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Abstract

In this paper we present a method to fit missing data -i.e., to fit a dataset con-
taining a region in which no data are provided- by means of a C1-quadratic patch.
Such a patch is constructed to faithfully extend the shape and the geometric fea-
tures of the dataset. To this end, a mesh of curves gathering the information
about the shape of the dataset will be considered and extended to the interior
of the hole. Next, a (unique) patch fitting such a mesh of curves will be com-
puted. Several numerical and graphical examples showing the effectiveness of the
proposed method are provided.

Keywords: Powell-Sabin finite element; missing data; surface reconstruction;
energy functional; shape-preserving; Bézier curves.

1. Introduction.

The problem of handling sets of scattered data points in which there is some
hidden region, some lack of information -usually due to imperfections of the
surface or solid to be scanned, to difficulties linked to the scan process, or to ac-
cessibility limitations, occlusions, reflecting spaces or surfaces parallel to camera-
is rather common. This situation arises in all sorts of fields in which image re-
construction is involved: engineering problems, 3D human body scanning, dental
reconstruction, archaeology, CAGD, Earth Sciences, computer vision in robotics,
image reconstruction from satellite and radar information, physics, etc. Several
papers in the literature address the question of fitting under these geometrical
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difficulties or, more in general, under obstacles due to the dataset itself or to
geometrical features or other additional constraints to be achieved.

Regarding the problem of fitting with additional drawbacks, we also find the
one of fitting missing data, i.e., handling of datasets containing regions where no
information -or information with not enough quality- is provided, or the more
general of having a surface -understood as the graphic of a bivariate function-
suffering from such a lack of information -a hole-. Most of the fitting missing data
methods considered up to now are developed for arbitrary dataset points, i.e.,
they do not specifically consider the particular geometric feature of the dataset
to be fitted. Applying these common fitting methods very often give rise to
surfaces that tend to be ‘flat’ insofar as a reasonable way to define a patch is
by minimizing some kind of measure, like the stretching or the bending energy.
As a consequence, most of the existing methods work well for certain functions
(as long as they are ‘flat’), but they do not lead to proper results in other cases.
To illustrate this fact we can consider, for example, the case of filling a hole
of information in the top of a semisphere: Depending on what the role of the
fitting patch will be, we may want to fill the hole with a ‘minimal’ criteria -i.e.,
minimizing some linked measure-, or we may want to fill the hole by a bending
patch with semispherical shape. It is desirable then to develop methods to fit
missing or unstructured data, or to fill holes, providing fitting or filling patches
restoring characteristics of the models ([1]), sharp features ([2]) or fulfilling some
specific geometrical constraints of industrial or design type, in such a way that the
fitting patch will be no longer flat but faithful to the shape of the known dataset.
In short, we may be more interested in obtaining a global fitting function faithful
to the dataset that in obtaining a minimal fitting patch.

With the aim of obtaining fitting patches somehow inheriting the shape of
the known information, several approaches have been considered: e.g., in [3] the
authors propose a method consisting of minimizing energy functionals to extend
the shape of the dataset towards the interior of the hole by means of a patch
fitting not only the data, but also some of its ‘estimated’ partial derivatives.
Nevertheless, most approaches do not specifically adapt to the particular shape
of the data to be fitted. In this work we propose a fitting method over missing
data which, for each specific dataset, ‘calibrates’ its shape by means of several
representative curves. These curves will be extended over the missing data pre-
serving, as much as possible, the shape they have over the known data, becoming
somehow the cornerstones of the global fitting surface. Such wireframe of curves
will therefore play an essential role as long as, not only will identify the behavior
-near the boundary of the missing data- of the surface to be fitted, but it will
also determine the geometry of the fitting patch, that is required to preserve the
shape of the known surface.

All over the fitting process, we will be interested in obtaining C1-splines with
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the minimum possible degree in order to simplify computational aspects. That’s
why we choose the C1-quadratic Powell-Sabin finite element and, insofar we want
to work with this finite element, the first step we will have to carry out will be
to fit the scattered data points by means of a C1-quadratic fitting surface. Next,
the fitting method we propose will consist mainly of three steps:

i) To the define the wireframe of curves inside the known surface gathering
the information about its shape;

ii) To extend such a wireframe of curves towards the interior of the hole;

iii) To construct a fitting patch over the filled wireframe of curves in ii).

The single-variate fitting process referred to in ii) will be carried out by means
of Bézier curves, which give a more natural and wide frame to work with geometric
features as tangent lines, osculating planes or curvature and torsion ([4] is a basic
handbook for Bézier techniques). Regarding iii), it is to mention that a surface
fitting method based on one-dimensional fittings was for the first time considered
in [5]. Nevertheless, the method therein proposed suffers from two drawbacks:
on the one hand, it sits on a cartesian wireframe of curves, restricting then to
‘measure’ the shape of the surface along straight lines parallel to the axis and
not allowing, thus, to consider other paths better gathering the shape of the
surface. On the other hand, the fitting method in [5] considers just interpolation
of function and derivatives values at boundary points of the curves to be fitted,
both drawbacks leading to a more restrictive fitting frame as long as derivatives
values on their own do not, in general, give a complete insight of the geometry
of a surface.

The fitting method we propose in this work leads, especially in the case of
more irregularly shaped functions, to more accurate fitting patches. This fact
is a direct consequence of improving two of the main aspects of previous fitting
methods:

i) The wireframe over which the fitting patch lies is obtained by means of
Bézier techniques, which allows to more faithfully extend inside the hole
the shape of the surface to be fitted;

ii) The fitting patch fits a wireframe which is general enough -no longer cartesian-
to more faithfully gather the information of the surface to be fitted.

Moreover, this method constitutes, to our knowledge, the first one in which
the fitting patches are obtained by means of Bézier curves, that more properly
deal with geometric features.

