
BIOINFORMATICS Vol. 00 no. 00 2014
Pages 1–8

A multi-objective method for robust identification of
bacterial small non-coding RNAs
Javier Arnedo 1, Rocı́o Romero-Zaliz 1, Igor Zwir 1,2 and Coral del Val 1,∗
1Dept. of Computer Science and Artificial Intelligence, Universidad de Granada, Granada, Spain.
2Dept. of Psychiatry at Washington University, St. Louis, USA.
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Motivation: Small non-coding RNAs (sRNAs) have major roles in
the post-transcriptional regulation in prokaryotes. The experimental
validation of a relatively small number of sRNAs in quite few species
requires developing computational algorithms capable of robustly
encoding the available knowledge and utilizing this knowledge to
predict sRNAs within and across species.
Results: We present a novel methodology designed to identify
bacterial sRNAs by incorporating the knowledge encoded by
different sRNA prediction methods and optimally aggregating
them as potential predictors. Because some of these methods
emphasize specificity, whereas others emphasize sensitivity while
detecting sRNAs, their optimal aggregation constitute trade-off
solutions between these two contradictory objectives that enhance
their individual merits. Many non-redundant optimal aggregations
uncovered by using multi-objective optimization techniques are
then combined into a multi-classifier, which ensures robustness
during detection and prediction even in genomes with distinct
nucleotide composition. By training with sRNAs in Salmonella enterica
Typhimurium, we were able to successfully predict sRNAs in
Sinorhizobium meliloti, as well as in multiple and poorly annotated
species. The proposed methodology, like a meta-analysis approach,
may begin to lay a possible foundation for developing robust predictive
methods across a wide spectrum of genomic variability.
Availability: Scripts created for the experimentation are available at
http://m4m.ugr.es/SupInfo/sRNAOS/sRNAOSscripts.zip
Contact: delval@decsai.ugr.es
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Small non-coding RNAs (sRNAs) have major roles in the
bacterial post-transcriptional regulation, affecting important cellular
processes such as cell division (Wassarman and Storz, 2000)
and response to environmental stimuli (Majdalani and Gottesman,
2005), among others. Experimental methods, including next
generation sequencing technologies, are critical for the functional
characterization of sRNAs (Sittka et al., 2009). However, the
experimental verification of a relatively small number of sRNAs,
primarily in Escherichia coli K12 (Rivas, 2005; Argaman et al.,
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2001) and Salmonella enterica serovar Typhimurium LT2 (SLT2)
(Sittka et al., 2009; Vogel, 2009; Pfeiffer et al., 2007; Padalon-
Brauch et al., 2008), is not sufficient to help detect them in the
large list of available sequenced genomes. Therefore, there is a
requirement of developing computational algorithms capable of
robustly encoding the knowledge of known sRNAs available in
certain genomes and utilizing this knowledge to predict sRNAs in
other species (Sridhar and Gunasekaran, 2013) .

The computational identification of non-coding RNAs (ncRNAs),
which includes sRNAs, rRNAs and tRNAs, is constrained by their
diversity in terms of structures, sequences, and functions (Livny
et al., 2005; Lu et al., 2011; Storz et al., 2011; Rivas and Eddy,
2001, 2000; Pichon and Felden, 2003). Structures of ncRNAs
are often scored based on thermodynamic stability, conservation,
and/or covariance of sequence alignments. Sequences of ncRNAs
are primarily analyzed by using two strategies: ab initio, which
scrutinizes a single-query sequence (e.g., zMFold (Babak et al.,
2007; Zuker, 2003), vsFold (Dawson et al., 2007), and comparative
(e.g., (e.g., QRNA (Rivas and Eddy, 2001), Alifoldz (Washietl and
Hofacker, 2004), dynalign (Mathews and Turner, 2002), MSARi
(Coventry et al., 2004) and RNAz2 (Gruber et al., 2010))), where
the query sequence is investigated by its similarity to other aligned
sequences. The latter strategy requires methods for accessing
databases, as well as heuristics to efficiently evaluate similarity
among sequences. Both strategies require classifiers (e.g., Support
Vector Machines (SVM) (Gruber et al., 2010) or customized Hidden
Markov Models (HMM) (Rivas and Eddy, 2001)) to predict new
ncRNAs based on the acquired knowledge in the training phase.
Remarkably, most of the training sets currently used to predict
sRNAs are composed of positive examples of rRNAs and tRNAs,
which are easier to identify than sRNAs due to their longer
sequences and well defined structure.

