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Abstract—There is a growing interest in pushing computation
to the Edge, especially the problem-solving abilities of Artificial
Neural Networks (ANNs). This paper presents a simplified
method to obtain a Ternary Neural Network based on the Multi-
layer Perceptron. The method is focused on resource-constrained
devices, where memory, computing power, and battery are
some of the most relevant constraints. A dynamic threshold is
estimated to perform ternarization, and a new pruning technique
is proposed to obtain a drastic reduction in the ANN’s size,
with the corresponding decrease in resource utilization and
power consumption of the resulting hardware. In addition, a
support framework has been developed to automate hardware
design exploration and generation from the network trained in
software. Experimental results show that the proposed method
and architecture, when implemented in a Field-Programmable
Gate Array (FPGA), provide excellent figures in power (0.11-0.13
W) and efficiency (1,225-1,448 kfps/W) with respect to state-of-
art, being its efficiency double than the maximum one reported
previously.

Index Terms—Constrained Devices, Energy Efficient Devices,
Low Power Devices and Circuits, Real-Time Systems.

I. INTRODUCTION

Artificial Neural Networks have gained attention in the
last few decades thanks to their success in solving multiple
problems, such as pattern recognition, regression and classi-
fication. Moreover, their properties as general approximators
have allowed this family of algorithms to establish themselves
on the podiums of numerous well-known problem solutions, as
could be MNIST [1], CIFAR [2], and ImageNet [3]. However,
despite their huge potential, ANNs are resource-hungry, espe-
cially in Deep Learning scenarios. That usually implies the
need for complex architectures and large computing resources
to reach relevant results, which is not affordable for Edge
Computing and Internet of Things (IoT) applications.

Many approaches have appeared to reduce the complexity
of ANNs. Some of them attempt to use techniques as sparsity
increment [4], pruning [5] or shared weights [6], while others
look for reducing the size of the data, from the floating
point precision (FPP) of software implementations to the
extreme case of 1 bit representation [7]. With a fine parameter
initialization, these techniques allow an ANN to keep a high
accuracy level while decreasing latency, resources, and power
consumption [8].

Other researchers have focused on creating efficient hard-
ware (HW) devices for the implementation of ANNs [9] or
the adaptation of general devices, such as Graphics Processing
Unit (GPUs) and FPGAs with this purpose [8]. FPGAs have
gained a growing interest in the last few years to be considered
a middle point between Application-Specific Integrated Circuit
(ASICs) and GPUs: First, FPGAs allow the possibility of
creating problem-specific tailored implementations without
starting from scratch, with fully verified and perfectly docu-
mented low-cost boards. And second, their parallel processing
fits quite well with the concurrent nature of ANNs, which
allows them to surpass GPUs in speed, resources and power
efficiency in some cases [10].

In this context, it is reasonable to think that Edge Computing
and IoT efficiency can be improved by linking the implemen-
tation reduction techniques of ANNs with specific hardware
solutions, where real-time or time-constrained processing and
power consumption are critical. Based on the simplest ANN
topology, the Multilayer Perceptron (MLP), this paper inves-
tigates a more straightforward way of designing and training
Binary/Ternary Neural Networks for their hardware implemen-
tation on FPGAs. Our proposal focuses on having low power
consumption and using few computational resources since both
features are essential for any IoT application. Thus, we may
enumerate the main contributions of this work as follows:

• A ternarization technique is proposed to help maintain the
ANN accuracy while significantly reducing the computa-
tional requirements of the model. It is fully compatible
with the vanilla feedforward MLP’s structure [11].

• A new pruning method is presented, which can reduce the
number of neurons at the hidden layers without losing
accuracy. Pruning allows a decrease in both hardware
requirements and power consumption.

• A specific FPGA architecture is proposed to be an
alternative for low-power IoT applications. It uses a
bias initialization technique to reduce the number of
operations made in the device.

• A framework has been created to support the software
training algorithms and to generate the hardware archi-
tecture, providing an automatic interaction between them.



These contributions focus on decreasing the system’s power
consumption and resource utilization with respect to the state-
of-art. We have obtained an efficiency in the range of 1,225-
1,448 kfps/W, doubling the best one found in the literature
while a high accuracy remains. Furthermore, we reach 90%
of the final accuracy at the first epoch, leading to state-of-the-
art accuracy results without the need of long training times
(20-40 epochs), as we further discuss in Section VI.

The remaining of this paper is organized as follows: Section
2 provides background on BNNs and the existing FPGA
implementations. The proposed model and pruning method are
presented in section 3. Section 4 describes the optimizations
made towards the hardware implementation. Section 5 explains
the automatic interface between software and hardware. Sec-
tion 6 discusses the experimental evaluation, and to conclude,
in Section 7 some conclusions are drawn.

II. QUANTIZED NEURAL NETWORKS IMPLEMENTATIONS

Binary Neural Networks (BNNs) [12] are currently a hot re-
search topic when deploying ANNs in FPGAs. This technique
can be seen as an extreme quantization case whose aim is to
reduce the data representation to decrease the complexity of
the operations, the power consumption, and the resources and
memory usage of the models [13]. Furthermore, these are the
characteristics required by IoT and Edge applications. Among
BNNs, there are two main variants: fully-binarized networks,
where all the parameters of the network are binarized (includ-
ing weights, activation functions, and input data), and partially
binarized, where only some of the parameters are binarized.

In 2017 H. Alemdar et al. [14] proposed Ternary Neural
Networks (TNN) for resource-efficient applications, using
weights and activation functions constrained to {-1, 0, 1}.
This network structure presents low energy consumption (only
0.377 W when used for the CIFAR10 dataset) while achieving
high accuracy results. Similarly, M. Ghasemzadeh et al. [9]
proposed a residual BNN framework to train and deploy them
on FPGA platforms. They analyze the reduction in accuracy
by representing features with multiple levels of residual bina-
rization. This technique provides a trade-off between hardware
performance and accuracy while the area required in the FPGA
for the multi-level binarization is negligible.