The paper is organized as follows: in Section 2 we briefly present a review of
some papers in the literature regarding the general problem of fitting data and
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the more specific one of fitting data under additional drawbacks. In Section 3 we
briefly recall the basic concepts on Powell-Sabin triangulations and Bézier curves
that will be used throughout the work. In Section 4 we deal with the problem
that we want to solve: we fix the notation to be used, we formulate the problem
and we show the existence and uniqueness of the solution. Section 5 is devoted
to present several graphical and numerical examples which show the effectiveness
of the method proposed. We end up with a conclusions section.

2. A brief review of fitting data methods.

Among the techniques commonly applied to data fitting problems we find,
for example, B-splines, radial basis functions (RBF), algebraic fitting or discrete
energy minimization.

RBF-fitting methods (see e.g. [6] or [7]) have the advantages that are mesh-
free and that they become a powerful tool when handling multidimensional fitting
data, while B-spline fitting methods become computationally harder when fine
meshes are considered. On the contrary, using B-splines has the advantage that
insofar as the basis functions have small local supports, they lead to sparse matrix
that, moreover, are symmetric and definite positive under some conditions on the
basis functions. Besides, B-splines are easier to implement than RBF since they
are piecewise polynomial functions, usually with low degree.

Algebraic surface fitting, consisting in fitting a dataset by means of a polyno-
mial implicit surface f(x, y, z) = 0 where the coefficients of f are usually chosen
to minimize the mean square distance from the dataset to the implicit surface, is
a natural approach to the fitting problem. Apart from the fact that manipulating
polynomials is computationally more efficient than doing it with arbitrary ana-
lytic functions, algebraic surfaces provide enough generality to accurately model
almost all complicated rigid objects. On the contrary, this kind of fitting often
suffers from instability and numerical problems (see e.g. [8] or [9] and references
therein).

Discrete energy minimization is an extended model in computer vision. One
key advantage of this method is that it allows to handle a great variety of prob-
lems related to this researching field, like image denoising, segmentation, motion
estimation object, recognition and image editing. Nevertheless, modern vision
problems involve complex models and larger datasets that give rise to hard en-
ergy minimization problems (see e.g. [10] or [11] and references therein).

Among the existing techniques developed to handle fitting data with addi-
tional constraints we find the biharmonic optimization, used to overcome the
problem of the flatness of the surfaces or regions that some methods based on
minimization of stretching or bending energy provide (see e.g. [12]); transfi-
nite interpolation, used e.g. in [13] to construct a Hermite interpolant matching
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values and normal derivatives of a given function on the boundary of a simply
connected planar domain; or other advanced techniques, like the one developed
in [14], where algorithms to handle weakly defined control points by means of
B-spline surfaces are provided.

Two interesting papers in the surface modeling field are [15] and [16]. In
[15] a freeform modeling framework for unstructured triangle meshes based on
constraint shape optimization is presented. As in this paper, in [15] the authors
also consider the minimization of quadratic energy functionals that is carried
out by means of the corresponding Euler-Lagrange equations, leading to surfaces
with minimal area, minimal surface bending, or minimal variation of linearized
curvature. On the other hand, in [16] the authors explore discretizations of
Laplacian and Laplacian gradient energies PDE’s on meshes by using mixed fi-
nite elements, and they demonstrate applications in several geometric modeling
problems. Particularly, they present several examples of hole filling by means of
surfaces fulfilling preset region or curve constraints with prescribed tangents or
curvatures.

3. Premilinaries.

Let D ⊂ R2 be a polygonal domain (an open, non-empty connected set) in
such a way that D admits a ∆1-type triangulation (Figure 1 left), defined as the
ones induced by integer translates of x = 0, y = 0 and x+ y = 0 (see e.g. [17]).

Given a ∆1-triangulation T of D, we will consider the associated Powell-Sabin
triangulation T6 of T (see e.g. [18]), which is obtained by joining an appropriate
interior point ΩT of each T ∈ T to the vertices of T and to the interior points
ΩT ′ of the neighbouring triangles T ′ ∈ T of T . When T has a side lying on
the boundary of D, the point ΩT is joined to the mid-point of this side, to the
vertices of T and to the interior points ΩT ′ of the neighbouring triangles T ′ ∈ T
of T . Hence, the six micro-triangles inside any T ∈ T have the point ΩT as a
common vertex. There are several ways to consider appropriate points ΩT ([19]),
nevertheless, a good choice ([20]) is considering ΩT to be the incenter of T , for
all T ∈ T (Figure 1).

Figure 1: ∆1-type triangulation (left) and associated Powell-Sabin sub-triangulation (right).
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Remark 1. It is well known ([19]) that given the values of a function f (defined
on D) and the ones of all its first partial derivatives at all the knots of T , there
exists a unique spline S in the space

S12 (D, T6) =
{
S ∈ C1(D) : S|T ′ ∈ P2(T

′) ∀T ′ ∈ T6
}
,

where P2 stands for the space of bivariate polynomials of total degree at most two,
such that the values of S and the ones of all its first partial derivatives coincide
with those of f at all the knots of T .

In what follows we will consider the usual inner semi-products (u, v)m,X :=∑
|ω|=m

∫
X ∂

ωu(x)∂ωv(x)dx and the semi-norms |u|m,X := (u, u)
1/2
m,X , where m =

0, 1, 2; X ⊂ D and u, v are any functions defined over X where the involved
integrals can be considered. We will also consider the usual Euclidean norm
< · >n and Euclidean inner product < · , · >n in Rn.

Next we briefly recall some basic aspects of Bézier curves for the reader con-
venience. First, let us introduce the Bézier curve through the parametrization:

Definition 2. Given a set of n+ 1 points {b0,b1, . . . ,bn}, the n-degree polyno-
mial curve parametrized by

b(τ) =

n∑
j=1

Bn
j (τ) bj , τ ∈ [0, 1], (1)

is referred to as the Bézier curve with control points {b0,b1, . . . ,bn}. In (1)
Bn
j (s), j = 0, . . . , n stand for the Bernstein polynomials defined by

Bn
j (τ) :=

(
n

j

)
τ j (1− τ)n−j for j = 0, . . . , n,

and Bn
j ≡ 0 if j ∈ Z \ {0, 1, . . . , n}.