Although several methods have been developed and represent a
step forward in the computational detection of sRNAs, their success
is limited due to: (1) the excessive emphasis on specificity, which
generates a high number of false negative predictions by targeting
few well-known sRNA families corresponding only to a small
percentage of the available sRNAs; (2) the use of genomic features
(e.g., motifs of terminators, RNA polymerase, etc.) that are only
conserved in closely related organisms (e.g., E. coli and Salmonella
(Argaman et al., 2001; Vogel, 2009)), and thus, cause a large
number of false negatives in distantly related organisms; and (3) the
emphasis on sensitivity to detect novel findings by thermodynamical
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approaches, where several examples shown in bacterial genomes
harbor well-defined secondary structures and high thermodynamical
stability (Eddy, 2001) but do not correspond to true sRNA sequences
(Xu et al., 2009) (i.e., predicted false positives). Combining pairs of
these methods partially overcome these limitations (del Val et al.,
2007; Lu et al., 2011). For example, we previously combined
QRNA and RNAz to identify sRNAs in Sinorhizobium meliloti;
however, the significant reduction in the number of false positives
leads to very low sensitivity (del Val et al., 2007).

The performance of a classifier or prediction method may be
improved when combining different methods, and thus, suggests
a path to improve bacterial sRNA prediction through meta-
analyses of results from existing tools. Therefore, here we
propose a new methodology (Figure 1), which performs optimal
aggregations of existing methods –termed basic methods– to predict
sRNAs by using machine-learning and optimization techniques.
This strategy minimizes the false positive rate during detection
and prediction and, simultaneously, maximizes the number of
sRNA identified, independently of the evaluated genome. We
trained our methodology using the SLT2 genome, which is
the Gammaproteobacteria model organism harboring the highest
number of experimentally validated sRNAs. The resulting strategy
was later successfully applied to predict sRNAs in S. meliloti, a
distant Alpha proteobacteria of a great agricultural importance, that
has not been used in the training set and has numerous annotated
sRNAs (Ulvé et al., 2007; Venkova-Canova et al., 2004). Finally, the
strategy was tested in a multi-species dataset (Lu et al., 2011). The
performance achieved by our methodology when compared with
that of the basic or pairwise combinations of methods demonstrated
that the proposed methodology is accurate and robust to detect
sRNAs even in distantly related species. Note that our approach
does not invalidate methods developed de novo, but complements
them by providing an efficient way of combining their most reliable
features, and thus, extracts the maximum benefits from each
method. Our approach might bring some light into the development
of robust predictive methods across a wide spectrum of genomic
variability.

2 METHODS

2.1 Selection of basic methods for predicting sRNAs
We selected different methods developed to identify sRNAs as inputs. These
include zMFold (Babak et al., 2007; Zuker, 2003), vsFold (Dawson et al.,
2007), QRNA (Rivas and Eddy, 2001), Alifoldz (Washietl and Hofacker,
2004), dynalign (Mathews and Turner, 2002), MSARi (Coventry et al.,
2004) and RNAz2 (Gruber et al., 2010) (see Supplementary information for
specific description and parameters). They exhibit different characteristics in
terms of their subjacent algorithms (i.e., covering all three main approaches
to RNA prediction: thermodynamic stability, conservation, and covariance
of sequence alignments), implementation strategy and subjacent training sets
(Supplementary Table 1s).

2.2 Creation of positive and negative training datasets
To train our methodology we created a dataset with both positive
and negative examples of sRNAs in the bacterial genome of SLT2
(Supplementary Figure 1s). This organism was selected as a model
organism because it harbors a large number of verified sRNAs. The
SLT2 dataset of positive examples includes 193 experimentally verified
sRNAs (Supplementary Table 2s). 52 sRNAs were identified by RNA-seq
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Fig. 1. Prediction of sRNAs by using machine-learning and optimization
techniques through the optimal aggregation of existing methods termed basic
methods.

experiments, while the others were identified by traditional experimental
approaches (Sittka et al., 2008, 2009; Pfeiffer et al., 2007; Padalon-Brauch
et al., 2008; Papenfort et al., 2008) or registered in specialized databases
such as RFAM (RFAM version 10.0 (Griffiths-Jones et al., 2005)). To
simulate real prediction conditions, we added the 120 nucleotides upstream
and downstream of each sequence in the dataset.

Some of the basic methods selected for this study (Supplementary Table
1s) use a comparative strategy and therefore need similar sequences in other
species. Our positive dataset includes pairwise or multiple alignment of
sequences. These methods are highly dependent on the similarity between
the sequences constituting the input alignments. The most informative
alignments are composed of sequences sharing between 60 and 85 percent of
similarity (Rivas, 2005). To achieve these standards, we selected sequences
from E. coli K12, Klebsiella pneumonia, Xylella fastidiosa and Yersinia
pestis KIM (Genome sequences and annotations were downloaded from
the NCBI ftp server, ftp://ftp.ncbi.nih.gov/genomes/Bacteria). Pairwise
alignments were performed by using NCBI-BLAST (Altschul et al.,
1990) (http://blast.ncbi.nlm.nih.gov/), with a word size of 8, and default
parameters. Alignments with an E-value > 0.00001 and a length <

50 nt were discarded. Multiple alignments were based on previously
calculated pairwise-alignments by using T-COFFEE (Notredame et al.,
2000). This algorithm uses the pairwise-alignments to build up a library
of alignment information that guides the progressive multiple alignments.
This progressive strategy provides a dramatic improvement in accuracy with
a modest sacrifice in speed when compared to other multiple alignment
alternatives (Notredame et al., 2000).