Other authors used binarization not to improve the efficiency
but as an accelerator, since it leads to a reduction in the
number of operations required to execute the ANN [8][15][16].
Y. Umuroglu et al. [8] proposed a framework, FINN, where
different layer structures were binarized and implemented
in a ZC706 FPGA to test its performance. This framework
achieved latency’s results in the order of microseconds, while
maintaining accuracy results over 80% for all the tested
datasets. An improved version of the framework [15] included
a hardware cost estimator and further optimizations of the ar-
chitecture and platforms while maintaining high-performance
results.

In this work we aim to face both goals simultaneously
since optimizing the BNN can reduce latency and resource
usage. The power consumption will take more relevance

as the developed architecture focuses on Edge devices. To
improve these features, this work is developed using a simpler
model with respect to the state-of-art, which also brings some
optimization regarding the hardware architecture. At the same
time, we based our framework on reduced network structures,
removing non-required layers such as batch normalization.
This approach leads to outperforming the best results reported
previously by 21 times lower consumption and twice larger
efficiency. The model and its architecture are introduced in
the following sections.

III. TERNARY NEURAL NETWORK MODEL AND TRAINING

A. Proposed model

The model proposed in this paper has the same structure as
an MLP using the vanilla backpropagation (BP) algorithm for
training [17]. We propose to carry out some adaptations for
the ternary ANN implementation. Our modifications are based
on the use of two different weights and biases:

• First, weights and biases W̃ and B̃ are used to keep the
learned values of the network following the traditional
backpropagation procedure. They are used in the calcu-
lation of each neuron output, as shown in equations 1 and
2. Their initialization is done with a zero mean random
distribution of FPP numbers. However, W̃ and B̃ will be
progressively updated to ternary values {-1, 0, 1} during
the training by a ternarization technique, summarized in
Table I.

• Secondly, we use and track full-floating point precision
weights and biases W and B. They aim to accumulate
all the updates given by the BP algorithm in equations 3
and 4. Their values are initialized to 0.

sumk
i =

nk−1∑
j=1

(yk−1
j W̃ k

ji) + B̃ik (1)

yki = aki (sum
k
i ) (2)

W k
ji = W k

ji − α∆W̃ k
ji (3)

Bk
i = Bk

i − α∆B̃k
i (4)

In these equations, k denotes the layer, i is the respective
neuron in each layer k, and j is the index for the j-th output
from the previous layer. α is the learning rate, ak is the
activation function of all neurons at layer k (whose number
is nk), and yki denotes their output. Equations 1 and 2 show
the calculation of each neuron’s outputs as a perceptron, while
equations 3 and 4 are the updates done after BP.
W k

ji and W̃ k
ji are related through a dynamic threshold (T ).

When abs(W k
ji) surpasses T k

ji, W̃ k
ji could be updated to a

new ternary value in the range {-1, 0, 1}. This threshold is
initialized with an integer value, which is the same for each
weight. Then, in case of surpassing, T k

ji adopts the absolute
value of W k

ji, multiplied by a factor (f in Table I). This factor
needs to be greater than 1 to ensure the growth of T during
the training.



TABLE I
WEIGHTS UPDATING WITH THE DYNAMIC THRESHOLD T .

If and Then

Wk
ji Int(W̃k

ji) = Wk
ji W̃k

ji Tk
ji

< −Tk
ji -1 Wk

ji -1 Tk
ji

< −Tk
ji 0 0 -1 Round(abs(Wk

ji)) × f

< −Tk
ji 1 0 0 Round(abs(Wk

ji)) × f

> Tk
ji -1 0 0 Round(abs(Wk

ji)) × f

> Tk
ji 0 0 1 Round(abs(Wk

ji)) × f

> Tk
ji 1 Wk

ji 1 Tk
ji

The concept of a dynamic threshold has been explored be-
fore by other approaches. For example, in [14] H. Alemdar et
al. based their ternarization model on a step function with two
trained thresholds per neuron as activation function. However,
we use it at the BP algorithm during the training without
limiting the activation function to a step representation.

The six possible updating cases are summarized in Table
I. The reason of getting the integer value of W̃ k

ji is that
these weights are initialized as a small FPP. Therefore, they
do not get its ternary value until they are updated. This
process has shown a faster convergence and performance in the
experiments, rather than directly starting with their respective
ternary values. It should be noted that when W̃ k

ji is going
to keep the same value (either because abs(W k

ji) does not
overtake T k

ji or because it tends to continue rising out of the
imposed limit -1, 1), there is not any update. In this case,
abs(W k

ji) will continue increasing, giving fewer opportunities
to W̃ k

ji to change its value.
Four different examples are shown graphically in Figure 1.

A factor f = 1.5 is used for all of them. Only the examples
numbered 2 and 4 have had an update, due to surpassing
the threshold. For number 3 the threshold is also exceeded
positively, but as W̃ had already taken its maximum positive
value, nothing changes.
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Fig. 1. Examples of weights updating (updates are in red).

B. Training data preprocessing and network deployment

The training part of this framework has been developed
using Python (v3.8.3) and the library NumPy. For a better
comparison with other approaches (most of them in Table V),
the only preprocessing made in the experiments is input data
binarization. It is implemented with a simple threshold that
allows choosing between a 0/1 input from the initial value.
While the input layer has a binarized input, the rest have until
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Fig. 2. Activation function used in training (left) and its ternary deployment
(right).

five possible input values depending on the activation function,
which is different for training and deployment:

1) Training: For training, a simplification of the ternary
hyperbolic tangent (tanh) has been selected, as shown in Figure
2. The aim is to consider that the result obtained in each neuron
is a sum of +1 and -1 values. As a counter, a certain number
of these 1 values, called Limit, is needed to trigger a negative
or positive value. This Limit can be calculated with equations
5 and 6:

• Equation 5 tries to adapt the difficulty of overtaking the
Limit to the number of inputs a neuron has, Inputsk,
being 1 the minimum possible value. For example, if
the first layer has 784 inputs (Inputs0 = 784) this
means that Limit0 ≈ 6.29. This equation provides a
simple solution that works when the average values of
the outputs (abs(yk)) far exceed Limitk.