It can be easily checked that the Bernstein polynomials satisfies
∑n

j=1B
n
j (τ) =

1, so that for each τ ∈ [0, 1] equation (1) gives b(τ) as an affine combination of
the control points. The next proposition summarize the properties of the Bézier
curve which will be used later.

Proposition 3. The Bézier curve satisfies the interpolation properties:

• The tangent line of the Bézier curve (1) at the end point b(0) = b0 (resp.

b(1) = bn) is given by b0 + 〈
−−−→
b0b1〉 (resp. bn + 〈

−−−−−→
bnbn−1〉).

• The osculating plane of the curve (1) at the end point b(0) = b0 (resp.

b(1) = bn) is given by b0 + 〈
−−−→
b0b1,

−−−→
b1b2〉 (resp. bn + 〈

−−−−−→
bnbn−1,

−−−−−−→
bn−1bn−2〉).
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Proof. Taking derivatives in (1) it is immediately found that

ḃ(τ) =
db

d τ
(τ) =

n−1∑
j=0

Bn−1
j (τ)

−−−−→
bjbj+1,

b̈(τ) =
d2 b

d τ2
(τ) =

n−2∑
j=0

Bn−2
j (τ)

(−−−−−−→
bj+1bj+2 −

−−−−→
bjbj+1

)
,

(2)

thus, the tangent vector to the Bézier curve (1) at b0 is proportional to ḃ(0) =

n
−−−→
b0b1, whereas the direction of the osculating plane is generated by the vectors

ḃ(0) = n
−−−→
b0b1 and b̈(0) = n (n− 1)

(−−−→
b1b2 −

−−−→
b0b1

)
, and consequently is given

by 〈
−−−→
b0b1,

−−−→
b1b2〉. The tangent vector and the direction of the osculating plane at

b(1) = bn are determined by substituting τ = 1 in (2).

4. Formulation of the problem and main results.

As explained in the introduction, the objective of this work is to develop a
method to fit missing data in a given dataset by means of a wireframe of ‘adaptive’
filled curves. To this aim, we will first introduce the notation to be used:

. Hole: Let H be a connected and nonempty subset of D (in Figures 2 and
15 left, we show the holes to be used in the examples provided in this work)
such that ∂D ∩ ∂H = ∅, where ∂X stands for the boundary of the set X.
If H were not connected, the techniques developed in this work to fill one
connected hole would be applied to each of the connected components of
H. Let now f : D − H −→ R be a function. In order to reconstruct the
missing data in the graphic of f over H, and taking into account that we
are interested in working with spline functions defined over triangulations,
we will extend the hole H to a polygonal one.

. Triangulations: Let T be a ∆1-type triangulation of D with associated
Powell-Sabin triangulation T6. Let

H∗ =
⋃

{T∈T :T∩H 6=∅}

T.

Thus, H∗ is a polygonal domain surrounding H (Figure 2 right). Clearly,
H∗ tends to H as diam(T )→ 0 (recall that the diameter of a triangulation
T is defined as diam(T ) = max

x,y∈T
‖x − y‖ for any T ∈ T ). We need to

consider T fine enough to have ∂D ∩ ∂H∗ = ∅. Let

{t1, . . . , ts} (3)
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be the set of all the vertices of T laying on the boundary of H∗ (Figure 2
right). Let

TD−H∗ = {T ∈ T : T ⊂ D −H∗} and (TD−H∗)6 = {T ∈ T6 : T ⊂ D −H∗}.

It is clear then that TD−H∗ is a ∆1-type triangulation of D−
◦
H∗ with

associated Powell-Sabin subtriangulation (TD−H∗)6. Analogously, let

TH∗ = {T ∈ T : T ⊂ H∗} and (TH∗)6 = {T ∈ T6 : T ⊂ H∗},

in such a way that TH∗ is a ∆1-type triangulation of H∗ with associated
Powell-Sabin subtriangulation (TH∗)6.

. Functional spaces: Let us consider the splines spaces

S12 (D −H∗, (TD−H∗)6) =
{
v|D−H∗ : v ∈ S12 (D, T6)

}
and

S12 (H∗, (TH∗)6) =
{
v|H∗ : v ∈ S12 (D, T6)

}
.

In what follows, for the sake of simplicity, we will just denote S12 (D −H∗) ≡
S12 (D −H∗, (TD−H∗)6) and S12 (H∗) ≡ S12 (H∗, (TH∗)6) in the understand-
ing that original triangulation T is fixed but arbitray.

The problem of filling the graphic of f over H∗ is posed as follows:

Problem 4. To define a global reconstructed function f̃ ∈ C1(D),

f̃ : D −→ R

x 7→
{

sf if x ∈ D −H∗
σsf if x ∈ H∗

in such a way that:

i) f̃ = sf be as close as possible to f in D −H∗;

ii) f̃ = σsf fills the hole of f over H∗.

Spline sf over D−H∗ is defined as the minimal energy fitting surface provided
in [21]. More precisely, sf is the only one spline in S12 (D −H∗) minimizing the
functional J1 : S12 (D −H∗) −→ R defined by

J1(v) =< ρ(v − f) >2
q +λ1|v|21,D−H∗ + λ2|v|22,D−H∗ ,

where λ1 ≥ 0, λ2 > 0, ρ is the evaluation operator ρ(v) = (v(p1), . . . , v(pq)) and
P = {pi}qi=1 is a subset of points in D −H∗. In [21] it is shown that sf can be
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expressed as sf =
∑`

i=1 νiγi, where {γ1, . . . , γ`} is a basis of S12 (D −H∗) and
ν ≡ (νi)

`
i=1 is the solution to the linear system AX = b, where

A =

(
< ρ(γi), ρ(γj) >q +

2∑
m=1

λm(γi, γj)m,D−H∗

)`
i,j=1

and b = (< ρ(f), ρ(γi) >q)
`
i=1 .

