
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. X, NO. Y, SEPTEMBER 2010 1

IPADE: Iterative Prototype Adjustment for
Nearest Neighbor Classification

Isaac Triguero, Salvador Garcı́a and Francisco Herrera

Abstract—Nearest prototype methods are a successful trend
of many pattern classification tasks. However, they present
several shortcomings such as time response, noise sensitivity
and storage requirements. Data reduction techniques are
suitable to alleviate these drawbacks. Prototype generation
is an appropriate process for data reduction that allows the
fitting of a data set for nearest neighbor classification.

This concise paper presents a methodology to learn iter-
atively the positioning of prototypes using real parameters’
optimization procedures. Concretely, we propose an iterative
prototype adjustment technique based on differential evo-
lution (IPADE). The results obtained are contrasted with
non-parametrical statistical tests and show that our proposal
consistently outperforms previously proposed methods, thus
becoming a suitable tool in the task of enhancing the perfor-
mance of the nearest neighbor classifier.

Index Terms—Prototype generation, differential evolution,
nearest neighbor, classification.

I. INTRODUCTION

Classification is one of the most important tasks in
machine learning and data mining [1], [2]. Most machine
learning methods build a model during the learning process,
these are known as eager learning methods [3], but there
are some approaches where the algorithm does not need
to obtain a model. These algorithms are known as lazy
learning methods [4].

The Nearest Neighbor (NN) algorithm [5] and its deriva-
tives belong to the family of lazy learning. It has shown
itself to perform well for classification problems in many
domains [2], [6] and it is considered one of the top
ten methods in data mining [7]. NN is a non-parametric
classifier, which requires the storage of the entire training
set and the classification of unseen cases, finding the
class labels of the closest instances to them. In order to
determine how close two instances are, several distances or
similarity measures have been proposed [8], [9], [10]. The
effectiveness and simplicity of the NN may be affected with
several weaknesses such as high computational cost, high
storage requirement and sensitivity to noise. Furthermore,
NN makes predictions over existing data and it assumes
that input data perfectly delimits the decision boundaries
among classes.

Several approaches have been suggested and studied
in order to tackle the drawbacks mentioned above, for
instance, weighting schemes [11], [12] have been widely
used to improve the results of the NN classifier.

I. Triguero and F. Herrera are with the Department of Computer Science
and Artificial Intelligence of the University of Granada, CITIC-UGR,
Granada, Spain, 18071.
E-mails: triguero@decsai.ugr.es, herrera@decsai.ugr.es

S. Garcı́a is with the Department of Computer Science of the University
of Jaén, Jaén. Spain, 23071. E-mail: sglopez@ujaen.es

A succesful technique which simultaneously tackles the
computational complexity, storage requeriments and sensi-
tivity to noise of NN is based on data reduction. These
techniques aim to obtain a representative training set with
a lower size compared to the original one and with similar
or even higher classification accuracy for new incoming
data. Apart from feature selection [13], data reduction
can be divided into two different approaches, known as
prototype selection [14], [15] and Prototype Generation
(PG) or abstraction [16], [17]. The former process consists
of choosing a subset of the original training data, while PG
can also build new artificial prototypes to better adjust the
decision boundaries between classes in NN classification.

In the specialized literature, a great number of PG
techniques have been proposed. Since the first approach
PNN based on merging prototypes [18] and divide-and-
conquer based schemes [19], many other proposals of PG
can be found. For instance, MixtGauss [20], ICPL [17] and
RSP [21].

Positioning adjustment of prototypes is another perspec-
tive within the PG methodology. It aims to correct the
position of a subset of prototypes from the initial set by
using an optimization procedure. Many proposals belong to
this family, such as Learning Vector Quantization (LVQ)
[22] and its successive improvements [23], [24], genetic
algorithms [25] and Particle Swarm Optimization (PSO)
[26], [27].

Many existing positioning adjustment of prototypes tech-
niques start with an initial set of prototypes and try to
improve the classification accuracy by adjusting it. Two
schemes of initialization are commonly used:

• The number of representative instances for each class
is proportional to the number of them in the input data.

• All the classes are represented by the same number of
prototypes.

This initialization process becomes their main draw-
back due to the fact that this parameter can be very
dependent on the problem tackled. Some PG approaches
[25], [23] compute the number of needed prototypes to
be retained automatically, but in complex domains, they
require to retain many prototypes. We propose a novel
procedure to automatically find the smallest reduced set,
which achieves a suitable classification accuracy over dif-
ferent types of problems. This method follows an iterative
prototype adjustment scheme with an incremental approach.
At each step, an optimization procedure is used to adjust
the position of the prototypes, and the method adds new
prototypes if needed. As a second contribution of this
work, we will adopt the Differential Evolution (DE) [28],
[29] technique as optimizer. Our proposal will be denoted
by Iterative Prototype Adjustment based on Differential
Evolution (IPADE).

