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Abstract8

This manuscript proposes a physics-guided Bayesian neural network, which combines Approximate-Bayesian-9

Computation training with physics-based models. This hybrid algorithm uses the laws of physics to mitigate10

the lack of data, and the flexibility of neural networks to model the complexities inherent in nature. The11

state-of-the-art approaches often introduce the physics in the loss function, or through some known boundary12

conditions, and then use backpropagation to adjust the weights. However, this training method involves13

some rigidity and drawbacks, mostly related to the adoption of a predefined loss/likelihood function and the14

evaluation of its gradient during training. The use of approximate Bayesian computation as the learning15

engine results in a greater prediction accuracy and flexibility to quantify the uncertainty, due to the gradient-16

free nature of the algorithm, the absence of loss/likelihood function and the non-parametric formulation of17

the weights. Furthermore, the physics-based model is introduced in the forward pass of the neural network,18

which significantly increases the extrapolation capabilities of the proposed hybrid model. The proposed19

algorithm has been applied to lateral-load tests in reinforced concrete columns, providing promising results20

when making predictions about future loading cycles, surpassing the purely data-driven and physics-based21

methods as well as the state-of-the-art physics-guided neural networks. In light of the performance shown22

during the experiments, the proposed algorithm has the potential to become a useful tool for fast evaluation23

of critical buildings after seismic events.24

Keywords: Physics-Guided Neural Networks, Hybrid Models, Approximate Bayesian Computation,25

Uncertainty Quantification, Shear-Capacity Evaluation,26

1. Introduction27

Physics-based models are mathematical or conceptual representations of some phenomenon, and form28

the foundations of science and scientific enquiry [1]. From Copernicus’ model on the rotation of the planets29
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around the sun to the most modern quantum mechanics [2], scientists have defined, tested and used models30

to make predictions, as they approximate reality relatively well and are accessible to human understanding.31

However, and despite their successful applications, it is complicated for them to include comprehensive details32

of real natural phenomena without becoming overly complex themselves and difficult to use, with practically33

unidentifiable parameters [3]. Contrariwise, modern artificial intelligence provides us with algorithms that34

are capable of learning patterns in complex natural processes without the need to identify and/or understand35

them, provided that enough data are available [4–6]. And for that same reason, in those situations where36

data is scarce or imbalanced [7], their performance may be poor and unreliable. Moreover, machine learning37

algorithms do not perform well when making predictions about events or processes which are outside the38

training data space (extrapolating) [8]. Unfortunately, there is a wide range of engineering applications39

where there only exist relatively simple models that partially explain the phenomenon of interest and the40

availability of data is very limited. Therefore, it seems sensible to seek hybrid models that can benefit from41

both, physics-based and data-driven approaches.42

During the last few years, artificial neural networks (ANN) that include in their loss function some43

physics-based knowledge about the process that generated the experimental data, such as boundary condi-44

tions, have caught the attention of the scientific and engineering community. The way this physics-based45

knowledge is embedded within the machine learning algorithm is very diverse and depends on the application46

in hand. Moreover, a deep theoretical understanding of physics and ANN is fundamental for a successful47

implementation of the algorithm and its hyperparameters. One of the most prominent algorithms in this48

area of research is the so-called physics-informed neural networks (PINN) [9], which encourages the ANN49

to follow certain laws of physics, described by partial differential equations (PDE), by increasing the cost50

of solutions that do not satisfy them. This methodology has set the foundations for a wide range of ANN51

algorithms, such as frictional PINN (fPINN) [10], conservative PINN (cPINN) [11] and extended PINN52

(XPINN) [12], but also for many applications [13–18]. In this line of research, where ANN are informed by53

partial differential equations, extensive work has also been undertaken regarding generalization capacity and54

estimation of the error [19], including XPINN [20]. Another interesting approach to introduce prior domain55

knowledge in neural networks is by specifying certain constraints, such as logical or algebraic expressions,56

that should hold over the output space. This method has shown efficiency in computer vision, when map-57

ping from an image to the location of an object it contains [21]. In the area of Prognostics and Health58

Management (PHM), Nascimiento and Viana proposed a new methodology [22–24] based on a recurrent cell59

where some parts of the physics-based model that are difficult to represent or even measure, such as the60

stress intensity range in fatigue life prognostics, are compensated by artificial neural networks. Following the61

same principles, in the field of mechatronic systems (e.g., presses, pumps, hydraulic valves or compressors)62

the neural network augmented physics (NNAP) [25] algorithm proposes neural layers that are inserted in the63

physics-based model, with the novelty of simultaneously optimizing both the neural network and physical64
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parameters. Physics-guided neural networks (PGNN) are another family of hybrid methods that are provid-65

ing promising results. Among the different variants of PGNN that can be found in the literature, Jinjiang66

Wang et al. [26] proposed a cross physics-data fusion (CPDF) scheme to combine the information obtained67

by a physics-based model and a data driven model for machining tool wear prediction. Ruiyang Zhang et al.68

[27] presented the Physics-guided Convolutional Neural Network (PhyCNN) for prediction of building’s re-69

sponse subjected to earthquakes. Uduak Inyang-Udoh and Sandipan Mishra [28] developed a physics-guided70

convolutional recurrent neural network (ConvRNN) for droplet-based additive manufacturing and proved71

that the data required to train this model are much less compared to a full black-box model. Anuj Karpatne72

et al. [29, 30] was probably the first attempt to introduce some physics-based principles within the neural73

network architecture, achieving low errors in a lake temperature modeling problem. While most of these al-74

gorithms are deterministic in nature, there are some hybrid models that are able to quantify the uncertainty75

in their predictions, using Bayesian methods [31], arbitrary polynomial chaos (aPC) and Dropout [32, 33], or76

Monte Carlo Dropout [34], among others. However, this quantification of the prediction uncertainty could77

be defined as rigid [35], given that the weights and/or the likelihood function of those neural networks are78

parametric and defined by a pre-shaped likelihood function, typically Gaussian. In addition, their learning79

process is based on the evaluation of the gradient of a physics-based loss function via the backpropagation80

algorithm [36], which may suffer from problems like Dying ReLU [37] or vanishing/exploding gradient [38].81

Notwithstanding the foregoing, Approximate Bayesian Computation by Subset simulation [39], a method to82

define posterior distributions of model parameters without having to evaluate likelihoods or gradients, may83

overcome most of these issues when used as the inference engine to train the weights of ANN [40].84

This paper proposes three different methods to combine physics-based models with Bayesian Neural85