We focus now on the construction of σsf . Such a function will be constructed
over a mesh of curves that, somehow, ‘inherits’ the geometry that dataset P has
outside the hole H∗. More precisely, let

Q = {{Qsi , Qei}}
p
i=1 (4)

be a set of couples of different points belonging all of them to ∂H∗ in such a way
that {(Qsi , sf (Qsi )), (Q

e
i , sf (Qei ))}

p
i=1 is a set of points lying on the inner boundary

of the graphic of sf . Let
Ψ = {{ξsi , ξei }}

p
i=1, (5)

with
ξsi : (−εsi , 0] −→ R2 and ξei : [0, εei ) −→ R2, (6)

be a set of couples of parametric curves, with εsi , ε
e
i > 0, such that ξsi (0) =

Qsi ; ξ
e
i (0) = Qei and their image sets ξsi ((−εsi , 0]) and ξei ([0, εei )) are contained in

D−H∗. Then (ξsi , sf ◦ ξsi ) and (ξei , sf ◦ ξei ) is a set of parametric curves lying on
the graphic of sf with ending and starting points (Qsi , sf (Qsi )) and (Qei , sf (Qei )),
respectively, for i = 1, . . . , p. In what follows, for the sake of simplicity, we will
denote the compositions sf ◦ ξsi and sf ◦ ξei just bust juxtaposition sfξ

s
i and sfξ

e
i .

Let us consider the set
β = {βi}pi=1, (7)

where, for i = 1, . . . , p, βi ≡ (βix, βiy, βiz) : [ai, bi] → R3 is a function verifying
that the graphic of (βix, βiy), i.e., the projection of the graphic of βi onto the
XY plane, is contained in H∗; and that βi(ai) = (Qsi , sf (Qsi )) and βi(bi) =
(Qei , sf (Qei )), i.e., βi is a parametric curve filling the graphics of the curves
(ξsi , sfξ

s
i ) and (ξei , sfξ

e
i ).

In the theoretical development that follows, any curves βi verifying previous
conditions can be considered, nevertheless, in the numerical section we will handle
just with Bézier curves based on a more complete interpolation scheme as long
as we will look for σsf to preserve the shape of f as much as possible.

The filling function σsf over H∗ will be defined as the unique function in
S12 (H∗sf ) ≡ {v ∈ S12 (H∗) : ϕ(v) = ϕ(sf )}, where ϕ(v) = (ϕi(v))3si=1, with

ϕi(v) = v(ti), ϕs+i(v) =
∂v

∂x
(ti), ϕ2s+i(v) =

∂v

∂y
(ti), for i = 1, . . . , s,
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ti being the knots in (3), minimizing the functional J2 : S12 (H∗sf )→ R defined by

J2(v) =

p∑
i=1

∫ bi

ai

(v ◦ (βix, βiy)− βiz)2 + τ1 |v|21,H∗ + τ2 |v|22,H∗ (8)

where τ1 ≥ 0, τ2 > 0.
Observe that choosing σsf ∈ S12 (H∗sf ) is equivalent to impose σsf to join to sf

with class C1. In the next result we show the existence and uniqueness of σsf .

Theorem 5. There exists a unique σsf ∈ S12 (H∗sf ) minimizing functional J2
which is also the solution to the following variational problem:

Find σsf ∈ S
1
2 (H∗sf ) such that

p∑
i=1

∫
(βix,βiy)

σsf · v +

2∑
m=1

τm(σsf , v)m,H∗ =

p∑
i=1

∫ bi

ai

(v ◦ (βix, βiy)) · βiz

for all v ∈ S12 (H∗0) ≡ {v ∈ S12 (H∗) : ϕ(v) = 0}.
(9)

Proof. The proof follows the same pattern than the one of Theorem 4 in [5]
when taking

a(u, v) = 2

(
3∑
i=1

u(ki)v(ki) +

p∑
i=1

∫
(βix,βiy)

u · v +

2∑
m=1

τm(u, v)m,H∗

)
and

ψ(v) = 2

p∑
i=1

∫ bi

ai

(v ◦ (βix, βiy)) · βiz.

Remark 6. In order to compute σsf verifying (9), let us consider the usual Her-
mite basis {wi}3si=1 associated to the knots {ti}si=1 of T laying on the boundary of

H∗, that is, the ones verifying ϕ(wi) = (0, . . . , 0,
i)

1, 0, . . . , 0) for all i ∈ {1, . . . , 3s},
and let us extend it to the usual Hermite basis {w1, . . . , w3s, w3s+1, . . . , wn} of
S12 (H∗), in such a way that {w3s+1, . . . , wn} is a basis of S12 (H∗0). Then, the fact
that σsf ∈ S12 (H∗sf ) together with equations (9) lead to the expression

σsf =
3s∑
i=1

ϕi(sf )wi +
n∑

j=3s+1

αj−3swj ,

where the vector (αj)
n−3s
j=1 is the solution to the linear equations system AX = b,

where:
10



A =

(
p∑
i=1

∫
(βix,βiy)

wj · wt + τ1(wj , wt)1,H∗ + τ2(wj , wt)2,H∗

)n
j,t=3s+1

and

b =

(
p∑
i=1

∫ bi

ai

βiz · wt −
3s∑
k=1

ϕk(sf )

(
τ1(wk, wt)1,H∗ + τ2(wk, wt)2,H∗ +

p∑
i=1

∫
(βix,βiy)

wk · wt

))n
t=3s+1

.

5. Graphical and numerical examples.

In this section, with the aim to show the effectiveness of the hole-filling method
proposed, we present some examples obtained by means of several test functions
and by using wireframes obtained according to different criteria.

In all cases we consider the domain D = (0, 1) × (0, 1); the ∆1-type trian-
gulation T 10 associated to the uniform partition of each of the sides of D into
10 subintervals; a dataset P consisting of q = 5000 points and the smoothing
parameters λ1 = 10−3 and λ2 = 10−6 in functional J1 -such values have been
tested to give proper fitting surfaces (see [22])-. In order to give the same weight
to semi norms | · |1 and | · |2 inside and outside the hole, we have chosen τ1 = 10−3

and τ2 = 10−6 in functional J2 (8).
We have considered different test functions fi, for i = 1, . . . , 4. Functions

f1, f2 and f3 have been carried out over the hole H1 defined implicitly by

(x− 0.5)2

0.252
+

(y − 0.5)2

0.1252
≤ 1. (10)

In Figure 2 we show the graphics of H1, T 10, the surrounding H∗1 and the set of
boundary knots {ti}si=1 in (3).

