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ABSTRACT

Motivation: Multiple sequence alignments (MSAs) are widely used

approaches in bioinformatics to carry out other tasks such as structure

predictions, biological function analyses or phylogenetic modeling.

However, current tools usually provide partially optimal alignments,

as each one is focused on specific biological features. Thus, the

same set of sequences can produce different alignments, above all

when sequences are less similar. Consequently, researchers and

biologists do not agree about which is the most suitable way to evalu-

ate MSAs. Recent evaluations tend to use more complex scores

including further biological features. Among them, 3D structures are

increasingly being used to evaluate alignments. Because structures

are more conserved in proteins than sequences, scores with structural

information are better suited to evaluate more distant relationships

between sequences.

Results: The proposed multiobjective algorithm, based on the non-

dominated sorting genetic algorithm, aims to jointly optimize three

objectives: STRIKE score, non-gaps percentage and totally conserved

columns. It was significantly assessed on the BAliBASE benchmark

according to the Kruskal–Wallis test (P50.01). This algorithm also

outperforms other aligners, such as ClustalW, Multiple Sequence

Alignment Genetic Algorithm (MSA-GA), PRRP, DIALIGN, Hidden

Markov Model Training (HMMT), Pattern-Induced Multi-sequence

Alignment (PIMA), MULTIALIGN, Sequence Alignment Genetic

Algorithm (SAGA), PILEUP, Rubber Band Technique Genetic

Algorithm (RBT-GA) and Vertical Decomposition Genetic Algorithm

(VDGA), according to the Wilcoxon signed-rank test (P50.05),

whereas it shows results not significantly different to 3D-COFFEE

(P40.05) with the advantage of being able to use less structures.

Structural information is included within the objective function to

evaluate more accurately the obtained alignments.

Availability: The source code is available at http://www.ugr.es/

�fortuno/MOSAStrE/MO-SAStrE.zip.
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1 INTRODUCTION

Multiple sequence alignments (MSAs) are widely used strategies

in current molecular biology. These approaches are often used

for homology transfer (Doolittle, 1981; Fitch, 1966), where

poorly characterized sequences are compared with well-studied

homologs from typical model organisms. MSA strategies have

traditionally been applied to researches in phylogenetic analyses,

structural modeling, functional predictions or sequence database

searching (Bacon and Anderson, 1986). MSA tools have also

been implemented in applications to predict protein structures

and interactions (Chou and Fasman, 1978; Taylor and Thorn-

ton, 1984), mutations (Schneider et al., 1986) or to reconstruct

phylogenetic trees (Feng and Doolittle, 1987). The development

of novel experimental techniques, such as next-generation

sequencing and high-throughput experiments, has prompted a

great demand of MSA tools. Because these techniques provide

mainly new nucleotide sequences and their subsequent products,

MSA tools usually help to extract biological meanings from such

information. Current MSA tools are capable of dealing with and

efficiently analyze the massive amount of information generated

by these former techniques by using advanced computational

approaches based on well-known artificial intelligence and ma-

chine-learning algorithms (hidden Markov models (HMMs),

support vector machines, etc). Besides, MSA methodologies

also take advantage of functional, structural and genomic infor-

mation to obtain more accurate alignments in a reasonable time

(Kemena and Notredame, 2009). Taking all these ideas into con-

sideration, MSAs are becoming one of the most powerful and

essential procedures of analysis in bioinformatics (Li and Homer,

2010).
Traditionally, several strategies have been applied to align

multiple sequences, mainly classified as progressive algorithms

(Hogeweg and Hesper, 1984) or consistency-based methods

(Gotoh, 1990). Both approaches were also combined with

other relevant computational strategies to obtain more accurate

alignments. Recently, more sophisticated tools in MSA have*To whom correspondence should be addressed.
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included additional data referring to proteins (domains, struc-
tures or homologies) to align sequences (O’Sullivan et al., 2004;
Pei and Grishin, 2007). Such additional features enrich the align-

ment information building more realistic solutions. However, the
consumed time is excessive and improvements are just relevant in
specific cases with less related sequences. Moreover, these meth-

ods can be run when additional features are unavailable or
unknown, though they could provide inefficient alignments.
Genetic algorithms (GAs) are also widely used to build MSAs.

GAs are helpful in MSA because they can be implemented inde-

pendently of the objective function (Naznin et al., 2011). Thus,
GA algorithm can define multiple evaluations regardless of any
modification in the optimization procedure. GAs can also be

easily parallelized to significantly reduce the computational
time. Consequently, several methodologies, such as SAGA
(Notredame and Higgins, 1996), MSA-GA (Gondro and King-

horn, 2007), RBT-GA (Taheri and Zomaya, 2009) or VDGA
(Naznin et al., 2011), have already applied GAs to build MSAs.
Although there are many MSA methodologies, they usually

achieve different solutions for the same set of sequences because
each strategy is focused on specific biological features.
Consequently, there is no consensus about which method

builds more accurate alignments (Nuin et al., 2006; Sierk et al.,
2010). Besides, these MSA tools could achieve suboptimal solu-
tions where specific regions within the alignments are more ac-

curate than others depending on the biological features found at
these particular regions. These divergences have also a negative
influence on subsequent phylogenetic analyses, as wrong phylo-

genetic trees are obtained when alignments are inaccurate (Wong
et al., 2008). For this reason, some other methods (Redelings and
Suchard, 2005; Ronquist and Huelsenbeck, 2003) take advantage

of jointly optimizing both phylogenetic trees and alignments.
These methods aim to avoid the bias generated by guide trees
in progressive methods, though they do not still achieve good

performances in terms of structure. Therefore, the choice of the
most suitable aligner is an essential problem, which has not been
completely solved yet.