Networks by ABC-SS (BNN by ABC-SS ) , to develop a new physics-guided Bayesian neural network, here-86

after called PG-BNN by ABC-SS. The main difference between the proposed algorithms lies in the part87

of the BNN where the physics-based models are introduced, this is: the metric, the input layer, or the88

output layer. The gradient-free nature of BNN by ABC-SS along with its non-parametric formulation of89

the probabilistic weights and absence of loss/likelihood function provide great flexibility to capture the90

uncertainty inherent in the observed data, resulting in a better and less-constrained representation of the91

reality [40]. While the data-driven part of the proposed algorithm adapts to compensate for the unmodelled92

conditions in the physics-based model and quantifies the uncertainty, the physics may provide regularization93

and enables extrapolation. Two different experiments have been carried out: an illustrative problem using94

synthetic data about projectile motion to evaluate the performance of the proposed algorithm and explain95

the proposed concept in a straightforward manner; and a real case study on shear strength prediction, using96

experimental data about lateral-load tests of reinforced concrete columns [41], which constitutes the main97

application of this paper. The performance of PG-BNN by ABC-SS in both experiments has been compared98

and benchmarked against their corresponding purely data-driven and physics-based approaches, as well as99
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a state-of-the-art PGNN trained with the backpropagation algorithm using TensorFlow [42]. The results100

clearly show the benefits of combining BNN by ABC-SS with physics-based models, such as improved pre-101

cision and extrapolation capability, and the potential applications of the proposed algorithm. Also, the102

accurate quantification of the uncertainty shown in the experiments, as a result of using ABC-SS [39] as the103

learning engine, provides valuable information for any subsequent decision making process.104

The rest of the paper is organised as follows. Section 2 provides a brief theoretical background, from105

the principles and drawbacks of physics-based models and ANN, to the need for hybrid models. Section 3106

describes and explains three different proposals on how to introduce the physics-based model into the BNN107

by ABC-SS algorithm. The experimental framework, comprising an illustrative problem and a real case108

study, is presented in Section 4, including a description of the experimental data, the algorithms used and109

a discussion on the results obtained. Finally, the conclusions are given in Section 5.110

2. Background111

This section provides the theoretical background of this manuscript. The principles of ANN are briefly112

explained in Section 2.1, as well as their main applications and drawbacks. Section 2.2 will introduce BNN by113

ABC-SS along with the importance to accurately quantify the uncertainty. Finally, hybrid neural networks114

are described in Section 2.3, including the importance of combining physics-based models with data driven115

methods.116

2.1. Neural networks and their drawbacks117

ANN have the ability to identify patterns and to extract meaningful information from complex data118

which other methods cannot process. Some of the main tasks ANN can perform are classification (assigning119

classes to data points) and prediction (inferring the expected output given an input). This article will focus120

on the latter, where we train an ANN to make predictions based on observed data. Figure 1 shows a generic121

representation of an ANN (perceptron), which can be seen as a model f defined by a series of parameters122

called weights w and bias b. Such model takes some input information x ∈ X ⊂ Rn and provides an output123

ŷ = f(x;w, b) ∈ O. The input information flows from the input neurons through the hidden layers to the124

output neurons. Along that path, the input information is processed and transformed by the weights, bias125

and the non-linear activation functions in the hidden and output layers. That mapping from inputs to126

outputs is commonly known as the forward pass, which is shown in Equation 1 for the generic case of Figure127

1.128

ŷk = g(

m∑
j=1

w
(2)
jk h(

n∑
i=1

w
(1)
ij xi + b

(1)
j ) + b

(2)
k ) (1)

Despite all the powerful attributes of ANN and their applications to a wide variety of problems, they also129

have some drawbacks that should not be ignored. While we are not interested in listing them all, three of130
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Figure 1: Generic example of a basic Feed-forward Neural Network

them deserve a special mention in the context of this article. Firstly, ANN (in their deterministic form) do131

not quantify the uncertainty in their predictions, and this can be controversial when there exists a decision132

to be made based on such predictions. Secondly, ANN are very efficient at making predictions within the133

domain of the training data, however, in those regions of the data space where no information was available134

during training (extrapolation), the output of the neural network is unreliable [43] and in most cases it135

should be discarded. Moreover, it is recommended that the range of the input variables space is recorded136

during training, so extrapolation can be avoided when making predictions. Paradoxically, our interest often137

lies in predicting the unknown, hence the importance of improving the extrapolation capabilities of our138

models. Lastly, ANN often require large amount of training data, which is contrary to most applications139

in engineering where data is a scarce resource [44]. Nevertheless, these disadvantages are commonly known140

and the next sections will describe potential solutions, or at least how they can be mitigated in some cases.141

2.2. BNN by ABC-SS142

As explained in Section 2.1, ANN are widely used to make predictions about a variable of interest, which

are subsequently used in a decision making process. Failing to quantifying the uncertainty, or degree of

belief, on those predictions can therefore have undesirable consequences. The Bayesian method provides a

suitable framework to interpret and quantify the uncertainty in both, the parameters and the outputs of a

neural network. Let θ = {w, b} ∈ Θ ⊆ Rd be the parameters of the neural network, namely weights and

bias; M the neural network architecture; and p(θ|M) the prior information we have about parameters θ,

then that prior information can be updated in light of the training data D(x, y) as follows:

p (θ|D,M) =
p (D|θ,M) p (θ|M)

p (D|M)
(2)

where p (θ|D,M) is the posterior information of the parameters, p (D|θ,M) is the likelihood function and143

the term p (D|M) represents how likely data D is to be reproduced by model class M.144
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Bayesian neural networks have experienced an increase in popularity in recent times and several variants145

can be found in the literature, from Variational Inference [45] to Hamiltonian Monte Carlo [46]. However,146

they often present some disadvantages such as the need to define a likelihood function p (D|θ,M) and/or147

a parametric formulation of the weights and bias p (θ|D,M). That results in a rigid representation of the148

reality, given that the quantified uncertainty is forced to follow a predefined parametric function.149

Contrarily, BNN by ABC-SS overcomes those problems thanks to the lack of likelihood function and its150

non-parametric formulation of the weights and bias. In addition, its gradient free nature provides stability151

and avoids issues like the Dying ReLU [37] or Vanishing/Exploding Gradient [38]. Overall, BNN by ABC-SS152

provides high accuracy rates, similar to PBP and HMC, along with a more precise and realistic quantification153

of the uncertainty inherent in the observed data. Therefore, BNN by ABC-SS is particularly suitable in154

those cases where quantifying the degree of belief on the predictions is of great importance, as in most155

engineering problems. The interested reader is referred to [40] for further information about ABC-SS, and156

to [39] for BNN by ABC-SS.157

2.3. The raison d’Etre of hybrid neural networks158

Physics-based models are the basis of today’s technology, and have made possible uncountable achieve-159

ments. However, the rise of big data and the rapid development of computational capacities have resulted160

in the popularization of data-driven approaches within the scientific community, such as ANN. In some ap-161

plications, these data-driven approaches have outperformed physics-based models, especially in those cases162

where large amounts of data are available and/or the underlying governing laws are unknown. It could even163

be argued that physics-based models are just an approximation of reality and subject to lack of knowledge164

or poor understanding of complex mechanisms that may be involved in the phenomenon to be modelled,165

while observed data is a measurement of something taken directly from reality itself. Those might be some166

of the many reasons behind this increase in popularity of data-driven methods. As mentioned in Section167

