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Abstract—The nearest neighbor rule is one of the most suc-
cessfully used techniques for resolving classification angattern
recognition tasks. Despite its high classification accurag this
rule suffers from several shortcomings in time response, rise
sensitivity and high storage requirements. These weakness have
been tackled from many different approaches, among them, a
good and well-known solution that we can find in the literature
consists of reducing the data used for the classification rel
(training data). Prototype reduction techniques can be diided
into two different approaches, known as prototype selectio
and prototype generation or abstraction. The former proces
consists of choosing a subset of the original training datayhereas
prototype generation builds new artificial prototypes to increase
the accuracy of the nearest neighbor classification.

In this paper we provide a survey of prototype generation
methods specifically designed for the nearest neighbor rulé&rom
a theoretical point of view, we propose a taxonomy based on ¢h
main characteristics presented in them. Furthermore, froman
empirical point of view, we conduct a wide experimental stug
which involves small and large data sets for measuring their
performance in terms of accuracy and reduction capabilities.
The results are contrasted through non-parametrical statstical
tests. Several remarks are made to understand which protope
generation models are appropriate for application to diffeent
data sets.

Index Terms—Prototype generation, nearest neighbor, taxon-
omy, classification, learning vector quantization.

I. INTRODUCTION

Salvador Garcia, Fsaadierrera

class. The classification process involves partitioningas
into training and testing categories. betbe a training sample
from n available samples in the training set. bgtbe a test
sample, and let be the true class of a training sample aind
be the predicted class for a test sampled{ = 1,2,...,9Q).
Here, 2 is the total number of classes. During the training
process, we use only the true clas®f each training sample
to train the classifier, while during testing we predict tiess

w of each test sample. With the 1NN rule, the predicted class
of test sample; is set equal to the true classof its nearest
neighbor, wheran, is a nearest neighbor tq if the distance

d(nng, x¢) = min;{d(nn;, ;) }.

For NN, the predicted class of test samplds set equal to
the most frequent true class amangearest training samples.
This forms the decision rul® : x; — @.

Despite its high classification accuracy, it is well knowatth
NN suffers from several drawbacks [4]. Four weaknessegicoul
be mentioned as the main causes that prevent the successful
application of this classifier. The first one is the necessity
of high storage requirements in order to retain the set of
examples which defines the decision rule. Furthermordnsgtor
all of the data instances also leads to high-computational
costs during the calculation of the decision rule, caused by
multiple computations of similarities between the test and

HE Nearest Neighbors algorithm (NN) [1] and its derivatraining samples. Regarding the third one, NN (especially
tives have been shown to perform well, like a nonparaiNN) presents low tolerance to noise, due to the fact that it

metric classifier, in machine learning and data mining (DMjonsiders all data relevant even when the training set may
tasks [2]-[4]. It is included in a more specific field of DMcontain incorrect data. Finally, NN makes predictions over
known as lazy learning [5], which refers to the set of methodsisting data and it assumes that input data perfectly dslim
that predict the class label from raw training data and do nipte decision boundaries among classes.
obtain learning models. Although NN is a simple technique, Several approaches have been suggested and studied in
it has demonstrated itself to be one of the most interestipgder to tackle the drawbacks mentioned above [16]. The
and effective algorithms in DM [6] and pattern recognitiofiesearch on similarity measures to improve the effectiggne
[7] and it has been considered one of the top ten methodsoh NN (and other related techniques based on similarities)
DM [8]. A wide range of new real problems have been stateéd very extensive in the literature [15], [17], [18]. Other
as classifications problems [9], [10], where NN has beentéchniques reduce overlapping between classes [19] based o
great support for them, for instance [11], [12]. local probability centers, increasing the tolerance toseoi
The most intuitive approach to pattern classification isbasResearchers also investigate about distance functiotebiui
on the concept of similarity [13]-[15], obviously, patterthat for use under high dimensionality conditions [20].
are similar, in some sense, have to be assigned to the sama successful technique which simultaneously tackles the
. _ computational complexity, storage requirements and noise
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instance selection [23]-[25], Prototype Selection (PF],[2 « To illustrate through graphical representations the trend
Prototype Generation (PG) [22], [27], [28], also known as of generation performed by the schemes studied in order
Prototype Abstraction methods [29], [30]. to justify the results obtained in the experiments.
Although the PS and PG problem are frequently confusedThe experimental study will include a statistical analysis
and considered to be the same problem, they each relateyé@ed on nonparametric tests and we will conduct expersnent
different problems. PS methods concern the identificatibn gwolving a total of 24 PG methods and 59 small and large
an optimal subset of representative objects from the alginsize data sets. The graphical representations of seleetied d
training data, discarding noisy and redundant examples. R@ be done by using a 2-dimensional data set cabbadana
methods, by contrast, besides selecting data, can geney@t moderate complexity features.
and replace the original data with new artificial data [27]. This paper is organized as follows. A description of the
This process allows it to fill regions in the domain of theroperties and an enumeration of the methods, as well as
problem which have no representative examples in origin@lated and advanced work on PG, are given in Section II.
data. Thus, PS methods assume that the best represent®@igion 11l presents the taxonomy proposed. In section IV we
examples can be obtained from a subset of the original daf@scribe the experimental framework, and Section V exasnine
whereas PG methods generate new representative exampl@seif results obtained in the empirical study and presents a
needed, tackling also the fourth weakness of NN mentionggcussion of them. Graphical representations of gergrate

above. data by PG methods are illustrated in Section VI. Finally,
The PG methods that we study in this survey are thosgction VII concludes the paper.

specifically designed for enhancing NN classification. Meve

theless, many other techniques could be used for the samg|. PROTOTYPE GENERATION: BACKGROUND
ggﬁlir?sstalzr)]((?emc?ltjzct)éjrsintg?;?r:r?k;ﬁéso;ﬁ\i izo&eo%fteimsa:rirp\)/eyp(; builds new artificial examples from the training set, a
sentative subset of prototypes or cluster centers, but éhey Lormal specification of the problem is the following: Leg

) . an instance whem, = (Xp1, Xp2, -+, Xpm, Xpw ), With X
obtained for more general purposes. A very good review BEIonging 0 a classriepgiven lt))y X” andpgml-)gimensiongl
clustering can be found in [31]. P

Nowadays, there is no a general categorization for PEEaCe N WhichX,; is the value of the-th feature of the-th
YS, 9 9 sample. Then, let us assume that there is a training/'¢&t

methods. In the literature a brief taxonomy for prototype ich consists of. instancest, and a test seT'S composed

reduction schemes was proposed in [22_]. It includes both %’ s instancesx;, with x,,) unknown. The purpose of PG
and PG methods and compares them in terms of classifica- . . :

. : . iS to obtain a prototype generate S8, which consists of
tion accuracy and reduction rate. In this paper, the authars ; .