Another challenge in MSA is to provide an efficient evaluation
method to measure the alignment accuracy. MSA strategies have
usually applied well-known matrices, such as point accepted mu-

tation (PAM) (Dayhoff et al., 1978) or BLOSUM (Henikoff and
Henikoff, 1992), which only consider nucleotide or amino acid
information to evaluate every aligned pair of residues. However,

when the number of sequences increases or longer and more
distant sequences are included, alignments are more likely to
be inaccurate using such scores (Liu et al., 2009). In these

cases, additional information is necessary to complement align-
ment evaluations. Therefore, current scores are increasingly
using supplementary information, such as homologies or protein

structures. Thus, some approaches can benefit from homology
profiles provided, e.g. by PSI-BLAST (Altschul et al., 1997), to
evaluate alignments. Additionally, as structures are evolutionar-

ily more conserved than sequences in proteins, structural infor-
mation also provides more distant relationships between
sequences (Kemena and Notredame, 2009). For instance,

Kececioglu et al. (2010) provided a novel scoring scheme to
evaluate MSAs from their predicted secondary structures.
Other scores, such as contact accepted mutation (Lin et al.,

2003) and STRIKE (Kemena et al., 2011) scores also estimated

the molecular contacts from protein structures to calculate align-

ment accuracies.
In this article, a novel multiobjective genetic approach has

been developed. This method is named Multiobjective

Optimizer for Sequence Alignments based on Structural Evalu-

ations (MO-SAStrE). It takes advantage of three objectives

that are used to evaluate alignments generated by the GA:

STRIKE score (Kemena et al., 2011), totally conserved (TC)

columns and percentage of non-gaps. Alignments are first

coded in a novel representation, which is useful for applying

efficient mutation and crossover operators. This algorithm is im-

plemented through the well-known multiobjective non-domi-

nated sorting genetic algorithm (NSGA-II) approach. It is

assessed by the BAliBASE benchmark v3.0 (Thompson et al.,

2005). Alignments from MO-SAStrE are finally compared with

results shown by other known genetic and non-genetic alignment

algorithms.

2 METHODS

2.1 Input sequence dataset

The proposed multiobjective algorithm must be tested through a dataset

defined by several input sequences. The BAliBASE dataset (v3.0)

(Thompson et al., 2005) defines a well-known benchmark to standardize

the comparison of sequence alignment results. It consists of a group of

protein sequences that are properly prepared to be aligned by MSA al-

gorithms. The dataset includes 218 sets of sequences, which were manu-

ally extracted from the protein data bank (PDB) (Berman et al., 2000). It

is organized in five reference subsets, named References or Ref., accord-

ing to their sequence families or similarities. The first reference subset

(Ref.1) is separated in two versions (Ref.1 v.1 and Ref.1 v.2). The first

version (Ref.1 v.1) includes less similar sequences, which are interesting

because they are more difficult to be accurately aligned.

BAliBASE also provides a set of handmade alignments (gold standard)

to evaluate alignments obtained by other tools. Thus, this benchmark

calculates BAliscore, a standard Sum-of-Pairs score to evaluate align-

ments compared with their gold standard. Here, the BAliscore evaluation

was used to compare the MO-SAStrE performance against other similar

MSA methodologies.

2.2 Alignment approaches

In this article, eight representative MSA tools were selected to obtain

initial alignments. Both progressive and consistency-based methods

were included in these representative tools (see a summary in the

Supplementary Table S1). Among progressive algorithms, ClustalW

(Thompson et al., 1994), Muscle (Edgar, 2004), Kalign (Lassmann and

Sonnhammer, 2005), Mafft (Katoh et al., 2002) and RetAlign (Szabo

et al., 2010) were chosen in the proposed optimization. ClustalW designs

a clustering tree algorithm to find the final alignment through a distance

score matrix and a gap weighting scheme. Muscle develops a three-stage

strategy to refine alignments and to align faster. Kalign uses the

Wu-Manber string-matching algorithm to improve the measurement of

distances within a classical progressive approach. Mafft reduces the com-

putational cost by identifying common homologies through the fast

Fourier transform. Finally, RetAlign applies a progressive corner cutting

algorithm to identify optimal and suboptimal alignments in a network.

Besides, three additional algorithms based on consistency were also

included in the optimization: T-Coffee (Notredame et al., 2000), fast

statistical alignment (FSA) (Bradley et al., 2009) and ProbCons (Do

et al., 2005). T-Coffee stores in a library the number of times each pair

of residues matched in previously built pairwise alignments. T-Coffee also
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evaluates such pairwise alignments in regard to third sequences. The FSA

compares pairwise alignments by a statistical analysis framework. FSA

estimates the insertion and deletion processes through a pair of HMMs.

This method provides a faster procedure, but it usually achieves less

accurate alignments owing to an excessive number of gaps. Finally,

ProbCons also includes HMMs to optimize the classical scoring schemes.

It applies a biphasic penalty procedure to penalize gaps and mismatches

in alignments. Methods based on HMM profiles, such as FSA or

ProbCons, usually outperform other alignment methods, especially in

terms of the structure-superposition quality (Kemena and Notredame,

2009). The 218 sets of sequences proposed by BAliBASE were then

aligned using these eight programs. All of them were run with their de-

fault parameters, though they can be modified according to the user

preferences. These specific initial alignments were chosen because they

were quickly obtained and might be improved. In case more accurate

initial alignments were provided, MO-SAStrE could even return better

output alignments. Moreover, the efficiency of including previously ob-

tained solutions to build the initial set in GAs has widely been shown in

the literature (Dasgupta et al., 2009; Tsujimoto et al., 2009).