To estimate false positive predictions we generated a dataset of negative
examples by shuffling the individual, pairwise, and multiple-aligned
sequences in the positive dataset. Individual sequences were shuffled using
the program shuffleseq (Rice et al., 2000), which is included in the emboss
package. This script takes an input sequence, and randomly shuffles the
order of its base without affecting the composition. Aligned sequences were
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randomly shuffled using the shuffle-pair.pl method (Babak et al., 2007). This
method preserves the properties of the original sequences or alignments (e.g.
overall GC composition, % identity, distributions of identities, mismatches,
and gaps), while destroys correlated base-pairing patterns in a conserved
RNA structure. An alternative approach is to consider genome regions
without annotated sRNAs as negative examples (Lu et al., 2011). However,
absence of knowledge does not imply knowledge of absence, and there are
many examples in our previous work in transcriptional regulation where non-
meaningful genomic regions resulted in truly functional genomic regions
(Zwir et al., 2005). Therefore, we believe that a synthetic negative dataset
based on shuffling of the positive dataset sequences, secures the disruption
of secondary structures implicated in sRNAs, and thus, may produce less
uncertainty about negative examples and better estimation of specificity.
However, the use of non-annotated sequences as negative dataset would be a
better choice if a more conservative estimate of the precision is envisaged.

2.3 Aggregations of basic methods
The aggregation of methods is performed by systematically applying the
union –∪– and intersection –∩– operations (Supplementary Figure 2s)
to sets of predictions performed by basic or previous aggregations of
methods (Figure 1). These aggregations are reminiscent of logic expressions
representing combined predictions. The union operation (methodA ∪
methodB) reports the largest sub-sequences predicted or covered by
any of the operands (Supplementary Figure 3s(a)). The intersection
operation (methodA∩methodB) reports a sequence embracing only those
nucleotides predicted by both operands (Supplementary Figure 3s(b)).

2.4 Evaluation of methods: sensitivity and specificity
The evaluation of results from basic or aggregation of methods was carried
out in a similar fashion. A query sequence in either the positive or the
negative dataset is considered to be predicted by a method if: 1) the predicted
sequence is included in the query sequence; 2) the query sequence is
included in the predicted sequence; or 3) at least 70% of the nucleotides
in the query sequence are covered by the predicted sequence. True positives
(TP) are defined as the number of sequences in the positive dataset predicted
by a method; true negatives (TN) correspond to the number of sequences
in the negative dataset that are not predicted by a method; false positives
(FP) correspond to the number of sequences in the negative dataset that
are predicted by a method; and false negatives (FN) is the number of
sequences in the positive dataset that are not predicted by a method.
Sensitivity is defined as the proportion of sequences in the positive dataset
that are predicted by a method (Sn, Equation (1)), whereas specificity (Sp,
Equation (2)) corresponds to the proportion of sequences in the negative
dataset that were not predicted by a method.

Sn =
TP

TP + FN
(1)

Sp =
TN

TN + FP
(2)

2.5 Identification of optimal aggregation of methods
To optimally aggregate methods and their corresponding predictions of
sRNAs, we implemented an efficient multi-objective evolutionary algorithm
(EA) relying on the NSGA-II algorithm (see Supplementary information).
Optimal aggregations are defined as those that maximize two objectives: Sp
and Sn. To prevent data overfitting and bloat (Deb et al., 2002), we applied
the following constrains to select specific aggregations of methods: a) if two
aggregation of methods have the same Sp and Sn, the one with the lower
number of basic methods is preferred; and b) a basic method might only
appear one time in each aggregation of methods.

2.6 Combination of aggregations of methods in a
simple majority voting multi-classifier

We combined the optimal aggregations of methods by using a majority
voting strategy (Figure 4s). This strategy was selected due to its simplicity,
high level of accuracy, and robustness (Lam and Suen, 1997; Rahman et al.,
2002; Belaid and Anigbogu, 1994). The voting procedure is implemented as
follows: given n independent experts having the same probability of being
correct (in our case, aggregations of methods), and that each of these experts
produces a decision regarding the identity of an unknown observation, then
the observation is assigned to the class that achieves the highest levels of
consensus. To avoid possible sampling biases, we perform 10 fold cross-
validation in the training set composed of 193 SLT2 positive sequences. This
positive dataset was randomly partitioned into 10 sub-sets of 20 sequences
each. In each round of cross-validation, one set was retained as the validation
data for testing the model, and 173 sequences in the remaining 9 subsets are
used as training data. The cross-validation process is then repeated 10 times
(Supplementary Figure 5s). The Sp and Sn were averaged over the 10 fold
cross-validations and reported. The same procedure was carried out for the
negative dataset.