Figure 2: Triangulation T 10, hole H1, polygonal hole H∗1 and set of knots {ti}si=1.

In all cases, to construct the wireframe of curves β (7) we have to choose
the set of points (4), the curves (5) and the interpolation scheme to define the
filling curves βi. We have considered three different criteria, all of them based
on Bézier techniques: lines wireframe, contour lines wireframe and gradient lines
wireframe.
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· Lines wireframe: The points Qsi and Qei are chosen to be symmetric with
respect to the centroid C of the hole H∗. The functions ξsi and ξei (6) are
defined by

ξsi (t) = Qsi + t
−−→
Qsi C, t ∈ (−εsi , 0],

ξei (t) = Qei + t
−−→
CQei , t ∈ [0, εei ),

with εsi , ε
e
i > 0. In Figure 3 we show a couple of points (4) and curves (5)

for the polygonal hole H∗1 considered in Figure 2.

C

Qs
i

Qe
i

Figure 3: Points (Qsi , Q
e
i ) and curves (ξsi , ξ

e
i ) for lines wireframe.

The filling function βi is then defined as follows: for each i = 1, . . . , p,
let tsi , t

e
i and nsi ,n

e
i be the tangent and normal vectors to (ξsi , sfξ

s
i ) and

(ξei , sfξ
e
i ) at (Qsi , sf (Qsi )) and (Qei , sf (Qei )), respectively. In order to match

the curves (ξsi , sfξ
s
i ) and (ξei , sfξ

e
i ) we construct a fifth order Bézier curve

with control points bk, k = 0, . . . , 5, such that

b0 = (Qsi , sf (Q
s
i )); b1 = (Qsi , sf (Q

s
i )) + σ1 tsi ; b2 = (Qsi , sf (Q

s
i )) + σ2 tsi + σ3 nsi ,

b5 = (Qei , sf (Q
e
i )); b4 = (Qei , sf (Q

e
i )) − σ6 tei ; b3 = (Qei , sf (Q

e
i )) + σ4 tei + σ5 nei ,

(11)

with σl, for l = 1, . . . , 6, being unknown parameters (σ1 and σ6 positive).
With the election of the control points given in (11) we ensure that

〈
−−−→
b0b1〉 = 〈tsi 〉 〈

−−−→
b0b1,

−−−→
b1b2〉 = 〈tsi ,nsi 〉,

〈
−−−→
b4b5〉 = 〈tei 〉 〈

−−−→
b4b5,

−−−→
b3b4〉 = 〈tei ,nei 〉,

so according to Proposition 3, both the tangent line and the osculating
plane, are continuous at (Qsi , sf (Qsi )) and (Qei , sf (Qei )) when filling (ξsi , sfξ

s
i )

and (ξei , sfξ
e
i ) with βi. Next, we impose the curvature and the torsion

to be also continuous at (Qsi , sf (Qsi )) and (Qei , sf (Qei )). These conditions
determine the parameters σ1, σ2, σ4 and σ6 as functions of σ3 and σ5 (unless
(ξsi , sfξ

s
i ) and (ξei , sfξ

e
i ) lie in a common plane; in this case, the torsion

continuity conditions are trivial and the curvature continuity conditions
will provide us σ1 and σ6 in terms of σ2, σ3, σ4 and σ5). The parameters
which have not been determined from the curvature and torsion continuity
conditions are chosen to minimize the function

4∑
k=0

‖
−−−−→
bkbk+1‖2, (12)
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as long as the vectors
−−−→
b0b1 and

−−−→
b4b5 (or equivalently σ1 and σ6) deter-

mined by using (12) are large enough. More precisely, we accept the result

obtained by minimizing (12) provided that ‖
−−−→
b0b1‖, ‖

−−−→
b4b5‖ > 0.01 is sat-

isfied. Otherwise, the remaining unknown parameters are chosen such that

they minimize
∑4
k=0 ‖

−−−−−→
bkbk+1‖2

‖
−−−→
b0b1‖ ‖

−−−→
b4b5‖

.

Note that it is not possible to ensure continuity of tangent line, oscu-
lating plane, curvature and torsion in both end points (Qsi , sf (Qsi )) and
(Qei , sf (Qei )) if a lower order Bézier curve is used. Indeed, we can get con-
tinuous tangent lines and osculating planes by using a fourth order Bézier
curve with control points

b̂0 = (Qsi , sf (Qsi )), b̂4 = (Qei , sf (Qei )),

b̂1 ∈ (Qsi , sf (Qsi )) + 〈tsi 〉, b̂3 ∈ (Qei , sf (Qei )) + 〈tei 〉,
b̂2 ∈ [(Qsi , sf (Qsi )) + 〈tsi , nsi 〉] ∩ [(Qei , sf (Qei )) + 〈tei , nei 〉] .

However, in this case we only count on three free parameters (each of the
control points b̂j , j = 1, 2, 3 moves on a straight line), which in general can-
not be chosen in order to satisfy the four remaining continuity conditions,
i.e. continuity of curvature and torsion at both ends.