Limitk = 4
√
Inputsk + 1 (5)

• An adaptive solution has been created for those cases
where yk is strictly low. It will happen when the previous
layer has insufficient neurons to propagate high enough
results. Thus, the distance between a negative and a posi-
tive value must be reduced to achieve a good performance
of the training method. To avoid the increment of neurons
in these layers, and therefore the required hardware
resources, each neuron will have its own adapted Limit.
This Limit can be calculated with equation 6, which uses
a factor of the positive outputs’ average (yk+). Positive
outputs are used instead of negative ones because they are
more restrictive in a one-shot learning approach, where
only one output neuron is expected to be positive for
each classification. In addition, a configurable parameter
λ allows to control the updating rate of Limitk, which
is initialized with equation 5:

Limitk = λ Limitk + (1− λ)
yk+
4

(6)

Both equations are available to be selected by the user, who
must analyze and decide which one fits the application under
study better. Furthermore, the activation function has a small
step between the upper and the lower Limit (see Figure 2).
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Its value is another configurable parameter chosen to be 0.1
after a deep exploration during the experiments. It helps the
network by providing some flexibility for the training, while
its value continues close to 0.

Finally, the derivative approximation of the activation func-
tion, a′, is expressed as how much change is wanted in
each function interval. Despite having three intervals, it has
been placed an additional one in the middle only as a step
between extremes, which improves the training. That means
that an output in this interval will have a large derivative
approximation associated, allowing the neuron to move its
output quicker to one of the extremes. At the same time, the
extremes need a smaller a′ to decrease the chance of leaving
this state. In other words, the key is the ratio between both
derivatives (without forgetting a correct setting for the learning
rate). Giving 1 to the middle interval, a ratio in the range of 10-
100 presents good performance in the experiments, remaining
a piecewise function like:

a′(x) =

 0.05 if x ≤ −Limit
1 if − Limit ≤ x ≤ Limit

0.05 if Limit ≤ x
(7)

2) Deployment: The presented model provides two possi-
bilities for its deployment:

• To change the small step used in the activation function
of the training to value 0, getting a ternarized solution
(see Figure 2).

• To use a Sign function, in case a binary implementation
is preferred.

The last option implicates a slight accuracy reduction for the
first option, but it allows having a smaller implementation in
the FPGA (see section VI).

C. Network optimization

Two optimization techniques have been developed to im-
prove the performance of the proposed model:

1) Network size optimization: Pruning is a common a-
pproach in deep neural networks to eliminate redundant or
negligible neurons/layers [5]. During the training of our mo-
dels we observed that a high percentage of neurons was always
returning the same output. To deal with it in an optimal
way, a new pruning algorithm has been used. Most pruning
algorithms focus on the neurons that contribute the least to
the output results [18] [19]. Instead of eliminating these less
significant neurons, our pruning algorithm reabsorbs those
neurons that present static outputs. It takes advantage of the
MLP structure, keeping the accuracy of the network while the
number of neurons goes down. Working over the bias of the
next layer, k, a neuron j in layer k − 1 is deleted by adding
or subtracting its respective weights, as is shown in Figure 3.

Similar to other pruning methods, this technique is used
only for the hidden layers. During an epoch, if an output keeps
the same value more than a given number of times (represented
as percentage x in Figure 3), the pruning algorithm removes
the neuron. In particular, if you select this percentage x as
100%, this pruning technique can keep all the information
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Fig. 3. Proposed pruning method.

given by a neuron in the bias of the following layer, as
that means this neuron is always giving the same value as
output. Thus, this neuron could be removed without any
accuracy loss in the network. The consequent disadvantage is
the increase of the bias value, which requires more bits for its
representation. However, this growth is insignificant compared
to the resources saved when a neuron is removed.

This pruning technique is activated after a few epochs of
training, selectable by the user, to give the network enough
time to fit. Table III shows the pruning performance results.

2) Training time optimization: The updating technique des-
cribed in section III-A is a time-consuming bottleneck of the
algorithm. To increase the speed, T , W , and W̃ are pre-
ordered, sorting first the position of the weights that surpassed
their threshold and need to be updated. The algorithm breaks
the loop after updating them, without taking care of the rest:

P k
1 = (Sign(W k) ̸= Int(W̃ k)) (8)

P k
2 = T k −Abs(W k)) (9)

P k
index = argsort(P1P2) (10)

P k
1 is a 0/1 matrix where a 1 indicates the possibility of

having an update. The negative values obtained in the matrix
P k
2 point up which thresholds are surpassed by the absolute

value of W k (with a negative value). P k
index represents the

sorted indexes of the original matrix, from the minimum to
the maximum. They allow selecting the weights that are going
to be updated.

IV. HARDWARE ARCHITECTURE

In this section, the proposed hardware architecture is ex-
plained. It has been optimized to support a mix between
ternary and binary weights while keeping a binarized dataflow.

A. Overall architecture

The design used in this framework aims to reduce the
energy needed by the system while keeping the robustness
of the typical parallel processing of ANN. For this reason,
each neuron has its independent hardware resources. However,
there is a shared input for all neurons of the same layer. This
input is one bit, changing and arriving to all neurons every
clock cycle. It is processed in parallel and stored in each
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neuron’s accumulator. A multiplexer selects the input from
the previous layer, which a controller manages. The controller
allows the layers to work in pipeline, increasing the system’s
speed. However, the latency is marked by the largest layer: the
rest must wait to get their new batch of inputs. Then, a max
function block is used at the output to get the classified result.
The general structure of the ANN can be seen in Figure 4.