2.7 Testing the multi-classifier performance by
predicting sRNAs in S. meliloti and in a
multispecies dataset

To test our method with a sRNAs that have not been included in our
original training set, we created a new dataset of experimentally validated
sRNAs similar to that developed for SLT2 but from the phylogenetically
distant Alpha proteobacteria S. meliloti (Supplementary Table 3s). This
dataset is composed of 81 sRNAs obtained by deep-sequencing techniques
(Schlüuter et al., 2010) and other individually validated sequences (del Val
et al., 2007; Ulvé et al., 2007; Venkova-Canova et al., 2004). Pairwise and
multiple alignments were obtained analogously to those from SLT2 using
BLAST and T-COFFEE (Altschul et al., 1990; Notredame et al., 2000)
respectively. The performance of our method was also evaluated with a
wide variety of organisms by using a multispecies dataset (Lu et al., 2011),
which was previously used in predicting sRNAs. This dataset is composed
of 776 putative sRNAs from 14 different genomes including Helicobacter
pylori, Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes,
Chlamydia trachomatis, Shewanella oneidensis, Xenorhabdus nematophila,
Vibrio cholerae, E. coli, SLT2, Pseudomonas aeruginosa, Caulobacter
crescentus, Burkholderia cenocepacia, and Streptomyces coelicolor A3. The
sRNAs in this dataset were obtained by experimental validation (Sittka et al.,
2008; Huang et al., 2009), genome-tiling microarray experiments (Toledo-
Arana et al., 2009) and RNA-seq experiments (Sittka et al., 2008; Albrecht
et al., 2010; Lu et al., 2011; Liu et al., 2009; Yoder-Himes et al., 2009;
Sharma et al., 2010).

3 RESULTS
We applied the basic methods (Supplementary Table 1s) and the
proposed methodology (Figure 1) to identify sRNAs in the positive
and negative SLT2 datasets of sRNAs (see Methods). Then, we
predicted sRNAs in a new dataset of experimentally validated
sRNAs (del Val et al., 2007; Ulvé et al., 2007; Venkova-Canova
et al., 2004) from S. meliloti, as well as in a multispecies dataset
(Lu et al., 2011) (see Methods).

3.1 Basic methods identify sRNAs with disparate
sensitivity and specificity

We applied 7 basic methods including zMFold, vsFold, QRNA,
Alifoldz, dynalign, MSARi and RNAz2 (Supplementary Table 1s)
to identify sRNAs. These methods constitute the state-of-the-art in
the field and implement diverse methodologies that embrace the
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Table 1. Sensitivity and Specificity of the individual
methods for the SLT2 dataset.

Description SLT2 Specificity SLT2 Sensitivity

RNAz2 0.98 0.27
vsFold 0.88 0.25
Alifoldz 0.87 0.42
dynalign 0.86 0.28
QRNA 0.71 0.59
MSARi 1.00 0.02
zMFold 0.49 0.90

most relevant features that characterize sRNAs. The performance
of the basic methods was estimated according to their Sp and
Sn by scoring the sequences/alignments from the positive and
negative SLT2 training datasets. The obtained results reveal that
these methods tend to favor either Sp or Sn, but not both of them
simultaneously (Table 1). For example, RNAz2 (Sp 0.98, Sn 0.27)
exhibits high Sp but low Sn, whereas zMFold (Sp 0.49, Sn 0.90)
does the opposite. QRNA achieves the best trade-off between both
Sp and Sn. We found that most of the sRNAs are predicted by
> 2 basic methods (Supplementary Figure 6s). A large group of
sRNAs is predicted by just one method (55 sequences) but with low
Sp, whereas only a small group of sequences is not predicted by
any of the methods (8 sequences, Supplementary Figure 6s). These
differences in terms of Sp and Sn exhibited by the basic methods
- trained mainly with Salmonella enterica Thyphimurium and E.
coli- raise the question if their combination could be successfully
applicable to other genomes.

3.2 The proposed strategy identifies optimal
aggregations of basic methods that predict sRNAs

The basic methods showed different and sometimes opposing Sp
and Sn values when predicting sRNAs (Table 1). This may be due
to their specific methodological approaches that tend to emphasize
particular features that characterize sRNAs but not others. To
address this problem, we incorporated and combined the particular
skills of each basic predictor and eliminated their contradictory
information. To combine the most promising characteristics of
basic methods, we run all basic methods over the training dataset
(i.e., SLT2 dataset) and searched for optimal aggregations of
these methods. The aggregations are performed by combining
basic methods using the union –∪– and the intersection –∩–
operations (Halmos, 1961) on their predictions at the nucleotide
level (Supplementary Figure 3s). These typical mathematical set
operations have their parallel logic operations (i.e., OR and AND),
which consecutive application allows defining any possible logic
expression. The potential aggregation of methods (here > 20 000)
creates a large space of potential hypotheses, which can be
represented as a lattice (Figure 2s). Each aggregation in the lattice
can be considered as a new prediction method.

