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A Taxonomy and Experimental Study on Prototype
Generation for Nearest Neighbor Classification

Isaac Triguero, Joaquı́n Derrac, Salvador Garcı́a, Francisco Herrera

Abstract—The nearest neighbor rule is one of the most suc-
cessfully used techniques for resolving classification andpattern
recognition tasks. Despite its high classification accuracy, this
rule suffers from several shortcomings in time response, noise
sensitivity and high storage requirements. These weaknesses have
been tackled from many different approaches, among them, a
good and well-known solution that we can find in the literature
consists of reducing the data used for the classification rule
(training data). Prototype reduction techniques can be divided
into two different approaches, known as prototype selection
and prototype generation or abstraction. The former process
consists of choosing a subset of the original training data,whereas
prototype generation builds new artificial prototypes to increase
the accuracy of the nearest neighbor classification.

In this paper we provide a survey of prototype generation
methods specifically designed for the nearest neighbor rule. From
a theoretical point of view, we propose a taxonomy based on the
main characteristics presented in them. Furthermore, from an
empirical point of view, we conduct a wide experimental study
which involves small and large data sets for measuring their
performance in terms of accuracy and reduction capabilities.
The results are contrasted through non-parametrical statistical
tests. Several remarks are made to understand which prototype
generation models are appropriate for application to different
data sets.

Index Terms—Prototype generation, nearest neighbor, taxon-
omy, classification, learning vector quantization.

I. I NTRODUCTION

T HE Nearest Neighbors algorithm (NN) [1] and its deriva-
tives have been shown to perform well, like a nonpara-

metric classifier, in machine learning and data mining (DM)
tasks [2]–[4]. It is included in a more specific field of DM
known as lazy learning [5], which refers to the set of methods
that predict the class label from raw training data and do not
obtain learning models. Although NN is a simple technique,
it has demonstrated itself to be one of the most interesting
and effective algorithms in DM [6] and pattern recognition
[7] and it has been considered one of the top ten methods in
DM [8]. A wide range of new real problems have been stated
as classifications problems [9], [10], where NN has been a
great support for them, for instance [11], [12].

The most intuitive approach to pattern classification is based
on the concept of similarity [13]–[15], obviously, patterns that
are similar, in some sense, have to be assigned to the same
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class. The classification process involves partitioning samples
into training and testing categories. Letxp be a training sample
from n available samples in the training set. Letxt be a test
sample, and letω be the true class of a training sample andω̂

be the predicted class for a test sample (ω, ω̂ = 1, 2, . . . , Ω).
Here, Ω is the total number of classes. During the training
process, we use only the true classω of each training sample
to train the classifier, while during testing we predict the class
ω̂ of each test sample. With the 1NN rule, the predicted class
of test samplext is set equal to the true classω of its nearest
neighbor, wherennt is a nearest neighbor toxt if the distance

d(nnt, xt) = mini{d(nni, xt)}.

For NN, the predicted class of test samplext is set equal to
the most frequent true class amongk nearest training samples.
This forms the decision ruleD : xt → ω̂.

Despite its high classification accuracy, it is well known that
NN suffers from several drawbacks [4]. Four weaknesses could
be mentioned as the main causes that prevent the successful
application of this classifier. The first one is the necessity
of high storage requirements in order to retain the set of
examples which defines the decision rule. Furthermore, storing
all of the data instances also leads to high-computational
costs during the calculation of the decision rule, caused by
multiple computations of similarities between the test and
training samples. Regarding the third one, NN (especially
1NN) presents low tolerance to noise, due to the fact that it
considers all data relevant even when the training set may
contain incorrect data. Finally, NN makes predictions over
existing data and it assumes that input data perfectly delimits
the decision boundaries among classes.

Several approaches have been suggested and studied in
order to tackle the drawbacks mentioned above [16]. The
research on similarity measures to improve the effectiveness
of NN (and other related techniques based on similarities)
is very extensive in the literature [15], [17], [18]. Other
techniques reduce overlapping between classes [19] based on
local probability centers, increasing the tolerance to noise.
Researchers also investigate about distance functions suitable
for use under high dimensionality conditions [20].

A successful technique which simultaneously tackles the
computational complexity, storage requirements and noise
tolerance of NN is based on data reduction [21], [22]. These
techniques aim to obtain a representative training set witha
lower size compared to the original one and with a similar or
even higher classification accuracy for new incoming data. In
the literature, these are known as reduction techniques [21],
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instance selection [23]–[25], Prototype Selection (PS) [26],
Prototype Generation (PG) [22], [27], [28], also known as
Prototype Abstraction methods [29], [30].

Although the PS and PG problem are frequently confused
and considered to be the same problem, they each relate to
different problems. PS methods concern the identification of
an optimal subset of representative objects from the original
training data, discarding noisy and redundant examples. PG
methods, by contrast, besides selecting data, can generate
and replace the original data with new artificial data [27].
This process allows it to fill regions in the domain of the
problem which have no representative examples in original
data. Thus, PS methods assume that the best representative
examples can be obtained from a subset of the original data
whereas PG methods generate new representative examples if
needed, tackling also the fourth weakness of NN mentioned
above.

The PG methods that we study in this survey are those
specifically designed for enhancing NN classification. Never-
theless, many other techniques could be used for the same
goal as PG methods that are out of the scope of this survey.
For instance, clustering techniques allow us to obtain a repre-
sentative subset of prototypes or cluster centers, but theyare
obtained for more general purposes. A very good review of
clustering can be found in [31].

Nowadays, there is no a general categorization for PG
methods. In the literature a brief taxonomy for prototype
reduction schemes was proposed in [22]. It includes both PS
and PG methods and compares them in terms of classifica-
tion accuracy and reduction rate. In this paper, the authors
divide the prototype reduction schemes into creative (PG) and
selecting methods (PS), but it is not exclusively focused on
PG methods and especially on studying the similarities among
them. Furthermore, a considerable number of PG algorithms
have been proposed and some of them are rather unknown. The
first approach we can find in the literature, called PNN [32]
is based on merging prototypes. One of the most important
families of methods are those based on Learning Vector
Quantization (LVQ) [33]. Other methods are based on splitting
the dimensional space [34] and even evolutionary algorithms
and particle swarm optimization [35] have been also used for
tackling this problem [36], [37].

Because of the absence of a focused taxonomy in the
literature, we have observed that the new algorithms proposed
are usually compared with only a subset of the complete family
of PG methods and, in most of the studies, no rigorous analysis
has been carried out.

These are the reasons that motivate the global purpose of
this paper, which can be divided into three objectives:

• To propose a new and complete taxonomy based on
the main properties observed in the PG methods. The
taxonomy will allow us to know the advantages and
drawbacks from a theoretical point of view.

• To make an empirical study for analyzing the PG algo-
rithms in terms of accuracy, reduction capabilities and
time complexity. Our goal is to identify the best methods
in each family, depending on the size and type of the data
sets and to stress the relevant properties of each one.

• To illustrate through graphical representations the trend
of generation performed by the schemes studied in order
to justify the results obtained in the experiments.