· Contour lines wireframe: For each i = 1, . . . , p, the starting point Qsi can
be arbitrarily chosen over ∂H∗. Let T si be the triangle of the Powell-Sabin
subtriangulation

(
T 10
D−H∗

)
6

containing the point Qsi . Since sf |T si ∈ P2(T
s
i ),

we have that the equation sf |T si = sf (Qsi ) is a conic, and thus it can be
easily parametrized by means of a function ξsi (such a parametrization can
be chosen in such a way that ξsi (0) = Qsi ). Next, according to the contour
lines map of sf , we will be able of finding another point Qei ∈ ∂H∗ belonging
to the same contour line of sf than Qsi . A process similar than the one
developed for Qsi will provide us ξei verifying ξei (0) = Qei . Now, filling the
curves (ξsi (t), sf (Qsi )) and (ξei (t), sf (Qei )) consists just in obtaining (βix, βiy)
filling ξsi and ξei , since βiz can be prescribed as sf (Qsi ) = sf (Qei ). Such a
planar filling method will be an adaptation of the one developed in the lines
wireframe case. More precisely, in order to match the curves ξsi and ξei with
tangent vectors tsi , t

e
i at the points Qsi and Qei , respectively, we construct a

cubic Bézier curve with control points

b0 = Qsi , b1 = Qsi + σ1 tsi , b2 = Qei − σ2 tei , b3 = Qei ,

with σ1 and σ2 being positive unknown parameters. This choice leads us to
continuous tangent lines at Qsi and Qei when filling ξsi and ξei with (βix, βiy).
In addition, curvature continuous condition at Qsi and Qei determine the
parameters σ1 and σ2. It is worth noticing that in this case, as we are

13



matching plane curves, the continuity conditions of osculating plane and
torsion are trivial, so that a cubic Bézier curve allows us to carry out the
matching with continuous tangent lines and curvature at both ends points.
It is easy to check that it is not possible to impose these conditions with a
lower order Bézier curve.

· Gradient lines wireframe: In this case, for each i = 1, . . . , p, the couple of
points {Qsi , Qei} can be arbitrarily chosen over ∂H∗. The curves {ξsi , ξei } are
such that {sfξsi , sfξei } are the maximum gradient lines of sf at (Qsi , sf (Qsi ))
and (Qei , sf (Qei )) respectively. The β′is are constructed as in the lines wire-
frame case, leading then to fillings with continuity of tangent lines, oscu-
lating planes, torsion and curvature at (Qsi , sf (Qsi )) and (Qei , sf (Qei )).

Remark 7. It is to mention that contour and gradient lines criteria cannot be
applied whenever the considered contour or gradient line of sf at a point Q ∈ ∂H∗
lies over the boundary of H∗. Anyway it doesn’t pose a problem since, apart from
the fact that both drawbacks cannot happen at the same time at the same point,
we can always move to another point Q over ∂H∗.

It is important to point out that the choice of couples {Qsi , Qei} reveals to be
crucial. In fact, choosing improper couple of points will give rise for sure to poor
fitting patches. Regarding this issue, it is not possible to give a general criteria to
choose {Qsi , Qei} leading to proper results in all cases. As expected -and checked
in the experimental section-, doing a proper election strongly depends on the test
function considered. Nevertheless, all experiments carried out show that there
are two key aspects in order to obtain a proper wireframes family to fill the ‘hole’:
(a) they must go through most part of it, i.e., relative big regions of the hole must
not remain uncovered; and (b) they must faithfully gather the information of the
shape of sf near the inner boundary of D−H∗, and both aspects are absolutely
conditioned by which the point {Qsi , Qei} be. Next we analyze how the choice
of {Qsi , Qei} may affect (a) and (b) in each of the three families of wireframes
considered.

The role of lines wireframe is to effectively cross the most part of the hole.
As expected, numerical experiments show that lines wireframe criteria give very
good fillings when sf presents some kind of symmetry with respect to the hole.
More precisely, in the examples carried out we have observed that the more the
slopes of the tangent lines to the graphics of sfξ

s
i and sfξ

e
i at t = 0 are closer, the

better the fillings β obtained through lines wireframes are. To this end, for each
of the test functions we show a graphic in which, for 1920 points R uniformly
distributed over ∂H∗, we associate a different level of blue according to the value

of the directional derivative of sf at R in the direction of the vector
−→
R C. More

precisely, such directional derivatives are larger as color blue is deeper. Then, in
14



order to apply lines wireframe criteria, we have chosen the couples {Qsi , Qei}
p
i=1

to have similar level of blue. This election will have a double beneficial effect:
on the one hand, it will allow us to monitor the accomplishment of (b) above -to
this end, we just have to choose couples covering a wide range of blue- and, on
other hand, it will also allow us to join curves with similar slopes -to this end,
we have to choose points {Qsi , Qei} having a similar level of blue-.

Regarding contour lines wireframes, we have considered that it might lead to
good results as, somehow, they force the filling patch to have the z-component
that it is expected to have. Of course, the effectiveness of the contour lines
wireframe will depend on the shape of the function sf and, more precisely, on the
shape of its contour lines over D−H∗ and on the feasibility to fill them inside the
hole H∗. In this family of wireframes, we can find that for a given starting point
Qsi we may obtain multiple ending points. That’s the reason why, in order to
obtain proper ending points, we introduce contour lines map of function sf over
D −H∗. Observe that the contour lines map of the filling σsf must reasonably
fill the contour lines map of function sf insofar as σsf is expected to properly
fill the hole inside sf . Therefore, when multiple ending points are obtained,
we are going to be able (in most cases) to obtain an appropriate ending paired
point according to the map of contour lines of sf over D −H∗. When working
withcontour lines wireframes (b) is somehow fulfilled as these lines gather the
information of the paths over which sf has a constant value and lead the way
over which σsf must keep these values. The unique issue then to monitor in this
case is the accomplishment of (a), i.e., the global map of contour lines wireframes
should somehow go through most part of the hole.

Finally, regarding gradient lines wireframes, there is no need to impose any
particular initial conditions on starting and ending points. Gradient lines -which
are called to complement contour lines ones insofar as they become a perpendicu-
lar system of curves- gather the information of maximum directional derivatives of
sf over ∂H∗ and, therefore, they lead to high-quality starting and ending graph-
ics over the holes, particularly when working with irregularly shaped functions,
ensuring (b) above. In gradient lines criteria, it becomes particularly relevant
the role of using Bézier techniques since having filling βi strongly preserving the
shape of the gradient lines considered over D − H∗ is absolutely crucial. As
in the contour lines wireframes family, in this case we have just to monitor the
accomplishment of (a).