B. Weights and bias extraction

Once the network is trained in software, the learned values
are stored in text files (one per neuron). These files could
be easily read by a synthesis tool (Vivado in our case [20]),
and then be implemented in different ROMs (Read Only
Memories). Important optimization decisions have been made:

1) Bias initialization: Instead of having an adder/subtractor
in each neuron, only one of these operations is needed if
we apply a specific initialization. The idea is to increase or
decrease the bias of each neuron, taking into account the
number of positive (or negative) values that it receives. Let’s
call Nzki the number of weights that are zeros in neuron i
from layer k. If the number of expected inputs is Inputsk−1,
and the inputs have only a binary value, each bias could be
updated as:

B̃ik(t+ 1) = B̃ik(t) + (Inputsk−1 −Nzki ) (11)

This method implies that all neurons are initialized as if
all their non-zero inputs were positive (+1). Then, the neuron
needs just a subtractor, as only negative values will arrive from
the “multiplier” block. A subtractor has been chosen instead
of an adder because of a better performance of the pruning
algorithm. Normally the bias tends to get negative values after
pruning. To compensate it, the possible positive inputs are
added, avoiding the increase of bits needed for their memory.
I.e.: if the final bias of a neuron is -56 and its previous layer
has 100 neurons, it is initialized to 44 (7 bits required) instead
of -156 (9 bits required).

2) Input weights: Thanks to the previous optimization, only
1 bit is required for the weights of the input layer. This
bit will distinguish between negative or non-negative weights
(equation 12). Then, since the input to this layer has a 0 or
1 value, only when input and weight are 1 it is propagated to
the subtractor (an AND operation is used instead of an XOR).

W̃ ji0(t+ 1) =

{
1 if W̃ ji0(t) = −1
0 otherwise

(12)
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C. Layer and neuron structure

There are some differences between the input and the hidden
layers, represented in Figure 5:

• The input layer does not need a multiplexer as only 1
bit (1 pixel) arrives every clock cycle. For the hidden
layers, the multiplexers connect the output registers of
each neuron with the following layer. The result of each
neuron is stored in those registers.

• Section V shows that the “multiplier block” at the input
layer is an AND gate, while an XOR gate is needed for
the hidden layers. It is in charge of studying the input
sign and the weight. The next step, an AND gate allows
negative values to arrive at the subtractor.

• Both types of layers use 1 bit as input. Figure 5 shows
the neurons’ structure with corresponding software (SW)
and hardware (HW) values. The same happens with the
weights. Furthermore, input weights are 1-bit encoded
while the hidden layers are 2-bit encoded.

• The number of bits used at the subtractors and the bias is
the same in each layer. After pruning, each bias becomes
an integer value. Due to this, each layer is created with
the minimum amount of bits needed to represent their
maximum. It could be optimized by customizing each
subtractor to its corresponding bias. However, the gain
is low: it was observed that for each layer the bias ends
up with values in the same range of bits. Configurability
was preferred with respect to the small improvement that
it could bring to the proposed architecture.

It is important to notice that only the sign is propagated
within the neuron. Furthermore, all positive or zero operations
are already done with the proposed bias initialization. That
allows to reduce the power consumption at the subtractor: On
the one hand, fewer operations need to be made. On the other
hand, the subtractor’s output will change only two times per



frame: with the reset (taking the bias sign), and when the
accumulator value becomes negative. That is important, as in
HW design a large percentage of the power consumption is
due to the switching activity.

Both the proposed model and the hardware architecture are
managed by a framework, which is introduced next.

V. FRAMEWORK

The key goal of the framework is to train and optimize
the network in Python and automatically generate its FPGA
implementation using Xilinx Vivado (v.2020). To achieve it,
the process is summarized in six steps: (1) Selection of the
network’s parameters by the user, (2) hardware resources
estimation, (3) training of the network, (4) weights and bias
extraction, (5) generation of VHDL (VHSIC Hardware De-
scription Language) code, and finally, (6) hardware implemen-
tation. Most of these steps have already been explained in the
previous sections. However, (1), (2), and (5) are detailed here.
The flow graph of this framework is represented in Figure 6:
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A. Parameters’ selection

The following list summarized the configurable parameters
available in the framework:

• The number of layers and neurons in each layer.
• The number of epochs and the learning rate.
• The initial values of W̃ , B̃ and T (Section III-A).
• The step value of the activation function (Figure 2).
• The number of epochs before applying pruning (Section

III-C1).

B. Hardware estimator

An estimator has been created for the framework, which
allows performing a hardware design space exploration before
the model’s training. Based on the user input configuration
for the ANN, it returns the expected resources that the im-
plementation will need. Thanks to it, the user could modify
the network before its implementation when the expected
resources exceed those available in the FPGA. Only LUTs
(Look Up Tables) and FF (flip-flops) are employed for the
implementation. The ROMs with the weights are the biggest
LUTs consumers, followed by the subtractor. They are esti-
mated in each layer k as follows:

ROMk
LUTs = (0.017 Inputsk bitsW̃k +3) Neuronsk (13)

SubtractorkLUTs =
bitsB̃k + 1

2
Neuronsk (14)

SubtractorkFF = (bitsB̃k + 1)Neuronsk (15)

where bitsB̃k (or bitsW̃k ) indicates the number of bits used to
represent the biases (or weights) at layer k. I.e.: bitsW̃ 0 = 1.
Equation 15 provides the estimation of the FFs, which are
used mainly by the accumulator and the neuron’s output.