2.1, ANN have been very successful indeed in performing many tasks, but they also suffer from significant168

drawbacks such as their difficulties to generalize and incapacity to extrapolate. Interestingly, those are some169

of the best known qualities of physics-based models, their ability to make consistent predictions regardless170

the availability of data to learn from.171

Combining physics-based models with ANN into hybrid models is a promising line of research [47, 48].172

Specially in some engineering applications, where the known physical laws struggle to accurately model the173

reality, either because of the complexity of the process to be modelled or simply lack of knowledge. In174

addition, data is not abundant when dealing with engineering problems like failure prediction, so purely175

data-driven approaches are not suitable on their own. And in any case, it seems sensible to make use of any176

knowledge we have at hand, no matter if it comes from observed data or validated physical laws. Some of177

the engineering disciplines that have shown a promising advance in the use of hybrid models are the energy178
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[49] and prognostics [50] fields. Figure 2 shows a simplified conceptualization of hybrid models.179

DATA

DATA DRIVEN
MODEL

PHYSICS-BASED
MODEL

PREDICTION

Figure 2: Conceptual chart of hybrid models

3. PG-BNN by ABC-SS180

In this section, three different methods are proposed to combine physics-based models with BNN by181

ABC-SS to obtain hybrid Bayesian neural networks, the so-called PG-BNN by ABC-SS. Details of the182

implementation, changes to the original BNN by ABC-SS algorithm and a description of the expected183

behaviour of the hybrid models are provided. The proposed neural network architectures are also shown184

graphically so they can be compared against the standard ANN shown in Figure 1 and Equation 1. It should185

be noted that, depending on the nature of the problem to be solved, the physics-based models described186

below may be substituted by any model M(x) = y, where M represents the model class, x is the input187

information and y the output of the model.188

3.1. Physics learnt through the metric function189

ANN base their training and updating of parameters on a loss function, while BNN often use a predefined190

likelihood function chosen by the user. BNN by ABC-SS lacks both of them, and instead approximates the191

likelihood function to P (ŷ ∈ Bϵ(y)|θ), which can be interpreted as the probability of ŷ to fall within a region192

Bϵ(y) = {ŷ ∈ O : ρ(η(ŷ), η(y)) ⩽ ϵ}, where a metric function ρ(·) assesses the distance between prediction193

ŷ and data y ∈ D(x, y), based on a summary statistics η(·) chosen by the user. Thus, a set of parameters194

θ = {w, b} will be accepted only if ρ(η(ŷ), η(y)) ⩽ ϵ, in other words, only if prediction ŷ is close enough to195

the data y. As mentioned in Section 2.2, this lack of likelihood function provides an enhanced flexibility196

which results in a fairer representation of the uncertainty [40].197

In this work, a new metric function ρp based on the laws of physics, is proposed in addition to the current198

data-driven metric. This will ensure that during training a set of parameters θ is accepted only if, given199

an input x ∈ D(x, y), the prediction ŷ is also close enough to the prediction yp made by the physics-based200

model. Moreover, two hyperparameters α and β are included in the final metric function, so the user can201
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control how much weight is given to the physics-based model and to the data-driven approach. Algorithm 1202

shows the necessary adaptation of BNN by ABC-SS, and Figure 3 a schematic representation of the concept.203

Algorithm 1 Physics Learnt Through the Metric Function

1: Every time ρ() needs to be calculated in Algorithm 1 of [40], replace it as follows:
2: New terms:
3: ρd() {data-driven metric}
4: ρp() {physics-based metric}
5: ρf () {overall or final metric}
6: yd {data y from training data D(x, y)}
7: yp {prediction from physics-based model}
8: α {weight given to the data-driven approach}
9: β {weight given to the physics-based approach}

10: Begin:
11: ρd ← ρ(η(ŷ), η(yd))
12: ρp ← ρ(η(ŷ), η(yp))
13: ρf ← αρd + βρp

The proposed physics-based metric is expected to provide a regularization effect, which will be added204

to the natural regularization of BNN thanks to the prior information. This may translate into better205

generalization, helping to avoid overfitting. Extrapolation might also improve slightly in some cases as206

the BNN is encouraged to comply with the actual physics, however, since the physics-based model is not207

implicitly included in the forward pass, accurate extrapolation is not anticipated nor should it be considered208

as a goal. The uncertainty quantified by the proposed algorithm might also be reduced, given that the209

BNN now has more information and will discard those data points that depart significantly from the laws210

of physics.211

Output
Neuron

w
(2)
jk Hj

...

Metric (ρ)

ρd ← ρ(η(ŷ), η(yd))
ρp ← ρ(η(ŷ), η(yp))
ρf ← αρd + βρp

Fix tolerance value ϵ with
ρf and update weights
and bias accordingly

w
(2)
1k H1

b
(2)
k

ŷk

Figure 3: Schematic representation of proposed PG-BNN by ABC-SS

3.2. Physics learnt through input neurons212

Principal Components Analysis (PCA) is an interesting method to reduce the dimensionality of big213

data sets where there exists a large number of variables [51]. Simplistically, PCA aims to find any existing214

relationship between variables, and then uses linear combinations representing such relationships as new215
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variables. Although reducing the dimensionality of data sets is not the objective of this manuscript, the216

conceptual idea of PCA about identifying correlations between variables and use them as new inputs could217

serve as an analogy and inspiration for introducing the laws of physics in neural networks. After all, in218

engineering applications the input and output variables of the neural network are related by the laws of219

physics. Figure 4 shows how physics could be embedded into the architecture of the neural network via the220

input layer. The term Physics refers to the output of the physics-based model, and the subscript p = 1, .., s221

in Physicsp indicates the number of outputs in the physics-based model, in case there are multiple outputs.222
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Figure 4: Architecture of PG-BNN by ABC-SS via the input layer

Physics Based Model
Input

Neuron

x1,x2,...,xn

Inputs to ANN

Figure 5: Physics-based model fed into the input neuron

When the output of the physics-based model is used as a new input to the neural network, as in Figure223

5, the latter is informed about a relationship between the input and output variables. That information224

could be comprehensive or incomplete, but it will contribute to the learning process in all cases. Moreover,225

during training the weights and bias of the neural network will learn how to manipulate and change the226

physics, based on the inputs, so the predictions of the neural network match the observed data.227

The forward pass now includes the laws of physics, as shown in Equation 3. Therefore, this knowledge is228

also applied to predictions made outside the domain of the training data, thus improving the extrapolation229

capacities of the neural network. The uncertainty is also expected to reduce, given that the neural network230
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is now better informed. Apart from the forward pass, the algorithm of BNN by ABC-SS remains unchanged.231

ŷk = g(

m∑
j=1

w
(2)
jk h(

n∑
i=1

w
(1)
ij xi +

s∑
p=1

w
(1)
pj Physicsp + b

(1)
j ) + b

(2)
k ) (3)

3.3. Physics learnt through output neurons232

The laws of physics should be able to explain most processes and actions that occur in the real world,233

however, we see that this is not the case nowadays. Quoting the British statistician George E. P. Box, “All234

models are wrong, but some are useful”. There is much truth in that sentence, but it does not mean that235

the real world is not governed by physics, but that we are not able to precisely model all the complexities236

of the real world. In fact, the more complex models are, the more hyperparameters they include and more237

prone they are to overfitting. Conversely, simple models tend to generalize better and are less sensible to the238

tuning of the hyperparameters, probably at the expense of making less accurate predictions. This is where239