- : . . r, r < n, prototypes, which are either selected or generated
divide the prototype reduction schemes into creative (R@) a
selecting methods (PS), but it is not exclusively focused grom the examples of 'z The prototypes of the generated

g ' Y YLt are determined to represent efficiently the distrilmstiof

PG methods and espeually_on studying the similarities NP6 (lasses and to discriminate well when used to class#fy th
them. Furthermore, a considerable number of PG algorithms

have been proposed and some of them are rather unknown. Ilrﬁunlng objects. Their cardinality should be sufficiersiyall

first approach we can find in the literature, called PNN [Séj Feduce both the storage and evaluation time spent by a NN

. . . ssifier. In this paper, we will focus on the use of the NN
is based on merging prototypes. One of the most |mportarr&?e with k=1, to classify the examples @fR andT'S using
families of methods are those based on Learning Vect&re éﬂG as reférence
Quan_tlzatlo_n (LVQ) [33]. Other methods are b_ased on Spgtt' This section presents an overview of the PG problem. Three
the dimensional space [34] and even evolutionary algosthm ain topics will be discussed:

and particle swarm optimization [35] have been also used ]%} In Subsection II-A, the n.1ain characteristics which will
tackling this problem [36], [37]. ¢ ’

define the categories of the taxonomy proposed in this
paper, will be outlined. They refer to the type of reduc-
tion, resulting generation set, generation mechanisms and
evaluation of the search. Furthermore, some criterias to
compare PG methods are established.

In Subsection 1I-B, we briefly enumerate all the PG
proposed in the literature. The complete and abbreviated
name will be given together with the proposal reference.
Finally, Subsection II-C explores other areas related to
PG and gives an interesting summary of advanced work
in this research field.

Because of the absence of a focused taxonomy in the
literature, we have observed that the new algorithms prexgbos
are usually compared with only a subset of the complete famil
of PG methods and, in most of the studies, no rigorous arsalysi
has been carried out.

These are the reasons that motivate the global purpose of
this paper, which can be divided into three objectives:

o To propose a new and complete taxonomy based on
the main properties observed in the PG methods. The®
taxonomy will allow us to know the advantages and
drawbacks from a theoretical point of view.

« To make an empirical study for analyzing the PG algo- . o )
rithms in terms of accuracy, reduction capabilities anft- Main characteristics in Prototype Generation Methods
time complexity. Our goal is to identify the best methods This section establishes different properties of PG method
in each family, depending on the size and type of the dataat will be necessary for the definition of the taxonomy in
sets and to stress the relevant properties of each one.the next section. The issues discussed here include the type



of reduction, resulting generation set, generation meishan
and evaluation of the search. Finally, some criteria willse¢
in order to compare PG methods.

1) Type of ReductionPG methods search for a reduced

set’T'G of prototypes to represent the training §éR, there
are also a variety of schemes in which the siz&€'6f can be
established:

o Incremental: An incremental reduction starts with an

empty reduced sef’'G or with only some representa-
tive prototypes from each class. Next, a succession of
additions of new prototypes or modifications of previ-
ous prototypes occurs. One important advantage of this
kind of reduction is that these techniques can be faster
and need less storage during the learning phase thart
non-incremental algorithms. Furthermore, this type of
reduction allows the technique to adequately establish
the number of prototypes required for each data set.
Nevertheless, this could obtain adverse results due to the
requirement of a high number of prototypes to adjlist
producing overfitting.

Decremental: The decremental reduction begins with
TG = TR, and then the algorithm starts reducifig: or

but the generalization accuracy over the test set can be
negatively affected. Nevertheless, the reduction caipabil

of condensation methods is normally high due to the fact
that border points are less than internal points in most of
the data.

Edition: These schemes instead seek to remove or mod-
ify border points. They act over points that are noisy or do
not agree with their nearest neighbors leaving smoother
decision boundaries behind. However, such algorithms
do not remove internal points that do not necessarily
contribute to the decision boundaries. The effect obtained
is related to the improvement of generalization accuracy
in test data, although the reduction rate obtained is lower.
Hybrid: Hybrid methods try to find the smallest SE&
which maintains or even increases the generalization ac-
curacy in test data. To achieve this, it allows modifications
of internal and border points based on some specific
criteria followed by the algorithm. The NN classifier
is highly adaptable to these methods, obtaining great
improvements even with a very small reduced set of
prototypes.

3) Generation mechanismsthis factor describes the dif-

modifying the prototypes if'G.It can be accomplished ferent mechanisms adopted in the literature to build thd fina
by following different procedures, such as merging, movrF @G set.

ing or removing prototypes and re-labeling classes. One
advantage observed in decremental schemes, is that afl
training examples are available for examination to make
a decision. On the other hand, a shortcoming of these
kind of methods is that they usually present a high
computational cost.

Fixed: It is common to use a fixed reduction in PG. These
methods establish the final number of prototypesifér
using a user previously defined parameter related to the
percentage of retention @fR. This is the main drawback *
of this approach, apart from that is very dependent on
each data set tackled. However, these techniques only
focus on increasing the classification accuracy.

Mixed: A mixed reduction begins with a pre-selected
subsetT'G, obtained either by random selection with
fixed reduction or by the run of a PS method, and
next, additions, modifications and removals of proto-
types are done ifl'G. This type of reduction combines
the advantages of the previously seen, allowing several®
rectifications to solve the problem of fixed reduction.
However, these techniques are prone to overfit the data
and they usually have high computational cost.

2) Resulting generation sefhis factor refers to the result-

ing set generated by the technique, that is, whether the final

set will retain border, central or both types of points.

o Condensation: This set includes the techniques which
return a reduced set of prototypes which are closer to
the decision boundaries, also called border points. The
reasoning behind retaining border points is that internal
points do not affect the decision boundaries as much
as border points, and thus can be removed with rela-

tively little effect on classification. The idea behind thes .
methods is to preserve the accuracy over the training set,

Class re-labelingThis generation mechanism consists of
changing the class labels of samples fr@nk which
could be suspicious of being errors and belonging to other
different classes. Its purpose is to cope with all types of
imperfections in the training set (mislabeled, noisy and
atypical cases). The effect obtained is closely related to
the improvement in generalization accuracy of the test
data, although the reduction rate is kept fixed.

Centroid based: These techniques are based on gen-
erating artificial prototypes by merging a set of similar
examples. The merging process is usually made from the
computation of averaged attribute values over a selected
set, yielding the so-called centroids. The identification
and selection of the set of examples are the main concerns
of the algorithms that belong to this category. These
methods can obtain a high reduction rate but they are
also related to accuracy rate losses.

Space Splitting: This set includes the techniques based
on different heuristics for partitioning the feature space
along with several mechanisms to define new prototypes.
The idea consists of dividing R into some regions which
will be replaced with representative examples establghin
the decision boundaries associated with the original

This mechanism works on a space level, due to the fact
that the partitions are found in order to discriminate,
as well as possible, a set of examples from others,
whereas centroid based approaches work on the data
level, mainly focusing on the optimal selection of only a
set of examples to be treated. The reduction capabilities of
these techniques usually depend on the number of regions
that are needed to represéngi.

