the representations used to characterize and reason with the generalized relationships 

(Blanton et al., 2015; Radford, 2018). To foster algebraic reasoning in primary education, 

teachers have to develop their expertise on how to help students transition their 

representations (Malara and Navarra, 2018), knowing the role of pre- and proto-algebraic 

representations. Primary education students are capable of using non-conventional 

personal representations, such as gestures or words, to express indeterminate quantities 

(Radford, 2011). Furthermore, through progressive instruction, students can learn to use 



literal symbols or other representations such as tables or graphs (Blanton, et al., 2017; 

Carraher and Schliemann, 2018). Both diagrammatic and tabular registers facilitate the 

development of strategies that allow progression from more informal strategies (intuitive, 

trial and error, or arithmetic) towards more formal (algebraic) strategies, especially in the 

early modeling of problems involving equations. Models such as the balance model can 

offer the opportunity to semantically and syntactically establish a basis for solving linear 

equations (Filloy and Rojano, 1989). Graphical representation of functions by hand 

allows students to give meaning to the symbols in algebraic formulas, recognize their 

structure, and reason with and about the formulas (Kop et al., 2020a, 2020b). Since  each 

of these representation systems has its own signs and rules, which condition the degree 

of generality of the mathematical practices they support, it has been possible to establish 

layers in the use of language, distinguishing transformations of pre, proto, and algebraic 

character. 

Ultimately, algebraic reasoning involves the use of alphanumeric symbols 

(Blanton et al., 2017). Alphanumeric symbolism constitutes a precise and condensed 

semiotic system allowing to efficiently perform computations which could be difficult to 

perform within other semiotic system of representation (Radford, 2018). As a 

consequence, and based on previous work (Godino et al., 2014; Radford, 2010), the levels 

of our model are characterized by a progressive increase in the degree of semiotic 

contraction. However, a premature introduction to symbolic language can lead to an early 

development of formalization in which the symbols “become semantically empty” 

(Zeljić, 2015, p. 432). Promoting the development of pre- and proto-algebraic 

representations as a preliminary step to the introduction of the symbolic language can 

help to give meaning to alphanumeric symbols. In this sense, the layer stratification we 

propose in our work can serve as a guide of a progressive instructional process towards 

meaningful representation systems with higher level of semiotic contraction.  

Moreover, representation systems are of great importance in the manipulation of 

functional relationships, where generalization and the study of the structure play an 

essential role. Given the importance of functional reasoning in the development of 

elementary algebra, we consider it necessary to pay attention to the various degrees of 

sophistication, not as "the shifts observed [or observable changes] in student thinking" 

(Stephens et al., 2017, p. 150), but in terms of the degree of intention and the nature of 

the functional relationship, its representation, and analytical treatment. Thus, we have 

distinguished layers of pre-algebraic functional reasoning when the relationship is 



conceived as a set of particular cases, proto-algebraic when the functional relationship is 

identified in a general manner, but its structure is not recognized nor its expression is 

transformed, and algebraic functional reasoning, when the function is conceived in a 

structural manner. In each of these layers, some degrees established by Blanton et al. 

(2015) and Stephens et al. (2017) are recognized.  

In this paper, we started from the model of EAR levels by Godino et al. (2014), 

with the intention of clarifying the characteristics and limits between the arithmetic, 

proto-algebraic, and algebraic levels established in that framework. In the Annex, we 

include a synthesis of the characteristic features of the expanded model of EAR levels 

that we have developed in this study. This new expanded model of EAR can be used in 

teacher training as a guide for the analysis of algebraic reasoning manifested by students 

when solving mathematical tasks, or in the a priori analysis of anticipated solutions. It 

offers a detailed perspective of the progression in algebraic competence in the 

mathematical activity carried out by students. The sublevels we propose are determined 

on the basis of the following aspects: (i) the representations, their treatments and 

conversions; (ii) the different degrees of generalization and functional reasoning; (iii) 

mathematical structures and structural reasoning, and (iv) the analytical calculation 

involved. Although we consider our proposal to be sufficiently detailed and operational, 

it is clear that it does not exhaust all possibilities. For example, it is possible to compare 

the degree of sophistication of different types of conversions within each layer, both by 

the registers involved and by the congruence of these transformations. In addition, one 

could distinguish whether structural reasoning is partial or complete (use of the properties 

of operations and relations in a general and correlated manner). 