2.3 Multiobjective algorithm

MSAs can be defined as multiobjective problems as there is no consensus

about how alignments should be adequately evaluated and several fea-

tures are currently being considered for this purpose. Additionally,

including several suitable objectives provides more flexibility in the opti-

mization procedure. Consequently, MO-SAStrE is implemented as a GA

including three different evaluations: 3D structure, TC columns and gaps

in alignments. The multiobjective approach is developed through the

NSGA-II scheme (Deb et al., 2002), as it is a classical and recognized

method that produces efficient solutions. NSGA-II provides the subset of

all optimal solutions, named Pareto front, by using the non-dominated

sorting strategy. That is, the Pareto front includes those solutions that

cannot be compared among them because there is no one that outper-

forms any other considering the three objectives. This feature is known as

non-dominance relationship. Both Pareto front and dominance concepts

are widely described in the Supplementary Material.

The MO-SAStrE procedure is designed as shown in Figure 1. First,

alignments from input methodologies are included in the initial popula-

tion. The coded alignments belonging to a population are called individ-

uals. The population is then filled to N individuals (where N defines the

population size) by using the crossover operator. Subsequently, the popu-

lation is extended by the mutation and crossover operators, according to

their assigned probabilities pc and pm, respectively (see the ‘Operators’

stage in Fig. 1). These operators are generally defined to build new indi-

viduals by combining already existing ones. The best individuals are then

selected from the extended population to be included in the new gener-

ation. This selection is carried out progressively, taking the optimal non-

dominated solutions (Pareto fronts) from the current population. If all

individuals in the last included Pareto front (Ft in Fig. 1) cannot be

added, they must be selected according to the crowding distance (see

the ‘Selection’ subsection for details). Finally, when the total number of

generations (G) is reached or the Pareto front does not change in con-

secutive generations, the optimal Pareto front in the last population is

returned as the set of optimized alignments. This implementation of the

NSGA-II approach was taken from the Global Optimization toolbox of �

Matlab (version R2010b). Individual codification, operators and fitness

functions were own-designed for this specific purpose.

2.3.1 Codification Previous GAs in MSA tools (Notredame and

Higgins, 1996; Taheri and Zomaya, 2009) coded alignments using the

classical representation: the standard alphabet for amino acids and the

‘-’ symbol for gaps (Fig. 2a). However, that representation could lead to

more complex and inefficient operators. For this reason, a novel codifi-

cation is proposed here. Alignments are represented as a matrix where

two conditions are fulfilled: (i) amino acids are coded by their positions in

the sequence to which they belong; (ii) gaps are coded by the position of

the last amino acid in the sequence where they belong, but with a negative

value. Input alignments are coded before they are included in this tool.

The whole optimization is done by using coded alignments (individuals).

After the optimization ends, individuals are decoded and therefore re-

turned to the standard alignment representation. An example of the pro-

posed codification is shown in Figure 2. This representation aims to easily

identify positions where the crossover operator will be applied. It avoids

possible mistakes in the subsequent crossover performance, providing

significant improvements in the alignment management (see details in

the ‘Operators’ subsection).

Fig. 1. MO-SAStrE flowchart. ð1Þ The number of individuals in the popu-

lation is defined as N. ð2Þ pc and pm represent crossover and mutation

probabilities, respectively. ð3ÞFt defines the last included Pareto front,

where individuals must be selected according to the crowding distance

(a)

(b)

Fig. 2. Alignment codification in MO-SAStrE. (a) Standard representa-

tion of a MSA. (b) Alignment coded by a matrix of integer values: pos-

itions in their sequences (amino acids) and positions of the last amino

acid denoted with a negative sign (gaps)
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2.3.2 Operators MO-SAStrE includes the two standard operators in

GAs: mutation and crossover. These operations are applied to a subset of

randomly chosen alignments from the population according to the prob-

abilities pm and pc, respectively. They can then include new alignments not

considered before. These operators are run for each generation in the

optimization procedure. Because sequences in alignments cannot be

altered, some modifications must be introduced in the classical implemen-

tation of both operators.

The mutation operator only mutates gaps, to keep the order of amino

acids. A random set of closed gaps are then shifted to another random

position in the same sequence. Two important aspects are introduced

with such definition: first, new variants of alignments not taken into

account until now can be introduced; second, columns containing only

gaps can be removed, thus reducing the number of gaps. A specific

example of the mutation operation is shown in Figure 3.

The crossover operator is designed as a one-point crossover. Firstly,

the algorithm randomly selects one column from one of the parents,

splitting it into two blocks. The same selected positions from this

column are also found in the second parent, but not necessarily in the

same column. Finally, selected blocks are crossed between these two par-

ents. To match blocks from both parents, those undefined positions are

filled with gaps. Thus, it can be assured that the obtained children do not

alter their sequences. The complete operation is graphically explained in

Figure 4. The crossover operator is the most important issue in outper-

forming input methodologies. Because alignments can be more accurate

in some sectors than in others, this operation is essential for the optimiza-

tion purpose. Therefore, crossed children could assemble the best sections

from different parents, providing a more accurate alignment.

2.3.3 Evaluation Because MO-SAStrE is designed as a multiobjective

algorithm, three different scores are included to evaluate each alignment:

STRIKE score, percentage of TC columns and percentage of non-gaps.