These three equations provide an approximation of the
model. They have been extracted after an experimental process
on a PYNQ-Z1 board. First, several setups (with random
values for the weights, bias, and neurons per layer) were
compiled and analyzed from a regression perspective. Then,
the regression equations have been biased to cover these
experimental values with an overestimation criterion, pre-
venting overflow on the board. This has been done without
considering outliers, to keep a good correlation with the actual
values. After that, the estimator was validated by comparing
its outputs with actual implementation results. This estimator
does not surpass a 10% of error with respect to the real values
during the experiments (as shown in Table II, Column 8).
Furthermore, the user can ensure that the FPGA will have
enough resources for the implementation if the estimation is
made before the reduction during the training by the pruning
method. Finally, this estimation procedure has been optimized
for deep networks (at least one hidden layer), getting worse
results when the architecture is only made of the input layer.

C. VHDL code generation
Although most VHDL code done for the implementation

is configurable, some parts, such the arrays that connect each
layer or the activation functions, have to be adapted for each
network. To achieve it, a general network template has been
defined. This template contains the VHDL definition of the
different layers and HW blocks used in the architecture. With
it, the framework generates the VHDL files used by Vivado,
taking into account the new configuration selected by the user.

D. Deployment
We have tested the different implementations using the

standard Jupyter interface provided by PYNQ. This interface
allows having the training, the code generation for the HW
implementation, and its deployment in Python. The framework
calculates the accuracy percentage for validation once the
output results are received from the FPGA. The advantage
of our proposal is that the same operations are made in SW
and HW. The framework changes the dataflow and the data
representation, but finally, it returns the same result for both.
That means there is no loss in accuracy when an ANN is
implemented in HW concerning the corresponding SW.

VI. EXPERIMENTS

This section shows the performance of the proposed method
and architecture with different implementations. The frame-
work has been tested using the MNIST [1], the Fashion
MNIST [21], and the EMNIST [22] datasets. All the re-
sources and implementation features correspond to the ZYNQ
XC7Z020 FPGA included in the PYNQ-Z1 board.



A. Experimental settings

The experiments demonstrate the ability of the proposed
architecture to achieve the state of the art accuracy with low
resource utilization, not making use of scarce resources like
BRAM or DSPs. Thus, the goal of our experiments is to
show that the proposed architecture can to reduce hardware
resources and power consumption with a minimum decrease in
accuracy, which are key desirable features for IoT applications.
In contrast to other proposals that target maximizing process-
ing speed, our proposed architecture can work at 159.240
kfps. However, real IoT applications are usually limited by the
sensor’ speed, where a typical frame rate could be between 30
- 60 fps for cameras or Lidars.

The main issue of binarized MLPs is their limitation to deal
with complex problems. However, MLPs approaches could
stand out in efficiency and power consumption, as could
be the case of Facebook for small tasks such as ads, news
feed, and search [23]. Furthermore, novel sensors with ultra-
low power consumption combine with MLP approaches to
perform efficient tasks at the Edge. For example, in [24]
ultrasound sensors are used to detect and recognize gestures,
achieving between 84.18% and 92.87% accuracies with an
MLP. Despite nowadays many approaches are moving towards
more powerful ANNs topologies as CNNs (which sometimes
still require some MLP’s layers as output), applications such
as the ones mentioned above get more profit on improving the
efficiency of their deployment.

Thus, the framework has been validated with different
datasets to demonstrate its low power consumption and
resource-consuming capabilities. MNIST, Fashion MNIST,
and EMNIST datasets have been selected because of their
complexity, suitable for an MLP. Furthermore, most related
works used MNIST as the benchmark, moving directly to
CNNs for other datasets.

MNIST contains 28x28 grayscale images of handwritten
digits (0 to 9). It has a set 60K images for training and another
10K for testing. Fashion MNIST is similar to MNIST, but it
seeks to be a more significant challenge for the algorithms. It

changes the digit images to 10 different types of clothes (T-
shirts, trousers, sandals, etc.). It maintains the same dimension
for the images at each set. In the same way, Letters EMNIST
extends MNIST with 26 handwritten letters. It doubles the
number of possible classification classes and the images for
training, 124,8K, and for testing, 20,8K. These datasets have
been tested with two different activation functions, whose
accuracies converge with the increase of the network’s size.
As they use the same training, the comparison is made with
the same trained weights:

• BNN: This topology keeps the ternary weights of the
training (it is not a fully-binarized network). However, it
uses the sign as activation function, which means only 1
bit is needed at the output. It is the one used for the HW
implementations (Figure 5), as there are no significant
differences with the ternary accuracy results while it
presents a big improvement regarding resource utilization.

• TNN: It uses a ternary activation function similar to the
one used in training, shown in Figure 2.

For the training, the dynamic threshold T is initialized to 1
(any integer value is allowed). The learning rate is set to 0.05,
and 40 epochs are used to achieve the final test result. Our
method does not use batch normalization prior to the activation
function, as no significant improvement has been shown by its
addition. The weights are initialized with a normal random
distribution between -0.025 and 0.025 (during the training
they will be gradually converted to their ternary version, as
explained in Section III). These parameters’ initialization is
used for the experiments in Table II.

Additionally, equation 5 is used for MNIST and Fashion
MNIST. However, its performance decreases with Letters
EMNIST, where the experiments showed a reduced positive
excitation of the neurons with respect to the previous datasets.
For that reason, equation 6 was created (see Section III-B).
This equation leads to improving the training results for Letters
EMNIST, while it keeps working similarly to equation 5 for
the others datasets.

TABLE II
PROPOSAL PERFORMANCE.