It is to mention that (a) and (b) must be fulfilled by the complete set of
wireframes, in such a way that one of the families considered may uncover one of
both conditions whenever it is covered by another one (in the examples section
we will check that for Franke’s and Nielson’s test functions, contour lines -or even
gradient lines- wireframes lacks of (a), but the complete set of wireframes lead to
good results since all of them cover (a) and (b)).
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Next we will apply previous wireframe criteria to different test functions. We
will analyze which of such criteria best suit to test functions considered depending
on their particular shapes. A clear conclusion is that the best results are obtained
when handling conjoint wireframes adapted to the particular shape of sf .

In order to simplify the notation, all over the examples we will use the notation
LW, CLW and GLW to refer to lines wireframe, contour lines wireframe and
gradient lines wireframe, respectively.

Sinusoidal function:

We consider the function f1(x, y) = sin
(
2π2(x− 0.5)(y − 0.5)

)
over D −H1,

where H1 is the hole defined implicitly in (10), whose graphic is shown in Fig. 4.

Figure 4: Function f1 over D and over D −H∗1 .

The graphic of f1 is symmetric with respect to the centroid of H∗1 , leading to
a symmetric coloured plot of directional derivatives, as shown in Figure 5 left. As
a consequence, any LW is expected to provide a proper filling curve βi. For f1,
we have considered the set Q in (4) to be composed by p = 8 couples of points.
In Figure 5, second, we plot the points Q, the curves Ψ in (5) -the green ones
inside the gray triangles of (T 10

D−H∗1
)6- and the fillings (βix, βiy) for i = 1, . . . , p

-the green ones inside H∗1 -. In Figure 5, third, we show the graphic of sf1 (the
fitting one outside H∗1 ) together with the ones of the filling wireframe β (7). In
Fig. 5 right we show the joint graphics of sf1 ,β and of the filling σsf1 inside H∗1 .

Figure 5: Plot of directional derivatives of sf1 over ∂H∗1 (left) and lines wireframe for f1.

Despite the fact that LW works properly for sinusoidal function -due to the
symmetry of its graphic-, we have also done tests with CLW and with GLW. In
Figure 6 left we plot the contour lines map of sf1 in D − H∗1 . When applying
CLW to sinusoidal function we have found that for most starting points we have
numerically obtained seven ending points -as expected from Figure 6 left-, but
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just due to this figure we have been able to easily discard six of them. Results of
CLW for f1 are shown in Figure 6.

Figure 6: Contour lines of sf1 in D −H∗1 (left) and contour lines wireframe for f1.

Finally, in Figure 7 left we plot the gradient lines map of sf1 at some points
over ∂H∗1 and, as in the contour lines case, we choose the set Q in order to
(βix, βiy) go through and cover H∗1 as much as possible. Results of GLW for f1
are shown in Figure 7.

Figure 7: Gradient lines of sf1 at points over ∂H∗1 (left) and gradient lines wireframe for f1.

In Tables 1 and 2 we show estimations of the relative errors committed inside
the hole H∗ when filling the test functions with the different wireframes proposed
separately as well as with the joint set of wireframes. The relative error formula
considered is ∑2000

i=1 (f(ai)− σsf (ai))
2∑2000

i=1 f(ai)2
,

where {a1, . . . , a2000} are arbitrary points in H∗, f is the test function and σsf is
the filling function of f inside H∗. At the end of this section we include a brief
analysis of the error estimations obtained.

In Figure 19 we show the joint wireframes considered for each of the test
functions leading to errors in the last row of Tables 1 and 2.

Semisphere:

We consider the function

f2(x, y) =

{ √
0.52 − (x− 0.5)2 − (y − 0.5)2 if (x− 0.5)2 − (y − 0.5)2 ≤ 0.52

0 otherwise

over D −H∗1 , whose graphic is shown in Figure 8.
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Figure 8: Function f2 over D and over D −H∗1 .

In Figure 9 we show results for f2 regarding LW. From left to right we show:
the map of directional derivatives of sf2 at points over ∂H∗1 together with the
points Q, the curves Ψ and the fillings (βix, βiy) (left); the function sf2 together
with the fillings β (middle); the graphics of sf2 ,β and of the filling σsf2 inside
H∗1 (right). Observe that in this case there exists also some kind of symmetry in
the plot of directional derivatives and so it has been straightforward to choose
points Q. As for test function f1, we have also improved the filling of f2 by using
GLW. Results are shown in Figure 10 (from left to right: the gradient lines map
of sf2 at some points over ∂H∗1 together with the points Q, the curves Ψ and
the fillings (βix, βiy) -left-; the graphics of sf2 and β -middle-; the joint graphics
of sf2 ,β and of the filling σsf2 inside H∗1 -right-). Observe that in Figure 10 left
the different gradient lines do not pass exactly through the center (0.5, 0.5) since
the graph of sf2 is not the semisphere, but an approximation. For test function
f2 we have not considered CLW criteria since the contour lines of sf2 are almost
circles centered at (0.5, 0.5) and, therefore, they do not go significantly through
H∗1 .

Figure 9: Lines wireframe for f2.

Figure 10: Gradient lines wireframe for f2.

Franke’s function:
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Next we consider Franke’s function, defined by

f3(x, y) = 0.75e−
(9x−2)2+(9y−2)2

4 + 0.75e−
(9x+1)

10
− (9y+1)2

49 +

0.5e−
(9y−7)2+(9x−3)2

4 − 0.2e−(9y−4)
2−(9x−7)2 ,

over D −H∗1 , whose graphic is shown in Figure 11.

Figure 11: Function f3 over D and over D −H∗1 .

In Figures 12, 13 and 14 we show results for f3 by means of LW, CLW and
GLW, respectively. Regarding LW, as in the previous cases, we have chosen the
lines associated to closer directional derivatives of sf3 over ∂H∗1 ; regarding CLW,
according to Figure 13 left, we guess that contour lines of sf3 may have a rather
heterogeneous behavior inside H∗1 , not being for all starting points so easy to
decide whether a candidate to ending point is suitable or not. So, we have just
chosen a few of them which are closer to the boundary of H∗1 , which seem to
present a predictable path. Finally, gradient lines have been chosen in order to
go all through H∗1 and, somehow, report the information which is not covered by
contour lines.

Figure 12: Lines wireframe for f3.

Figure 13: Contour lines wireframe for f3.