Positioning Adjustment: The methods that belong to
this family aim to correct the position of a subset of



prototypes from the initial set by using an optimization TABLE I: PG methods reviewed
procedure. New positions of prototype can be obtaingd Complete name [ Abbr. name || Reference |
using the movement idea in the-dimensional space, Prototype Nearest Neighbor PNN 132]
adding or subtracting some quantities to the attribute Generalized Editing using Nearest Neighbor GENN (59
. . . Learning Vector Quantization 1 LvQ1 [33]
values of the prototypes. This mechanism is usually Learning Vector Quantization 2 Vo2
associated to a fixed or mixed type of reduction. Learning Vector Quantization 2.1 vQ2.1
. . . . . L ing Vect tization 3 LvVQ3
4) Evaluation of SearchNN itself is an appropriate heuris- FrLng o O Viaoping DSQM o
tic to guide the search of a PG method. The decisions majde Vector Quantization vQ [41]
by the heuristic must have an evaluation measure that allows Chen Algorithm Chen [34]
. - . : Bootstrap Technique for Nearest Neighbor BTS3 [42]
the comp_arls_on of different alternatives. The evalua_tldn (. Learning Vector Quantization with Training Counter LvQTC [43]
search criterion depends on the use or not of NN in suc¢h MSE MSE [24)
an evaluation: Modified Chang’s Algorithm MCA [45]
. . . Generalized Modified Chang’s Algorithm GMCA [46]
« Filter: We refer to filters techniques when they do no Integrated Concept Prototype Leamer 1CPL 29]
use the NN rule during the evaluation phase. Different Integrated Concept Prototype Leamer 2 ICPL2
heuristics are used to obtain the reduced set. They can|be :”iegfaieg g"”cep: ?0:0:“’6 tea’”efi :gﬁtﬁ
. ntegrated Concept Prototype Learner
faster than NN but the performance in terms of accuragy Depuration Algorithm Depur 75
obtained could be worse. Hybrid LVQ3 algorithm HYB [48]
o Semi-Wrapper: NN is used for partial data to determine Reduction by space partitioning 1 RSP1 130]
. . . . .- Reduction by space partitioning 2 RSP2
the criteria of making a certain decision. Thus, NN Reduction by space partioning 3 RSP3
performance can be measured over localized data, which Evolutionary Nearest Prototype Classifier ENPC 36]
will contain most of prototypes that will be influenced in Adaptive Vector Quantization AQ [49]
H Tl H : H Learning Vector Quantization with Pruning LVQPRU [50]
makmg a deCISIOﬂ. It IS_ E_ln |ntermed|ate apprpach, Whe Ie Pairwise Opposite Class Nearest Neighbor POC-NN [51]
a trade-off between efficiency and accuracy is expecteffagapive condensing Algorithm Based on Mixtures of Gaussil MxiGauss | [27]
o Wrapper: In this case, the NN rule fully guides the Self-generating Prototypes SGP [28]
search by using the complete training set with the leave- Adaptive Michigan PSO _ AMPSO (52]
. . . . . Prototype Selection Clonal Selection Algorithm PSCSA [53]
one-out validation scheme. The conjunction in the use Particle Swarm Opfimization 550 7]

of the two mentioned factors allows us to get a great
estimator of generalization accuracy, thus obtainingebett

accuracy over test data. However, each decision involves be a very important evaluation method. However, if the
a complete computation of the NN rule over the training learning phase takes too long it can become impractical
set and the evaluation phase can be computationally for real applications.

expensive.

5) Criteria to Compare PG MethoddVhen comparing PG B. Prototype Generation Methods
methods, there are a number of criteria that can be usedMore than 25 PG methods have been proposed in the liter-
to compare the relative strengths and weaknesses of eatlre. This section is devoted to enumerating and designati
algorithm. These include storage reduction, noise totsranthem according to a standard followed in this paper. For more
generalization accuracy and time requirements. details on their implementations, the reader can visit tR. U

. Storage reductionOne of the main goals of the pghttp://sci2s.ugr.es/pgtax. Implementations of the athors in
methods is to reduce storage requirements. Furthermd@ya can be found in KEEL software [38].
another goal closely related to this is to speed up C|a_S_Ta_bIe | presents an enumeration of PG_ methods reviewed
sification. A reduction in the number of stored instancd8 this paper. The complete name, abbreviation and referenc
will typically yield a corresponding reduction in the time!S Provided for each one. In the case of there being more than

it takes to search through these examples and Classil‘)E%e method in a row, they were proposed together and the
new input vector. est performing method (indicated by the respective asjtisr

. Noise toleranceTwo main problems may occur in thedepicted in bold. We will use the best representantive ntetho

presence of noise. The first is that very few instanc&$ €ach proposed paper, so only the methods in bold when
will be removed because many instances are needed™gré than one method is proposed will be compared in the
maintain the noisy decision boundaries. Secondly, tif&Perimental study.
generalization accuracy can suffer, especially if nois
instances are retained instead of good instances, or theseRelated and Advanced Work
are not re-labelled with the correct class. Nowadays, much research in enhancing NN through data
o Generalization accuracyA successful algorithm will preprocessing is common and highly demanded. PG could rep-
often be able to significantly reduce the size of theesent a feasible and promising technique to obtain exgecte
training set without significantly reducing generalizatioresults, which justifies its relationship to other methodsd a
accuracy. problems. This section provides a brief review on otherdspi
« Time requirementstsually, the learning process is carclosely related to PG and describes other interesting wadk a
ried out just once on a training set, so it seems not fature trends which have been studied in the last few years.



« Prototype Selectianith the same objective as PG, stor- In Figure 1, we show the PG map with the representative
age reduction and classification accuracy improvementgthods proposed in each paper ordered in time, following
these methods are limited only to select examples fromable I. We refer to representantive methods those which are
the training set. More than 50 methods can be fourmteferred by the authors or have reported the best results in
in the literature. In general, three kinds of methods athe corresponding proposal paper. Some interesting remark
usually differentiated, those also based on edition [54dan be seen in Figure 1.
condensation [55] or hybrid models [21], [56]. Advanced « Only two class re-labeling methods have been proposed
proposals can be found in [24], [57]-[59]. for PG algorithms. The reason is that both methods

« Instance and rule learning hybridizationk includes all obtain great results for this approach in accuracy, but the
the methods which simultaneously use instances and rules underlying concept of these methods does not achieve
in order to compute the classification of a new object.  high reduction rates, which is one of the most important
If the values of the object are within the range of a  objectives of PG. Furthermore, it is important to point out

rule, its consequent predicts the class; otherwise, if no
rule matches with the object, the most similar rule or
instance stored in the data base is used to estimate the
class. Similarity is viewed as the closest rule or instance

that both algorithms are based on decremental reduction
and that they have noise filtering purposes.

The condensation techniques are a wide group. They
usually use a semi-wrapper evaluation with any type of

based on a distance measure. In short, these methods can reduction. It is considered a classic idea due to the fact

generalize an instance into a hyperrectangle or rule [60],
[61].

Hyperspherical prototyped his area [62] studies the use

of hyperspheres to cover the training patterns of each
class. The basic idea is to cluster the space into several
objects, each of them corresponding to only one class,
and the class of the nearest object is assigned to the test
example.

Weighting This task consists of applying weights to the
instances of the training set, modifying the distance mea-.
sure between them and any other instance. This technique
could be integrated with PS and PG methods [16], [63]-

that, in recent years, hybrid models are preferred over
condensation techniques, with few exceptions. ICPL2 was
the first PG method with a hybrid approach, combining
edition and condensation stages.

Recent efforts in proposing positioning adjustment al-
gorithms are noted for mixed reduction. Most of the
methods following this scheme are based on LVQ and
the recent approaches try to alleviate the main drawback
of the fixed reduction.

There are many efforts in centroid-based techniques be-
cause they have reported a great synergy with the NN rule
since the first algorithm PNN. Furthermore, many of them

[66] for improving the accuracy in classification problems
and to avoid overfitting. A complete review dealing with
this topic can be found in [67].

