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Abstract10

A formulation in cylindrical coordinates of the nonlinear torsional wave propaga-11

tion on a hyperelastic material characterized by Hamilton’s strain energy function is12

proposed. The objective of this formulation is to study and assess soft tissues, tak-13

ing into account both geometrical and physical nonlinearity. Specifically, this work14

analyzes the propagation of torsional shear waves through an isotropic axisymmetric15

medium, so the only non-zero velocity component is associated with the angular co-16

ordinate. To transform the equations from Cartesian to cylindrical coordinates, the17

covariant and contravariant transformations are employed.18

A transverse torsional wave propagating through a quasi-incompressible hydrogel19

from the emitter to the receiver is considered. As the close form solution is not straight-20

forward, a numerical simulation using the Finite Difference Time Domain method is21

performed. The results are obtained for a realistic range of wave frequencies and22

nonlinear parameters for medical applications.23

1 Introduction24

Linear elasticity is a simplified version of nonlinear elasticity, which is valid for certain25

problems where nonlinear terms are negligible. Geometrical nonlinearity is useful when26

the strains of the deformable solid subjected to external stresses are no longer small, these27

terms become relevant and the linear theory is not valid. Additionally, the physical or28

constitutive nonlinearity associated with the material properties arises when the relation-29

ship between stresses and strains is not linear. For the purpose of correctly developing30

this formulation, both nonlinearities must be considered.31

Landau and Lifshitz proposed in one exercise in 1956 to obtain nonlinear motion equa-32

tions from the relation between the internal elastic energy function and the stress tensor33

[?]. Goldberg in 1961 and Zarembo in 1966 solved in parallel the problem defining a strain34

energy function [?, ?]. Afterwards, the Third Order Elastic Constants (TOEC) were for-35

mulated and the invariants of the Green-Lagrange strain tensor defined by Eringen et al.36

in 1974 [?].37
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Zarembo was first to measure experimentally in 1971 the TOEC for some metals and38

crystals [?]. In 1988, Hamilton obtained the experimental B/A parameter for liquids and39

tissues [?]. Hamilton and Zabolotskaya, motivated by the work of Catheline et al. [?] who40

measured the TOEC proposed by Landau and Lifshitz, presented a new formulation of41

the fourth order strain energy function for an isotropic medium [?]. In case of tissue-like42

media, it is practically incompressible and the strain energy function may be simplified.43

Destrade and Ogden in 2010 expanded to the fourth order Landau’s strain energy function44

and determined the exact behavior of the second, third and fourth order elastic constants45

in the incompressible limit of isotropic materials using the logarithmic strain measure [?].46

The nonlinear elastic theory has aroused a huge interest in the study of nonlinear47

materials, including hard and soft tissues [?, ?, ?, ?]. The investigation in shear and48

longitudinal waves propagation in soft tissues began in 1952 in hand of Henning von49

Gierke [?]. The ultrasonic imaging in soft tissues started in the 80s decade when Fujimoto50

et al. described the use of dynamic tests to ultrasonically estimate the compressibility and51

mobility of breast tumors [?].52

Ultrasonic shear waves have been used by many authors in order to measure the linear53

and nonlinear elastic properties of hyperelastic materials such as tissues. The Static Elas-54

tography, originally proposed by Ophir et al. [?], has been successfully used to measure55

nonlinear properties of vascular tissues or malingnant and beningn tumors of breast tis-56

sues [?, ?, ?, ?]. Nevertheless, the results of this method are not satisfactory for organs or57

tissues which are deep or difficult to compress as the strain profile may be uncertain. The58

Transient Elastography introduced by Stefan Catheline [?] has been used, for example,59

to diagnose cirrhosis [?] and for assessment of hepatic fibrosis [?]. The Supersonic Shear60

Imaging (SSI) technique, presented in 2004 by Bercoff and Tanter [?], has also been used61

to obtain the third and fourth order constants, A and D, respectively, of pig brain tissue or62

human breast tissue. However, these studies were limited to ex vivo experiments [?, ?, ?].63

Recent research focuses on the propagation of torsional waves due to the limitations of64

shear and compressional waves [?]. First, this type of wave can propagate by quasi-fluids65

media and, since it propagates at the S-wave speed cs, it is more sensitive to consistency66

changes caused, for example, by tumors [?, ?]. Second, the variations of mechanical para-67

meters are more sensitive in the regime of low energy where this wave is generated. Finally,68

torsional movement does not generate secondary interfering P-waves at the boundary of69

the transducer where pure shear waves are difficult to create [?, ?]. A torsional ultrasonic70

transducer has been used to measure nonlinear parameters of ligament tissue and the shear71

modulus of cervical tissue in pregnant women [?, ?]. These results and prospects justify72

the selection of torsional waves in this study for nonlinear soft tissue analysis.73