The experimental study will include a statistical analysis
based on nonparametric tests and we will conduct experiments
involving a total of 24 PG methods and 59 small and large
size data sets. The graphical representations of selected data
will be done by using a 2-dimensional data set calledbanana
with moderate complexity features.

This paper is organized as follows. A description of the
properties and an enumeration of the methods, as well as
related and advanced work on PG, are given in Section II.
Section III presents the taxonomy proposed. In section IV we
describe the experimental framework, and Section V examines
the results obtained in the empirical study and presents a
discussion of them. Graphical representations of generated
data by PG methods are illustrated in Section VI. Finally,
Section VII concludes the paper.

II. PROTOTYPE GENERATION: BACKGROUND

PG builds new artificial examples from the training set, a
formal specification of the problem is the following: Letxp

be an instance wherexp = (xp1, xp2, ..., xpm, xpω), with xp

belonging to a classω given by xpω and am-dimensional
space in whichXpi is the value of thei-th feature of thep-th
sample. Then, let us assume that there is a training setTR

which consists ofn instancesxp and a test setTS composed
of s instancesxt, with xtω) unknown. The purpose of PG
is to obtain a prototype generate setTG, which consists of
r, r < n, prototypes, which are either selected or generated
from the examples ofTR. The prototypes of the generated
set are determined to represent efficiently the distributions of
the classes and to discriminate well when used to classify the
training objects. Their cardinality should be sufficientlysmall
to reduce both the storage and evaluation time spent by a NN
classifier. In this paper, we will focus on the use of the NN
rule, with k=1, to classify the examples ofTR andTS using
the TG as reference.

This section presents an overview of the PG problem. Three
main topics will be discussed:

• In Subsection II-A, the main characteristics which will
define the categories of the taxonomy proposed in this
paper, will be outlined. They refer to the type of reduc-
tion, resulting generation set, generation mechanisms and
evaluation of the search. Furthermore, some criterias to
compare PG methods are established.

• In Subsection II-B, we briefly enumerate all the PG
proposed in the literature. The complete and abbreviated
name will be given together with the proposal reference.

• Finally, Subsection II-C explores other areas related to
PG and gives an interesting summary of advanced work
in this research field.

A. Main characteristics in Prototype Generation Methods

This section establishes different properties of PG methods
that will be necessary for the definition of the taxonomy in
the next section. The issues discussed here include the type
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of reduction, resulting generation set, generation mechanisms
and evaluation of the search. Finally, some criteria will beset
in order to compare PG methods.

1) Type of Reduction:PG methods search for a reduced
set TG of prototypes to represent the training setTR, there
are also a variety of schemes in which the size ofTG can be
established:

• Incremental: An incremental reduction starts with an
empty reduced setTG or with only some representa-
tive prototypes from each class. Next, a succession of
additions of new prototypes or modifications of previ-
ous prototypes occurs. One important advantage of this
kind of reduction is that these techniques can be faster
and need less storage during the learning phase than
non-incremental algorithms. Furthermore, this type of
reduction allows the technique to adequately establish
the number of prototypes required for each data set.
Nevertheless, this could obtain adverse results due to the
requirement of a high number of prototypes to adjustTR

producing overfitting.
• Decremental: The decremental reduction begins with

TG = TR, and then the algorithm starts reducingTG or
modifying the prototypes inTG.It can be accomplished
by following different procedures, such as merging, mov-
ing or removing prototypes and re-labeling classes. One
advantage observed in decremental schemes, is that all
training examples are available for examination to make
a decision. On the other hand, a shortcoming of these
kind of methods is that they usually present a high
computational cost.

• Fixed: It is common to use a fixed reduction in PG. These
methods establish the final number of prototypes forTG

using a user previously defined parameter related to the
percentage of retention ofTR. This is the main drawback
of this approach, apart from that is very dependent on
each data set tackled. However, these techniques only
focus on increasing the classification accuracy.

• Mixed: A mixed reduction begins with a pre-selected
subsetTG, obtained either by random selection with
fixed reduction or by the run of a PS method, and
next, additions, modifications and removals of proto-
types are done inTG. This type of reduction combines
the advantages of the previously seen, allowing several
rectifications to solve the problem of fixed reduction.
However, these techniques are prone to overfit the data
and they usually have high computational cost.

2) Resulting generation set:This factor refers to the result-
ing set generated by the technique, that is, whether the final
set will retain border, central or both types of points.

• Condensation: This set includes the techniques which
return a reduced set of prototypes which are closer to
the decision boundaries, also called border points. The
reasoning behind retaining border points is that internal
points do not affect the decision boundaries as much
as border points, and thus can be removed with rela-
tively little effect on classification. The idea behind these
methods is to preserve the accuracy over the training set,

but the generalization accuracy over the test set can be
negatively affected. Nevertheless, the reduction capability
of condensation methods is normally high due to the fact
that border points are less than internal points in most of
the data.

• Edition: These schemes instead seek to remove or mod-
ify border points. They act over points that are noisy or do
not agree with their nearest neighbors leaving smoother
decision boundaries behind. However, such algorithms
do not remove internal points that do not necessarily
contribute to the decision boundaries. The effect obtained
is related to the improvement of generalization accuracy
in test data, although the reduction rate obtained is lower.

• Hybrid: Hybrid methods try to find the smallest setTG

which maintains or even increases the generalization ac-
curacy in test data. To achieve this, it allows modifications
of internal and border points based on some specific
criteria followed by the algorithm. The NN classifier
is highly adaptable to these methods, obtaining great
improvements even with a very small reduced set of
prototypes.

3) Generation mechanisms:This factor describes the dif-
ferent mechanisms adopted in the literature to build the final
TG set.

• Class re-labeling:This generation mechanism consists of
changing the class labels of samples fromTR which
could be suspicious of being errors and belonging to other
different classes. Its purpose is to cope with all types of
imperfections in the training set (mislabeled, noisy and
atypical cases). The effect obtained is closely related to
the improvement in generalization accuracy of the test
data, although the reduction rate is kept fixed.

• Centroid based: These techniques are based on gen-
erating artificial prototypes by merging a set of similar
examples. The merging process is usually made from the
computation of averaged attribute values over a selected
set, yielding the so-called centroids. The identification
and selection of the set of examples are the main concerns
of the algorithms that belong to this category. These
methods can obtain a high reduction rate but they are
also related to accuracy rate losses.

• Space Splitting: This set includes the techniques based
on different heuristics for partitioning the feature space,
along with several mechanisms to define new prototypes.
The idea consists of dividingTR into some regions which
will be replaced with representative examples establishing
the decision boundaries associated with the originalTR.
This mechanism works on a space level, due to the fact
that the partitions are found in order to discriminate,
as well as possible, a set of examples from others,
whereas centroid based approaches work on the data
level, mainly focusing on the optimal selection of only a
set of examples to be treated. The reduction capabilities of
these techniques usually depend on the number of regions
that are needed to representTR.