« Distance FunctionsSeveral distance metrics have been
used with NN, especially when working with categorical «
attributes [68]. Many different distance measures try to
optimize the performance of NN [15], [64], [69], [70], is intended to optimize a selection, without taking into
and they have successfully increased the classification account computational costs.
accuracy. Advanced work is based on adaptive distancerigure 2 illustrates the categorization following a hietar
functions [71]. based on this order: generation mechanisms, resulting@ene

« Oversampling This term is frequently used in learningtion set, type of reduction, and finally, evaluation of tharsé.
with imbalanced classes [72], [73] and is closely related The properties studied here can help to understand how the
to undersampling [74]. Oversampling techniques replPG algorithms work. In the next sections, we will establish
cate and generate artificial examples that belong to thich methods perform best for each family considering
minority classes in order to strengthen the presence sdveral metrics of performance with a wide experimental
minority samples and to increase the performance ovigamework.
them. SMOTE [75] is the most well known oversampling
technique and it has been shown to be very effective in
many domains of application [76].

are based on simple and intuitive heuristics which allow

them to obtain a reduced set with high quality accuracy.

By contrast, those with decremental and mixed reduction

are slow techniques.

Wrapper evaluation appeared a few years ago, and is only
presented in hybrid approaches. This evaluation search

IV. EXPERIMENTAL FRAMEWORK

In this section we show the factors and issues related to
the experimental study. We provide the measures employed
" to evaluate the performance of the algorithms (subsection

' IV-A, details of the problems chosen for the experimentatio

The main characteristics of the PG methods have begubsection 1V-B), parameters of the algorithms (subeacti
described in Section II-A, and they can be used to categorixeC), and finally, the statistical tests employed to costra
the PG methods proposed in the literature. The type tife results obtained are described (subsection IV-D).
reduction, resulting generation set, generation mechenésd
the evaluation of the search constitute a set of propertisshw A- Performance measures for standard classification
define each PG method. This section presents the taxonomin this work, we deal with multi-class data sets. In these
of PG methods based on these properties. domains, two measures are widely used because of their sim-

PROTOTYPEGENERATION: TAXONOMY
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plicity and successful application. We refer to the clasatfon

TABLE Il Confusion Matrix for an{2-class problem  The gata sets are grouped into two categories depending on

the size they have. Small data sets have less than 2,000

Correct Class  Predicted Class

w1 w2 wo  Total instances and large data sets have more than 2,000 instances
i; ZE Z;; Z;g ?; The data sets considered are partitioned using the ten fold
, cross-validation (10-fcv) procedure.
wo hia  heq hoo Tra
Total Te1  Ten Tq T C. Parameters

Many different method configurations have been established
by the authors in each paper for the PG techniques. In our
experimental study, we have used the parameters defined in

rate and Cohen’s kappa rate measures, which we will NQWs reference where they were originally described, agsymi

explain:

that the choice of the values of the parameters was optimally
« Classification rate is the number of successful hitschosen. The configuration parameters, which are common to
(correct classifications) relative to the total number Qf|| problems, are shown in Table IV. Note that some PG
classifications. It has been by far the most commonjjethods have no parameters to be fixed, so they are not
used metric for assessing the performance of classifighg|uded in this table.

for years [2], [77]. In most of the techniques, euclidean distance is used as
Cohen’s kappa (Kappa ratels an alternative measure tothe similarity function, to decide which neighbors are elos
the classification rate since it compensates for randomest. Furthermore, to avoid problems with a large number of
hits [78]. In contrast to the classification rate, kappattributes and distances, all data sets have been normhalize
evaluates the portion of hits that can be attributed {etween 0 and 1. This normalization process allows to apply

the classifier itself (i.e., not to mere chance), relative | the PG methods over each data set, independently of the
all the classifications that cannot be attributed to changges of attributes.

alone. An easy way of computing Cohen’s kappa is by

making use of the resulting confusion matrix (Table IIITABLE IV: Parameter specification for all the methods em-
in a classification task. With the expression (1), we caployed in the experimentation

obtain Cohen’s kappa:

Algorithm | Parameters
LVQ3 Iterations = 100alpha = 0.1, WindowWidth=0.2
Q Q
k _n Zi:l hii — Zi:l Ty T (1) epsilon = 0.1
appa = n2 — ZQ T.T. ) DSM Iterations = 100alpha = 0.1
i=1"remct VQ Iterations = 100alpha = 0.1
where h;; is the cell count in the main diagonal (the L\B/gfc :\t‘N St_‘v"eaedlzolrlendomng'a'S =3
. . eratons = alphar = U.1,
number of true posmves for each class)is the number alphayy = 0.1, Retention Threshold = 3,
of examples(? is the number of class labels, afid;, Number of Epoches= 4
T.; are the rows’ and columns’ total counts, respectively MSE Gradient Step = 0.5, Initial Temperature = 100
Q Q ICLP2 | Filteri thod = RT2
(Tri = 2521 hajy Tei = 3254 hyia)- Dopur k' ?”;g Enf 30
Cohen’s kappa ranges ,ﬂjor&l (tOtaI dlsagreement) HYB Search lterations = 200, Optimal search lIterations = 1000
through 0 (random classification) td (perfect agree- alpha = 0.1 , Initial epsilon = 0, Final epsilon = 0.5
ment). For multi-class problems, kappa is a very useful, Initial WindowWidth = 0, Final WindowWidth = 0.5
yet simple, meter for measuring a classifier’s classifica- delta = 0.1, delta WindowWidth = 0.1
g . . Initial Selection = SVM
tion rate while compensating for random successes. RSP3 | Subset Choice = Diameter

Iterations = 250

Iterations = 100, T set percentage= 80%,
epsilon = 0.1

Iterations = 100alpha = 0.1 ,WindowWidth = 0.5
alpha ratio = 0.2

Rmin = 0.01, Rmis = 0.2

Iterations = 300, C1 = 1.0, C2 = 1.0, C3 = 0.25,
Vmax =1, W=0.1, X=0.5 Pr=0.1, Pd = 0.1

The main difference between the classification rate and ENPC
Cohen’s kappa is the scoring of the correct classifications. AVQ
Classification rate scores all the successes over all slasserygpry
whereas Cohen’s kappa scores the successes indefePOCNN
dently for each class and aggregates them. The secdnd SGP
way of scoring is less sensitive to randomness caused bePSO

a different number of examples in each class. PSCSA | HyperMutation Rate = 2, Clonal Rate = 10,
Mutation Rate = 0.01, Stimulation Threshold = 0.89,
Alpha = 0.4
B. Data sets PSO | SwarmSize = 20, lterations = 250, C1 = 1,

m C2 = 3, Vmax = 0.25, Wstart = 1.5, Wend = 0.5
ote: The parameter Reduction Rate on fixed reduction dlgos has been

In the experimental study, we selected 59 data sets fr

the UCI repository [79] and KEEL-datasef38]. Table I

established to 95% for small size data set, 98% for large

summarizes the properties of the selected data sets. Itsshow

for each data set, the number of examples (#Ex.), the number
of attributes (#Atts.), the number of numerical (#Num.) anB_ Statistical tests for performance comparison
nominal (#Nom.) attributes, and the number of classes J#ClI.