The goal of this paper is to elaborate a new formulation in cylindrical coordinates of a74

nonlinear torsional wave propagating on a hyperelastic material defined by the Hamilton’s75

strain energy function. While the quadratically nonlinear propagation of the torsional76

wave on a hyperelastic material has been studied [?], the consideration of all nonlinear77

terms in the equations has not, to our knowledge, yet been included. By considering all78

nonlinear terms allows to understand the behavior of the material in a more reliable way.79

As the nonlinear equations obtained are complex, numerical techniques must be used80

to solve them. In particular, the Finite Difference Time Domain (FDTD) method is used81

in the numerical simulations [?]. As a result, the displacement is obtained for both realistic82

ranges of torsional wave frequencies and nonlinear constants of the hyperelastic tissue-like83
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material for medical applications.84

2 Theoretical background85

The Green-Lagrange strain tensor that governs the elasticity is defined in index nota-86

tion as,87

εij =
1

2
(ui,j + uj,i + ul,iul,j) (1)

where the third term in Equation 1 is related with geometrical nonlinearity. The physical88

nonlinearity is here focused on hyperelastic materials, in which the strain energy function89

W is defined per unit reference (undeformed) volume and acts as potential of the stress.90

The strain energy function is defined following the expression by Landau and Lifshitz91

[?],92

W =
λ

2
I21 + µI2 +

A

3
I3 +BI1I2 +

C

3
I31 (2)

where µ and λ are the Lamé constants and A, B and C are the TOEC. I1, I2 and I3 are93

the invariants of the Green-Lagrange strain tensor defined by Eringen et al. in 1974 [?],94

I1 = tr ε = εii

I2 = tr ε2 = εijεji (3)

I3 = tr ε3 = εijεjlεli

The expansion to fourth order of the energy density is necessary when the nonlinear ef-95

fects in shear waves are considered. This is because for incompressible media, nonlinearity96

at third order is missing in the particle displacement [?]. This expansion is characterized97

by four new terms, yielding,98

W =
λ

2
I21 + µI2 +

A

3
I3 +BI1I2 +

C

3
I31 +DI22 + EI1I2 + FI21I2 +GI41 (4)

where D, E, F and G are the Fourth Order Elastic Constants (FOEC).99

When the case of quasi-incompressible soft tissue media is analyzed, where λ >> µ,100

the strain energy function is simplified to,101

W = µI2 +
1

3
AI3 +DI22 (5)

where A and D are the third and fourth order elastic constants, respectively [?].102

2.1 Nonlinear torsional waves in isotropic cylindrical coordinates103

This paper focuses on the analysis of a transverse torsional wave propagating along104

an isotropic cylindrical reference system. This problem is expected to be expressed in105

cylindrical coordinates because of the following reason. As the OZ axis is an axis of sym-106

metry, this configuration is axilsymmetric. Hence, deriving the formulation in cylindrical107

coordinates has the advantage of solving 3D problems by 2D equations. In this case, the108

configuration only depends on the velocity of the angular coordinate θ, and the velocity109
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in the two others components are negligible [?]. For the mathematical derivation, the110

covariant and contravariant coordinates are used. The use of these coordinates is justified111

for simplifying the formulation. In this manner, the transformation of the momentum112

equation from the Cartesian coordinate system to the cylindrical coordinate system is113

carried out in a more straightforward way.114

The covariant basis, denoted as gi, and the contravariant basis, gi, for the cylindrical115

coordinate system, can be calculated using the following expressions,116

gi =
∂x1

∂ξi
e1 +

∂x2

∂ξi
e2 +

∂x3

∂ξi
e3 (6)

gi =
∂ξi

∂x1
e1 +

∂ξi

∂x2
e2 +

∂ξi

∂x3
e3 (7)

where ξi is the cylindrical coordinate i and x1, x2, x3 are the Cartesian coordinates with117

fixed orthonormal base vectors e1, e2, e3, respectively. The two coordinate systems are118

related according to,119

ξ1 = r =
√

(x1)2 + (x2)2 (8)

ξ2 = θ = arctan
x2

x1
(9)

ξ3 = z = x3 (10)

x1 = r cos θ (11)

x2 = r sin θ (12)

x3 = z (13)