• Positioning Adjustment: The methods that belong to
this family aim to correct the position of a subset of
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prototypes from the initial set by using an optimization
procedure. New positions of prototype can be obtained
using the movement idea in them-dimensional space,
adding or subtracting some quantities to the attribute
values of the prototypes. This mechanism is usually
associated to a fixed or mixed type of reduction.

4) Evaluation of Search:NN itself is an appropriate heuris-
tic to guide the search of a PG method. The decisions made
by the heuristic must have an evaluation measure that allows
the comparison of different alternatives. The evaluation of
search criterion depends on the use or not of NN in such
an evaluation:

• Filter: We refer to filters techniques when they do not
use the NN rule during the evaluation phase. Different
heuristics are used to obtain the reduced set. They can be
faster than NN but the performance in terms of accuracy
obtained could be worse.

• Semi-Wrapper: NN is used for partial data to determine
the criteria of making a certain decision. Thus, NN
performance can be measured over localized data, which
will contain most of prototypes that will be influenced in
making a decision. It is an intermediate approach, where
a trade-off between efficiency and accuracy is expected.

• Wrapper: In this case, the NN rule fully guides the
search by using the complete training set with the leave-
one-out validation scheme. The conjunction in the use
of the two mentioned factors allows us to get a great
estimator of generalization accuracy, thus obtaining better
accuracy over test data. However, each decision involves
a complete computation of the NN rule over the training
set and the evaluation phase can be computationally
expensive.

5) Criteria to Compare PG Methods:When comparing PG
methods, there are a number of criteria that can be used
to compare the relative strengths and weaknesses of each
algorithm. These include storage reduction, noise tolerance,
generalization accuracy and time requirements.

• Storage reduction:One of the main goals of the PG
methods is to reduce storage requirements. Furthermore,
another goal closely related to this is to speed up clas-
sification. A reduction in the number of stored instances
will typically yield a corresponding reduction in the time
it takes to search through these examples and classify a
new input vector.

• Noise tolerance:Two main problems may occur in the
presence of noise. The first is that very few instances
will be removed because many instances are needed to
maintain the noisy decision boundaries. Secondly, the
generalization accuracy can suffer, especially if noisy
instances are retained instead of good instances, or these
are not re-labelled with the correct class.

• Generalization accuracy:A successful algorithm will
often be able to significantly reduce the size of the
training set without significantly reducing generalization
accuracy.

• Time requirements:Usually, the learning process is car-
ried out just once on a training set, so it seems not to

TABLE I: PG methods reviewed

Complete name Abbr. name Reference

Prototype Nearest Neighbor PNN [32]

Generalized Editing using Nearest Neighbor GENN [39]

Learning Vector Quantization 1 LVQ1 [33]

Learning Vector Quantization 2 LVQ2

Learning Vector Quantization 2.1 LVQ2.1

Learning Vector Quantization 3 LVQ3

Decision Surface Mapping DSM [40]

Vector Quantization VQ [41]

Chen Algorithm Chen [34]

Bootstrap Technique for Nearest Neighbor BTS3 [42]

Learning Vector Quantization with Training Counter LVQTC [43]

MSE MSE [44]

Modified Chang’s Algorithm MCA [45]

Generalized Modified Chang’s Algorithm GMCA [46]

Integrated Concept Prototype Learner ICPL [29]

Integrated Concept Prototype Learner 2 ICPL2

Integrated Concept Prototype Learner 2 ICPL3

Integrated Concept Prototype Learner 2 ICPL4

Depuration Algorithm Depur [47]

Hybrid LVQ3 algorithm HYB [48]

Reduction by space partitioning 1 RSP1 [30]

Reduction by space partitioning 2 RSP2

Reduction by space partitioning 3 RSP3

Evolutionary Nearest Prototype Classifier ENPC [36]

Adaptive Vector Quantization AVQ [49]

Learning Vector Quantization with Pruning LVQPRU [50]

Pairwise Opposite Class Nearest Neighbor POC-NN [51]

Adaptive Condensing Algorithm Based on Mixtures of Gaussians MixtGauss [27]

Self-generating Prototypes SGP [28]

Adaptive Michigan PSO AMPSO [52]

Prototype Selection Clonal Selection Algorithm PSCSA [53]

Particle Swarm Optimization PSO [37]

be a very important evaluation method. However, if the
learning phase takes too long it can become impractical
for real applications.

B. Prototype Generation Methods

More than 25 PG methods have been proposed in the liter-
ature. This section is devoted to enumerating and designating
them according to a standard followed in this paper. For more
details on their implementations, the reader can visit the URL
http://sci2s.ugr.es/pgtax. Implementations of the algorithms in
java can be found in KEEL software [38].

Table I presents an enumeration of PG methods reviewed
in this paper. The complete name, abbreviation and reference
is provided for each one. In the case of there being more than
one method in a row, they were proposed together and the
best performing method (indicated by the respective authors) is
depicted in bold. We will use the best representantive method
of each proposed paper, so only the methods in bold when
more than one method is proposed will be compared in the
experimental study.

C. Related and Advanced Work

Nowadays, much research in enhancing NN through data
preprocessing is common and highly demanded. PG could rep-
resent a feasible and promising technique to obtain expected
results, which justifies its relationship to other methods and
problems. This section provides a brief review on other topics
closely related to PG and describes other interesting work and
future trends which have been studied in the last few years.
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• Prototype Selection: With the same objective as PG, stor-
age reduction and classification accuracy improvement,
these methods are limited only to select examples from
the training set. More than 50 methods can be found
in the literature. In general, three kinds of methods are
usually differentiated, those also based on edition [54],
condensation [55] or hybrid models [21], [56]. Advanced
proposals can be found in [24], [57]–[59].

• Instance and rule learning hybridizations: It includes all
the methods which simultaneously use instances and rules
in order to compute the classification of a new object.
If the values of the object are within the range of a
rule, its consequent predicts the class; otherwise, if no
rule matches with the object, the most similar rule or
instance stored in the data base is used to estimate the
class. Similarity is viewed as the closest rule or instance
based on a distance measure. In short, these methods can
generalize an instance into a hyperrectangle or rule [60],
[61].

• Hyperspherical prototypes: This area [62] studies the use
of hyperspheres to cover the training patterns of each
class. The basic idea is to cluster the space into several
objects, each of them corresponding to only one class,
and the class of the nearest object is assigned to the test
example.

• Weighting: This task consists of applying weights to the
instances of the training set, modifying the distance mea-
sure between them and any other instance. This technique
could be integrated with PS and PG methods [16], [63]–
[66] for improving the accuracy in classification problems
and to avoid overfitting. A complete review dealing with
this topic can be found in [67].

• Distance Functions: Several distance metrics have been
used with NN, especially when working with categorical
attributes [68]. Many different distance measures try to
optimize the performance of NN [15], [64], [69], [70],
and they have successfully increased the classification
accuracy. Advanced work is based on adaptive distance
functions [71].