The union of methods increases Sn and decreases Sp, whereas the
intersection does the opposite, as expected. Then, the combination
of union and intersection operations in the same aggregation may
increase Sp and Sn simultaneously. However, the aggregation of

all methods does not necessarily assure more accurate predictions
(Cordón et al., 2002). For instance, two methods may have
contradictory predictive strategies, or even more, the simple
summation of them can lead to overfitting (Cordón et al., 2002;
Zwir et al., 2005; Harari et al., 2010). Moreover, the computational
complexity of performing an exhaustive search of all logical
expressions (i.e., Boolean satisfiability problem) is NP-complete
(Gu et al., 1996). Therefore, a careful optimization strategy is
required to integrate the basic methods in an appropriate fashion.

To address the computational complexity described above,
our methodology applies a heuristic approach consisting in
the generation of optimal aggregations by using multi-objective
optimization techniques, particularly we used the genetic algorithm
NSGA-II (Supplementary information) that simultaneously search
for trade-off solutions between two objectives (i.e., Sp, and Sn).
Because there are two possibly contradictory objectives to be
optimized simultaneously, there is no single optimal solution but
rather a family of optimal results (Table 2). These results are
organized as a Pareto optimal front (Supplementary Figure 5s). This
front includes all non-dominated solutions (Deb, 2001; Ruspini and
Zwir, 2002), where one solution is said to dominate another solution
when it is better than the other in all objectives being considered
(e.g., both sensitivity and specificity).

3.2.1 Optimal aggregations of basic methods enhance their
specificity and sensitivity for identifying sRNAs. We identified
26 different optimal aggregations based on the SLT2 dataset that
correspond to non-dominated solutions (Table 2 and Supplementary
Figure 7s). For example, both aggregations AGR 14 (Sp 0.79, Sn
0.66) and AGR 26 (Sp 0.33, Sn 0.98) are in the Pareto front of
optimal solutions because the first has better Sp values but worst Sn
values than the second. Out of all these aggregations, the ones with
the best possible trade-offs among the selected objectives normally
lie on the “knee” of the Pareto front (Deb, 2001) (Supplementary
Figure 4s). All 26 aggregations dominate the basic methods based
on the Sp and Sn objectives, and thus, none of the latter solutions are
in the optimal Pareto front (Supplementary Figure 4s). The methods
zMfold and RNAz2 are always present in aggregations achieving
the best Sn scores (Sn > 0.93), and their corresponding Sp scores
are between 0.33 and 0.49 (e.g., (((zMFold ∪ QRNA) ∪ Alifoldz)
∪ RNAz2); ((RNAz2 ∪ zMFold) ∪ dynalign)). The aggregations
harboring the best Sp scores (Sp > 0.93) are mainly composed of at
least one intersection of basic methods harboring high Sn combined
with the union of methods displaying high Sp (e.g., ((QRNA ∩
RNAz2) ∪ MSARi); ((((vsFold ∪ Alifoldz) ∩ (QRNA ∩ zMFold))
∪ RNAz2) ∪ MSARi)), and their Sn scores stand between 0.25
and 0.49. Finally, there is not obvious pattern in the most balanced
aggregations (i.e., Sp and Sn ca. 0.7).

3.3 Incorporation of all optimal aggregations in a
multi-classifier establishes a robust and accurate
predictor of sRNAs

Our strategy assembles all optimal aggregations of methods
in a multi-classifier, which is a decision-making method that
considers all of these solutions in a cooperative strategy towards
identifying sRNAs (see Methods). Here, the cooperation policy
was implemented as a simple majority voting approach of all
non-dominated aggregations, which guarantees robust predictions
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Table 2. Sensitivity and Specificity of the non-dominated aggregations of methods obtained and our methodology result for the SLT2
dataset.