Dataset Initial Final Hidden Layers Bias’ bits LUTs FF Estimation Accurancy Accurancy
size size reduction (%) per layer error (%) BNN (%) TNN (%)

MNIST

784-10 784-10 0 10 212 206 32.72 80.33 83.36
784-100-10 784-76-10 24 11-7 1,862 1,046 5.99 94.32 95.34
784-200-10 784-149-10 26 11-8 3,613 1,983 2.31 95.53 96.23
784-400-10 784-255-10 36 11-9 5,550 3,072 2.16 95.83 96.48

784-250-250-250-10 784-235-130-48-10 45 11-9-9-6 8,430 4,841 3.93 96.37 96.67

784-10 784-10 0 10 218 207 32 77.53 79.84
Fashion 784-100-10 784-67-10 33 11-7 1,695 941 5.08 84.89 85.96
MNIST 784-200-10 784-79-10 61 11-8 1,975 1,086 5.21 85.73 86.50

784-400-10 784-213-10 47 11-9 5,167 2,794 1.71 85.89 86.54
784-250-250-250-10 784-132-109-111-10 53 11-9-8-8 5,973 3,811 4.67 85.50 86.18

784-26 784-26 0 11 567 318 11.77 49.60 54.41
Letters 784-100-26 784-76-26 24 11-6 1940 1156 5.18 68.24 72.56

EMNIST 784-200-26 784-154-26 23 11-8 3881 2196 1.76 75.24 78.45
784-400-26 784-313-26 22 11-10 7497 4254 1.94 80.14 83.04

784-250-250-250-26 784-232-202-54-26 35 11-9-9-6 9775 5703 3.49 79.32 82.49



B. Results and discussion

The performance of our proposal is summarized in Table
II, with several experiments in each dataset to show how the
pruning procedure affects the final ANN size and its imple-
mentation features. In Column 2 the initial sizes of the ANN to
be trained are given for each dataset, MNIST, Fashion MNIST,
and Letters EMNIST. Then, Columns 3 and 4 list the pruning
results: final network architecture and percentage of reduction
in model’s size, respectively. The remaining columns 5, 6 and
7 show the number of bits used in each layer for bias and
subtractors, LUTs, and FFs. The estimation error in Column
8 represents the mean relative error between the implemented
resources (LUTs and FFs from the previous columns) and the
ones obtained through the HW estimator (using the equations
explained in section V-B). For deep implementations, excellent
results were achieved since the error does not surpass the 6%.
The last columns describe the ANN accuracy for the Binary
(BNN) and Ternary (TNN) representation.

A clock of 125 MHz is used for these experiments, which
corresponds to the maximum frequency of the slowest imple-
mentation. It has been set as a fixed parameter to improve the
comparison between the performed experiments. However, this
frequency can be particularly optimized for each implementa-
tion, as done in Tables IV and VII.

The following subsections focus on particular aspects of
these results, extended with Tables III and IV.

TABLE III
PRUNING PERFORMANCE.

Dataset Percentage x Accuracy (%) Accuracy (%) Final
(%) (20 epochs) (40 epochs) size

MNIST

100 95.30 95.57 784-168-10
99 95.25 95.56 784-156-10
95 95.14 95.53 784-149-10
90 94.91 95.17 784-108-10

100 84.85 85.95 784-151-10
Fashion 99 83.93 85.76 784-112-10
MNIST 95 84.48 85.73 784-79-10

90 83.74 85.62 784-67-10

100 74.48 75.66 784-187-26
Letters 99 74.48 75.19 784-173-26

EMNIST 95 74.42 75.24 784-154-26
90 73.00 75.08 784-146-26

1) Network size optimization: The experiments in Table II
achieve between 22% and 60.5% of reduction at the hidden
layers. For these experiments, the pruning technique is per-
formed after 20 epochs of training to allow the ANN enough
time to ternarize most weights. Despite having the same initial
size, the results change between each dataset, providing better
results for Fashion MNIST.

These results depend on the training execution and the
selected pruning percentage value x (see section III-C1). Some
examples of the relation between this percentage x (in the
range 90 - 100 %) and the pruning technique’s performance
are shown in Table III. Keeping all the configurable parameters
static and with an initial model size of 784-200-10, the pruning
is applied from 20 epochs of training to 20 epochs more (until
40 epochs). The accuracy post-pruning does not change in the
case x = 100 % (used as a reference). Besides it removes
between 13 and 49 neurons in each dataset. An accuracy loss
can be observed for other values of x after the first pruning
(column 3). However, these differences will be decreased with
the training (column 4). The model’s final size reduction is
between 16 % - 46% for MNIST, 24.5 % - 66% for Fashion
MNIST, and 6.5 % - 27% for Letters EMNIST. The pruning
performance decreases significantly in Letters EMNIST due to
the higher number of possible classifications, while the same
layer structure is used to better compare datasets.

Therefore, the observed accuracy loss is relatively low
compared to the achieved reduction in the hidden layers. A
percentage of x = 95 % has been used in Table II, as it keeps
a good trade-off for all tested models.

2) MLP baseline: To visualize the improvement of our
quantized proposal with respect to a full-precision solution,
Table IV compiles three different experiments for each dataset,
based on using a hidden layer with 200 neurons:

• Full-precision (16/16 in Table IV): These experiments
implement an MLP with 16 precision bits (for inputs,
weights, and activation function). They use the same
structure and dataflow as Figure 4, equations 1-4 for
training, and the ReLU as activation function. The ReLU
was selected instead of the Sign to take advantage of its
higher number of precision bits while keeping a similar
implementation in the FPGA (a multiplexer driven by the
sign bit).

TABLE IV
MLP BASELINE.