By substituting Equations 8-13 into Equations 6 and 7,120

g1 =
∂x1

∂ξ1
e1 +

∂x2

∂ξ1
e2 +

∂x3

∂ξ1
e3 = cos θe1 + sin θe2 + 0e3

g2 =
∂x1

∂ξ2
e1 +

∂x2

∂ξ2
e2 +

∂x3

∂ξ2
e3 = −r sin θe1 + r cos θe2 + 0e3 (14)

g3 =
∂x1

∂ξ3
e1 +

∂x2

∂ξ3
e2 +

∂x3

∂ξ3
e3 = 0e1 + 0e2 + 1e3

and,121

g1 =
∂ξ1

∂x1
e1 +

∂ξ1

∂x2
e2 +

∂ξ1

∂x3
e3 =

x1

r
e1 +

x2

r
e2 + 0e3

g2 =
∂ξ2

∂x1
e1 +

∂ξ2

∂x2
e2 +

∂ξ2

∂x3
e3 = −x

2

r2
e1 +

x1

r2
e2 + 0e3 (15)

g3 =
∂ξ3

∂x1
e1 +

∂ξ3

∂x2
e2 +

∂ξ3

∂x3
e3 = 0e1 + 0e2 + 1e3

The metric tensor is obtained as the dot product of the covariant and the contravariant122

base vectors. For the cylindrical coordinate system, the covariant and the contravariant123
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components of the metric tensor are defined in Equations 16 and 17, respectively.124

gij = gi · gj =

 1 0 0
0 r2 0
0 0 1

 (16)

gij = gi · gj =

 1 0 0

0
1

r2
0

0 0 1

 (17)

The Christoffel symbols of the second kind represent the coefficients of the Levi-Civita125

connection [?]. Since this connection has zero torsion, the Christoffel symbols are sym-126

metric relative to the lower indices, i.e., Γkij = Γkji. In cylindrical coordinates, the only127

non-zero Christoffel symbols are given in Equations 18 and 19 [?],128

Γ1
22 = −r (18)

Γ2
12 = Γ2

21 =
1

r
(19)

Using the above formulation, the strain tensor of the benchmark problem can be de-129

rived. For this purpose, first, the expression of the displacements is obtained. The covari-130

ant components of the displacement vector are,131

u1 = ur = 0 u2 = ruθ(r, z) u3 = uz = 0 (20)

and the contravariant components,132

u1 = ur = 0 u2 =
1

r
uθ(r, z) u3 = uz = 0 (21)

being uθ the angular displacement. The Green-Lagrange strain tensor of Equation 1 can133

be evaluated using the covariant derivatives of the covariant and contravariant components134

of the displacement vector, according to the expression [?],135

εij =
1

2

[
∇iuj +∇jui +∇iuk∇juk

]
(22)

where the covariant derivative of the covariant components and the covariant derivative of136

the contravariant components are computed following the Equations 23 and 24 respectively137

[?],138

∇iuj =
∂uj
∂ξi
− ukΓkji (23)

∇iuk =
∂uk

∂ξi
+ ujΓkji (24)

The Green-Lagrange strain tensor in cylindrical coordinates is obtained by replacing139

the displacements (Equations 20-21) into the Equation 22. This tensor is defined with140

respect to the undeformed position vector coordinates, so-called Lagrangian coordinate.141

The Green-Langrange strain tensor has the following expression,142

εij =


1

2
u2θ,r

1

2
(ruθ,r − uθ)

1

2
uθ,ruθ,z

1

2
(ruθ,r − uθ)

1

2
u2θ

1

2
ruθ,z

1

2
uθ,ruθ,z

1

2
ruθ,z

1

2
u2θ,z

 (25)

143

5



3 Motion equation for the nonlinear torsional wave144

Since the Green-Lagrange strain tensor is defined in the Lagrangian configuration, the145

stress tensor used to define the constituve equation must also be defined in Lagrangian146

coordinates. In this study, the second Piola-Kirchhoff stress tensor, S, is considered for147

this purpose. The constitutive equation allows obtaining the stresses as a function of the148

displacements. Introducing them into the momentum equation gives as result the balance149

of momentum equation written in terms of the displacements. The starting point is the150

momentum equation in Lagrangian coordinates, which is defined as follows [?],151

ρ
∂v

∂t
= ρg +∇ · T T (26)

where ∂v
∂t is the acceleration in the Lagrangian configuration, ρ is the density, g are the152

body forces and T is the first Piola-Kirchhoff stress tensor. This equation can be rewritten153

in index notation as follows, where upper case indices have been considered to refer to an154

orthonormal base,155

ρ
∂2uJ
∂t2

= ρgJ +
∂TIJ
∂XI

(27)

where XI denotes the Lagrangian coordinate I. The main drawback of the first Piola-156

Kirchhoff stress tensor, T , is that it is not symmetric.157

To restore the symmetry, the second Piola-Kirchhoff stress tensor, S, is introduced as,158

SIJ = F−1IKTKJ = det(F )F−1IKσKPF
−1
JP (28)

where F is the deformation gradient, which is defined as FIJ = ∂xI
∂XJ

and σKP is the Cauchy159

stress tensor.160

The covariant and contravariant components are introduced herein to simplify the161

following mathematical procedure. Neglecting volumetric forces, Equation 27 is expressed162

using the contravariant components of T as [?],163

ρ
∂2uk

∂t2
= ∇iT ik (29)

where ∇iT ik is the divergence of the first Piola-Kirchhoff written in index notation. From164