Ihttp://sci2s.ugr.es/keel/datasets

In this paper, we use the hypothesis testing techniques to
provide statistical support for the analysis of the resty,



TABLE II: Summary description for classification data sets

Data Set #EX. #Atts. || #Num. || #Nom. || #ClI. Data Set #EX. #Atts. || #Num. || #Nom. || #Cl.
abalone 4,174 8 7 1 28 marketing 8,993 13 13 0 9

appendicitis 106 7 7 0 2 monks 432 6 6 0 2

australian 690 14 8 6 2 movementlibras 360 90 90 0 15
automobile 205 25 15 10 6 newthyroid 215 5 5 0 3

balance 625 4 4 0 3 nursery 12,960 8 0 8 5

banana 5,300 2 2 0 2 pageblocks 5,472 10 10 0 5

bands 539 19 19 0 2 penbased 10,992 16 16 0 10
breast 286 9 0 9 2 phoneme 5,404 5 5 0 2

bupa 345 6 6 0 2 pima 768 8 8 0 2

car 1,728 6 0 6 4 ring 7,400 20 20 0 2

chess 3,196 36 0 36 2 saheart 462 9 8 1 2

cleveland 297 13 13 0 5 satimage 6,435 36 36 0 7

coil2000 9,822 85 85 0 2 segment 2,310 19 19 0 7

contraceptive 1,473 9 9 0 3 sonar 208 60 60 0 2

crx 690 15 6 9 2 spambase 4,597 57 57 0 2

dermatology 366 33 1 32 6 spectheart 267 44 44 0 2

ecoli 336 7 7 0 8 splice 3,190 60 0 60 3

flare-solar 1,066 11 0 11 2 tae 151 5 5 0 3

german 1,000 20 7 13 2 texture 5,500 40 40 0 11
glass 214 9 9 0 7 thyroid 7,200 21 21 0 3

haberman 306 3 3 0 2 tic-tac-toe 958 9 0 9 2

hayes-roth 160 4 4 0 3 titanic 2,201 3 3 0 2

heart 270 13 13 0 2 twonorm 7,400 20 20 0 2

hepatitis 155 19 19 0 2 vehicle 846 18 18 0 4

housevotes 435 16 0 16 2 vowel 990 13 13 0 11
iris 150 4 4 0 3 wine 178 13 13 0 3

led7digit 500 7 7 0 10 wisconsin 699 9 9 0 2

lymphography 148 18 3 15 4 yeast 1484 8 8 0 10
magic 19,020 10 10 0 2 Z00 101 16 0 16 7

mammographic 961 5 0 5 2

[81]. Specifically, we use non-parametric tests, due to #ue f V. ANALYSIS OF RESULTS

that the initial conditions that guarantee the reI|ab|hlfythe This section presents the average results collected in the

gxperlmental study and some discussions of them, the com-
ete results can be found on the web page associated with
is paper. The study will be divided into two parts: anaysi

analysis to lose credibility with these parametric testsese
tests are suggested in the studies presented in [80], [8

[84], where its use in the field of Machine Learning is highl%f the results obtained over small size data sets (Subsectio

recommended. V-A) and over large data sets (Subsection V-B). Finally, a

The Wilcoxon test [82], [83] is adopted considering a levejobal analysis is added in (Subsection V-C).
of significance ofa = 0.1. More information about statistical

tests and the results obtained can be found in the web site ) o )
associated with this paper (http://sci2s.ugr.es/pgtax). A. Analysis and Empirical Results of Small Size Data Sets
Table V presents the average results obtained by the PG
methods over the 40 small size data sd&@ed.denotes re-
duction rate achievedyain Acc and train Kap present the
E. Other considerations accuracy and kappa obtained in the training data, resgéctiv
on the other hantst Accandtst Kappresent the accuracy and
We want to outline that the implementations are based orkgppa obtained over the test data. Finallyne denotes the
on the descriptions and specifications given by the resmectaverage time elapsed in seconds to finish a run of PG method.
authors in their papers. No advanced data structures aftte algorithms are ordered from the best to the worst for each
enhancements for improving the efficiency of PG methodgpe of result. Algorithms highlighted in bold are those @i
have been carried out. All methods are available in KEEhbtain the best result in their corresponding family, adoay
software [38]. to the first level of the hierarchy in Figure 2.



TABLE V: Average results obtained by the PG methods over kdwh sets

Red. train Acc. train Kap. tst Acc. tst Kap. Time (s)
PSCSA | 0.9858 MCA | 0.8772 MCA | 0.7717 GENN | 0.7564 GENN | 0.5400 INN -
AVQ | 0.9759 GMCA | 0.8405 GMCA | 0.7067 ICPL2 | 0.7560 ICPL2 | 0.5366 LvQTC 0.1644
LVQTC | 0.9551 HYB | 0.8309 HYB | 0.6988 PSO | 0.7501 PSO | 0.5332 DSM 0.1780
MixtGauss | 0.9552 ICPL2 | 0.8254 ENPC | 0.6800 GMCA | 0.7351 GMCA | 0.5062 BTS3 0.2079
MSE | 0.9520 ENPC | 0.8247 PSO | 0.6791 INN | 0.7326 RSP3 | 0.5004 LVQ3 0.2316
Chen | 0.9519 PSO | 0.8238 ICPL2 | 0.6690 RSP3 | 0.7325 MSE | 0.4925 VQ 0.2469
BTS3 | 0.9519 GENN | 0.8002 GENN | 0.6243 Depur | 0.7296 INN | 0.4918 Chen 0.2675
SGP | 0.9512 RSP3 | 0.7924 RSP3 | 0.6112 MSE | 0.7237 MCA | 0.4867 Depur 0.2777
LVQPRU | 0.9503 Depur | 0.7801 Depur | 0.5815 MCA | 0.7219 Depur | 0.4826 LVQPRU 0.5592
PSO | 0.9491 MSE | 0.7566 MSE | 0.5388 ENPC | 0.7167 ENPC | 0.4818 AVQ 0.6561
VQ | 0.9491 INN | 0.7369 LVQTC | 0.5224 HYB | 0.7153 HYB | 0.4790 || MixtGauss 0.8125
DSM | 0.9491 LVQTC | 0.7327 Chen | 0.5116 LVQPRU | 0.6997 LVQPRU | 0.4592 SGP 1.3597
LVQ3 | 0.9488 LVQPRU | 0.7304 LVQPRU | 0.5110 LVQTC | 0.6981 || MixtGauss | 0.4546 GENN 1.4285
PNN | 0.9447 SGP | 0.7256 AMPSO | 0.5039 SGP | 0.6949 LVQTC | 0.4541 RSP3 1.8505
AMPSO | 0.9430 AMPSO | 0.7227 INN | 0.4985 || MixtGauss | 0.6932 AMPSO | 0.4440 PSCSA 1.9562
MCA | 0.8568 || MixtGauss | 0.7138 MixtGauss | 0.4888 AMPSO | 0.6903 PNN | 0.4369 MSE 2.4794
ICPL2 | 0.8371 DSM | 0.7036 SGP | 0.4852 DSM | 0.6810 SGP | 0.4360 HYB 5.5888
RSP3 | 0.7329 PNN | 0.7015 PNN | 0.4718 PNN | 0.6786 AVQ | 0.4326 AMPSO 8.2870
ENPC | 0.7220 Chen | 0.6964 AVQ | 0.4660 Chen | 0.6770 DSM | 0.4239 GMCA 8.4947
GMCA | 0.6984 LVQ3 | 0.6931 DSM | 0.4627 LVQ3 | 0.6763 PSCSA | 0.4231 PNN 14.0066
POC | 0.6071 AVQ | 0.6869 PSCSA | 0.4461 PSCSA | 0.6682 LvQ3 | 0.4114 PSO 42.3168
HYB | 0.4278 PSCSA | 0.6787 LVQ3 | 0.4421 AVQ | 0.6672 Chen | 0.4026 ENPC 47.1377
Depur | 0.3531 BTS3 | 0.6713 BTS3 | 0.3923 BTS3 | 0.6626 BTS3 | 0.3784 POC | 151.9278
GENN | 0.1862 VQ | 0.6614 VQ | 0.3866 VQ | 0.6549 VvQ | 0.3770 ICPL2 | 163.9147
INN | 0.0000 POC | 0.6487 POC | 0.3601 POC | 0.6493 POC | 0.3700 MCA | 190.4930