Dataset Precision Activation Network Clock LUTs FFs DSP Power Throughput Efficiency Accurancy
bits (W/A) function size (MHz) Total % Total % Total % (W) (kfps) (kfps/W) (%)

MNIST
16/16 ReLU 784-200-10 32 44,335 83 8,636 8 210 95 0.265 39.81 150.02 98.26
8/8 24,101 45 5,409 5 0 0 0.151 39.81 263.64 98.12
2/1 Sign 784-149-10 167 3,615 7 1,984 2 0 0 0.120 212.31 1,769.29 95.53

Fashion 16/16 ReLU 784-200-10 32 42,246 79 8,670 8 210 95 0.264 39.81 150.80 88.92
MNIST 8/8 23,134 43 5,303 5 0 0 0.124 39.81 321.05 88.73

2/1 Sign 784-79-10 125 1,975 4 1,086 1 0 0 0.113 159.24 1,409.17 85.73

Letters 16/16 ReLU 784-200-26 32 44,350 83 8,673 8 210 95 0.264 39.81 150.80 89.23
EMNIST 8/8 24,205 45 5,375 5 0 0 0.124 39.81 321.05 88.31

2/1 Sign 784-154-26 167 3,643 7 2,045 2 0 0 0.118 212.31 1,799.27 75.24



• Half-precision (8/8 in Table IV): The same as Full-
precision but with 8 precision bits.

• This proposal (2/1 in Table IV): Using the experiments
from Table II (BNN topology with Sign as activation
function).

The experiments have been implemented in the PYNQ-Z1
board using the maximum possible frequency. Thus, while the
experiments with 16 and 8 precision bits do not surpass a
frequency of 32 MHz, our proposal lets to magnify it by
four (125 - 167 MHz). This improvement is due to shorter
interconnections and reduced complexity of operations. As
mentioned before, it is appreciated that for MNIST and Letters
EMNIST the frequency has been optimized with respect to
Table II.

Considering that the PYNQ-Z1 has 53,200 LUTs, 106,400
FFs and 220 DSPs, columns 6-8 show the absolute value
and the utilization percentage of the required resources for
each experiment. The experiments with 16 precision bits
need the use of DSPs due to the lack of enough LUTs
(their implementation would require more than 100,000 LUTs,
doubling the resources available on the board). Furthermore,
these experiments used most available LUTs (∼80%) and
DSPs (∼95%) on this board. In contrast, the implementation
of our proposal requires minimum usage of the available LUTs
(∼7%).

As is shown in the last column of Table IV, the accuracy
achieved by the proposed method is close to the vanilla
MLP (1-3% of difference [21]) for MNIST and Fashion
MNIST, while the distance increases until ∼10% for Letters
EMNIST. At the expense of this accuracy loss, our proposal
outperforms the results obtained in power, throughput, and
therefore, efficiency (columns 9-11). As can be observed, its

efficiency (kfps/W) is between 4 and 12 times higher than the
full and half-precision experiments. These results indicate that
it is possible to use our model to deal with different problems,
achieving a reduced and efficient deployment of the networks
suitable for the Edge.

C. Comparison to related work

To fair compare our model with other techniques, Tables
V and VI are made with other approaches also based on the
MLP structure. Table V summarizes the main features used in
each proposed model, while Table VI provides (if available)
their FPGAs implementations results. Nevertheless, we have
not found any other work which has published binarized MLP
results for FPGA implementation on Fashion MNIST and
Letters EMNIST. Two experiments are selected from Table
II for further analysis in each dataset: The one with an initial
size of 200 neurons (it reaches accuracy enough to be a good
option) and the one with three hidden layers (network with a
size similar to the rest of the Table).

Regarding resources, the lowest LUTs’ utilization in Table
VI is obtained in [15] by M. Blott et al. Using the same
board proposed in this paper, their implementation requires
25,358 LUTs, achieving an accuracy of 97.69%. Comparing
it with the best result in Table II (96.37%), it can be observed a
difference of 1.32% in accuracy. However, three times fewer
resources are needed with our model, showing a reduction
of 66,76% in LUTs between both designs. In addition, no
BRAMs or DSPs are required, which remain available for
other possible implementations.

The experiments depicted in Table II were performed with
power consumption between 0.11-0.13 W and a clock cycle
of 125 MHz. With this frequency, the model achieved a
throughput of 159.24 kfps when the maximum number of

TABLE V
METHODOLOGY AND ACCURACY COMPARISON.

Dataset Model Precision Optimizer Activation Output Network Accurancy
bits (W/A) function size (%)

BNN [12] 1/1 Adam Sign L2-SVM 784-4096-4096-4096-10 99.04
FP-BNN [7] 1/1 Adam Htanh - 784-1024-1024-1024-10 98.24

MNIST

FINN[8] 1/1 - Sign - 784-256-256-256-10 95.83
784-1024-1024-1024-10 98.40

FINN-R [15] 1/1 - Sign - 784-1024-1024-1024-10 97.69

hls4ml [25] 1/1 - Tanh - 784-128-128-128-10 93.00
2/2 784-128-128-128-10 95.00

RebNet [16] 1/1 SGD ReLU Softmax 784-256-256-256-10 97.87
STBNN [26] 1/1 SGD ReLU - 784-1000-1000-10 98.00

TNN [14] 2/2 SGD - L2-SVM 784-750-750-750-10 98.33
Park and Sung [27] 8/3 SGD Sigmoid - 784-1022-1022-1022-10 -
Probabilistic [28] 32/32 Adam ReLU Linear 784-1000-1000-10 98.32

Fashion [21] 32/32 - ReLU - 784-100-10 97.20

This work 2/1 SGD Sign Max 784-149-10 95.53
784-235-130-48-10 96.37

STBNN [26] 1/1 SGD ReLU - 784-1000-1000-10 87.00
Fashion Probabilistic [28] 32/32 Adam ReLU Linear 784-1000-1000-10 90.81
MNIST Fashion [21] 32/32 - ReLU - 784-100-10 88.71

This work 2/1 SGD Sign Max 784-79-10 85.73
784-132-109-111-10 85.50

OPIUM [22] 32/32 - - - 784-10,000-26 85.15
Letters MLP [29] 32/32 SGD Sigmoid - 1,024-100-26 89.47

EMNIST This work 2/1 SGD Sign Max 784-154-26 75.24
784-232-202-54-26 79.32



TABLE VI
HARDWARE IMPLEMENTATIONS COMPARISON.