ID Description SLT2 Specificity SLT2 Sensitivity

AGR 1 ((QRNA ∩ RNAz2) ∪ MSARi) 1.00 0.25
AGR 2 (RNAz2 ∪ MSARi) 0.98 0.28
AGR 3 (RNAz2 ∪ (((QRNA ∩ Alifoldz) ∩ vsFold) ∪ MSARi)) 0.97 0.34
AGR 4 (RNAz2 ∪ (((QRNA ∩ Alifoldz) ∩ zMFold) ∪ MSARi)) 0.96 0.40
AGR 5 ((((QRNA ∩ zMFold) ∩ vsFold) ∪ RNAz2) ∪ MSARi) 0.95 0.42
AGR 6 ((((vsFold ∪ Alifoldz) ∩ (QRNA ∩ zMFold)) ∪ RNAz2) ∪ MSARi) 0.93 0.49
AGR 7 ((((vsFold ∪ dynalign) ∩ zMFold) ∪ RNAz2) ∪ MSARi) 0.88 0.51
AGR 8 ((((dynalign ∪ Alifoldz) ∩ zMFold) ∪ RNAz2) ∪ MSARi) 0.87 0.53
AGR 9 ((((vsFold ∪ Alifoldz) ∩ zMFold) ∪ RNAz2) ∪ MSARi) 0.85 0.59
AGR 10 (((QRNA ∩ zMFold) ∪ RNAz2) ∪ MSARi) 0.83 0.60
AGR 11 ((RNAz2 ∪ MSARi) ∪ ((zMFold ∪ Alifoldz) ∩ QRNA)) 0.81 0.61
AGR 12 ((RNAz2 ∪ MSARi) ∪ ((zMFold ∪ dynalign) ∩ QRNA)) 0.81 0.61
AGR 13 ((RNAz2 ∪ MSARi) ∪ ((QRNA ∪ dynalign) ∩ zMFold)) 0.80 0.62
AGR 14 (RNAz2 ∪ ((QRNA ∪ Alifoldz) ∩ zMFold)) 0.79 0.66
AGR 15 (((QRNA ∪ ((vsFold ∪ RNAz2) ∪ MSARi)) ∪ Alifoldz) ∩ zMFold) 0.75 0.67
AGR 16 ((RNAz2 ∪ vsFold) ∪ ((QRNA ∪ Alifoldz) ∩ zMFold)) 0.70 0.72
AGR 17 ((RNAz2 ∪ QRNA) ∪ ((dynalign ∪ Alifoldz) ∩ zMFold)) 0.63 0.73
AGR 18 ((((vsFold ∪ Alifoldz) ∩ zMFold) ∪ RNAz2) ∪ QRNA) 0.61 0.75
AGR 19 (((vsFold ∪ QRNA) ∪ Alifoldz) ∪ RNAz2) 0.56 0.76
AGR 20 ((((RNAz2 ∪ vsFold) ∪ QRNA) ∪ Alifoldz) ∪ dynalign) 0.51 0.76
AGR 21 ((RNAz2 ∪ ((QRNA ∩ vsFold) ∩ Alifoldz)) ∪ zMFold) 0.49 0.93
AGR 22 (((RNAz2 ∪ zMFold) ∪ MSARi) ∪ (((QRNA ∩ Alifoldz) ∪ dynalign) ∩ vsFold)) 0.48 0.94
AGR 23 ((RNAz2 ∪ zMFold) ∪ dynalign) 0.43 0.95
AGR 24 (((zMFold ∪ (QRNA ∩ dynalign)) ∪ Alifoldz) ∪ RNAz2) 0.42 0.96
AGR 25 ((RNAz2 ∪ QRNA) ∪ zMFold) 0.36 0.97
AGR 26 (((zMFold ∪ QRNA) ∪ Alifoldz) ∪ RNAz2) 0.33 0.98

sRNA OS Our methodology 0.78 0.67

(Supplementary Figure 4s). First, we tested the performance of
the multi-classifier with respect to the SLT2 training dataset,
obtaining 0.78 and 0.67 averaged scores of Sp and Sn, respectively
(Table 2). Indeed, to account for the sample variability, we
performed a 10-fold-cross validation on the same SLT2 training
dataset (Supplementary Figure 5s, Tables 4s-7s), obtaining 0.81 and
0.61 averaged scores of Sp and Sn, respectively. Remarkably, the
average of the 9 partitions used as training sets along the 10 folds
exhibited 0.83 and 0.62 averaged scores of Sp and Sn, respectively.
The similar training and test across the cross validation process
exhibits the robustness and stability characteristics of the multi-
classifier implemented in our methodology. At least four classes
of aggregations identify distinct subsets of sRNAs (Supplementary
Figure 7s). One class of aggregations recognizes most of the sRNAs
with high Sn but relatively low Sp scores (Table 2, AGR 21 to
AGR 26). In contrast, another class of aggregations recognizes
only a single subset of sRNAs with high Sp but low Sn (Table 2,
AGR 1 to AGR 9). Most of the other aggregations recognize a large
subset of sRNAs (Table 2). Notably, the majority voting strategy
implemented in our methodology allows preserving the trade offs
between these classes in the prediction process, which is consistent
with the criteria utilized for the selection of aggregations in the
Pareto front. Other approaches like predicting by the Maximum Sn
or Sp may provide better but less robust results.

Then, we tested the performance of the multi-classifier on
another dataset of sRNA examples that were not included in the
previous SLT2 training set. As in the case of the SLT2 dataset,
we compiled a new dataset 81 experimentally validated sRNAs in
the well studied but phylogenetically distant bacterium S. meliloti
(see Methods, Supplementary Table 3s). The multi-classifier based
on 26 aggregations obtained 0.72 and 0.58 scores of Sp and Sn,
respectively (Table 3), whereas the best basic method for this
dataset (zMfold) showed 0.44 and 0.67 scores of Sp and Sn,
respectively (Table 4). Because the Sp and Sn scores obtained by
our methodology are not significantly different from those obtained
with the SLT2 training dataset, the obtained results confirms that the
proposed strategy is sufficiently robust to make accurate predictions
even under different nucleotide composition of the target genome.