• Oversampling: This term is frequently used in learning
with imbalanced classes [72], [73] and is closely related
to undersampling [74]. Oversampling techniques repli-
cate and generate artificial examples that belong to the
minority classes in order to strengthen the presence of
minority samples and to increase the performance over
them. SMOTE [75] is the most well known oversampling
technique and it has been shown to be very effective in
many domains of application [76].

III. PROTOTYPEGENERATION: TAXONOMY

The main characteristics of the PG methods have been
described in Section II-A, and they can be used to categorize
the PG methods proposed in the literature. The type of
reduction, resulting generation set, generation mechanisms and
the evaluation of the search constitute a set of properties which
define each PG method. This section presents the taxonomy
of PG methods based on these properties.

In Figure 1, we show the PG map with the representative
methods proposed in each paper ordered in time, following
Table I. We refer to representantive methods those which are
preferred by the authors or have reported the best results in
the corresponding proposal paper. Some interesting remarks
can be seen in Figure 1.

• Only two class re-labeling methods have been proposed
for PG algorithms. The reason is that both methods
obtain great results for this approach in accuracy, but the
underlying concept of these methods does not achieve
high reduction rates, which is one of the most important
objectives of PG. Furthermore, it is important to point out
that both algorithms are based on decremental reduction
and that they have noise filtering purposes.

• The condensation techniques are a wide group. They
usually use a semi-wrapper evaluation with any type of
reduction. It is considered a classic idea due to the fact
that, in recent years, hybrid models are preferred over
condensation techniques, with few exceptions. ICPL2 was
the first PG method with a hybrid approach, combining
edition and condensation stages.

• Recent efforts in proposing positioning adjustment al-
gorithms are noted for mixed reduction. Most of the
methods following this scheme are based on LVQ and
the recent approaches try to alleviate the main drawback
of the fixed reduction.

• There are many efforts in centroid-based techniques be-
cause they have reported a great synergy with the NN rule
since the first algorithm PNN. Furthermore, many of them
are based on simple and intuitive heuristics which allow
them to obtain a reduced set with high quality accuracy.
By contrast, those with decremental and mixed reduction
are slow techniques.

• Wrapper evaluation appeared a few years ago, and is only
presented in hybrid approaches. This evaluation search
is intended to optimize a selection, without taking into
account computational costs.

Figure 2 illustrates the categorization following a hierarchy
based on this order: generation mechanisms, resulting genera-
tion set, type of reduction, and finally, evaluation of the search.

The properties studied here can help to understand how the
PG algorithms work. In the next sections, we will establish
which methods perform best for each family considering
several metrics of performance with a wide experimental
framework.

IV. EXPERIMENTAL FRAMEWORK

In this section we show the factors and issues related to
the experimental study. We provide the measures employed
to evaluate the performance of the algorithms (subsection
IV-A, details of the problems chosen for the experimentation
(subsection IV-B), parameters of the algorithms (subsection
IV-C), and finally, the statistical tests employed to contrast
the results obtained are described (subsection IV-D).

A. Performance measures for standard classification

In this work, we deal with multi-class data sets. In these
domains, two measures are widely used because of their sim-
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TABLE III: Confusion Matrix for anΩ-class problem

Correct Class Predicted Class
ω1 ω2 . . . ωΩ Total

ω1 h11 h12 . . . h1Ω Tr1

ω2 h12 h22 . . . h2Ω Tr2

...
. . .

...
ωΩ h1Ω h2Ω . . . hΩΩ TrΩ

Total Tc1 Tc2 . . . TcΩ T

plicity and successful application. We refer to the classification
rate and Cohen’s kappa rate measures, which we will now
explain:

• Classification rate: is the number of successful hits
(correct classifications) relative to the total number of
classifications. It has been by far the most commonly
used metric for assessing the performance of classifiers
for years [2], [77].

• Cohen’s kappa (Kappa rate): is an alternative measure to
the classification rate, since it compensates for random
hits [78]. In contrast to the classification rate, kappa
evaluates the portion of hits that can be attributed to
the classifier itself (i.e., not to mere chance), relative to
all the classifications that cannot be attributed to chance
alone. An easy way of computing Cohen’s kappa is by
making use of the resulting confusion matrix (Table III)
in a classification task. With the expression (1), we can
obtain Cohen’s kappa:

kappa =
n

∑Ω

i=1
hii −

∑Ω

i=1
TriTci

n2 −
∑

Ω

i=1
TriTci

, (1)

where hii is the cell count in the main diagonal (the
number of true positives for each class),n is the number
of examples,Ω is the number of class labels, andTri,
Tci are the rows’ and columns’ total counts, respectively
(Tri =

∑Ω

j=1
hij , Tci =

∑Ω

j=1
hji).

Cohen’s kappa ranges from−1 (total disagreement)
through 0 (random classification) to1 (perfect agree-
ment). For multi-class problems, kappa is a very useful,
yet simple, meter for measuring a classifier’s classifica-
tion rate while compensating for random successes.
The main difference between the classification rate and
Cohen’s kappa is the scoring of the correct classifications.
Classification rate scores all the successes over all classes,
whereas Cohen’s kappa scores the successes indepen-
dently for each class and aggregates them. The second
way of scoring is less sensitive to randomness caused by
a different number of examples in each class.

B. Data sets

In the experimental study, we selected 59 data sets from
the UCI repository [79] and KEEL-dataset1 [38]. Table II
summarizes the properties of the selected data sets. It shows,
for each data set, the number of examples (#Ex.), the number
of attributes (#Atts.), the number of numerical (#Num.) and
nominal (#Nom.) attributes, and the number of classes (#Cl.).

1http://sci2s.ugr.es/keel/datasets

The data sets are grouped into two categories depending on
the size they have. Small data sets have less than 2,000
instances and large data sets have more than 2,000 instances.
The data sets considered are partitioned using the ten fold
cross-validation (10-fcv) procedure.

C. Parameters

Many different method configurations have been established
by the authors in each paper for the PG techniques. In our
experimental study, we have used the parameters defined in
the reference where they were originally described, assuming
that the choice of the values of the parameters was optimally
chosen. The configuration parameters, which are common to
all problems, are shown in Table IV. Note that some PG
methods have no parameters to be fixed, so they are not
included in this table.

In most of the techniques, euclidean distance is used as
the similarity function, to decide which neighbors are clos-
est. Furthermore, to avoid problems with a large number of
attributes and distances, all data sets have been normalized
between 0 and 1. This normalization process allows to apply
all the PG methods over each data set, independently of the
types of attributes.