ANN may help, given their capacity to learn non-linear patterns from observed data. Therefore, it seems240

sensible to use ANN to identify and learn those complexities in the real world that simple physics-based241

models cannot.242

As shown in Figure 6, this idea can be materialized by adding the outputs of the physics-based model243

to the output layer of the neural network, just like another bias parameter (Figure 7). With this new244

architecture the weights and bias of the neural network are forced to adjust to compensate the information245

coming from the laws of physics, learning those complexities and patterns that are missing in the physics-246

based model, such as environmental factors. Furthermore, those complexities do not need to be identified247

or defined in advance, given that BNN by ABC-SS provides great flexibility to adapt to different patterns248

and capture the uncertainty present in the observed data as a whole, no matter their nature [40, Section 5].249

The physics-based model is therefore included in the forward pass as per Equation 4, which will improve250

the extrapolation capacities of the neural network significantly. Besides, the patterns learnt during training251

to compensate the physics will be propagated to those unexplored regions of the output variable space. The252

uncertainty is expected to reduce greatly within the domain of the training data, but also outside of it.253

Apart from the forward pass, the algorithm of BNN by ABC-SS remains unchanged.254

ŷk = g(

m∑
j=1

w
(2)
jk h(

n∑
i=1

w
(1)
ij xi + b

(1)
j ) + b

(2)
k + Physicsk) (4)

4. Experimental framework255

Two different experiments have been carried out, an illustrative example which aims to clarify the256

concepts explained in previous sections using a low-complexity problem, where the results and their tran-257

scendence can be easily interpreted; and an real case study, which is the main engineering application of258
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ŷk=1
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Figure 6: Architecture of PG-BNN by ABC-SS via the output layer
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Figure 7: Physics-based model fed into the output neuron like a bias parameter

this manuscript. In this section, the experiments are described including how the data sets are prepared,259

what algorithms are used, and finally, the results are presented and discussed.260

4.1. Formulation of experiments and data preparation261

The context of both the illustrative example and the engineering application is given in this subsection,262

along with information on the source of the data used and how they have been processed for reproducibility.263

4.1.1. Illustrative problem: projectile motion264

A projectile motion problem, using synthetic data generated in Python, has been chosen to illustrate265

the concepts presented in Section 3. In this case, a two-dimensional problem is considered where there is no266

lateral movement, and therefore, the motion along the perpendicular axis ’x’ (horizontal) and ’y’ (vertical)267

can be studied independently. The variable of interest (output) is the distance travelled by the projectile268

dt, which depends on the initial velocity v0 of the projectile, the initial angle λ0 relative to the horizontal269
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assuming a level ground, and some unknown environmental conditions. The non-linear relationship between270

the independent variables v0 and λ0 is given by the following physics-based model:271

R =
v20 sin 2λ0

g
(5)

where g represents the vertical acceleration due to gravity, which is approximated to 9.81 m/s2.272

Finally, some unknown or environmental conditions need to be modelled so the synthetic observed data273

differs from the pure physics. For this example, some headwind has been added so that the distance travelled274

by the projectiles is reduced depending on the initial angle λ0. It has been assumed that, when such angle is275

less than 45◦ the distance dt is reduced by N (0.02R, 1), and N (0.04R, 1) otherwise. This is to simplistically276

simulate the surface friction near the ground which forces the wind to slow. That results in projectiles with277

high initial angle λ0 and long range R to be more affected by the wind (∼4% of R) than those with flatter278

angles and short ranges (∼2% of R). It is worth mentioning that the observed data has been created with279

the only purpose of illustrating the concept of PG-BNN by ABC-SS and its potential, hence the headwind280

is just a non-complex pattern that is added to account for some unknown conditions.281

Three data sets have been created, one training data set and two test data sets, thus the interpola-282

tion (Test Set 1) and extrapolation (Test Set 2) capabilities of the different algorithms can be evaluated.283

Therefore, the synthetic data is generated as follows:284

Training Data Set



300 data points

Inputs: λ0 ∈ [30, 60] and v0 ∈ [30, 60]

Outputs: dt


v2
0 sin 2λ0

g −N (0.02R, 1) when λ0 ≤ 45◦

v2
0 sin 2λ0

g −N (0.04R, 1) when λ0 > 45◦

Test Data Set 1



150 data points

Inputs: λ0 ∈ [30, 60] and v0 ∈ [30, 60]

Outputs: dt


v2
0 sin 2λ0

g −N (0.02R, 1) when λ0 ≤ 45◦

v2
0 sin 2λ0

g −N (0.04R, 1) when λ0 > 45◦

Test Data Set 2



150 data points

Inputs: λ0 ∈ [10, 30] ∪ [60, 80] and v0 ∈ [10, 30] ∪ [60, 80]

Outputs: dt


v2
0 sin 2λ0

g −N (0.02R, 1) when λ0 ≤ 45◦

v2
0 sin 2λ0

g −N (0.04R, 1) when λ0 > 45◦

The input vectors are organised in two-dimensional arrays including the initial angle and velocity [λ0,v0],285
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while the output vectors are one-dimensional arrays containing the distance travelled by the projectile [dt].286

The physics-based information is arranged in one-dimensional arrays [R].287

4.1.2. Engineering case study: application to lateral-load tests in reinforced concrete columns288

The engineering application of the proposed PG-BNN by ABC-SS consists of a cantilever reinforced289

concrete beam-column, subjected to constant axial load and variable cyclic lateral deformation. The lateral290

force F (shear strength) of the column is the variable of interest in this case, as it was the distance dt in291

the illustrative problem. The data used in this experiment is publicly available and were taken from [41].292

In particular, the test No. 1 performed by [52] is used. This data set comprises 626 data points, which are293

sequential in nature, given that the displacement and shear strength were recorded continuously throughout294

the loading cycles. The specimen consisted of a double-ended beam column of 3300 [mm] length and 550x550295

[mm] cross section (see Figure 8), with 12 reinforcing bars with a nominal diameter of 24 [mm] as longitudinal296

reinforcement, symmetrically distributed in the cross section. Lateral reinforcement comprised two 10 [mm]297

diameter stirrups spaced every 80 [mm]. The average concrete compressive strength was measured as 23.1298

[MPa]. The yield strength of the longitudinal and transverse reinforcement was 375 [MPa] and 297 [MPa],299

respectively. The specimen was subjected to a constant axial compressive load of 1815 [kN]. According to300

[41], the data of the specimen have been adapted to the case of an equivalent cantilever column by means301

of an equivalent cantilever length. Accordingly, the equivalent length for the selected specimen is set equal302

to 1200 [mm].303

3300

300

1050

600

1050

300

Load frame

A A

SECTION A-A

1825 KN

1825 KN

5 SETS Ø 10@ 135

8 SETS Ø 10@ 80

6 SETS Ø 10@ 85

8 SETS Ø 10@ 80

5 SETS Ø 10 @ 135

12 Ø 24

trasverse reinforcement

Figure 8: Double-ended reinforced concrete beam-column specimen details, adapted from [52].