Equation 28, the first and the second Piola-Kirchhoff stress tensors are related in terms165

of the contravariant components via the following equation,166

T ik = F ijSjk =

(
∂xi

∂Xj

)
Sjk =

(
∂(Xi + ui)

∂Xj

)
Sjk =

(
δij +

∂ui

∂Xj

)
Sjk (30)

By substituting the relation above into the Equation 29, the motion equation in the167

contravariant basis in the Lagrangian configuration is obtained,168

∇i
[(
δij +∇jui

)
Sjk
]

= ρ
∂uk

∂t2
(31)

This is the compact form of the momentum equation expressed in the Lagrangian169

configuration. To expand the equation, several previous steps are required. The covariant170

derivative of the contravariant components is calculated by using the Equation 24. The171
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tensor including these derivatives multiplied by Sjk gives as a result another second kind172

tensor, ∇jui · Sjk = Cik. Hence, Equation 31 can be reformulated as the divergence of a173

tensor Bik, which results from adding the two previous tensors,174

∇i
[
Sik + Cik

]
= ρ

∂uk

∂t2

∇iBik = ρ
∂uk

∂t2
(32)

where the divergence of the contravariant components of any tensor is calculated by,175

∇iBik =
∂Bik

∂ξi
+ BmkΓimi + BimΓkmi (33)

Therefore, Equation 32 may be expressed as:176

∂Bik

∂ξi
+ BmkΓimi + BimΓkmi = ρ

∂uk

∂t2
(34)

Note that for this particular case, the general coordinates are ξ1 = r, ξ2 = θ and ξ3 = z,177

the Christoffel symbols are zero except those in Equations 18-19 and the configuration178

depends only on the velocity of the angular coordinate θ. The summation rule is used179

here. Hence, the first term is decoupled in three summands and the second and the third180

term are decoupled in nine summands each. Equation 34 represents a set of equations,181

one per each value of the index k = 1, 2, 3. In the following, dots denote derivatives with182

respect to time. The first and third equations degenerate into identity (recalling that183

ur = uz = 0) while the second equation leads to,184

(S12),r + (S23),z +
1

r

(
S12 − S22uθ

)
+

1

r

(
2S12 +

2

r
S11uθ,r +

2

r
S13uθ,z

)
+

+
1

r
S11uθ,rr +

2

r
S13uθ,rz +

1

r
S33uθ,zz +

1

r
S11,r uθ,r +

1

r
(S13),ruθ,z+

+
1

r
(S13),zuθ,r +

1

r
(S33),zuθ,z −

1

r2
S11uθ,r −

1

r2
S13uθ,z = ρ

1

r
üθ

(35)

The above equation is expressed in two different notations. The stress tensor compon-185

ents are expressed in contravariant coordinates while the displacements and their derivat-186

ives are already expressed in cylindrical coordinates. Therefore, the only remaining step187

is to transform the stress tensor components into cylindrical coordinates. To this effect,188

the following relationships are used,189

S11 = Srr; S22 =
Sθθ
r2

; S33 = Szz; S12 =
Srθ
r

; S13 = Srz; S23 =
Sθz
r

(36)

which, by substitution into Equation 35 yields,190

Srθ,r
r

+
1

r
Sθz,z −

1

r3
Sθθuθ +

2

r2
Srθ +

1

r2
Srruθ,r+

+
1

r
Srruθ,rr +

2

r
Srzuθ,rz +

1

r
Szzuθ,zz+

+
1

r
Srr,ruθ,r +

1

r
Srz,zuθ,r = ρ

1

r
üθ

(37)
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The Equation 37 represents the nonlinear torsional wave motion equation expressed in191

cylindrical coordinates. This new mathematical formulation considers for the first time all192

the nonlinear terms of the equation associated with finite strains. To obtain the equation193

in terms of the displacements, it is necessary to calculate S. This final step is achieved by194

employing the strain energy function.195

3.1 Strain energy function196

As mentioned in Section 1, hyperelastic materials are those with a strain energy func-197

tion, W, such that the stress can be calculated as the derivative of the strain energy per198

unit undeformed volume, such that,199

Sij =
∂W
∂εij

(38)

Apart from Landau and Hamilton, several authors, like Rivlin and Ogden, have pro-200

posed their own strain energy function [?, ?]. However, the choice of the Hamilton’s201

function is justified due to the quasi-incompressible behavior of the soft tissue, due to202

their fluid content. In addition, this strain energy function has two additional advantages.203