TABLE IV: Parameter specification for all the methods em-
ployed in the experimentation

Algorithm Parameters
LVQ3 Iterations = 100,alpha = 0.1, WindowWidth=0.2

epsilon = 0.1
DSM Iterations = 100,alpha = 0.1
VQ Iterations = 100,alpha = 0.1

BTS3 NN selected = 1, Random Trials = 3
LVQTC Iterations = 100,alphaR = 0.1,

alphaW = 0.1, Retention Threshold = 3,
Number of Epoches= 4

MSE Gradient Step = 0.5, Initial Temperature = 100
ICLP2 Filtering method = RT2

Depur k
′

= 2 , k = 3
HYB Search Iterations = 200, Optimal search Iterations = 1000

alpha = 0.1 , Initial epsilon = 0, Final epsilon = 0.5
Initial WindowWidth = 0, Final WindowWidth = 0.5
delta = 0.1, delta WindowWidth = 0.1
Initial Selection = SVM

RSP3 Subset Choice = Diameter
ENPC Iterations = 250
AVQ Iterations = 100, T set percentage= 80%,

epsilon = 0.1
LVQPRU Iterations = 100,alpha = 0.1 ,WindowWidth = 0.5
POCNN alpha ratio = 0.2

SGP Rmin = 0.01, Rmis = 0.2
AMPSO Iterations = 300, C1 = 1.0, C2 = 1.0, C3 = 0.25,

Vmax = 1, W = 0.1, X = 0.5, Pr = 0.1, Pd = 0.1
PSCSA HyperMutation Rate = 2, Clonal Rate = 10,

Mutation Rate = 0.01, Stimulation Threshold = 0.89,
Alpha = 0.4

PSO SwarmSize = 20, Iterations = 250, C1 = 1,
C2 = 3, Vmax = 0.25, Wstart = 1.5, Wend = 0.5

Note: The parameter Reduction Rate on fixed reduction algorithms has been
established to 95% for small size data set, 98% for large

D. Statistical tests for performance comparison

In this paper, we use the hypothesis testing techniques to
provide statistical support for the analysis of the results[80],
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TABLE II: Summary description for classification data sets

Data Set #Ex. #Atts. #Num. #Nom. #Cl. Data Set #Ex. #Atts. #Num. #Nom. #Cl.

abalone 4,174 8 7 1 28 marketing 8,993 13 13 0 9

appendicitis 106 7 7 0 2 monks 432 6 6 0 2

australian 690 14 8 6 2 movementlibras 360 90 90 0 15

automobile 205 25 15 10 6 newthyroid 215 5 5 0 3

balance 625 4 4 0 3 nursery 12,960 8 0 8 5

banana 5,300 2 2 0 2 pageblocks 5,472 10 10 0 5

bands 539 19 19 0 2 penbased 10,992 16 16 0 10

breast 286 9 0 9 2 phoneme 5,404 5 5 0 2

bupa 345 6 6 0 2 pima 768 8 8 0 2

car 1,728 6 0 6 4 ring 7,400 20 20 0 2

chess 3,196 36 0 36 2 saheart 462 9 8 1 2

cleveland 297 13 13 0 5 satimage 6,435 36 36 0 7

coil2000 9,822 85 85 0 2 segment 2,310 19 19 0 7

contraceptive 1,473 9 9 0 3 sonar 208 60 60 0 2

crx 690 15 6 9 2 spambase 4,597 57 57 0 2

dermatology 366 33 1 32 6 spectheart 267 44 44 0 2

ecoli 336 7 7 0 8 splice 3,190 60 0 60 3

flare-solar 1,066 11 0 11 2 tae 151 5 5 0 3

german 1,000 20 7 13 2 texture 5,500 40 40 0 11

glass 214 9 9 0 7 thyroid 7,200 21 21 0 3

haberman 306 3 3 0 2 tic-tac-toe 958 9 0 9 2

hayes-roth 160 4 4 0 3 titanic 2,201 3 3 0 2

heart 270 13 13 0 2 twonorm 7,400 20 20 0 2

hepatitis 155 19 19 0 2 vehicle 846 18 18 0 4

housevotes 435 16 0 16 2 vowel 990 13 13 0 11

iris 150 4 4 0 3 wine 178 13 13 0 3

led7digit 500 7 7 0 10 wisconsin 699 9 9 0 2

lymphography 148 18 3 15 4 yeast 1484 8 8 0 10

magic 19,020 10 10 0 2 zoo 101 16 0 16 7

mammographic 961 5 0 5 2

[81]. Specifically, we use non-parametric tests, due to the fact
that the initial conditions that guarantee the reliabilityof the
parametric tests may not be satisfied, causing the statistical
analysis to lose credibility with these parametric tests. These
tests are suggested in the studies presented in [80], [82]–
[84], where its use in the field of Machine Learning is highly
recommended.

The Wilcoxon test [82], [83] is adopted considering a level
of significance ofα = 0.1. More information about statistical
tests and the results obtained can be found in the web site
associated with this paper (http://sci2s.ugr.es/pgtax).

E. Other considerations

We want to outline that the implementations are based only
on the descriptions and specifications given by the respective
authors in their papers. No advanced data structures and
enhancements for improving the efficiency of PG methods
have been carried out. All methods are available in KEEL
software [38].

V. A NALYSIS OF RESULTS

This section presents the average results collected in the
experimental study and some discussions of them, the com-
plete results can be found on the web page associated with
this paper. The study will be divided into two parts: analysis
of the results obtained over small size data sets (Subsection
V-A) and over large data sets (Subsection V-B). Finally, a
global analysis is added in (Subsection V-C).

A. Analysis and Empirical Results of Small Size Data Sets

Table V presents the average results obtained by the PG
methods over the 40 small size data sets.Red. denotes re-
duction rate achieved,train Acc and train Kap present the
accuracy and kappa obtained in the training data, respectively;
on the other handtst Accandtst Kappresent the accuracy and
kappa obtained over the test data. Finally,Time denotes the
average time elapsed in seconds to finish a run of PG method.
The algorithms are ordered from the best to the worst for each
type of result. Algorithms highlighted in bold are those which
obtain the best result in their corresponding family, according
to the first level of the hierarchy in Figure 2.
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TABLE V: Average results obtained by the PG methods over small data sets

Red. train Acc. train Kap. tst Acc. tst Kap. Time (s)

PSCSA 0.9858 MCA 0.8772 MCA 0.7717 GENN 0.7564 GENN 0.5400 1NN -

AVQ 0.9759 GMCA 0.8405 GMCA 0.7067 ICPL2 0.7560 ICPL2 0.5366 LVQTC 0.1644

LVQTC 0.9551 HYB 0.8309 HYB 0.6988 PSO 0.7501 PSO 0.5332 DSM 0.1780

MixtGauss 0.9552 ICPL2 0.8254 ENPC 0.6800 GMCA 0.7351 GMCA 0.5062 BTS3 0.2079

MSE 0.9520 ENPC 0.8247 PSO 0.6791 1NN 0.7326 RSP3 0.5004 LVQ3 0.2316

Chen 0.9519 PSO 0.8238 ICPL2 0.6690 RSP3 0.7325 MSE 0.4925 VQ 0.2469

BTS3 0.9519 GENN 0.8002 GENN 0.6243 Depur 0.7296 1NN 0.4918 Chen 0.2675

SGP 0.9512 RSP3 0.7924 RSP3 0.6112 MSE 0.7237 MCA 0.4867 Depur 0.2777

LVQPRU 0.9503 Depur 0.7801 Depur 0.5815 MCA 0.7219 Depur 0.4826 LVQPRU 0.5592

PSO 0.9491 MSE 0.7566 MSE 0.5388 ENPC 0.7167 ENPC 0.4818 AVQ 0.6561

VQ 0.9491 1NN 0.7369 LVQTC 0.5224 HYB 0.7153 HYB 0.4790 MixtGauss 0.8125

DSM 0.9491 LVQTC 0.7327 Chen 0.5116 LVQPRU 0.6997 LVQPRU 0.4592 SGP 1.3597

LVQ3 0.9488 LVQPRU 0.7304 LVQPRU 0.5110 LVQTC 0.6981 MixtGauss 0.4546 GENN 1.4285