The STRIKE score (Kemena et al., 2011) is a novel index for calculat-

ing alignment accuracies by using at least one known structure. The

structural information is retrieved from the PDB (Berman et al., 2000).

According to such a structure, the contacts between amino acids in the

sequence are estimated. For the remaining sequences, the pairs of amino

acids aligned in the same positions as the previously estimated contacts

are retrieved. Such pairs of amino acids are then scored according to a

novel scoring matrix provided by the STRIKE authors (Kemena et al.,

2011). In case of several available structures, the STRIKE score is sep-

arately calculated for each structure and the averaged score is finally

provided. This evaluation permits to identify the accuracy in the align-

ments better than other well-known scores such as BLOSUM (Henikoff

and Henikoff, 1992) or PAM (Dayhoff et al., 1978). Moreover, the

STRIKE score clearly outperforms the other evaluations when sequences

are evolutionarily more distant. STRIKE score also shows a strong non-

parametric correlation with the classical BAliscore. That is, both

BAliscore and STRIKE usually identify the same alignment as the best

one when two different alignments are compared (in �79% of cases)

(Kemena et al., 2011).

The second fitness function, the percentage of TC column, takes into

account the number of columns that are completely aligned with exactly

the same amino acids. Some progressive methodologies usually favor

partial alignment but not complete columns (Mirarab and Warnow,

2011). The number of complete columns is a widely accepted evaluation

applied by several methodologies (Edgar, 2004; Thompson et al., 2005).

Complete columns also indicate more conserved or special regions in

sequences.

Finally, as commented above, some methodologies usually overuse

gaps to increase identities in alignments (Nozaki and Bellgard, 2005).

Thus, the third fitness function is measured as the number of amino

acids in the sequences with respect to the number of gaps (percentage

of non-gaps). Consequently, the proposed optimization tries to reduce the

number of gaps, building more compact and realistic alignments.

Therefore, MO-SAStrE aims to optimize alignments according to a

novel evaluation based on conserved structural information in sequences,

but also reducing the number of gaps and keeping fully conserved sec-

tions. These three objectives must then be maximized to obtain more

accurate alignments.

2.3.4 Selection The selection procedure is well-defined by the pro-

posed NSGA-II algorithm (Deb et al., 2002). For each generation, the

extended population (parents and children) is classified into different

Pareto fronts to obtain a non-dominated sorting (F1,F2, . . . ,Ft in

Fig. 1). This procedure selects those individuals that are not outper-

formed by any other regarding the three objectives. Then, the best non-

dominated Pareto front is progressively included within the next

generation. Finally, when the new population is filled with the required

number of individuals, the remaining Pareto fronts are discarded. A spe-

cial case of this selection is the last considered front (Ft), as it is possible

that only some individuals can be included within the next generation. In

this case, NSGA-II proposed to include those individuals located in less

explored areas or, in other words, distant individuals. The last individuals

are then selected according to their distances to the nearest individuals.

This measure is called the crowding distance (see formulation in the

Supplementary Material).

2.4 Performance assessment

MO-SAStrE is defined as a stochastic procedure because the algorithm

converges to different solutions when it is applied several times to the

same problem. Consequently, several runs of the same problem must be

carried out to statistically evaluate its performance. Zitzler et al. (2008)

proposed several indicators to assess multiobjective stochastic optimizers:

the hypervolume indicator (HV), dominance rankings or the attainment

function method. The main goal of these quality indicators is to reduce

the provided scores (three objectives) of multiple optimal solutions

(Pareto front) to one single score, making the algorithm easier to

assess. Thus, the HV (Zitzler et al., 2008) was selected to validate the

optimization provided by the multiobjective algorithm (see formal defin-

ition of hypervolume in the Supplementary Material).

However, hypervolume is not the only strategy taken into account in

the MO-SAStrE assessment. Because each problem was run several times,

initial hypervolume values must also be compared with output hypervo-

lume values provided by MO-SAStrE. Non-parametric tests are usually

applied to validate these stochastic approaches (Conover, 1999). To

assess this algorithm, the classical test proposed by Kruskal and Wallis

(1952) is used. This Kruskal–Wallis test assesses whether there are sig-

nificant differences between initial alignments and the optimized ones for

independent repetitions in terms of the three objectives. For MO-SAStrE

assessment, the initial and optimized hypervolume values are then

compared.

Fig. 3. Mutation procedure. Closed gaps are randomly chosen and

shifted to another position. Full columns of gaps are then removed if

they are found
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Finally, the performance of MO-SAStrE is compared with other gen-

etic methods, namely SAGA (Notredame and Higgins, 1996), MSA-GA

(Gondro and Kinghorn, 2007), RBT-GA (Taheri and Zomaya, 2009) and

VDGA (Naznin et al., 2011). Other known non-genetic aligners are also

included in these comparisons, namely ClustalW (Thompson et al., 1994),

MultAlign (Barton and Sternberg, 1987), PIMA (Smith and Smith, 1992),

PILEUP8 (Devereux et al., 1984), Dialign (Morgenstern et al., 1996),

HMMT (Eddy, 1995), PRRP (Gotoh, 1996). 3D-COFFEE (O’Sullivan

et al., 2004) was also included to compare MO-SAStrE against another

aligner using structural information. To compare all of them, the authors

in VDGA provided BAliscore results from 60 different problems in

BAliBASE 2.0, which were also included in MSA-GA and RBT-GA

publications. However, as BAliBASE 3.0 is applied here, a subset of 20

problems included in both versions of BAliBASE is taken. Then, MO-

SAStrE is statistically compared for these 20 datasets through another

non-parametric analysis, the Wilcoxon signed-rank test (Wilcoxon, 1945).