First, it has only two non-linear coefficients, which makes it simpler to obtain them by204

experimental testing. Second, several authors have studied this strain energy function for205

non-linear waves in incompressible solids with successful results [?].206

Hamilton’s strain energy function was defined in Equation 5. The constitutive relation,207

considering the Hamilton’s strain energy, is obtained by replacing Equation 5 into the208

Equation 38, yielding,209

Sij = µ
∂I2
∂εij

+
1

3
A
∂I3
∂εij

+ 2DI2
∂I2
∂εij

(39)

where the second and the third invariant are defined in terms of the covariant components210

of the Green-Lagrange strain tensor as,211

I2 = εimεnk g
ikgnm = ε211+2ε213 + ε233 + 2

ε212
r2

+ 2
ε223
r2

+
ε222
r4

I3 = εpmεinεkq g
imgpqgkn =ε311 + 3ε11ε

2
13 + 3ε213ε33 + ε333 +

3ε11
r2

ε212+

+
6ε12
r2

ε13ε23 +
3ε33
r2

ε223 +
3ε22
r4

ε212 +
3ε22
r4

ε223 +
ε322
r6

(40)

As εij is known, I2 and I3 can be determined in terms of the displacements. Equation212

39 represents the constitutive relation between the second Piola-Kirchhoff stress tensor213

and the Green-Lagrange strain tensor. This nonlinear equation is related to the phys-214

ical nonlinearity. In this manner, both geometrical and physical nonlinearity are here215

considered.216

Finally, as Equation 37 is written in cylindrical coordinates, the constitutive relation217

(Equation 39) must also be expressed in this system. To this effect, the relationships218

between contravariant and cylindrical components of S are used (Equations 36). In Ap-219

pendix A, the components of S expressed in the cylindrical coordinate system are detailed.220

By replacing those components of the stress tensor into the Equation 37, the partial dif-221

ferential equation would be obtained in terms of the displacements.222
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However, to calculate the close form solution is not possible because the resulting223

equation is not mathematically treatable at this time. In addition, the boundary conditions224

of the problem are expressed in a more straightforward manner in terms of velocities and225

stresses. For these two reasons, Equation 37 is considered to be solved.226

4 Numerical results227

The difficulty of finding the close form solution makes it necessary to use numerical228

methods. The variant of the Finite Difference Method, the so-called Finite Difference229

Time Domain, is used in this study to compute the approximate solution of the problem230

[?]. This method is detailed in Appendix B.231

The problem, depicted in Figure 1a, consists in a nonlinear torsional wave propagating232

through a tissue-like material from an emitter to a receiver, made with PLA (Polylactic233

Acid) [?]. As tissue-like material, hydrogel has been considered because its mechanical234

properties are similar to those of a soft tissue. As the configuration is axilsymmetric, the235

3D problem can be solved as a 2D problem (coordinates r and z) what allows reducing236

the computational cost. Besides, the symmetry of the configuration allows dealing with237

only half of the problem. To simplify the problem, both spatial dimensions have the same238

resolution. The spatial resolution (∆r = ∆z) is established according to stability condi-239

tions. To ensure an adequate representation, 20 elements per wavelength are considered,240

according to Gomez et al. [?],241

20 ·max {∆r,∆z} < λmin (41)

where ∆r = ∆z are the spatial resolutions and λmin is the wavelength. A spatial spacing242

∆r = ∆z = 50 · 10−5 m is considered. Once the spatial resolution has been set, the next243

is to determine the time step. For stability reasons, the Courant-Friedrich-Lewy (CFL)244

condition is used [?],245

max(cs) ·∆t <
[

1

∆r2
+

1

∆z2

]− 1
2

(42)

where cs is the shear wave velocity. The temporal resolution is determined: ∆t = 2.5 ·246

10−5 s. The duration of the simulation must be long enough to ensure that all the cycles of247

the excitation signal are recorded at the receiver. To this effect, a duration of ttime = 0.01 s248

and 400 time steps are considered.249

The thickness of the emitter, the hydrogel and the receiver are te = 2.1 · 10−3 m,250

th = 3.4 · 10−3 m and tPLA = 2 · 10−3 m, respectively. The size of domain at the z and r251

direction are zS = 15 · 10−3 m and rS = 18 · 10−3 m, respectively. The magnitude rS has252

been chosen to ensure that the torsional device is not larger than the domain.253

The tissue-like hydrogel has the following parameters: density, ρ = 1000 kg/m3 and254

shear stiffness, µ = 3610 Pa. With this value of µ, the shear wave velocity is similar255

to that of soft tissue (1.8 - 2 m/s). The nonlinear parameters A and D have not been256

experimentally determined for many materials. As there is a lack of information about257

their values, those calculated by Renier et al. for the gelatin are taken as reference [?].258