PNN 0.9447 SGP 0.7256 AMPSO 0.5039 SGP 0.6949 LVQTC 0.4541 RSP3 1.8505

AMPSO 0.9430 AMPSO 0.7227 1NN 0.4985 MixtGauss 0.6932 AMPSO 0.4440 PSCSA 1.9562

MCA 0.8568 MixtGauss 0.7138 MixtGauss 0.4888 AMPSO 0.6903 PNN 0.4369 MSE 2.4794

ICPL2 0.8371 DSM 0.7036 SGP 0.4852 DSM 0.6810 SGP 0.4360 HYB 5.5888

RSP3 0.7329 PNN 0.7015 PNN 0.4718 PNN 0.6786 AVQ 0.4326 AMPSO 8.2870

ENPC 0.7220 Chen 0.6964 AVQ 0.4660 Chen 0.6770 DSM 0.4239 GMCA 8.4947

GMCA 0.6984 LVQ3 0.6931 DSM 0.4627 LVQ3 0.6763 PSCSA 0.4231 PNN 14.0066

POC 0.6071 AVQ 0.6869 PSCSA 0.4461 PSCSA 0.6682 LVQ3 0.4114 PSO 42.3168

HYB 0.4278 PSCSA 0.6787 LVQ3 0.4421 AVQ 0.6672 Chen 0.4026 ENPC 47.1377

Depur 0.3531 BTS3 0.6713 BTS3 0.3923 BTS3 0.6626 BTS3 0.3784 POC 151.9278

GENN 0.1862 VQ 0.6614 VQ 0.3866 VQ 0.6549 VQ 0.3770 ICPL2 163.9147

1NN 0.0000 POC 0.6487 POC 0.3601 POC 0.6493 POC 0.3700 MCA 190.4930

Figure 3 depicts a representation of an opposition between
the two objectives: reduction and test accuracy. Each algo-
rithm located inside the graphic gets its position from the
average values of each measure evaluated (exact position
corresponding to the beginning of the name of the algorithm).
Across the graphic, there is a line that represents the threshold
of test accuracy achieved by the 1-NN algorithm without
preprocessing. Note that in Figure 3a the names of some PG
methods overlap, and hence Figure 3b shows this overlapping
zone.

To complete the set of results, the web site associated to
this paper contains the results of applying the Wilcoxon test
to all possible comparisons among all PG considered in small
data sets.

Observing Tables V, Figure 3 and the Wilcoxon Test, we
can point out some interesting facts:

• Some classical algorithms are at the top in accuracy and
kappa rate. For instance, GENN, GMCA and MSE obtain
better results than other recent methods over test data.
However, these techniques usually have a poor associ-
ated reduction rate. We can observe this statement in
the Wilcoxon test, where classical methods significantly
overcome other recent approaches in terms of accuracy
and kappa rates. However, In terms ofAcc. ∗ Red. and
Kap. ∗ Red. measures, typically, these methods do not
outperform recent techniques.

• PSO and ENPC could be stressed from thePositioning
Adjustmentfamily as the best performing methods. Each
one of them belongs to different sub-families, fixed and
mixed reduction, respectively. PSO focuses on improv-
ing the classification accuracy and it obtains a good
generalization capability. On the other hand, ENPC has

the overfitting as the main drawback, clearly discernible
from Table V. In general, LVQ based approaches obtain
worse accuracy rates than 1NN, but the reduction rate
achieved by them is very high. MSE and HYB are the
most outstanding techniques belonging to the subgroup
of CondensationandPositioning Adjustment.

• With respect toclass re-labelingmethods, GENN obtains
better accuracy/kappa rates but worse reduction rates than
Depur. However, the statistical test informs that GENN
does not outperform to the Depur algorithm in terms of
accuracy and kappa rate. Furthermore, when the reduction
rate is taken into consideration, that is, when the statistical
test is based on theAcc.∗Red. andKap.∗Red. measures,
the Depur algorithm clearly outperforms to GENN.

• The decremental approaches belonging to thecentroids
family require high computation times but usually offer
good reduction rates. MCA and PNN tend to overfit the
data, but GMCA obtains excellent results.

• In the whole centroids family, two methods deserve
particular mention: ICPL2 and GMCA. Both generate
a reduced prototype set with good accuracy rates in
test data. The other approaches based on Fixed and
Incremental reduction are less appropriate to improve the
effectiveness of 1NN, but they are very fast and offer
much reduced generated sets.

• Regardingspace splittingapproaches, several differences
can be observed. RSP3 is an algorithm based on Chen’s
algorithm but tries to avoid drastic changes in the form
of the decision boundaries, and it produces a good
tradeoff between reduction and accuracy. Although the
POC algorithm is a relatively modern technique, this
does not obtain great results. We can justify these results
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Fig. 3: Accuracy in test vs reduction in small data sets

because theα parameter is very sensitive for each data
set. Furthermore, it is quite slow when tackling data sets
with more than two classes.

• The best methods in accuracy/kappa rates for each one of
the families are PSO, GENN, ICPL2 and RSP3, respec-
tively and five methods outperform 1NN in accuracy.

• In general, hybrid methods obtain the best result in terms
of accuracy and reduction rate.

• Usually, there is no difference between the rankings
obtained with accuracy and kappa rates, except for some
concrete algorithms. For example, we can observe that
1NN obtains a lower ranking with the kappa measure, it
probably indicates that 1NN benefits of random hits.

Furthermore, in the web site associated to this paper, we
can find an analysis of the results depending on the type
of attributes of the data sets. We show the results in accu-
racy/kappa rate for all PG methods differentiating between
numerical, nominal and mixed data sets. In numerical and
nominal data sets all attributes must be numerical and nominal
respectively, whereas in mixed data sets, we include those data
sets with numerical and nominal attributes mixed. Observing
these tables, we want to outline different properties of thePG
methods.

• In general, there is no difference in performance between
numerical, nominal and mixed data sets, except for some
concrete algorithms. For example, in mixed data sets, we
can see that a class-relabeling method, GENN, is on the
top, due to the fact that it does not produce modifications
to the attributes. However, in numerical data sets, PSO
is the best performing method, indicating to us that the
positioning adjustment strategy is usually well-adapted to
numerical data sets.

• In fact, comparing these tables, we observe that some
representative techniques of the positioning adjustment
family, such as PSO, MSE, and ENPC have a close
accuracy/kappa rate to 1NN. However, over nominal and
mixed data sets, they decrease their accuracy rates.