Dataset Model Platform Clock LUTs DSPs ALM BRAM FFs Latency Power Throughput Efficiency Accuracy
(MHz) (us) (W) (kfps) (kfps/W) (%)

MNIST

FP-BNN [7] Stratix-V 150 0 20 182,301 2,210 130,237 - 26.2 - - 98.24

FINN [8] ZC706 200 91,131 0 0 4.5 0 0.31 21.2 12,361 583.07 95.83
82,988 0 0 396 0 2.44 22.6 1,561 69.07 98.40

FINN-R [15] Ultra96 300 38,205 0 0 417 0 - 11.8 ∼851.67a ∼72.18 97.69
PYNQ-Z1 100 25,358 0 0 220 0 - 2.5 ∼162.33 ∼64.9 97.69

hls4ml [25] Virtex-9+ 200 212,804 0 0 346 165,514 0.2 - - - 93.00
260,093 0 0 346 165,514 0.19 - - - 95.00

RebNet [16] Spartan XC7S50 200 32,600 150 0 120 65,200 - - 640 - 97.87
TNN [14] Sakura-X 200 - - - - - 20.5 3.8 195 51.31 98.33

Park and Sung [27] ZC706 172 124,862 0 0 323 130,237 - 4.98 70,4 14.14 -

This work PYNQ-Z1 125 3,613 0 0 0 1,983 12.56 0.116 159.24 1372.72 96.23
8,430 0 0 0 4,841 25.12 0.125 159.24 1274.89 96.67

Fashion This work PYNQ-Z1 125 1,975 0 0 0 1,086 12.56 0.113 159.24 1409.17 86.50
MNIST 5,973 0 0 0 3811 25.12 0.122 159.24 1,305.21 86.18

Letters This work PYNQ-Z1 125 3,881 0 0 0 2,196 12.56 0.114 159.24 1,397.84 78.45
EMNIST 9,775 0 0 0 5,703 25.12 0.126 159.24 1,263.81 82.49

aValues with ∼ are estimated by the authors.

TABLE VII
IMPLEMENTATION OF MNIST IN DIFFERENT PLATFORMS.

Platform Clock LUTs FF Power Throughput Efficiency
(MHz) (W) (kfps) (kfps/W)

PYNQ-Z1 167 3,615 1,984 0.120 212.31 1769.29
ZC706 300 3,614 1,991 0.231 424.63 2,011.39
Ultra96 500 3,617 1,993 0.271 636.94 2,350.33

neurons per layer is 784. Aggregating both features, we
achieve an efficiency between 1,225-1,448 kfps/W, doubling
the best result in Table VI [8]. This efficiency comes after
focusing on achieving minimal power consumption, which is
21 times lower than the smallest in Table VI (obtained in [15]).

Additionally to Table VI, Table VII provides a comparison
of the MNIST experiment with an initial size of 200 neurons
implemented in three different platforms: the PYNQ-Z1, the
ZC706 (used in [8] and [27]), and the Ultra96 (used in [15]).
To take the most of their particular features, we have set the
clock frequency to the maximum allowed for each platform
for this specific experiment. While the hardware resources
required by this small example do not exhibit significant
changes among the three platforms, the results in power and
throughput lead to modifying the final efficiency. These results
prove that the hardware estimator (section V-B) can be applied
to different platforms despite being based on the PYNQ-Z1.
This platform also presents the worst performance in efficiency
(kfps/W). Nevertheless, for Edge applications, we obtained
throughputs that surpassed the ones of the possible input flow,
as discussed in Section VI-A. From this perspective, the lower
power of PYNQ-Z1 will be preferable, which stands out with
the best relation hardware resources / power consumption.

To sum up, the main differences found between our work
and related works are:

• We have shown our proposal performance in three diffe-
rent datasets. Thus, we can conclude that the results
achieved on MNIST cannot be extrapolated to more

complex scenarios, as is Letters EMNIST. Furthermore,
the lack of additional datasets from other approaches
complicates measuring the actual performance difference
between models.

• Batch normalization, a technique typically used for BNN,
is not required before the activation function. However,
most works in Table V use it.

• This work focuses on having independent HW for each
neuron (increasing robustness) with the lowest possible
resources utilization. In general, research in this field has
mainly focused on throughput, targeting acceleration ins-
tead of resource and energy-constrained devices.

• The proposed pruning method effectively reduces the
network size and, therefore, to automatically optimizes
the final hardware implementation. To the best of our
knowledge, no other approach has tackled both problems
simultaneously.

• Although achieving a slightly lower accuracy than other
works, the proposed approach stands out from the rest in
resource utilization, energy consumption, and efficiency.
Furthermore, no BRAMs are used, nor DSPs.

To conclude with this analysis, and based on the informa-
tion provided from Tables II, III, IV, V, VI, and VII, the
proposed framework, thanks to the chosen ternarization and
pruning approaches, has demonstrated to be highly qualified
as a sustainable solution for small device applications, where
power consumption and resource utilization are the biggest
constraints.

VII. CONCLUSION

This paper proposes a framework for FPGA implementation
of ternarized ANNs, using a dynamic threshold parameter
estimation. The tool automatically provides an implementable
hardware model, and optimizes resources using pruning tech-
niques. In contrast with previous works in the literature,
the proposed framework can drastically improve hardware
resource requirements for implementation and reduce power



consumption, which is 21 times lower than the best previous
result. Both lead to reach a power efficiency in the range
of 1,225-1,448 kfps/W, making it suitable for IoT and Edge
computing applications. Future work will explore resource
sharing between neurons, looking for a trade-off between
performance, power and resources through a new balance
parameter.
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