The boundary conditions are expressed in terms of velocities and stresses since the259

problem is formulated in these variables. Geometrical and mechanical symmetries have260
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a)

rzEmitterReceivertethtPLArSzSDOMAIN

b)

rzEmitterReceiverBCDEAABCABCDOMAIN

Figure 1: a) Representation of the domain where symmetry has been considered and b)
boundary conditions of the numerical simulation.

been taken into account. Thus, the symmetry axis (boundary A in Figure 1b) must be261

fixed, i.e., the velocity is u̇θ = 0. Along the free boundaries (see boundaries C and E in262

Figure 1b), the displacements are permitted without any constraint and no stresses are263

created. In these boundaries the components of the second Piola-Kirchhoff stress tensor264

are nil. In the contact between the receiver and the hydrogel (boundary D in Figure265

1b), experimental results with a high-speed camera using particles on the surface of the266

hydrogel have proved that these particles remain motionless. Therefore, the velocity is267

u̇θ = 0. The propagation of the signal cannot be simulated indefinitely along the space.268

An issue arises when analyzing open space regions where the simulation domain must269

be limited. In this case, the boundary conditions, called Radiation Boundary Conditions270

(RBC) or Absorbing Boundary Conditions (ABC), are established to simulate the open271

space. In this work, to ensure that the boundary does not reflect the wave, an ABC has272

been considered in those boundaries where the stress is equal to zero and the wave can273

be reflected. The condition ABC is implemented as follows. The first step is to create a274

matrix with the size of the domain. This matrix is filled with ones. Subsequently, in those275

boundaries where an ABC is considered, the last rows or columns are modified. The value276

of these rows or columns decreases from one to zero exponentially. This matrix multiplies277

the value of the variables in the temporal loop.278

Finally, the signal excitation (boundary B in Figure 1b) is implemented. To study the279

influence of the excitation signal, the tissue will be excited at three different frequencies.280

These three frequencies are 500 Hz, 1500 Hz and 2000 Hz. To excite the nonlinear terms,281

it is necessary to repeat the signal for a minimum number of cycles. Experimentally, it282

has been found that at least six or eight cycles are required to capture nonlinearity. Eight283

cycles have been considered in this study. In order to simplify the signal, it has been284

assumed to be sinusoidal.285

4.1 Analysis of results286

The solution for different excitation frequency values were obtained. Figure 2 shows287

the displacement uθ at the contact between the receiver and the hydrogel for the three288

frequencies. The displacement is calculated as the mean of the displacements recorded at289

all nodes on the line of contact between the receiver and the hydrogel. These displacements290
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are calculated by multiplying the velocity by the time increment. All the simulations had291

a computational time of approximately 60 seconds with a 1.7 GHz processor. The linear292

propagation is also represented for comparison purposes. The linear and the nonlinear293

solutions have a very similar behavior as the two curves follow the same trend. It can be294

observed that the curves associated with 500 Hz have very close values to each other and295

when the frequency of the excitation increases to 1500 Hz, the maximum values of both296

curves are distanced in the order of 4µm. When the excitation frequency increases to297

2000 Hz the differences decrease again. Therefore, the similarity between the linear and298

the nonlinear solution increases and decreases in a way that is not proportional to the299

excitation frequency.300

It can be noticed that the nonlinear curve does not have a purely sinusoidal behavior301

as the linear curve does. Conversely, the ridges and valleys are slightly sloping, which302

is normal because of its nonlinear nature. The Fast Fourier Transform (FFT) algorithm303

has been used to obtain the solution in the frequency domain. The main remark about304

the frequency domain nonlinear response is that only odd harmonics are relevant. For305

instance, for a excitation frequency of 500 Hz, the first (500 Hz), the third (1500 Hz) and306

the fifth (2500 Hz) harmonics are clearly observable.
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Figure 2: Displacement uθ at the receiver (left column) and Fourier transform (right
column) for a frequency of: a) 500 Hz, b) 1500 Hz and c) 2000 Hz. The parameters of the
hydrogel are: A = 40 kPa and D = 3000 kPa.

307

With the aim of obtaining the influence of the parameters A and D on the solution,308
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the nonlinear propagation is represented below for different values of these parameters.309

For this purpose, the excitation signal considered for all the simulations has a frequency310

of 2000 Hz. The displacement at the receiver, modifying the value of D and keeping the311

value of A = 40 kPa and A = 400 kPa, is shown in Figures 3 and 4, respectively. It312

can be observed that the difference between the linear and nonlinear solution increases313

significantly as the value of D increases. This difference is due to the higher relevance314

of the third order nonlinear terms. It is still observed that the nonlinear curve does not315

exhibit a purely sinusoidal behavior. The frequency domain response shows a similar316

behavior as their similarity decreases as the value of D increases. Moreover, for the lower317

values of D, harmonics are not captured. This is also because third order nonlinear terms318

become less relevant.
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Figure 3: Displacement uθ at the receiver (left column) and Fourier transform (right
column) for a frequency of 2000 Hz. The parameters of the hydrogel are: A = 40 kPa and
a) D = 30 kPa, b) D = 300 kPa and c) D = 3000 kPa.