• ICPL2 and GMCA techniques obtain good accu-

racy/kappa rates independently of the type of input data.

Finally, we perform an study depending on the number of
classes of the data sets. In the web site associated to this
paper, we show the average results in accuracy/kappa rate
differentiating between binary and multi-class data sets.We
can analyze several details from the results collected:

• Eight techniques outperform 1NN in accuracy when they
tackle binary data sets. However, over multi-class data
sets, there are only three techniques that are able to
overcome 1NN.

• Centroid-based techniques usually perform well when
dealing with multi-class data sets. For instance, we can
highlight the MCA, SGP, PNN, ICPL2 and GMCA
techniques, which increase their respective rankings with
multi-class data sets.

• GENN and ICPL2 techniques obtain good accu-
racy/kappa rates independently of the number of classes.

• PSCSA has a good behavior with binary data sets.
However, over multi-class data sets, PSCSA decrease its
performance.

• Some methods present significant differences between
accuracy and kappa measures when dealing with binary
data sets. We can stress MSE, Depur, Chen and BTS3
like techniques penalized by the kappa measure.

B. Analysis and Empirical Results of Large Size Data Sets

This section presents the study and analysis of large size
data sets. The goal of this study is to analyze the effect
of scaling up the data in PG methods. For time complexity
reasons, several algorithms cannot be run over large data sets.
PNN, MCA, GMCA, ICPL2 and POC are extremely slow
techniques and their time complexity quickly increases when
the data scales up or manages more than five classes.

Table VI shows the average results obtained and Figure 4
illustrates the comparison between the accuracy and reduction
rates of the PG methods over large size data sets. Finally,
the web site associated to this paper contains the results
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TABLE VI: Average results obtained by the PG methods over large data sets

Red. train Acc. train Kap. tst Acc. tst Kap. Time (s)

PSCSA 0.9988 ENPC 0.8809 ENPC 0.7613 GENN 0.8133 GENN 0.6269 1NN

AVQ 0.9980 GENN 0.8428 GENN 0.6806 1NN 0.8060 1NN 0.6181 DSM 1.6849

LVQTC 0.9975 Depur 0.8250 Depur 0.6322 ENPC 0.8029 ENPC 0.6170 LVQ3 1.7037

MSE 0.9936 PSO 0.8158 RSP3 0.6299 Depur 0.8004 Depur 0.5863 VQ 1.7193

SGP 0.9823 1NN 0.8057 1NN 0.6178 PSO 0.8000 PSO 0.5861 MSE 17.4228

BTS3 0.9801 RSP3 0.7922 PSO 0.6173 MSE 0.7674 RSP3 0.5597 HYB 18.6338

Mixtgauss 0.9801 HYB 0.7888 HYB 0.5992 Chen 0.7621 HYB 0.5567 LVQPRU 24.4067

LVQPRU 0.9801 MSE 0.7759 MSE 0.5349 HYB 0.7618 MSE 0.5221 Depur 26.8656

Chen 0.9801 Chen 0.7682 Chen 0.5236 RSP3 0.7556 Chen 0.5116 AVQ 38.3665

LVQ3 0.9799 AMPSO 0.7436 BTS3 0.4859 AMPSO 0.7410 LVQPRU 0.4799 Chen 50.0435

DSM 0.9799 BTS3 0.7393 AMPSO 0.4836 BTS3 0.7399 DSM 0.4796 SGP 52.3400

VQ 0.9799 LVQPRU 0.7373 LVQPRU 0.4818 LVQPRU 0.7356 BTS3 0.4788 LVQTC 83.6030

PSO 0.9799 DSM 0.7353 DSM 0.4795 DSM 0.7341 AMPSO 0.4784 PSCSA 160.3864

AMPSO 0.9797 MixtGauss 0.7345 Mixtgauss 0.4711 Mixtgauss 0.7318 MixtGauss 0.4661 GENN 167.4849

ENPC 0.8205 LVQ3 0.7340 VQ 0.4689 LVQ3 0.7318 VQ 0.4651 BTS3 219.2394

RSP3 0.8100 VQ 0.7322 LVQ3 0.4683 VQ 0.7316 LVQ3 0.4627 AMPSO 587.7181

HYB 0.5727 LVQTC 0.7065 AVQ 0.4321 LVQTC 0.7056 AVQ 0.4280 RSP3 258.6881

Depur 0.2708 PSCSA 0.6730 LVQTC 0.4185 PSCSA 0.6707 LVQTC 0.4165 MixtGauss 639.3139

GENN 0.1576 AVQ 0.6546 PSCSA 0.3900 AVQ 0.6518 PSCSA 0.3842 PSO 909.9820

1NN 0.0000 SGP 0.6162 SGP 0.3568 SGP 0.6086 SGP 0.3466 ENPC 10931.1977
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Fig. 4: Accuracy in test vs reduction in large data sets

of applying the Wilcoxon test over all possible comparisons
among all PG considered in large data sets.

These tables allow us to highlight some observations of the
results obtained:

• Only the GENN approach outperforms the performance
of 1NN in accuracy/kappa rate.

• Some methods present clear differences when dealing
with large data sets. For instance, we can highlight the
PSO and RSP3 techniques. The former may suffer from a
lack of convergence due to the fact that the performance
obtained in training data is slightly higher than that
obtained by 1NN; hence, it may be a sign that more
iterations are needed to tackle large data sets. On the
other hand, the techniques based on space partitioning
present some drawbacks when the data scales up and is
made up of more attributes. This is the case with RSP3.

• In general, LVQ based methods do not work well when

the data scales up.
• BTS3 stands out as the best centroids-based method over

large size data sets because the best-performing ones over
small data sets were also the most complex in time and
they cannot be run here.

• Although ENPC overfits the data, it is the best performing
method considering the trade-off between accuracy/kappa
and reduction rates. PSO can also be stressed as a good
candidate in this type of data set.

• There is no significant differences between the accuracy
and kappa rankings when dealing with large data sets.

Again, we differentiate between numerical, nominal and
mixed data sets. Complete results can be found in the web site
associated to this paper. Observing these results, we want to
outline different properties of PG methods over large data sets.
Note that there is only one data set with mixed attributes, for
this reason we focus this analysis in the differences between
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numerical and nominal data sets.

• When only numerical data sets are taken into considera-
tion, three algorithms outperform the 1NN rule: GENN,
PSO and ENPC.

• Over nominal large data sets, no PG method outperforms
1NN.

• MixtGauss and AMPSO are highly conditioned on the
type of input data, preferring numerical data sets. By
contrast, RSP3 is better adapted to nominal data sets.

Finally, we perform again an analysis of the behavior of the
PG techniques depending on the number of classes, but in this
case, over large data sets. the web site associated to this paper
presents the results. Observing these results, we can pointout
several comments:

• Over binary large data sets, there are four algorithms
that outperform 1NN. However, when the PG techniques
tackle multi-class data sets, no PG method overcome
1NN.

• When dealing with large data sets, there is no important
differences between the accuracy and kappa ranking with
binary data sets.

• Class-relabeling methods perform well independently of
the number of classes.