The physics-based model used consists of a force-based formulation of a beam-column nonlinear element,304

fed with fiber sections. This model outputs the shear strength Fm of the column based on: (1) the lateral305
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displacement of the free side of the cantilever, (2) the stiffness and constitutive behavior of the materials, and306

(3) the geometric characteristics of the element. OpenSeespy software [53] is used to construct the numerical307

model. The beam-column element deformations are solved using 5 Newton-Cotes integration points, each308

with the same fiber section. A discretization is done to model the axial and flexure behaviour of the section309

by means of uni-axial constitutive models, where Concrete01 and Steel02 models are used to represent the310

concrete and steel uni-axial behaviour, respectively. The input parameters of the uni-axial models are defined311

according to the recommendations given in [54]. Note that the concrete inside the stirrup cage is subjected312

to lateral pressure due to Poisson’s effect and the passive action of the stirrups; and that the lateral pressure313

affects the uni-axial behaviour of the concrete, giving additional strength and deformation capacity. This314

behaviour is considered by the confinement factor, which is estimated using the recommendations of [55].315

Table 1 summarizes the input data of the numerical model, whereas Figure 9 depicts the configuration of316

the numerical model and the uni-axial constitutive models of the steel reinforcement and concrete.317

The experimental input data fed into the neural networks are three: the lateral displacement dl, the318

direction of the displacement dd (positive or negative), and the number of cycles nc (where one cycle is a319

full lateral displacement on each direction). All three inputs are obtained by processing the displacement320

data in [52]. Therefore, the objective is to predict the lateral force F (shear strength) at a certain time of321

the experiment given the lateral displacement, the direction of such displacement and the number of cycles322

that the column has experienced at that point. Moreover, only the first cycles of the experimental data323

will be used for training, and the rest will be used as test data. Thus, we can evaluate the extrapolation324

capabilities of the algorithms, based on their ability to make predictions about future cycles.325

The input vectors are organised in three-dimensional arrays including lateral displacement, the direction326

of such displacement, and the number of cycles [dl,dd,nc], while the output vectors are one-dimensional327

arrays containing the observed force (shear strength) [F ]. The physics-based information coming from the328

OpenSeespy model is arranged in one-dimensional arrays [Fm].329

Table 1: Input parameters values of the reinforced concrete model in the engineering case study of Section 4.1.2

Axial
Force

Steel
Yield

Strength

Concrete
Compressive

Strength

Cross
Section

Length
Confinement

Factor

Longitudinal
reinforcement

ratio

Strain
hardening

ratio
1815 375 23.10 550x550 1200 1.70 0.0179 0.0013

4.2. Algorithms and metrics330

In this section, the algorithms used in the experiments along with the details about their implementation331

are presented. Also, a hyperparameter sensitivity analysis is provided.332
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Figure 9: Schematic view of the nonlinear model of a cantilever reinforced concrete beam-column modelled using OpenSeespy.
On the right-hand side, plots of the constitutive material monotonic behavior are presented.

4.2.1. Algorithms333

The proposed hybrid models have been compared and benchmarked against their data-driven and physics-334

based counterparts, as well as the state-of-the-art PGNN and a standard ANN, both trained with the335

backpropagation algorithm using TensorFlow, so their performance and potential benefits can be evaluated.336

The results from this comparison can be found in Tables 2 and 3 and Figures 10-13. The choice of architecture337

and tuning of the hyperparameters is explained in Section 4.2.2.338

The following training algorithms have been used in both experiments. Their architecture comprise two339

hidden layers with Rectified Linear Units (ReLU) as the activation function, and the output layer with340

one neuron and a linear activation function. The number of neurons in the input layer varies between the341

experiments. Note that the physics-guided neural networks, both the proposed models PG-BNN by ABC-SS342

and the benchmark models state-of-the-art (SOTA) PGNN, have an index number from (1) to (3) depending343

on where the physics are introduced in the ANN architecture, being (1) through the metric/loss function,344

(2) through the input neurons, and (3) through the output neurons. Thus, the proposed algorithms can be345

easily compared against their correspondent state-of-the-art algorithms.346

• BNN by ABC-SS : A BNN trained with ABC-SS as per Algorithm 1 in [40], to serve as a Bayesian347

data-driven benchmark. For the illustrative example, the neural network structure comprises two348

input neurons, 15 neurons per hidden layer, and one output neuron. The hyperparameters chosen are349
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P0=0.1, N=100,000, σ0=0.9, p=0.50 and tolerance value (normalized) ϵ=0.0007. In the engineering350

case study, the same configuration is used but with 3 input neurons and a tolerance value ϵ=0.009.351

• Standard ANN with L2 regularization: A standard neural network using TensorFlow, to serve as a352

deterministic data-driven benchmark. Adam optimizer [56] with early stopping and L2 regularization353

are used during training. In the illustrative example, the neural network structure comprises two input354

neurons, 15 neurons per hidden layer, and one output neuron. In the engineering case study, the same355

configuration is used but with 3 input neurons. The hyperparameters used are L2=0.01, epochs=20000356

and patience=100.357

• PbM: Physics-based model to be used as a physics-based benchmark. The model formulation can be358

found in Equation 5 for the illustrative problem and in Section 4.1.2 for the engineering case study.359

• PG-BNN by ABC-SS: The proposed hybrid BNN trained with ABC-SS as per Section 3. Three360

variants are used as follows:361

– (1): A hybrid BNN as per Section 3.1. For the illustrative problem the neural network structure362

comprises 2 input neurons, 15 neurons per hidden layer, and one output neuron. The hyper-363

parameters chosen are P0=0.1, N=100,000, σ0=0.9, p=0.50 and tolerance value (normalized)364

ϵ=0.0007. In the real case study, 3 input neurons and a tolerance value ϵ=0.009 are used. Also,365

three values of α (0.25, 0.5 and 0.75) have been tested.366

– (2): A hybrid BNN as per Section 3.2. For the illustrative problem the neural network structure367

comprises 3 input neurons, 5 neurons per hidden layer and one output neuron. The hyperparam-368

eters chosen are P0=0.2, N=10,000, σ0=0.9, p=0.50 and tolerance value (normalized) ϵ=0.0007.369

In the real case study, 4 input neurons and a tolerance value ϵ=0.009 are used.370

– (3): A hybrid BNN as per Section 3.3. In this case, the same network structure and hyperpa-371

rameters as for (2) are used, but with 2 input neurons for the illustrative problem and 3 for the372

real case study.373

• SOTA PGNN: A physics-guided neural network trained with the state-of-the-art backpropagation374

algorithm using TensorFlow, as those described in Section 1, to be used as a physics-guided benchmark.375