319

The influence of D in the results is higher as its value increases. Performing a similar320

procedure keeping the value of D and modifying the value of A conducted to the results321

in Figure 5. The influence of A is not significant since the solutions for both values of A322

are very similar.323

To analyze the convergence of the solution, the same simulations were carried out324

dividing the temporal resolution of Equation 42 by two (1.25 · 10−5 s) and by four (6.25 ·325
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Figure 4: Displacement uθ at the receiver (left column) and Fourier transform (right
column) for a frequency of 2000 Hz. The parameters of the hydrogel are: A = 400 kPa
and a) D = 30 kPa, b) D = 300 kPa and c) D = 3000 kPa.

10−6 s). The results were not different to the results in Figures 2-5. Hence, the first326

temporal resolution was small enough both to guarantee the stability of the algorithm and327

to ensure the convergence of the solution.328

A similar study was carried out by Rushchitsky [?] who considered the Landau’s strain329

energy function to formulate the problem of a torsional wave propagating along a cylinder.330

However, only the quadratic nonlinear terms were taken into account and the strain energy331

function is also different than the considered in this study. Therefore, the above results can332

not be compared with any prior study, since, to our knowledge, it is the first time that the333

displacements caused by the propagation of a nonlinear torsional wave along a hyperelastic334

material characterized by the Hamilton’s strain energy function are obtained. Neverthe-335

less, the result can be qualitatively compared. Apart from that, experimental tests were336

carried out by Melchor [?] to extract the nonlinear torsional acoustic parameter βT for337

silicon mold, ligament tissue and liver tissue. The frequency domain experimental nonlin-338

ear torsional signal obtained by these tests were in agreement with the results obtained339

in this study as only odd harmonics were identified. In addition, the nonlinear solution340

observed both in these tests and in [?] did not exhibit a purely sinusoidal behavior, as the341

results reported in this study.342
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Figure 5: Displacement uθ at the receiver (left column) and Fourier transform (right
column) for a frequency of 2000 Hz. The parameters of the hydrogel are: D = 3000 kPa
and a) A = 40 kPa and b) A = 400 kPa.

5 Conclusions and future works343

The main contribution of this study is the developing of a new formulation in cylindrical344

coordinates of the propagation of a torsional wave on a hyperelastic material considering345

the Hamilton’s strain energy function. In addition, considering both geometrical and346

physical nonlinearity, no nonlinear terms of the equation have been neglected. For this347

reason, a new breakthrough has been achieved in the field of mechanical modeling of soft348

tissues since, until now, there have been no analytical motion equations in cylindrical349

coordinates using Hamilton’s strain energy function.350

Due to the difficulty of obtaining the close form solution, a numerical simulation of351

a torsional wave propagating along a hydrogel from an emitter to a receiver has been352

conducted. The numerical solution has been derived by implementing the Finite Difference353

Time Domain algorithm. The analysis of results has led to some concluding remarks. First,354

when the nonlinear parameters of the material remain constant, the similarity between355

the linear and nonlinear solution decreases with the increase of the excitation frequency.356

Second, for a given excitation frequency, the behavior of both curves is less similar with the357

increase of the value of the parameter D. However, the value of the parameter A seems358

to be not significant since its variation does not affect the solution of the simulations359

performed. Therefore, the parameter D has been proved to have a larger influence on the360

behavior of the tissue-like material.361

The formulation presented in this study allows determining the strain that a material362

medium will suffer when a torsional wave propagates through it. An advantage is the use of363

a torsional wave instead of compressional and shear waves. The former is more sensitive364

to consistency changes because it is generated in a low energy regime. In addition, by365

employing a torsional wave device, experimental tests could be performed on tissues to366
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measure the strain level caused by the nonlinear torsional wave. These results can be used367

to solve a parameter identification problem by means of an inverse problem. As a result,368

the parameter values that minimize the numerical and experimental results of medical369

applications are obtained. In this way, the nonlinear parameters of the material can be370

derived. The knowledge of nonlinear parameters would provide information on the current371

state of the tissue and allow a clinical diagnosis to be conducted.372
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A Cylindrical components of stress tensor378

In this appendix, the second Piola-Kirchhoff stress tensor components expressed in379

the cylindrical coordinate system are presented. By substituting these expressions into380

Equation 37, the motion equation would be derived in terms of the displacements.381