C. Global Analysis

This subsection shows a global view of the obtained results.
As a summary we want to outline several remarks on the use
of PG, because the choice of a certain method depends on
various factors.

• Several PG methods can be emphasized according to their
test accuracy/kappa obtained: PSO, ICPL2, ENPC and
GENN. In principle, in terms of reduction capabilities,
PSCSA and AVQ obtain the best results but they offer
poor accuracy rates. Taking into consideration the com-
putational cost, we can consider DSM, LVQ3 and VQ to
be the fastest algorithms.

• Edition schemes usually outperform the 1NN classifier,
but the number of prototypes in the result set is too high.
This fact could be prohibitive over large data sets, because
there is no significant reduction. Furthermore, other PG
methods have shown that it is possible to preserve high
accuracy with a better reduction rate.

• A high reduction rate serves no purpose if there is not a
minimum guarantee of performance accuracy. This is the
case of PSCSA or AVQ. Nevertheless, MSE offers excel-
lent reduction rates without losing performance accuracy.

• For the trade-off reduction-accuracy rate, PSO has been
reported to have the best results over small size data sets.
In the case of dealing with large data sets, the ENPC
approach seems to be the most appropriate one.

• A good reduction-accuracy balance is difficult to achieve
with a fast algorithm. Considering this restriction, we
could say that RSP3 allows us to yield generated sets
with a good tradeoff between reduction, accuracy and
time complexity.

VI. V ISUALIZATION OF DATA RESULTING SETS: A CASE

STUDY BASED ON BANANA DATA SET

This section is devoted to illustrating the subsets selected
resulting from some PG algorithms considered in our study.
To do this, we focus on thebananadata set, which contains
5,300 examples in the complete set. It is an artificial data set of
2 classes composed of three well-defined clusters of instances
of the class−1 and two clusters of the class1. Although the
borders are clear among the clusters there is a high overlap
between both classes. The complete data set is illustrated in
Figure 5a.

The pictures of the generated sets by some PG methods
could help to visualize and understand their way of working
and the results obtained in the experimental study. The re-
duction rate, and the accuracy and kappa values in test data
registered in the experimental study are specified for each one.
In the original data set, the two values indicated correspond
to accuracy and kappa with 1NN:

• Figure 5b depicts generated data by the algorithm GENN.
It belongs to the edition approaches and the generated
subset differs slightly from the original data set. Those
samples found within the class boundaries can either be
removed or be re-labeled. It is noticeable that the clusters
of different classes are a little more separated.

• Figure 5c shows the resulting subset of the classical
LVQ3 condensation algorithm. It can be appreciated
that most of the points are moved to define the class
boundaries, but a few interior points are also used. The
accuracy and kappa decrease with respect to the original,
as is usually the case with condensation algorithms.

• Figures 5d and 5e represent the sets generated by Chen
and RSP3 methods respectively. These methods are based
on a space splitting strategy, but the first one requires the
specification of the final size of the generated sets while
the latter does not. We can see that the Chen method
generates prototypes keeping a homogeneous distribution
of points in the space. RSP3 was proposed to fix some
problems observed in the Chen method, but in this
concrete data set, this method is worse in accuracy/kappa
rates than its ancestor. However, the reduction type of
Chen’s method is fixed and it is very dependent on the
data set tackled.

• Figures 5f and 5g represent sets of data generated by
BTS3 and SGP methods. Both techniques are cluster-
based and present very high reduction rates over this
data set. SGP does not work well in this data set be-
cause it promotes the removal of prototypes and uses an
incremental order, which does not allow us to choose the
most appropriate decision. BTS3 uses a fixed reduction
type, thus it focuses on improving accuracy rates, but its
generation mechanisms are not well suited to in this type
of data set.

• Figures 5h and 5i illustrate the sets of data generated by
PSO and ENPC methods. They are wrapper and hybrid
methods of the position adjusting family and iterate many
times to obtain an optimal reallocation of prototypes. PSO
requires as a parameter the final size of the subset selected
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(a) Banana Original (0.8751, 0.7476) (b) GENN (0.0835, 0.8826, 0.7626) (c) LVQ3 (0.9801, 0.8370, 0.6685)

(d) Chen (0.9801, 0.8792, 0.7552) (e) RSP3 (0.8962, 0.8755, 0.7482) (f) BTS3 (0.9801, 0.8557, 0.7074)

(g) SGP (0.9961, 0.6587, 0.3433) (h) PSO (0.9801, 0.8819, 0.7604) (i) ENPC (0.7485, 0.8557, 0.7086)

Fig. 5: Data Generated Sets in Banana Data Set

and this parameter is very conditioned to the complexity
of the data set addressed. In thebananacase, keeping a
2% of prototypes seems to work well. On the other hand,
ENPC can adjust the number of prototypes required to
fit a specific data set. In the case study presented, we
can see that it obtains similar sets to those obtained by
the Chen approach, because it also fills the regions with
a homogeneous distribution of generated prototypes. In
decision boundaries, the density of prototypes is increased
and may produce quite noisy samples for further classi-
fication of the test data. It explains its poor behavior in
this problem with respect to PSO, the lower reduction
rate achieved and the decrement of accuracy/kappa rates
with regard to the original data set classified with 1NN.

We have seen the resulting data sets of condensation, edition
and hybrid methods and different generation mechanisms with
some representative PG methods. Although the methods can be
categorized as a specific family, they do not follow a specific
behavior pattern, since some of the condensation techniques
may generate interior points (like in LVQ3), others clusters of
data (RSP3) or even points with a homogeneous distribution

in space (Chen or ENPC). Nevertheless, visual characteristics
of generated sets are also the subject of interest and can also
help to decide the choice of a PG method.

VII. C ONCLUSIONS

In this paper, we have provided an overview of Proto-
type Generation methods proposed in the literature. We have
identified the basic and advanced characteristics. Furthermore,
existing work and related fields have been reviewed. Based on
the main characteristics studied, we have proposed a taxonomy
of Prototype Generation methods.

The most important methods have been empirically ana-
lyzed over small and large sizes of classification data sets.To
illustrate and strengthen the study, some graphical representa-
tions of data subsets selected have been drawn and statistical
analysis based on nonparametric tests has been employed.
Several remarks and guidelines can be suggested:

• A researcher, who needs to apply a PG method, should
know the main characteristics of these kinds of methods
in order to choose the most suitable. The taxonomy
proposed and the empirical study can help a researcher
to make this decision.
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• To propose a new PG method, rigorous analysis should be
considered to compare the most well known approaches
and those which fit with the basic properties of the
new proposal. To do this, the taxonomy and analysis of
influence in the literature can help guide a future proposal
to the correct method.

• This paper helps non-experts in PG methods to differenti-
ate between them, to make an appropriate decision about
their application and to understand their behavior.

• It is important to know the main advantages of each
PG method. In this paper, many PG methods have been
empirically analyzed but a specific conclusion cannot be
drawn regarding the best performing method. This choice
depends on the problem tackled but the results offered in
this paper could help to reduce the set of candidates.
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