Figure 3 depicts a representation of an opposition between
the two objectives: reduction and test accuracy. Each algo-
rithm located inside the graphic gets its position from the
average values of each measure evaluated (exact position
corresponding to the beginning of the name of the algorithm)
Across the graphic, there is a line that represents thehbles
of test accuracy achieved by the 1-NN algorithm without e
preprocessing. Note that in Figure 3a the names of some PG
methods overlap, and hence Figure 3b shows this overlapping
zone.

To complete the set of results, the web site associated to
this paper contains the results of applying the Wilcoxon tes
to all possible comparisons among all PG considered in small
data sets.

Observing Tables V, Figure 3 and the Wilcoxon Test, we »
can point out some interesting facts:

o Some classical algorithms are at the top in accuracy and
kappa rate. For instance, GENN, GMCA and MSE obtain
better results than other recent methods over test datae
However, these techniques usually have a poor associ-
ated reduction rate. We can observe this statement in
the Wilcoxon test, where classical methods significantly
overcome other recent approaches in terms of accuracy
and kappa rates. However, In terms 4fc. « Red. and
Kap. * Red. measures, typically, these methods do not
outperform recent techniques. .

o PSO and ENPC could be stressed from Bositioning
Adjustmenfamily as the best performing methods. Each
one of them belongs to different sub-families, fixed and
mixed reduction, respectively. PSO focuses on improv-
ing the classification accuracy and it obtains a good
generalization capability. On the other hand, ENPC has

the overfitting as the main drawback, clearly discernible
from Table V. In general, LVQ based approaches obtain
worse accuracy rates than 1NN, but the reduction rate
achieved by them is very high. MSE and HYB are the
most outstanding techniques belonging to the subgroup
of Condensatiorand Positioning Adjustment

With respect taclass re-labelingnethods, GENN obtains
better accuracy/kappa rates but worse reduction rates than
Depur. However, the statistical test informs that GENN
does not outperform to the Depur algorithm in terms of
accuracy and kappa rate. Furthermore, when the reduction
rate is taken into consideration, that is, when the ste#ikti
test is based on thécc.x Red. and K ap.x Red. measures,

the Depur algorithm clearly outperforms to GENN.

The decremental approaches belonging to dbetroids
family require high computation times but usually offer
good reduction rates. MCA and PNN tend to overfit the
data, but GMCA obtains excellent results.

In the whole centroids family, two methods deserve
particular mention: ICPL2 and GMCA. Both generate
a reduced prototype set with good accuracy rates in
test data. The other approaches based on Fixed and
Incremental reduction are less appropriate to improve the
effectiveness of 1NN, but they are very fast and offer
much reduced generated sets.

Regardingspace splittingapproaches, several differences
can be observed. RSP3 is an algorithm based on Chen’s
algorithm but tries to avoid drastic changes in the form
of the decision boundaries, and it produces a good
tradeoff between reduction and accuracy. Although the
POC algorithm is a relatively modern technique, this
does not obtain great results. We can justify these results
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Fig. 3: Accuracy in test vs reduction in small data sets

because thev parameter is very sensitive for each data

racy/kappa rates independently of the type of input data.

set. Furthermore, it is quite slow when tackling data sets Finally, we perform an study depending on the number of

with more than two classes.

classes of the data sets. In the web site associated to this

The best methods in accuracy/kappa rates for each ongygher, we show the average results in accuracy/kappa rate
the families are PSO, GENN, ICPL2 and RSP3, respegifferentiating between binary and multi-class data séfe.
tively and five methods outperform 1NN in accuracy. can analyze several details from the results collected:

In general, hybrid methods obtain the best result in terms
of accuracy and reduction rate.

Usually, there is no difference between the rankings
obtained with accuracy and kappa rates, except for some
concrete algorithms. For example, we can observe that,
1NN obtains a lower ranking with the kappa measure, it
probably indicates that 1NN benefits of random hits.

Furthermore, in the web site associated to this paper, we
can
of attributes of the data sets. We show the results in accu-,
racy/kappa rate for all PG methods differentiating between
numerical, nominal and mixed data sets. In numerical and
nominal data sets all attributes must be numerical and naimin
respectively, whereas in mixed data sets, we include thatse d
sets with numerical and nominal attributes mixed. Obseyvin
these tables, we want to outline different properties ofRke
methods.

find an analysis of the results depending on the type

In general, there is no difference in performance between
numerical, nominal and mixed data sets, except for some
concrete algorithms. For example, in mixed data sets, we
can see that a class-relabeling method, GENN, is on tRe

Eight techniques outperform 1NN in accuracy when they
tackle binary data sets. However, over multi-class data
sets, there are only three techniques that are able to
overcome 1NN.

Centroid-based techniques usually perform well when
dealing with multi-class data sets. For instance, we can
highlight the MCA, SGP, PNN, ICPL2 and GMCA
techniques, which increase their respective rankings with
multi-class data sets.

GENN and ICPL2 techniques obtain good accu-
racy/kappa rates independently of the number of classes.
PSCSA has a good behavior with binary data sets.
However, over multi-class data sets, PSCSA decrease its
performance.

« Some methods present significant differences between

accuracy and kappa measures when dealing with binary
data sets. We can stress MSE, Depur, Chen and BTS3
like techniques penalized by the kappa measure.

Analysis and Empirical Results of Large Size Data Sets

top, due to the fact that it does not produce modifications This section presents the study and analysis of large size
to the attributes. However, in numerical data sets, PSfata sets. The goal of this study is to analyze the effect
is the best performing method, indicating to us that thef scaling up the data in PG methods. For time complexity
positioning adjustment strategy is usually well-adapted teasons, several algorithms cannot be run over large deta se

numerical data sets.