The Wilcoxon test provides pairwise comparison between each two meth-

ods to validate if their mean ranks are significantly different. Therefore, it

can be determined whether MO-SAStrE outperforms other similar tools.

3 RESULTS AND DISCUSSION

3.1 Selecting parameters

To configure the proposed multiobjective algorithm, five differ-

ent parameters (population size, number of generations, prob-

abilities of mutation and crossover and repetitions per problem)

must be provided. These parameters were selected according to

the standard values used by GAs (Eiben and Smith, 2008)

(Supplementary Table S2). First, the population size was set to

100 alignments (individuals), as that same population size was

also included in methods that are being compared, such as

SAGA (Notredame and Higgins, 1996) or VDGA (Naznin

et al., 2011).
On the other hand, although MO-SAStrE includes a stop con-

dition, 500 generations were defined to assure the convergence

and optimization of the alignments. Once these two parameters

were set, the operator probabilities were determined. Because

crossover is considered the main operator for this optimization,

it is assumed that its probability must be the same or higher than

the mutation’s one. Consequently, the following pair of prob-

abilities 80–20% was set for crossover and mutation, respect-

ively. These probabilities values are a standard combination

for GAs (Eiben and Smith, 2008). This parameter configuration

was validated with a subset of 20 BAliBASE problems.
Finally, as the proposed optimizer is defined as a stochastic

procedure, each problem must be run several times. In this case,

each of the 218 problems was optimized 10 times. The same

number of runs was also included in VDGA (Naznin et al.,

2011) and RBT-GA (Taheri and Zomaya, 2009). A total of

2180 Pareto fronts were then obtained (10 solutions by 218

problems).

3.2 Optimization procedure

Firstly, the eight input alignments for each BAliBASE dataset

were introduced in the MO-SAStrE algorithm. These alignments

were progressively assembled into other optimized alignments as

shown in the Supplementary Figure S3. Thus, the built solutions

included partial alignments from previous methodologies and

several gap shifts.
The multiobjective procedure returns the subset of non-domi-

nated alignments (Pareto front). These obtained alignments are

equally good and it is not possible to decide which one is more

accurate according to the three objectives. Therefore, the selec-

tion of the best alignment only depends on the objective the users

consider more useful regarding the specific aligned sequences. In

case the alignment with the best STRIKE score was chosen, it

would obtain more quality according to the sequence structures.

In addition, those alignments with higher STRIKE scores are

usually improved in terms of BAliscore (Kemena et al., 2011).

Otherwise, whether the alignment with the highest percentage of

non-gaps is selected, a more compact and realistic alignment

could be obtained. Finally, a higher number of TC columns in

Fig. 4. Crossover operator. Both standard and novel codification are shown (see the codification procedure in Fig. 2). The first parent is divided into two

blocks according to a selected column (P1.A and P1.B). Two blocks are also obtained from the second parent according to the same positions of the

selected column (P2.A and P2.B). The crossed blocks are finally filled with gaps to match them
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alignments provides a better quality in terms of the evolutionary

homologies among sequences. For this reason, the Pareto fronts

are hard to compare as multiple non-dominated solutions are

considered and they should be assessed according to their three

evaluations. For instance, Table 1 shows the objective values of

MO-SAStrE alignments with regard to the eight inputs for the

‘1aab’ problem in the Ref.1 v.1. In this case, the MO-SAStrE

alignments outperform the input methodologies in at least one

objective according to these evaluations. The same problem was

also graphically compared through the initial and optimized

Pareto fronts as shown in Figure 5. The optimized front achieves

higher values in the three objectives than the initial one. The

optimization procedure applied to the ‘1aab’ problem was car-

ried out for the 218 problems. Averages and standard deviations

of the three objectives and the BAliBASE score (BAliscore) in

the complete dataset are shown for each alignment methodology

in the Supplementary Table S3. Similarly, the computing time

taken by each methodology is depicted in the Supplementary

Figure S4. Here, it can be observed that MO-SAStrE almost

always achieves the best values in all the three objectives at the

expense of a higher computing time. Despite these time differ-

ences, computing times obtained by MO-SAStrE are acceptable

taking into account that the simplest and quickest input meth-

odologies were chosen to be subsequently optimized.

Additionally, it is shown in the Supplementary Table S3 that

MO-SAStrE also outperforms the input methodologies in

terms of the BAliscore.

3.3 Hypervolume analysis

To formally validate the results shown above, the HV was cal-

culated as suggested by Zitzler et al. (2008) for multiobjective

problems (see details in the ‘Performance Assessment’ subsec-

tion). Because the three independent objectives must be maxi-

mized here, better alignments lead to lower HV values (the

higher objectives, the less covered space in HV). Previously, the

three objectives were normalized to the range [0, 1] to give them

the same weight. Then, HV could be interpreted as a measure of

quality, which takes into consideration the three proposed ob-

jectives simultaneously. The HV was measured regarding a ref-

erence point (bounding point) (see Supplementary Material for

details). Previously, it was assured that each problem and its HV

value successfully converged to an optimized solution (the con-

vergences of four different problems are shown in the Supple-

mentary Figure S5). Subsequently, the HV values from the initial

Pareto front (eight input alignments) can be compared with those

obtained by MO-SAStrE. The HV comparisons were applied to

the 218 problems, showing strictly better outcomes with MO-

SAStrE in all of them. That is, the HV values obtained by

MO-SAStrE from the 10 runs of each problem always outper-

formed the initial HV values. These results also showed that the

optimized alignments achieved an average improvement of

63.01% according to HV indicators. Such an improvement

even increases to 70.34% when sequences are less related and

alignments become more difficult (Ref.1 v.1 subset in

BAliBASE). A summary of the improvement associated to

each subset in BAliBASE is shown in Table 2. Nevertheless,

there were two problems where the improvements did not

reach the 10%: ‘1aab’ and ‘2trx’ in Ref.2. Because these two

datasets belong to a BAliBASE subset with higher similarity

percentages, the initial alignments were already accurate. These

specific problems also included some special features such as

higher number of sequences or highly divergent lengths,

making more difficult the optimization.