We consider that this new expanded model of EAR, together with the illustrative 

examples of the different sublevels, will facilitate the work already started in teacher 

training for the development of algebraic reasoning in primary education (Aké et al, 2013; 

Burgos and Godino, 2018, 2022). These works show that despite the complexity of 

achieving such competence, it favors the analysis of implicated meanings and potential 

difficulties in the solution and creation of algebraic tasks.  
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Annex 

Description of the characteristic features of the expanded EAR model. The objects 

corresponding to a particular EAR level could appear at higher levels. 

Level 

of 

EAR 

Objects Processes 

Degree of 

intension 
Languages 

Generalization 

Functional 

reasoning 

Transformations 

between registers 

Analytical 

calculus 

Structural 

reasoning 

Arithmetic 

0.I 

• Extensive 

objects. 

• First-degree of 

generality 

intensive 

objects. 

• Gestual. 

• Iconic. 

• Natural. 

• Numeric. 

• Arithmetic 

generalization. 

• Particular 

recursive 

reasoning. 

• Treatments 

within iconic, 

natural, and 

numeric 

languages. 

• Operations 

with extensive 

and first-

degree 

intensive 

objects. 

https://doi.org/10.3390/math10010056
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• Conversions 

between iconic, 

natural, and 

numeric 

languages. 

• Operational 

use of the 

equality. 

0.II 
• Quasi-

variables. 

• Sophisticated 

arithmetic 

generalization. 

• Particular 

functional 

reasoning. 

• Pseudo-

structural 

reasoning. 

Primary proto-algebraic 

1.I 

• Second-

degree of 

generality 

intensive 

objects. 

• Emergent 

structures of 

first-degree. 

• Diagrammatic. 

 

• Factual 

generalization. 

 

• Treatment within 

diagrammatic 

language. 

• Conversions 

between natural 

and diagrammatic 

languages. 

 

• Incipient 

structural 

reasoning with 

structures of 

first-degree. 

• Equality used 

as equivalence 

1.II 
• Complete 

structures of 

first-degree. 

• Tabular as a 

record of 

particular 

values 

• Symbolic to 

represent 

unknown 

quantities 

without 

operating with 

them. 

• General recursive 

reasoning. 

 

• Treatment within 

tabular language 

as a record of 

particular values. 

• Treatment within 

the symbolic 

language as a 

receptor or 

unknown 

quantity. 

• Conversion 

between natural 

and tabular 

languages. 

• Partial or 

complete 

structural 

reasoning 

with 

structures of 

first-degree. 

Advanced proto-algebraic 

2.I 

• Unknowns. 

• Generalized 

numbers. 

• Variables. 

• Emergent 

structures of 

second-

degree. 

 
• Tabular. 

• Graphic. 

• Symbolic. 

• Contextual 

generalization. 

• Incipient 

(general) 

functional 

reasoning. 

• Treatment within 

tabular language 

to identify and 

describe changes 

between 

variables.  

• Conversion 

between the 

different 

languages. 

• Incipient 

structural 

reasoning 

with 

structures of 

second-

degree. 

• Resolution of 

equations of 

the type: 

 𝐴𝑥 +  𝐵 = 𝐶 

2.II 

• Complete 

structures of 

second-

degree. 

 

• Symbolic-

contextual 

generalization. 

• Partial 

functional 

reasoning. 

• Treatment 

within graphic 

language. 

• Partial or 

complete 

structural 

reasoning 

with 

structures of 

second-

degree. 

• Resolution of 

inequations of 

the type: 

 𝐴𝑥 +  𝐵 < 𝐶 

Algebraic 



3.I 

• Particular 

functions and 

their 

properties. 

• Natural. 

• Numeric. 

• Diagrammatic. 

• Tabular. 

• Graphic. 

• Symbolic. 

• Symbolic 

generalization. 

• Complete 

functional 

reasoning. • Treatment 

within symbolic 

language. 

• Resolution of 

equations of 

the type: 

𝐴𝑥 +  𝐵 

= 𝐶𝑥 + 𝐷 

3.II 

• Functions, 

their 

properties 

and 

operations. 

 

• Systemic 

functional 

reasoning. 
 

• Resolution of 

inequations of 

the type: 

𝐴𝑥 +  𝐵

< 𝐶𝑥 + 𝐷 

 