PNN, MCA, GMCA, ICPL2 and POC are extremely slow

In fact, comparing these tables, we observe that soreehniques and their time complexity quickly increasesmwhe
representative techniques of the positioning adjustmehe data scales up or manages more than five classes.
family, such as PSO, MSE, and ENPC have a closeTable VI shows the average results obtained and Figure 4
accuracy/kappa rate to 1NN. However, over nominal ariltlistrates the comparison between the accuracy and rieduct

mixed data sets, they decrease their accuracy rates.

rates of the PG methods over large size data sets. Finally,
o« ICPL2 and GMCA techniques obtain good accuthe web site associated to this paper contains the results
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TABLE VI: Average results obtained by the PG methods ovegdadata sets

Red. train Acc. train Kap. tst Acc. tst Kap. Time (s)
PSCSA | 0.9988 ENPC | 0.8809 ENPC | 0.7613 GENN | 0.8133 GENN | 0.6269 INN
AVQ | 0.9980 GENN | 0.8428 GENN | 0.6806 INN | 0.8060 INN | 0.6181 DSM 1.6849
LVQTC | 0.9975 Depur | 0.8250 Depur | 0.6322 ENPC | 0.8029 ENPC | 0.6170 LVQ3 1.7037
MSE | 0.9936 PSO | 0.8158 RSP3 | 0.6299 Depur | 0.8004 Depur | 0.5863 VQ 1.7193
SGP | 0.9823 INN | 0.8057 INN | 0.6178 PSO | 0.8000 PSO | 0.5861 MSE 17.4228
BTS3 | 0.9801 RSP3 | 0.7922 PSO | 0.6173 MSE | 0.7674 RSP3 | 0.5597 HYB 18.6338
Mixtgauss | 0.9801 HYB | 0.7888 HYB | 0.5992 Chen | 0.7621 HYB | 0.5567 LVQPRU 24.4067
LVQPRU | 0.9801 MSE | 0.7759 MSE | 0.5349 HYB | 0.7618 MSE | 0.5221 Depur 26.8656
Chen | 0.9801 Chen | 0.7682 Chen | 0.5236 RSP3 | 0.7556 Chen | 0.5116 AVQ 38.3665
LVQ3 | 0.9799 AMPSO | 0.7436 BTS3 | 0.4859 AMPSO | 0.7410 LVQPRU | 0.4799 Chen 50.0435
DSM | 0.9799 BTS3 | 0.7393 AMPSO | 0.4836 BTS3 | 0.7399 DSM | 0.4796 SGP 52.3400
VQ | 0.9799 LVQPRU | 0.7373 LVQPRU | 0.4818 LVQPRU | 0.7356 BTS3 | 0.4788 LvQTC 83.6030
PSO | 0.9799 DSM | 0.7353 DSM | 0.4795 DSM | 0.7341 AMPSO | 0.4784 PSCSA 160.3864
AMPSO | 0.9797 || MixtGauss | 0.7345 Mixtgauss | 0.4711 || Mixtgauss | 0.7318 || MixtGauss | 0.4661 GENN 167.4849
ENPC | 0.8205 LVQ3 | 0.7340 VQ | 0.4689 LVQ3 | 0.7318 VQ | 0.4651 BTS3 219.2394
RSP3 | 0.8100 VQ | 0.7322 LVQ3 | 0.4683 VQ | 0.7316 LVQ3 | 0.4627 AMPSO 587.7181
HYB | 0.5727 LVQTC | 0.7065 AVQ | 0.4321 LVQTC | 0.7056 AVQ | 0.4280 RSP3 258.6881
Depur | 0.2708 PSCSA | 0.6730 LVQTC | 0.4185 PSCSA | 0.6707 LVQTC | 0.4165 || MixtGauss 639.3139
GENN | 0.1576 AVQ | 0.6546 PSCSA | 0.3900 AVQ | 0.6518 PSCSA | 0.3842 PSO 909.9820
INN | 0.0000 SGP | 0.6162 SGP | 0.3568 SGP | 0.6086 SGP | 0.3466 ENPC | 10931.1977
. GENN AMPSO
08 F Depur ENPC PsO 1 0.74 BTS3 )
HYB cMeSnE
075 RSP3 ] 0738 - |
< po
§ ol were | E 0.736 | - 4
PSCSA 0734 - DSM |
0.65 - AVQ E
0782 - LvQ3 vo Mixtgauss ]
SGP
06 0 (;.2 (;.4 0‘.6 0‘.8 ;. 0.&;76 0.&;78 O.‘QS 0.;82 0.5;84

Reduction

(a) All PG methods considered over large data sets

Reduction

(b) Zoom in the overlapping reduction rate zone

Fig. 4: Accuracy in test vs reduction in large data sets

of applying the Wilcoxon test over all possible comparisons
among all PG considered in large data sets. .
These tables allow us to highlight some observations of the

results obtained:

« Only the GENN approach outperforms the performance
of INN in accuracy/kappa rate. °

« Some methods present clear differences when dealing
with large data sets. For instance, we can highlight the
PSO and RSP3 techniques. The former may suffer from a
lack of convergence due to the fact that the performance®
obtained in training data is slightly higher than that

the data scales up.

BTS3 stands out as the best centroids-based method over
large size data sets because the best-performing ones over
small data sets were also the most complex in time and
they cannot be run here.

Although ENPC overfits the data, it is the best performing
method considering the trade-off between accuracy/kappa
and reduction rates. PSO can also be stressed as a good
candidate in this type of data set.

There is no significant differences between the accuracy
and kappa rankings when dealing with large data sets.

obtained by 1NN; hence, it may be a sign that more Again, we differentiate between numerical, nominal and
iterations are needed to tackle large data sets. On tiéed data sets. Complete results can be found in the web site
other hand, the techniques based on space partitionemsociated to this paper. Observing these results, we want t
present some drawbacks when the data scales up andutline different properties of PG methods over large dats. s
made up of more attributes. This is the case with RSPRote that there is only one data set with mixed attributes, fo

o In general, LVQ based methods do not work well whethis reason we focus this analysis in the differences batwee



numerical and nominal data sets.

When only numerical data sets are taken into considera-

VI.
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V ISUALIZATION OF DATA RESULTING SETS: A CASE
STUDY BASED ONBANANA DATA SET

tion, three algorithms outperform the 1NN rule: GENN, This section is devoted to illustrating the subsets sefiecte

PSO and ENPC.

resulting from some PG algorithms considered in our study.

« Over nominal large data sets, no PG method outperforf§ o this, we focus on thbananadata set, which contains

INN.

5,300 examples in the complete set. It is an artificial datafse

« MixtGauss and AMPSO are highly conditioned on the ¢|asses composed of three well-defined clusters of ineganc

type of input data, preferring numerical data sets. By the class—1 and two clusters of the clags Although the

contrast, RSP3 is better adapted to nominal data setsyqrders are clear among the clusters there is a high overlap
Finally, we perform again an analysis of the behavior of theetween both classes. The complete data set is illustrated i

PG techniques depending on the number of classes, but in fhigure 5a.

case, over large data sets. the web site associated to {iés pa The pictures of the generated sets by some PG methods

presents the results. Observing these results, we canqaintcould help to visualize and understand their way of working

several comments:

and the results obtained in the experimental study. The re-

« Over binary large data sets, there are four algorithn’?é‘c'[io” rate, and the accuracy and kappa values in test data

that outperform 1NN. However, when the PG techniquéggistered in the experimental study are specified for eaeh o
tackle multi-class data sets. no PG method overcori the original data set, the two values indicated corredpon

INN.
When dealing with large data sets, there is no importante
differences between the accuracy and kappa ranking with
binary data sets.

Class-relabeling methods perform well independently of
the number of classes.

C. Global Analysis

This subsection shows a global view of the obtained results.
As a summary we want to outline several remarks on the use
of PG, because the choice of a certain method depends on
various factors.

Several PG methods can be emphasized according to their
test accuracy/kappa obtained: PSO, ICPL2, ENPC and
GENN. In principle, in terms of reduction capabilities,
PSCSA and AVQ obtain the best results but they offer
poor accuracy rates. Taking into consideration the com-
putational cost, we can consider DSM, LVQ3 and VQ to
be the fastest algorithms.

Edition schemes usually outperform the 1NN classifier,
but the number of prototypes in the result set is too high.
This fact could be prohibitive over large data sets, because
there is no significant reduction. Furthermore, other PG
methods have shown that it is possible to preserve high,
accuracy with a better reduction rate.