3.4 Statistical assessment

The MO-SAStrE optimization has been validated both graphic-

ally and in terms of hypervolume. However, these validations are

not enough for the proposed approach, as it is necessary to know

not only if alignments have been improved, but also if the im-

provement is statistically significant. To study that significance,

the Kruskal–Wallis test was applied. The relevance of the 218

solutions was determined from the 10 runs per problem. This test

provided P-values to confirm whether the output HV values were

Table 1. Multiobjective scores for a specific problem

Method STRIKE Non-gaps (%) TC (%)

ClustalW 2.4544 89.84 1.04

Muscle 2.6041 89.84 1.04

Kalign 2.4404 87.12 3.03

RetAlign 2.2210 79.13 2.75

Tcoffee 2.5116 89.84 1.04

ProbCons 2.5116 89.84 1.04

Mafft 2.3893 87.12 1.01

FSA 2.1857 69.00 0.80

BAliBASE Ref 2.5263 89.84 1.04

MO-SAStrE 1 2.4677 90.79 2.11

MO-SAStrE 2 2.6441 89.84 5.21

MO-SAStrE 3 2.6864 89.84 4.17

MO-SAStrE 4 3.0544 82.93 3.85

MO-SAStrE 5 3.1329 78.41 2.73

Note: Results are shown for the ‘1aab’ dataset in Ref.1 v.1. Evaluations for input

alignments and for MO-SAStrE alignments are represented. Although MO-SAStrE

returned 30 alignments from the optimal Pareto front, five of them are shown

to simplify.

Fig. 5. 3D surfaces for the input and optimized Pareto fronts in the first

problem of BAliBASE (‘1aab’ in Ref.1 v.1)
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statistically different than the input ones. The significance level

used to reject the null hypothesis in the 218 problems and to

validate the improvement was set to � ¼ 0:01.
According to the proposed Kruskal–Wallis test, the complete

dataset was considered significantly better, even those problems

where improvements did not exceed 10%. Consequently, MO-

SAStrE successfully optimized the 218 alignments with regard to

the input methodologies because the null hypothesis was rejected

in all of them. In addition, MO-SAStrE also returned better

BAliscore results than the input alignments (Supplementary

Table S3).

3.5 Comparison with other MSA methodologies

Finally, MO-SAStrE was compared with other genetic MSA

methods, namely SAGA (Notredame and Higgins, 1996),

MSA-GA (Gondro and Kinghorn, 2007), RBT-GA (Taheri

and Zomaya, 2009) or DVGA (Naznin et al., 2011). Other

non-genetic methodologies, which were also included in compari-

sons of previous genetic approaches, were also considered:

ClustalW (Thompson et al., 1994), MultAlign (Barton and

Sternberg, 1987), PRRP (Gotoh, 1996), PIMA (Smith and

Smith, 1992), PILEUP (Devereux et al., 1984), Dialign (Morgen-

stern et al., 1996), HMMT (Eddy, 1995). These algorithms were

assessed with a subset of problems in BAliBASE 2.0. However,

as BAliBASE 3.0 was applied here, a subset of 20 problems

included in both versions was selected. The 3D-COFFEE algo-

rithm (O’Sullivan et al., 2004) was also added to compare MO-

SAStrE against another important aligner using structural
information.
Firstly, MO-SAStrE was compared with those methods

included in MSA-GA and VDGA publications and 3D-
COFFEE. MSA-GA defined two different configurations de-
pending on whether a prealign procedure was included. Also,

VDGA was configured according to the number of parts in
which each sequence was decomposed: Decomp_2, Decomp_3
or Decomp_4. Both tools were assessed against ClustalW. They

included a set of 26 problems. MSA-GA and VDGA ran each of
these problems five and ten times, respectively. The best result

for each problem was then reported. Finally, the proposed solu-
tions were evaluated with BAliscore. Here, a subset of eight
problems, which were also included in BAliBASE v3.0, was con-

sidered to compare with MO-SAStrE. The BAliscore was also
provided to measure the alignment accuracies. Additionally, 3D-
COFFEE was also included to compare MO-SAStrE against

another aligner using structural data. Both MO-SAStrE and
3D-COFFEE were run with all structures available in the

PDB database for each specific set of sequences. Consequently,
Table 3 shows the BAliscore results obtained from these meth-
odologies (the best BAliscore values are highlighted in bold).

From these eight problems, MO-SAStrE achieved a total of
seven more accurate alignments against MSA-GA and VDGA,
while it outperforms 3D-COFFEE in five out of the eight prob-

lems. Specifically, MSA-GA with the prealign procedure and
VDGA Decomp_4 are better than MO-SAStrE in one case,
mainly the ‘1uky’ from Ref.1 v.1 subset. However,

3D-COFFEE achieves more accurate alignments in three Ref.1
v1 problems: ‘1ped’, ‘1uky’ and ‘2myr’. MO-SAStrE generally

showed close BAliscore values to MSA-GA and VDGA but
more distant than 3D-COFFEE in those problems where it
does not achieve the most accurate alignment.