Three variants are tested as follows:376

– (1): A PGNN which follows the present-day approach of introducing the physics in the loss

function. The training process uses the backpropagation algorithm to minimize a hybrid loss

function, which includes a standard data-driven term (Lossd) and a physics-based one (Lossp),

as follows:

arg min
(w,b)

Lossd(ŷ, y) + λpLossp(ŷ, yp) (6)
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where: Lossd(ŷ, y) = 1
N

∑N
n=1(ŷn − yn)2; Lossp(ŷ, yp) = 1

N

∑N
n=1(ŷn − yp,n)2; ŷ is the output377

of the neural network; y is the training data; and yp is the output of the physics-based model378

described in Section 4.1. The neural network architecture is the same as that of BNN by ABC-SS,379

with 15 neurons per hidden layer. Adam optimizer [56] with early stopping is used for training,380

and the values of the hyperparameters are λp=0.5, epochs=20000 and patience=100.381

– (2): A PGNN with the architecture presented in Figure 4, where the physics are introduced382

through the input layer. The number of neurons per layer are the same as PG-BNN by ABC-383

SS (2). Adam optimizer [56] with early stopping is used for training, and the values of the384

hyperparameters are epochs=10000 and patience=80.385

– (3): A PGNN with the architecture presented in Figure 6, where the physics are introduced386

through the output neurons. The number of neurons per layer are the same as PG-BNN by387

ABC-SS (3). Adam optimizer [56] with early stopping is used for training, and the values of the388

hyperparameters are epochs=10000 and patience=60.389

Two different metrics have been chosen to evaluate the performance of the algorithms, taking into account390

the nature of the tasks and the order of magnitude of the target variables. For the illustrative problem,391

where the output is the distance dt in meters [m], root-mean-square-error (RMSE) is used. However, the392

target variable in the real case scenario is the lateral force F in Newtons [N] which takes significantly large393

values, therefore, Mean-square-error (MSE) of the normalized data is used.394

4.2.2. Sensitivity Analysis395

A sensitivity analysis has been undertaken for all algorithms used in the experiments. This study allows396

us to understand the effect of data and hyperparameters in the overall performance of the models, along397

with ensuring that the best values of these hyperparameters are chosen. The methodology is explained in398

this section, the chosen hyperparameters are shown in Section 4.2.1, and the results are presented in Section399

4.3. The analysis has been undertaken as follows:400

• Data size: In the engineering case study, different ratios of training/test data have been used, namely401

20/80, 40/60, 60/40 and 80/20. Thus the performance of the physics-guided and data-driven algo-402

rithms under different conditions of availability of data can be evaluated. It can be seen from Table403

4, and discussion in Section 4.3.2, that the amount of data used for training has a significant effect on404

the performance of all algorithms, as could be expected.405

• Model architecture: Different architectures have been tested, from multi-layer perceptrons with one406

single hidden layer, to more complex configurations with 3 hidden layers. The number of units tested407

per hidden layer varied from 1 to 50. Different validation hold-out sets from the training data were408

used to identify the best performance with the simplest architecture possible. It was observed that 2409
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hidden layers provided the best performance with the minimum total number of neurons. Regarding410

the activation functions, ReLU provided the best results as expected, over others like sigmoid and411

hyperbolic tangent. With respect to the number of units per hidden layer, 5 neurons per layer were412

enough to reach good performance in models where the physics are introduced in the forward pass,413

such as SOTA PGNN (2), SOTA PGNN (3), PG-BNN by ABC-SS (2) and PG-BNN by ABC-SS (3).414

However, other models that are purely data-driven or the physics are introduced in the loss/metric415

function, namely Standard ANN, BNN by ABC-SS, SOTA PGNN (1) and PG-BNN by ABC-SS (1),416

required a slightly higher number of units, 15 per hidden layer, to reach acceptable performance in417

validation sets. It was observed that beyond those numbers of layers and neurons for each model, more418

complex architectures with more neurons per hidden layer did not provide a significant improvement419

in their performance or validation error, but just a slightly increased capacity to overfit the training420

data. The method to avoid overfitting is described below.421

• Model hyperparameters:422

– Training based on backpropagation: The hyperparameters to be tuned are the number of epochs,423

and the patience of the early stopping optimizer. Different hold-out data sets within the training424

set are used as validation, thus the maximum number of epochs required is identified by monitoring425

the training and validation loss. The patience is fixed to a value which avoids overfitting without426

compromising on model accuracy. Low values of patience may lead to underfitting, while higher427

numbers may stop the training too late, leading to overfitting. The number of epochs tested varied428

from 1000 to 30000, and the patience from 1 to 500. In the standard ANN, different values of the429

the L2 parameter were tested, from 0.001 to 1. Likewise, different values of the hyperparameter430

λp in SOTA PGNN (1) were checked, from 0.1 to 2. Lower values of λp means that the physics431

are not strongly considered, leading to better fit of the model to data, however, higher values432

penalise data fitting and prioritise the physics, which may improve extrapolation.433

– Training based on ABC-SS: The hyperparameters to be optimised are P0, N , σ0, p and ϵ. A434

similar process was followed, using validation hold-out data sets. In terms of sensitivity, for more435

complex architectures P0 needs to be set to a smaller value, while a bigger number of samples N436

are required. The values of σ0 and p, which refer to how new samples are drawn from the proposal437

PDF, are more sensitive and need to be adjusted simultaneously. The value of the tolerance ϵ438

has a similar effect to the patience parameter, as it stops the simulation when a certain error is439

reached. This value should be set to avoid overfitting, but without compromising the accuracy440

of the model. The range of values tested for each hyperparameter are as follows: P0 (0.1, 0.2 and441

0.5), N (1000-500000), σ0 (0.1-2), p (0.1-0.9) and ϵ (0.01-0.0001).442
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As a final remark, test data sets are not used during training or for hyperparameter tuning, but always443

reserved for the testing stage only.444

4.3. Results and discussion445

In this section, the results from the experiments are presented both numerically and graphically. The446

algorithms and metrics used are those detailed in Section 4.2. A discussion on the results is also included,447

highlighting the differences found between physics-based models, purely data-driven models and the proposed448

hybrid models.449

4.3.1. Illustrative problem: projectile motion450

As explained in Section 4.1.1, a projectile motion problem is adopted to illustrate the proposed concepts,451

evaluate the performance of the proposed hybrid algorithms, and compare them against purely data-driven452

and physics-based models, as well as the SOTA PGNN trained with backpropagation. All algorithms453

presented in Section 4.2 have been trained and tested with the data sets presented in Section 4.1.1 through454

50 independent runs. The RMSE from those runs has been recorded and the results are shown in Table 2. It455

can be seen that the proposed hybrid models where the laws of physics are introduced in the metric ρ, as per456

PG-BNN by ABC-SS (1), neither provide better results than the data-driven approach with BNN by ABC-457

SS, nor seem to improve extrapolation. However, the new metric ρp may be understood as a regularization458

tool, which may force the neural network to ignore those training data points that differ significantly from459

the physics. This suggests that this hybrid model might be useful in those cases where there is a significant460

amount of noise in the observed data. PG-BNN by ABC-SS (2) has provided better results than the purely461

data-driven approaches but, even though its predictions on Test Data Set 2 have outperformed those from462