Nielson’s function:
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Figure 14: Gradient lines wireframe for f3.

Finally, we consider Nielson’s function, defined by

f4(x, y) =
y

2
cos
(
4
(
x2 + y − 1

))4
,

over D −H∗2 , where H2 (Figure 15 left) is defined implicitly by

(x− 0.6)2

0.192
+

(y − 0.65)2

0.122
≤ 1.

Figure 15: Hole H2, polygonal hole H∗2 and function f4 over D and over D −H∗2 .

This is a more complicated example which requires a more detailed analysis
and managing. The plot of directional derivatives of sf4 over ∂H∗2 is shown in
Figure 16. Although we could consider some lines to be filled with LW criteria,
we observe that there are not too much options to consider couple of points,
symmetric with respect to the centroid, with similar directional derivatives and
covering a representative part of H∗2 . So, in this case, we have decided to start
with CLW criteria. As for Franke’s function, the plot of contour lines of sf4
inside D−H∗2 (Figure 17 left) is quite complex, not being easy to decide whether
a candidate to ending point is suitable or not for all starting points. Therefore,
according to this plot, we have chosen just contour lines that seem to have a
predictable path. Results for f4 by using CLW are shown in Figure 17. Of
course, such contour lines are not enough to gather the particular shape of f4
inside H∗2 , in such a way that the filling function when handling just CLW cannot
be expected to be good, as shown in Figure 17 right. In order to overcome the
lack of information about f4 inside H∗2 when using just CLW, we are going to
add some gradient lines in order to construct the filling σf4 . Such gradient lines
will gather the information of maximum slope of sf4 in perpendicular ways to
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the contour lines and, therefore, the wireframe composed by all -contour and
gradient- lines is expected to give a faithful filling function. Results are shown
in Figure 18 right. Finally, in view of the filling function obtained with joint
CLW and GLW (Figure 18 right), we have reinforced such a filling by means of
a three lines wireframe strategically located in the ‘top’ of the graphic (Figure
19 right). Although visual appearance of such conjoint filling is the same than
the one obtained just with CLW and GLW (Figure 18 right), in Table 2 we show
that, indeed, the global filling is better when adding these lines to the wireframes
CLW and GLW.

C

Figure 16: Plot of directional derivatives of sf4 over ∂H∗2 .

Figure 17: Contour lines wireframe for f4.

Figure 18: Gradient lines wireframe for f4.

Figure 19: Joint wireframes of all test functions.
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f1 f2 f3

Lines wireframe 9.13 · 10−5 4.45 · 10−4 8.01 · 10−4

Contour lines wireframe 9.71 · 10−5 — 7.19 · 10−3

Gradient lines wireframe 7.15 · 10−5 4.32 · 10−4 4.31 · 10−4

Joint wireframes 1.03 · 10−5 5.71 · 10−5 8.41 · 10−5

Table 1: Relative error estimations for test functions f1, f2 and f3.

f4

CLW and GLW 6.17 · 10−4

LW, CLW and GLW 1.07 · 10−4

Table 2: Relative error estimations for test function f4.

Regarding Tables 1 and 2 we can highlight the following facts: As i increases
from 1 to 4, the shape of function fi is more devious and thus, error estimations
become slightly worse. Function f1 is highly smooth over H∗1 and, therefore, LW,
CLW and GLW lead to similar errors. In function f2 we find that, due to its
shape, LW and GLW are very close (see Figures 9 left and 10 left) and thus, error
estimations are similar. The conjoint wireframe provides better results. Function
f3 presents the worst result for CLW, as expected insofar this wireframe on its
own does not properly cover the hole. Error for GLW is better than the one for
LW: somehow, GLW gathers and extends better the shape of sf3 outside H∗1 .
Finally, f4 also presents better results when considering the conjoint frame. In
fact, this is a common result: in all cases, the error estimations are better when
considering joint families of wireframes.

In Table 3 we present a comparison of the orders of the best relative errors
in this work (Tables 1 and 2) to the best ones provided in the following previous
works covering the same topic of filling missing data: [5], where also a (weaker)
cartesian wireframe of the filling surface is constructed, and [3], where the filling
surface is constructed on a shape-preserving criteria which allows to estimate
partial derivatives inside the hole. In [3] results of relative errors when filling just
with a minimal energy criteria are also provided.

We can check in Table 3 that for all test functions we improve the results.
Such an improvement is less significant for f1 since it is a very smooth function,
but we find it is relevant for the remaining test functions.
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Sinusoidal Semisphere Franke Nielson

This work 1 · 10−5 10−5 10−5 10−4

Cartesian wireframe in [5] 8 · 10−5 10−2 10−3 10−3

Shape-preserving criteria in [3] — 10−4 10−4 10−3

Minimal criteria in [3] — 10−3 10−3 10−1

Table 3: Orders of the best relative errors when filling with different methods.

6. Conclusions

In this paper we have presented a method to fill the hole of a given surface
(or dataset). The method consists of two stages:

i) To fit the given dataset by means of a quadratic C1-surface sf over a polyg-
onal hole surrounding the original one;

ii) To define a filling patch σsf interpolating some data of sf over the boundary
of the hole in order to the global function be quadratic and of class C1.

The filling patch is obtained by faithfully extending the ‘shape’ of sf inside
the hole. To this end, we have decided to use Bézier curves, which provide a more
suitable frame to work with geometric features and, therefore, are expected to lead
to proper filling patches. Numerical and graphical results show that, indeed, the
proposed method improves some of the previous filling methods results, specially
when handling with devious shaped surfaces. All over the examples we check the
relevant issue of adequately choosing the wireframe to be considered according
to the particular shape of the function sf to be filled.

Moreover, this paper naturally suggests to study the still unexplored field of
filling patches by means of Bézier surfaces and, more particularly, of triangular
patches, which has revealed to be a very natural way to represent splines defined
over triangles. To explore the chances of using the geometric properties of the
elevations of the control nets, as well as of the nets provided by the well known
De Casteljau algorithm when imposing geometric conditions to the filling patch,
seems to be quite interesting.
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