MO-SAStrE was also compared with SAGA, RBT-GA and,
again, VDGA and 3D-COFFEE. Additionally, this comparison
included other strategies used in the VDGA and RBT-GA as-

sessment, namely PRRP, ClustalW, Dialign, PIMA, HMMT
and PILEUP. Both RBT-GA and VDGA applied 10 independ-
ent runs for each problem and the best alignments were taken for

their comparison. The subset proposed by RBT-GA and VDGA
contained 34 problems from BAliBASE 2.0. Here, 12 of these

problems were considered, as they must be included in both

Table 3. Comparison with MSA-GA, VDGA, ClustalW and 3D-COFFEE

Subset Dataset

name

MSA-GA MSA-GA CLUSTALW VDGA

(Decomp_2)

VDGA

(Decomp_3)

VDGA

(Decomp_4)

3DCOFFEE

(v8.97)

MO-SAStrE

Ref.1 v.1 1ped 0.501 0.687 0.592 0.443 0.482 0.451 0.812 0.716

1uky 0.443 0.405 0.392 0.416 0.459 0.464 0.530 0.403

2myr 0.212 0.302 0.296 0.347 0.359 0.282 0.675 0.544

Kinase 0.295 0.488 0.479 0.531 0.545 0.548 0.783 0.808

Ref.2 1pamA 0.755 0.758 0.757 0.857 0.863 0.853 0.911 0.913

2pia 0.761 0.768 0.766 0.847 0.850 0.839 0.823 0.879

Ref.3 Kinase 0.580 0.619 0.619 0.870 0.890 0.887 0.909 0.918

Ref.4 Kinase 0.710 0.635 0.630 0.330 0.542 0.478 0.863 0.865

The BAliscore values are shown for 8 different BAliBASE datasets.

The two best scores are highlighted in bold.

Table 2. Average hypervolume

Subset Input HV (Avg) Output HV (Avg) Improvement (%)

Ref.1 v.1 3.5894 0.7749 70.34

Ref.1 v.2 3.3004 0.7480 59.81

Ref.2 3.5478 0.6910 69.51

Ref.3 3.3003 0.5809 66.64

Ref.4 3.1347 0.7329 56.02

Ref.5 3.2268 0.8418 52.59

Note: HV values and improvements are shown according to the BAliBASE subsets.
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versions of BAliBASE. The obtained BAliscore results are pre-

sented in Table 4. From this table, it is observed that MO-

SAStrE achieves one of the two best results in 10 out of 12

problems. VDGA outperforms MO-SAStrE in three problems

distributed into its three decompositions, while 3D-COFFEE

achieves better alignments in four problems. In this second com-

parison, the alignments where MO-SAStrE achieves worse re-

sults are closer to the best accuracy than those alignments

proposed by other methodologies (excepting 3D-COFFEE

whose alignments are similar).
Finally, both comparisons (Tables 3 and 4) were joined to

estimate the significance of the MO-SAStrE improvement.

Specifically, the BAliscore results were compared with the

Wilcoxon non-parametric statistical test (Table 5). According

to the obtained P-values, MO-SAStrE shows significant im-

provements over the other methods, except 3D-COFFEE. This

improvement is even more relevant comparing with ClustalW

and VDGA, as a larger number of problems (20 alignments)

were used. Regarding the comparison with 3D-COFFEE, both

3D-COFFEE and MO-SAStrE provide similar alignments, as

none achieves a statistically significant improvement against

the other (Wilcoxon test, P40.05). Nevertheless, MO-SAStrE

includes some additional advantages with respect to 3D-

COFFEE. Firstly, MO-SAStrE is able to work with only one

structure, whereas 3D-COFFEE requires at least two structures

to build the structure superposition. Therefore, the alignment

accuracy from 3D-COFFEE directly depends on the number

of available structures, making it less useful when just a few

structures are available. Additionally, MO-SAStrE provides

more flexibility owing to the fact that it includes other optimiza-

tion criteria (multiobjective approach) to evaluate and improve

the alignments in addition to structural information.

3.6 PDB structure availability

We acknowledge that one of the main drawbacks of the pro-

posed approach could be the limited availability of PDB struc-

tures. However, the pivotal relevance of structures to accomplish

well-annotated sequences is beyond dispute. Thus, PDB is cur-

rently making a major effort to accurately annotate proteins’

structures, which has been translated into an exponential increase

in the past 10 years (87 089 structures in 2012). It is also known

that current databases have admitted this relevance and they are

currently being updated to include as many PDB structures as

possible. For instance, the Pfam database (Punta et al., 2012),

which identifies a number of families related by common func-

tional domains, considers that the use of structural information

will help to improve domain definitions and to increase coverage

of sequences included in other databases. Thus, Pfam database

(release 24.0) (Punta et al., 2012) already includes some structural

annotation in almost 50% of its families, which represents the

95% of the known PDB structures.
Additionally, it is important to highlight that the main goal of

MSA tools is to compare unknown sequences with those well-

annotated ones to infer several biological features of such

Table 4. BAliscore comparison with SAGA, RBT-GA, VDGA and other known methodologies

Subset Dataset

name

PRRP CLUSTALW SAGA DIALIGN HMMT PIMA

(SB)

PIMA

(ML)

MULT

ALIGN

PILEUP8 RBT-GA VDGA

(Decomp_2)