BNN by ABC-SS and Standard ANN, it does not extrapolate better than the physics-based model. The463

best results are given by PG-BNN by ABC-SS (3) and SOTA PGNN (3), especially when extrapolating464

in Test Data Set 2, outperforming the physics-based model, the data-driven algorithms, and the the other465

variants of physics-guided neural networks. The neural network in PG-BNN by ABC-SS (3) seems to find466

a pattern in the discrepancy between the physics-based model and the observed data which could be, for467

instance, some environmental conditions not included in the model, like the headwind in our case. Then,468

when asked to extrapolate, it applies that pattern to the physics included in the overall hybrid model, thus469

improving the predictions of the purely physics-based model. But most importantly, ABC-SS allows for470

an accurate quantification of the uncertainty as shown in Figure 10, where the predictions made outside471

the domain of the training data (extrapolation) are more disperse. That also provides us with valuable472

information about the degree of belief on the predictions made by the hybrid model. Finally, a mixed model473

where the physics-based model is introduced in both the input and output neurons was tested, however, it474

did not provide better results than PG-BNN by ABC-SS (3).475
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Table 2: Illustrative problem. Comparison between PG-BNN by ABC-SS, BNN by ABC-SS, standard ANN, the physics-based
model and the state-of-the-art PGNN. The results, expressed in terms of RMSE, were obtained after 50 independent runs of
each algorithm.

Statistics of RMSE obtained in 50 independent runs of the training algorithm

Neurons per
Hidden Layer

Test Data Set 1
(Interpolation)

Test Data Set 2
(Extrapolation)

Q1
(P25)

Median
(P50)

Q3
(P75)

Q1
(P25)

Median
(P50)

Q3
(P75)

PG-BNN by ABC-SS (1)
(α=0.25)

15 11.618 12.319 13.423 124.756 136.819 149.348

PG-BNN by ABC-SS (1)
(α=0.5)

15 10.361 11.288 12.560 116.899 137.623 152.801

PG-BNN by ABC-SS (1)
(α=0.75)

15 10.191 11.209 12.294 120.976 131.285 147.468

PG-BNN by ABC-SS (2) 5 5.249 5.909 6.588 21.271 32.211 39.404

PG-BNN by ABC-SS (3) 5 3.670 3.856 3.985 5.253 5.919 6.833

BNN by ABC-SS 15 10.254 11.376 12.529 121.682 133.947 146.087

Physics-based Model N/A 8.780 8.780 8.780 10.527 10.527 10.527

SOTA PGNN (1) 15 23.258 23.945 24.704 113.396 115.289 117.182

SOTA PGNN (2) 5 3.755 3.766 3.788 31.938 34.780 38.839

SOTA PGNN (3) 5 3.875 3.930 3.967 5.990 6.703 8.407

Standard ANN with L2 Reg 15 5.540 7.905 20.093 126.270 134.994 140.120

This illustrative experiment has shown that neural networks can help physics-based models to consider476

complex aspects that were not included in the original model, such as environmental conditions, in the477

same way that physics-based models can help neural networks to extrapolate outside the domain of the478

training data. This last aspect is graphically explained in Figure 11, where we see that the hybrid model479

benefits from both, the data-driven approach to improve the physics-based predictions, and especially from480

the physics-based model when extrapolating (panel b). That symbiosis brings to light the fact that hybrid481

models are specially useful when solving engineering problems where data is scarce but there exist relatively482

simple physics-based models, or at least, some prior knowledge of the task in hand. Also, the use of ABC-483

SS as learning engine has provided more flexibility and accuracy than standard backpropagation. This484

Bayesian training is the main advantage of the proposed PG-BNN by ABC-SS over the state-of-the-art485

methods, as it provides the user with valuable information about the uncertainty present in the observed486

data. Lastly, it should be noted that the computational cost of the hybrid algorithms in this experiment is487

comparable to that of their data-driven counterparts. However, if very complex physics-based models with488

high computational costs are used, then the running time of the hybrid algorithms could be impacted.489
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(a) Prediction inside the domain of the training data (in-
terpolation)

(b) Prediction outside the domain of the training data (ex-
trapolation)

Figure 10: Illustrative Problem. Probabilistic predictions made by PG-BNN by ABC-SS (3) shown as a light grey density
function, within the domain of the training data (interpolation) and outside of it (extrapolation). The mean predictions of the
hybrid model are shown in red and green respectively. The predictions made by the purely physics-based model are shown in
dashed black line and the true value of the projectile range in continuous black line.

(a) Test Data Set 1 (interpolation) (b) Test Data Set 2 (extrapolation)

Figure 11: Illustrative problem. Scatter plot of target values against predicted values by the hybrid model PG-BNN by
ABC-SS(3) in green, data-driven model BNN by ABC-SS in blue and the physics-based model in grey, for Test Data Set 1
(interpolation) in panel (a) and for Test Data Set 2 (extrapolation) in panel (b).

4.3.2. Engineering Case Study: Application to lateral-load tests in reinforced concrete columns490

The proposed algorithms have been applied to one of the column tests recorded in the The PEER491

Structural Performance Database [41] as explained in Section 4.1.2, and benchmarked against the purely492

data-driven methods, such as BNN by ABC-SS and Standard ANN, the physics-based model described in493

that same section, and the state-of-the-art physics-guided neural networks. The algorithms, along with the494

choice of architecture and hyperparameters, are explained in Section 4.2 and the results of the experiment495

can be found in Table 3. Algorithms PG-BNN by ABC-SS (1) and SOTA PGNN (1) are not shown for496

this experiment given that they do not provide better results, as demonstrated and discussed in Section497

4.3.1. Overall, the results of this experiment are similar to those obtained in the illustrative problem. When498

evaluated on test data, PG-BNN by ABC-SS (3) and SOTA PGNN (3) outperform the other physics-guided499

neural networks, the physics-based model, BNN by ABC-SS and Standard ANN, even when these purely500

21



data-driven approaches required a more complex architecture with more neurons in the hidden layers. Once501

again, the neural network has been able to learn a pattern in the difference between the physics and the502

data, so when asked to make a prediction about unseen data it compensates the information coming from503

physics-based model with that pattern, thus it closely matches reality. Also, the time of computation of the504

hybrid models is significantly lower, given its simpler architecture and relatively small number of samples505

N required. Interestingly, SOTA PGNN (2) and PG-BNN by ABC-SS (2) achieve low MSE values when506

evaluated on training data, which may suggest that introducing the physics through the input neurons is507

more prone to overfitting. This might be because the neural network also manipulates the physics introduced508

through the input layer to match the observed data. For that same reason, the performance of both SOTA509

PGNN (2) and PG-BNN by ABC-SS (2) seem to be worse on test data. The quantification of the uncertainty510

is the main advantage that the proposed hybrid models share with BNN by ABC-SS, given that both are511

trained with approximate Bayesian computation [39, 40]. This is shown in Figure 12, where we see that512