We also compared the performance of our methodology with
that of the SIPHT method (Livny et al., 2006), which is widely
used by the scientific community. This method utilizes the QRNA
basic method combined with other computational tools that identify
and annotate sequence-based motifs of transcription factor binding
sites and rho-independent terminators. Because the SIPHT method
uses genomic features for its predictions of sRNAs, our database
of negative examples cannot be utilized for comparison purposes
because the motifs of these features are likely to be destroyed in
shuffled sequences (see Methods). Therefore, the Sp score cannot be
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Table 3. Sensitivity and Specificity of the non-dominated aggregations of methods and our methodology result for the S. meliloti
dataset.

ID Description SM Specificity SM Sensitivity

AGR 01 ((QRNA ∩ RNAz2) ∪ MSARi) 1.00 0.13
AGR 02 (RNAz2 ∪ MSARi) 1.00 0.18
AGR 03 (RNAz2 ∪ (((QRNA ∩ Alifoldz) ∩ zMFold) ∪ MSARi)) 1.00 0.28
AGR 04 (RNAz2 ∪ ((Alifoldz ∩ vsFold) ∪ MSARi)) 0.89 0.31
AGR 05 ((((QRNA ∩ zMFold) ∩ vsFold) ∪ RNAz2) ∪ MSARi) 0.93 0.42
AGR 06 ((((vsFold ∪ Alifoldz) ∩ (QRNA ∩ zMFold)) ∪ RNAz2) ∪ MSARi) 0.93 0.44
AGR 07 ((((vsFold ∪ dynalign) ∩ zMFold) ∪ RNAz2) ∪ MSARi) 0.52 0.73
AGR 08 ((((dynalign ∪ Alifoldz) ∩ zMFold) ∪ RNAz2) ∪ MSARi) 0.75 0.54
AGR 09 ((((vsFold ∪ Alifoldz) ∩ zMFold) ∪ RNAz2) ∪ MSARi) 0.53 0.70
AGR 10 (((QRNA ∩ zMFold) ∪ RNAz2) ∪ MSARi) 0.90 0.48
AGR 11 ((RNAz2 ∪ MSARi) ∪ ((zMFold ∪ Alifoldz) ∩ QRNA)) 0.88 0.49
AGR 12 ((RNAz2 ∪ MSARi) ∪ ((zMFold ∪ dynalign) ∩ QRNA)) 0.88 0.57
AGR 13 ((RNAz2 ∪ MSARi) ∪ ((QRNA ∪ dynalign) ∩ zMFold)) 0.75 0.54
AGR 14 (RNAz2 ∪ ((QRNA ∪ Alifoldz) ∩ zMFold)) 0.81 0.52
AGR 15 (((QRNA ∪ ((vsFold ∪ RNAz2) ∪ MSARi)) ∪ Alifoldz) ∩ zMFold) 0.50 0.64
AGR 16 ((RNAz2 ∪ vsFold) ∪ ((QRNA ∪ Alifoldz) ∩ zMFold)) 0.36 0.94
AGR 17 ((RNAz2 ∪ QRNA) ∪ ((dynalign ∪ Alifoldz) ∩ zMFold)) 0.67 0.68
AGR 18 ((((vsFold ∪ Alifoldz) ∩ zMFold) ∪ RNAz2) ∪ QRNA) 0.46 0.84
AGR 19 (((vsFold ∪ QRNA) ∪ Alifoldz) ∪ RNAz2) 0.27 0.98
AGR 20 ((((RNAz2 ∪ vsFold) ∪ QRNA) ∪ Alifoldz) ∪ dynalign) 0.26 0.98
AGR 21 ((RNAz2 ∪ ((QRNA ∩ vsFold) ∩ Alifoldz)) ∪ zMFold) 0.44 0.76
AGR 22 (((RNAz2 ∪ zMFold) ∪ MSARi) ∪ (((QRNA ∩ Alifoldz) ∪ dynalign) ∩ vsFold)) 0.39 0.84
AGR 23 ((RNAz2 ∪ zMFold) ∪ dynalign) 0.36 0.88
AGR 24 (((zMFold ∪ (QRNA ∩ dynalign)) ∪ Alifoldz) ∪ RNAz2) 0.33 0.86
AGR 25 ((RNAz2 ∪ QRNA) ∪ zMFold) 0.40 0.86
AGR 26 (((zMFold ∪ QRNA) ∪ Alifoldz) ∪ RNAz2) 0.33 0.88

sRNA OS Our methodology 0.72 0.58

Table 4. Sensitivity and Specificity values of
the individual methods for the S. meliloti
dataset.

Method SM Specificity SM Sensitivity

RNAz2 1.00 0.18
vsFold 0.38 0.84
Alifoldz 0.83 0.31
dynalign 0.70 0.51
QRNA 0.85 0.52
MSARi 1.00 0.00
zMFold 0.44 0.67

fairly estimated. Consequently, we compared our methodology with
SIPHT in terms of Sn. The predictions of SIPHT for SLT2 and S.
meliloti were obtained from (http://newbio.cs.wisc.edu/sRNA/). We
predict sRNAs with 0.67 and 0.57 averaged scores of Sn in SLT2
and in S. meliloti, respectively. In comparison, SIPHT predicts the
sRNAs contained in our SLT2 and in S. meliloti databases of positive
examples with 0.46 and 0.33 scores of Sn, respectively.