VDGA

(Decomp_3)

VDGA

(Decomp_4)

3DCOFFEE

(v8.97)

MO-SAStrE

Ref.2 1lvl 0.772 0.746 0.726 0.783 0.539 0.620 0.688 0.614 0.678 0.567 0.803 0.819 0.816 0.827 0.825

1pamA 0.711 0.761 0.623 0.576 0.530 0.393 0.386 0.566 0.702 0.660 0.857 0.863 0.853 0.911 0.913

1ubi 0.056 0.482 0.492 0.000 0.053 0.129 0.129 0.000 0.000 0.795 0.732 0.778 0.794 0.901 0.911

1wit 0.760 0.557 0.694 0.724 0.641 0.469 0.463 0.500 0.476 0.825 0.875 0.815 0.774 0.928 0.917

2hsdA 0.404 0.484 0.498 0.262 0.423 0.390 0.561 0.593 0.278 0.745 0.856 0.829 0.742 0.888 0.855

2pia 0.767 0.752 0.763 0.612 0.647 0.730 0.695 0.765 0.766 0.730 0.847 0.850 0.839 0.823 0.879

3grs 0.363 0.192 0.282 0.350 0.141 0.183 0.211 0.192 0.159 0.755 0.717 0.751 0.781 0.861 0.864

4enl 0.668 0.375 0.739 0.122 0.213 0.096 0.092 0.384 0.224 0.812 0.890 0.889 0.899 0.920 0.912

Ref.3 1ajsA 0.128 0.163 0.186 0.000 0.006 0.000 0.000 0.000 0.110 0.180 0.383 0.453 0.408 0.572 0.586

1ubi 0.415 0.146 0.585 0.000 0.366 0.000 0.000 0.000 0.268 0.310 0.398 0.414 0.41 0.525 0.590

1uky 0.139 0.130 0.269 0.139 0.037 0.083 0.148 0.241 0.083 0.350 0.469 0.481 0.526 0.625 0.673

4enl 0.736 0.547 0.672 0.050 0.050 0.393 0.438 0.652 0.498 0.680 0.836 0.866 0.866 0.853 0.862

The BAliscore values are shown for 12 BAliBASE datasets.

The two best scores are highlighted in bold.

Table 5. Wilcoxon non-parametric test

MSA tool Signþ Sign� Z P-value P50.05

MSA-GA 7 1 �2.381 0.017 Yes

MSA-GA prealign 7 1 �2.381 0.017 Yes

PRRP 12 0 �3.059 0.002 Yes

SAGA 12 0 �3.059 0.002 Yes

DIALIGN 12 0 �3.059 0.002 Yes

HMMT 12 0 �3.059 0.002 Yes

SB_PIMA 12 0 �3.059 0.002 Yes

ML_PIMA 12 0 �3.059 0.002 Yes

MULTALIGN 12 0 �3.059 0.002 Yes

PILEUP8 12 0 �3.059 0.002 Yes

RBT-GA 12 0 �3.059 0.002 Yes

CLUSTALW 20 0 �3.920 0.000 Yes

VDGA_Decomp2 18 2 �3.809 0.000 Yes

VDGA_Decomp3 18 2 �3.510 0.000 Yes

VDGA_Decomp4 18 2 �3.547 0.000 Yes

3D-COFFEE 13 7 �0.579 0.562 No

Note: Pairwise comparisons between MO-SAStrE and each other method. ‘Signþ’/

‘Sign�’ identifies the number of problems that MO-SAStrE won/lost the other

method, respectively. ‘Z’ is the score provided by the Wilcoxon test.
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sequences. Then, at least one well-annotated sequence should be
included in MSAs, including at least some structural informa-

tion. Anyway, to make the proposed approach more robust,

MO-SAStrE implements an alternative objective for those
cases where sequences lack any PDB structures. In those cases,

the STRIKE objective is substituted by an easier evaluation such

as the PAM250 score (Dayhoff et al., 1978). Although this alter-

native is not the main goal here, it was also checked that the
multiobjective optimization using the PAM250 score could also

be effective.

4 CONCLUSIONS

Currently, MSAs are an open issue for researchers. Aligners

must be continually improved, as they are essential in the ana-

lysis of huge amount of data provided by next-generation

sequencing and high-throughput experiments. For this reason,
the most efficient computational techniques are fundamental to

reduce the cost of analyzing new information and to improve the

obtained accuracy.
A complete algorithm called MO-SAStrE was proposed to

optimize MSAs. This algorithm was developed through the mul-

tiobjective approach NSGA-II, specially based on a structure
evaluation (STRIKE score). Then, this algorithm takes advan-

tage of a wider range of optimization measures than other similar

methodologies. Although this is not the main purpose, the
PAM250 score could also be applied for the first objective in

case of sequences not having structures available. For this algo-

rithm, alignments previously obtained from eight methodologies

(mainly progressive and consistency-based ones) were coded
using a novel representation and own-designed crossover/

mutation procedures. The obtained alignments were built as an

ensemble of the best aligned parts from these solutions to adjust

the sequences as precisely as possible. The results for this ap-
proach showed that the alignments could generally be improved

without the application of more time-consuming aligners. A

complete set of problems from BAliBASE 3.0 was then applied.

The HV and the Kruskal–Wallis test confirmed that MO-SAStrE
achieves significantly optimized alignments with regard to the

input methodologies. Additionally, comparisons with other gen-

etic and non-genetic approaches showed that MO-SAStrE can
provide more accurate alignments according to the BAliscore

results.
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