A high reduction rate serves no purpose if there is not a
minimum guarantee of performance accuracy. This is the
case of PSCSA or AVQ. Nevertheless, MSE offers excel-
lent reduction rates without losing performance accuracy.
For the trade-off reduction-accuracy rate, PSO has been

reported to have the best results over small size data sets.

In the case of dealing with large data sets, the ENPC
approach seems to be the most appropriate one.

A good reduction-accuracy balance is difficult to achieve ,
with a fast algorithm. Considering this restriction, we
could say that RSP3 allows us to yield generated sets
with a good tradeoff between reduction, accuracy and
time complexity.

to accuracy and kappa with 1NN:

Figure 5b depicts generated data by the algorithm GENN.
It belongs to the edition approaches and the generated
subset differs slightly from the original data set. Those
samples found within the class boundaries can either be
removed or be re-labeled. It is noticeable that the clusters
of different classes are a little more separated.

Figure 5¢ shows the resulting subset of the classical
LVQ3 condensation algorithm. It can be appreciated
that most of the points are moved to define the class
boundaries, but a few interior points are also used. The
accuracy and kappa decrease with respect to the original,
as is usually the case with condensation algorithms.
Figures 5d and 5e represent the sets generated by Chen
and RSP3 methods respectively. These methods are based
on a space splitting strategy, but the first one requires the
specification of the final size of the generated sets while
the latter does not. We can see that the Chen method
generates prototypes keeping a homogeneous distribution
of points in the space. RSP3 was proposed to fix some
problems observed in the Chen method, but in this
concrete data set, this method is worse in accuracy/kappa
rates than its ancestor. However, the reduction type of
Chen’s method is fixed and it is very dependent on the
data set tackled.

Figures 5f and 5g represent sets of data generated by
BTS3 and SGP methods. Both techniques are cluster-
based and present very high reduction rates over this
data set. SGP does not work well in this data set be-
cause it promotes the removal of prototypes and uses an
incremental order, which does not allow us to choose the
most appropriate decision. BTS3 uses a fixed reduction
type, thus it focuses on improving accuracy rates, but its
generation mechanisms are not well suited to in this type
of data set.

Figures 5h and 5i illustrate the sets of data generated by
PSO and ENPC methods. They are wrapper and hybrid
methods of the position adjusting family and iterate many
times to obtain an optimal reallocation of prototypes. PSO
requires as a parameter the final size of the subset selected



13

3,0 : 3,0 : 3,0
25
2,0
15
10
05
0,0
05
1,0

415 10 " o
20 s :" A . .
J +
25 20
30 25 20 15 10 05 00 05 10 15 20 25 30 30 25 20 15 10 05 00 05 10 15 20 25 30 20 5 -0 05 00 05 10 15 20
(a) Banana Original((8751, 0.7476) (b) GENN (0.0835, 0.8826, 0.7626) (c) LVQ3 (0.9801, 0.8370, 0.6685)
30
30 . 20 .
25
25 A
% . N X 15 i . ars
. . - 2,0 o e . :
10 cha g 1o LRI ST . 05 1 . »
B Lt e et ! Pk TEELL LT L ’ ‘ - M Y
. . . . . . +
o8 R A M 05 ‘“‘%39&‘33' * "‘:’:o{n et 0 I Teoe s N .
00 ‘e + L S pede . 0}%.‘* . I3 . .
.t . - « e 0,0 T + Ta g 28 o et e
05 AR e SN DA S 05| X :‘&yr‘. i, : : + R
10 LIPS e 10 S “Af%”o A 10 * T *
15 . . ‘. " R . Lt R
M N 45 rttatiee . s .
2,0 + 20 + - . P
80 25 20 -5 -10 05 00 05 10 15 20 25 " 30 25 20 45 10 05 00 05 10 15 20 25 25 20 -15 -0 05 00 05 10 15 20
(d) Chen (.9801, 0.8792, 0.7552) (€) RSP3 (.8962, 0.8755, 0.7482) (f) BTS3 (0.9801, 0.8557, 0.7074)
125 . . a6 - 50
1.00 b 15 T . 25 .
L ‘ 10 : : i . : 20
. R
0,50 he 05 . C ‘0 . * :: 15
025 gk RS - 10
0,00 3 " . PN B @3
. + P ERAEE SRS S +
025 N MREEIPUIRY R 00
401+ £ A + 05
0,50 < RN . .
. 4 N 4 -1
075 -5 . 10
15
-1,00 =0 ¢ 2,0
425 : e 25 £ '
1,0 05 00 05 10 20 5 -0 05 00 05 10 15 30 25 20 -15 -10 -05 00 05 10 15 20 25
(g) SGP (.9961, 0.6587, 0.3433) (h) PSO (.9801, 0.8819, 0.7604) (i) ENPC (0.7485, 0.8557, 0.7086)

Fig. 5: Data Generated Sets in Banana Data Set

and this parameter is very conditioned to the complexity space (Chen or ENPC). Nevertheless, visual charadbsrist
of the data set addressed. In th@nanacase, keeping a of generated sets are also the subject of interest and can als
2% of prototypes seems to work well. On the other handielp to decide the choice of a PG method.
ENPC can adjust the number of prototypes required to
fit a specific data set. In the case study presented, we VII. CONCLUSIONS
can see that it obtains similar sets to those obtained byln this paper, we have provided an overview of Proto-
the Chen approach, because it also fills the regions wigype Generation methods proposed in the literature. We have
a homogeneous distribution of generated prototypes. ifentified the basic and advanced characteristics. Fumitie,
decision boundaries, the density of prototypes is incibasexisting work and related fields have been reviewed. Based on
and may produce quite noisy samples for further clasghe main characteristics studied, we have proposed a taxpno
fication of the test data. It explains its poor behavior iaf Prototype Generation methods.
this problem with respect to PSO, the lower reduction The most important methods have been empirically ana-
rate achieved and the decrement of accuracy/kappa rdiged over small and large sizes of classification data Jets.
with regard to the original data set classified with 1NNillustrate and strengthen the study, some graphical reptas
tions of data subsets selected have been drawn and sHdtistic
We have seen the resulting data sets of condensation,reditimalysis based on nonparametric tests has been employed.
and hybrid methods and different generation mechanisnis witeveral remarks and guidelines can be suggested:
some representative PG methods. Although the methods can be A researcher, who needs to apply a PG method, should
categorized as a specific family, they do not follow a specific know the main characteristics of these kinds of methods
behavior pattern, since some of the condensation tech&lique in order to choose the most suitable. The taxonomy
may generate interior points (like in LVQ3), others clustef proposed and the empirical study can help a researcher
data (RSP3) or even points with a homogeneous distribution to make this decision.



o To propose a new PG method, rigorous analysis should he]

considered to compare the most well known approaches
and those which fit with the basic properties of th
new proposal. To do this, the taxonomy and analysis of
influence in the literature can help guide a future proposal
to the correct method. 18]
This paper helps non-experts in PG methods to differen&i-
ate between them, to make an appropriate decision about
their application and to understand their behavior. 119
It is important to know the main advantages of each
PG method. In this paper, many PG methods have beeal
empirically analyzed but a specific conclusion cannot be
drawn regarding the best performing method. This choi
depends on the problem tackled but the results offered in
this paper could help to reduce the set of candidates. 22
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