We also tested the predictive power of our approach with another
dataset composed of sRNAs derived from 13 different genomes
(Lu et al., 2011) (see Methods), which also were not contained
in the training set. We significantly overcame the basic methods
used by (Lu et al., 2011) in all genomes independently of their GC
content, except for Burkholderia and Chlamydia (Lu et al., 2011).
The best performing individual methods in (Lu et al., 2011) obtained
0.27, 0.20, 0.40 and 0.49 of Sn in the different datasets, while our
methodology obtained an average of 0.70 Sn across all datasets
(Supplementary Table 8s). Remarkably, these values were similar
in SLT2 and S. meliloti.

4 DISCUSSION
The use of next generation technologies, such as RNA-seq,
demonstrated that the number and diversity of sRNAs is greater
than was originally expected (Vogel, 2009; Toledo-Arana et al.,
2009). Therefore, there is increased interest in identifying sRNAs
and deciphering their role in regulatory systems within a particular
species or across multiple species. These experimental methods
are critical for functional characterization of sRNAs (Sittka et al.,
2009); but their applicability still has been constrained to a relatively
small number of sRNAs as well as genomes. Consequently,
computational prediction of sRNAs is required to develop new
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hypothesis that allow focusing the experimental verification on
particular targets, to provide clues about the molecular mechanisms
governing gene regulation.

Different strategies have been implemented using distinct
computational methods to predict sRNAs (Rivas and Eddy, 2001;
Livny et al., 2008; Washietl et al., 2005); however, most of them
exhibit similar limitations. Essentially, there is a trend in these
computational methods to favor either Sp or Sn, but not both, in their
predictions (Lu et al., 2011) that, in turn, generates either a high
number of false positives or false negatives. This is true even if some
methods combine in one predictor different sRNA features and/or
genomic information (Livny et al., 2005, 2008). In this work, we
presented a new methodology, which identifies bacterial sRNAs by
simultaneously minimizing the false positives (Sp) and maximizing
the number of recognized sRNAs (Sn). This method is able to
predict sRNAs in different genomes, even when there is a lack of
reliable annotations, because it does not rely on additional genomic
features.

Several characteristics distinguish our methodology from other
methods. The proposed approach utilizes the distinctive features of
different methods –termed basic methods– instead of developing a
new method de novo, and combines them in a manner that resolves
the problem of contradictory knowledge and, thus, improving
their predictive power. To do that, our methodology combines
the predictions of the basic methods by using typical set theory
operations such as the union and/or intersection. Likewise in logic
expressions, the systematic application of these operations produces
chained and disparate aggregations of methods. Because not all
aggregations may perform better than an individual method (del
Val et al., 2007), and large aggregations including all methods
may also produce overfiting, our methodology selects optimal
aggregations as a trade-off between Sp and Sn by utilizing multi-
objective optimization heuristic techniques. Particularly we used
the genetic algorithms NSGA-II. The efficient heuristics utilized
by our methodology avoids intractable processing times, which
are common in combinatorial optimization (De Smet and Marchal,
2010). This process results in non-redundant optimal aggregations,
where the balance between the two contradictory objectives also
prevents overfitting (Cordón et al., 2002; Romero-Zaliz et al., 2009).
This approach substantially improves both Sp and Sn over that of
previous single aggregation of two predefined methods (Pichon and
Felden, 2003; Livny et al., 2008).

We applied our methodology to a dataset of experimentally
validated sRNAs in SLT2. The results are significantly better than
those results from the basic methods alone (Table 1 and Table 2) in
training or test datasets (Supplementary Figure 3s, Supplementary
Tables 4s-7s). Remarkably, the Sp and Sn scores are similar between
both training and test sets, and even within the training-test fold
partitions performed in the cross validation. These results strongly
suggest that the method is robust for predicting sRNAs despite the
possible sample variability. To effectively confirm these findings,
we tested the predictive power of the method in two datasets that
were not used in the training process: the S. meliloti and the multi-
species datasets. Despite the different nucleotide composition of
these genomes (see GC content, Supplementary Table 8s), our
methodology obtained good Sp and Sn scores. Finally, our proposed
method obtained better Sn scores than SIPHT (Livny et al., 2008),
a widely used method that uses specific genomic information about
binding sites and terminators (Li et al., 2012). Unlike our method

that utilizes general characteristics of sRNAs, SIPHT uses particular
genomic features. Therefore, the database of negative examples
based on shuffled sequences cannot be fairly used to estimate
comparable Sps for both methods. It would be interesting to derive
negative examples acceptable to both methods to better compare
their power.

In sum, our approach has demonstrated to encode a successful
and robust methodology to predict sRNAs even in poorly annotated
genomes. Moreover, we have shown that appropriately combining
results from existing methods in a meta-analysis-like approach may
significantly improve their accuracy, and facilitates the generation
of new predictors by simply using different training data sets and/or
aggregating new basic methods.
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