PG-BNN by ABC-SS (3) not only make better predictions than the physics-based model, especially on test513

data, but also quantifies the uncertainty realistically. It seems natural that such uncertainty (light grey514

density function), translated into the width of range of plausible values, grows as we move away from the515

training data, as in panel (b) of Figure 12 and Figure 13. Lastly, and in line with the results obtained in the516

illustrative problem, the good performance of PG-BNN by ABC-SS (3) outside the domain of the training517

data (extrapolation) is notable, as can be seen again in Table 3, Figure 12 panel (b) and Figure 13, where518

the predictions about future cycles (green line) are acceptably accurate. As a final remark, from the results519

provided by both PG-BNN by ABC-SS (3) and the physics-guided SOTA PGNN (3) used as benchmark, it520

may be concluded that introducing the physics through the output neuron provides the best performance.521

Moreover, PG-BNN by ABC-SS (3) also allows for a flexible quantification of the uncertainty, which will522

improve the subsequent decision making process. In terms of efficiency, the proposed hybrid models showed523

comparable running times to that of their data-driven counterparts, as per in the illustrative example.524

A sensitivity analysis about the performance of the algorithms based on the availability of data has also525

been carried out, and the results are shown in Table 4. When data is very scarce, such as 20%, the hybrid526

models do not seem to benefit from them significantly, as their accuracy on test data is in the same order527

of magnitude than the purely physics-based model. However, when a greater amount of data is available,528

such as 40% or 60%, the hybrid models benefit considerably from them and outperform both the data-529

driven methods and the purely physics-based model. This becomes more evident when 80% of the total530

data is available for training, as both PG-BNN by ABC-SS (3) and SOTA PGNN (3) provide very accurate531

predictions in comparison with all other methods.532

Regarding the applicability of this experiment to a real world scenario, the seismic structural engineering533

field could become a good candidate. One of the problems that arise in a post-earthquake scenario is the534

difficulty in deciding if a structure remains safe and can still be used [57], in relation to the capability of that535
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Table 3: Detailed comparison, based on a training/test data ratio of 60/40, between PG-BNN by ABC-SS, BNN by ABC-SS,
Standard ANN, the purely physics-based model, and the state-of-the-art PGNN. The results, expressed in terms of MSE, were
obtained after 50 independent runs of each algorithm.

Statistics of MSE obtained in 50 independent runs of the training algorithm

Neurons per
Hidden Layer

Training Data Set Test Data Set

Q1
(P25)

Median
(P50)

Q3
(P75)

Q1
(P25)

Median
(P50)

Q3
(P75)

PG-BNN by ABC-SS (2) 5 0.0042 0.0045 0.0047 0.0103 0.0129 0.0160

PG-BNN by ABC-SS (3) 5 0.0051 0.0054 0.0056 0.0052 0.0056 0.0073

BNN by ABC-SS 15 0.0050 0.0054 0.0057 0.0157 0.0184 0.0299

Physics-based Model N/A 0.0308 0.0308 0.0308 0.0521 0.0521 0.0521

SOTA PGNN (2) 5 0.0023 0.0030 0.0038 0.0118 0.0144 0.0243

SOTA PGNN (3) 5 0.0009 0.0011 0.0057 0.0046 0.0088 0.0127

Standard ANN with L2 Reg 15 0.0047 0.0052 0.0079 0.0357 0.0494 0.0745

Table 4: Sensitivity analysis about different ratios of training/test data and the accuracy of the algorithms. The results,
expressed in terms of MSE, refer to the median value (P50) of the error obtained on test data after 50 independent runs of
each algorithm, based on different ratios of training/test data.

Median value (P50) of MSE obtained on test data after 50 independent runs

Neurons per
Hidden Layer

Percentage of data used for training

20% 40% 60% 80%

PG-BNN by ABC-SS (2) 5 0.0392 0.0186 0.0129 0.0112

PG-BNN by ABC-SS (3) 5 0.0460 0.0083 0.0056 0.0031

BNN by ABC-SS 15 0.1947 0.1616 0.0184 0.0162

SOTA PGNN (2) 5 0.0740 0.0540 0.0144 0.0107

SOTA PGNN (3) 5 0.0481 0.0362 0.0088 0.0030

Standard ANN with L2 Reg 15 0.1250 0.1244 0.0494 0.0334

Physics-based Model NA 0.0459 0.0512 0.0521 0.0587

structure to withstand the aftershocks, all aggravated by the significant uncertainty inherent to this type of536

phenomena. This can be of special interest for healthcare facilities, where the evacuation (or closure) of the537

building is not a straightforward decision during an emergency. The combination of visual inspections with538

the proposed hybrid model framework could become an effective tool for fast evaluation, which is required539

to take an informed decision during this kind of critical scenarios. Moreover, the presented tool aligns with540

the current tendency in seismic structural engineering, about the need to account for uncertainties on the541

behaviour of structural elements [58].542
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(a) Prediction on training data (b) Prediction on test data (extrapolation)

Figure 12: Engineering case Study. Mean predictions made by PG-BNN by ABC-SS (3) on training data (red) and test data
(green). The uncertainty is represented by the light grey PDF, the prediction of the physics-based model is given by the dashed
line and the target value is the black continuous line.

Figure 13: Engineering case study. Predictions about lateral force made by PG-BNN by ABC-SS (3) on training data (red)
and on test data (green). The uncertainty is represented by the grey hatch, the prediction of the physics-based model is given
by the dashed line, the training data set is represented by + and the test data set is represented by x.

5. Conclusions543

This manuscript presented a new algorithm which combines BNN by ABC-SS with physics-based mod-544

els, the so-called PG-BNN by ABC-SS. Unlike other physics-guided/informed neural networks where the545

physics are often introduced in the loss function or through boundary conditions, and then backpropagated546

during training, the proposed algorithm inserts the physics directly in the forward pass, which improves the547

extrapolation capabilities. Moreover, ABC-SS is a Bayesian gradient-free training method that provides the548

proposed algorithm with stability, flexibility and the ability to quantify the uncertainty. Those properties549

were evaluated in two experiments, where the accuracy of PG-BNN by ABC-SS (3) was comparable to the550
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benchmark SOTA PGNN (3) trained with backpropagation , and outperformed significantly the performance551

of the purely physics-based and data-driven approaches.552

The two main advantages of PG-BNN by ABC-SS, namely its ability to extrapolate outside the domain553

of the training data set and to quantify the uncertainty in the predictions, may improve significantly the554

subsequent decision making process in engineering applications. The results in the engineering case study555

showed the potential of the proposed algorithm to become, if combined with visual inspections, an effective556

and fast tool to evaluate and diagnose the condition of structural elements after seismic events. Certainly,557

a tool that can anticipate the outcome of an event of which there is little data, with a defined degree558

of confidence, could be particularly useful in different engineering fields. Future research should focus on559

extending the proposed methodology to other types of artificial neural networks, as well as the application560

of ABC-SS training to high-dimensional parameter spaces. Also, the use of adaptive activation functions561

[59–61] should be explored.562
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