Srr = S11 =µu2θ,r +
1

4
A

(
(ruθ,r − uθ)2

r2
+ u4θ,r + u2θ,zu

2
θ,r

)
+

+
1

2
D

(
2u2θ,z +

u4θ
r4

+
2 (ruθ,r − uθ)2

r2
+ u4θ,z + u4θ,r + 2u2θ,zu

2
θ,r

)
u2θ,r

(43)

382

Sθθ = r2S22 =µ
u2θ
r2

+
1

4
A

(
u2θ,z +

u4θ
r4

+
(ruθ,r − uθ)2

r2

)
+

+
1

2r2
D

(
2u2θ,z +

u4θ
r4

+
2 (ruθ,r − uθ)2

r2
+ u4θ,z + u4θ,r + 2u2θ,zu

2
θ,r

)
u2θ

(44)

383

Szz = S33 =µu2θ,z +
1

4
A
(
u2θ,z + u4θ,z + u2θ,ru

2
θ,z

)
+

+
1

2
D

(
2u2θ,z +

u4θ
r4

+
2 (ruθ,r − uθ)2

r2
+ u4θ,z + u4θ,r + 2u2θ,zu

2
θ,r

)
u2θ,z

(45)

384

Srθ = rS12 =µ
(ruθ,r − uθ)

r
+
A

4

(
u3θ,r −

1

r3
u3θ −

1

r
u2θ,ruθ +

1

r2
u2θuθ,r + uθ,ru

2
θ,z

)
+

+
D

2r

(
2u2θ,z +

u4θ
r4

+
2 (ruθ,r − uθ)2

r2
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2
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)
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(46)
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385

Srz = S13 =µuθ,zuθ,r +
D

2
uθ,z

(
2u2θ,z +

u4θ
r4

+
2 (ruθ,r − uθ)2

r2
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2
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)
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4

(
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386

Sθz = rS23 =µuθ,z +
1
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2u2θ,z +
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B FDTD Method387

To solve the problem by using the FDTD method, we must follow several steps. First,388

Equation 37 must be rewritten in terms of the velocity instead of the acceleration,389

Srθ,r
r

+
1

r
Sθz,z −

1

r3
Sθθuθ +

2

r2
Srθ +

1

r2
Srruθ,r+

+
1

r
Srruθ,rr +

2

r
Srzuθ,rz +

1

r
Szzuθ,zz+

+
1

r
Srr,ruθ,r +

1

r
Srz,zuθ,r = ρ

1

r

du̇θ
dt

(49)

Recalling that the FDTD method calculates the derivatives as differences, the time390

differential dt becomes an increment ∆t. Therefore, the velocity u̇θ can be calculated as,391

u̇θ =
∆t · r
ρ

[
Srθ,r
r

+
1

r
Sθz,z −

1

r3
Sθθuθ +

2

r2
Srθ +

1

r2
Srruθ,r+

+
1

r
Srruθ,rr +

2

r
Srzuθ,rz +

1

r
Szzuθ,zz +

1

r
Srr,ruθ,r +

1

r
Srz,zuθ,r

] (50)

Considering the Taylor series expansion of a function f(x) expanded about the point392

x0 with an offset of ±δ/2, following the procedure described in many test books such us393

[?], the central difference approximation is,394

f ′(x0) ≈
f
(
x0 + δ

2

)
− f

(
x0 − δ

2

)
δ

(51)

where it has been assumed that δ is sufficiently small and higher order terms can be395

neglected.396

By considering an offset of ±δ for the second derivative, the same procedure yields,397

f ′′(x0) ≈
f (x0 + δ)− 2f(x0) + f (x0 − δ)

δ2
(52)

Spatial derivatives in Equation 50 are calculated using Equations 51 and 52. The398

expressions of the derivatives are given below,399
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Srθ,r =
Srθ(r0 + ∆r)− Srθ(r0)

∆r

Sθz,z =
Sθz(z0 + ∆z)− Sθz(z0)

∆z

Srr,r =
Srr(r0 + ∆r)− Srr(r0)

∆r

Srz,z =
Srz(z0 + ∆z)− Srz(z0)

∆z

uθ,r =
uθ(r0 + ∆r)− uθ(r0)

∆r

uθ,rr =
uθ(r0 + ∆r)− 2uθ(r0) + uθ(r0 −∆r)

∆r2

uθ,zz =
uθ(z0 + ∆z)− 2uθ(z0) + uθ(z0 −∆z)

∆z2

uθ,rz =
uθ(z0 + ∆z, r0 + ∆r) + uθ(r0, z0)− uθ(z0, r0 + ∆r)− uθ(z0 + ∆z, r0)

∆r∆z

The next step is to obtain the relation between the components of the second Piola-400

Kirchhoff Stress Tensor and the velocity u̇θ by differentiating them with respect to the401

time,402

dS(uθ)

dt
= S(uθ, u̇θ) (53)
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