In experiments on 50 real-world benchmark data sets, the
classification accuracy and reduction rate of our approach
are investigated and its performance will be compared with
classical and recent PG models.

In order to organize this paper, Section II describes
the background of PG and DE. Section III explains the

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. X, NO. Y, SEPTEMBER 2010 2

proposed algorithm IPADE. Section IV discusses the ex-
perimental framework and presents the analysis of results.
Finally, in Section V we summarize our conclusions.

II. BACKGROUND

This section covers the background information neces-
sary to define and describe our proposal. Subsection II-A
presents the background on PG. Next, Subsection II-B
shows the main characteristics of DE.

A. Prototype Generation

PG is an important technique in data reduction. It has
been widely applied to instance-based classifiers and can
be defined as the application of instance construction algo-
rithms over a data set to improve the classification accuracy
of a nearest neighbor classifier.

More specifically, PG can be defined as follows: Let xp
be an instance where xp = (xp1, xp2, ..., xpm, xpω), with
xp belonging to a class ω of Ω possible classes given by
xpω and a m-dimensional space in which xpi is the value
of the i-th feature of the p-th sample. Furthermore, let xt
be an instance where xt = (xt1, xt2, ..., xtm, xtψ), with xt
belonging to a class ψ, that it is unknown, of Ω possible
classes. Then, let us assume that there is a training set
TR which consists of n instances xp and a test set TS
composed by s instances xt. The purpose of PG is to obtain
a prototype generated set GS, which consists of r, r < n,
prototypes pu where pu = (pu1,pu2, ...,pum,puω), which
are generated from the examples of TR. The prototypes
of the generated set are determined to represent efficiently
the distributions of the classes and to discriminate well
when used to classify the training objects. Their cardinality
should be sufficiently small to reduce both the storage and
evaluation time spent by an NN classifier.

The PG approaches can be divided into several families
depending on the main heuristic operation followed. The
first approach that we can find in the literature, called
PNN [18] belongs to the family of methods that carry out
a merging of prototypes of the same class in successive
iterations, generating centroids. Other well-known methods
are those based on a divide-and-conquer scheme, by sepa-
rating the m-dimensional into two or more subspaces with
the purpose of simplifying the problem at each step [19].
Recent advances that follow a similar operation include:
MixtGauss [20], an adaptive PG algorithm considered in
the framework of mixture modeling by Gaussian distribu-
tions, while assuming a statistical independence of features,
and the RSP3 technique [21] which tries to avoid drastic
changes in the form of decision boundaries associated with
TR which is the main shortcoming observed in the classical
approach [19].

One of the most important families of methods is based
on adjusting the position of the prototypes which can
be viewed as an optimization process. The main algo-
rithm belonging to this family is LVQ [22]. LVQ can
be understood as an artificial neural network in which a
neuron corresponds to a prototype and a competition weight

based is carried out in order to locate each neuron in a
concrete place of the m-dimensional space to increase the
classification accuracy. The third version of this algorithm,
LVQ3 reported the best results. Several approaches have
been proposed that modify the basic LVQ, for instance
LVQPRU [23], which extends LVQ by using a pruning
step to remove noisy instances, or the HYB algorithm
[24] that constitutes a hybridization of several prototype
reduction techniques. Specifically, HYB combines support
vector machines with LVQ3 and executes a search in order
to find the most promising parameters of LVQ3.

As a positioning adjustment of prototypes technique, a
genetic algorithm called ENPC was proposed for PG in
[25]. This algorithm executes different operators in order
to find the most suitable position of the prototypes. PSO
was proposed for PG in [26], [27] and they also belong
to the positioning adjustment of prototypes category of
methods. The main difference between them is the type of
codification of the particles. The PSO approach proposed in
[26] codifies a complete solution GS per particle. However,
AMPSO [27] encodes each prototype of GS in a single
particle. AMPSO has been shown to be more effective than
PSO [26].

B. Differential Evolution

Differential evolution follows the general procedure of an
evolutionary algorithm. DE starts with a population of NP
candidate solutions, so-called individuals. The generations
in DE are denoted by G = 0, 1, . . . , Gmax. It is usually to
denote each individual as a D-dimensional vector Xi,G =
{x1i,G,..., xDi,G}, called a ”target vector”.

After initialization, DE applies the mutation operator
to generate a mutant vector Vi,G, with respect to each
individual Xi,G, in the current population. For each target
Xi,G, at the generation G, its associated mutant vector
Vi,G= {V 1

i,G,..., V Di,G}. The method of creating this mutant
vector is that which differentiates one DE scheme from
another. We focus on the DE/Rand/1 which generate the
mutant vector as follows:

Vi,G = Xr1,G + F · (Xr2,G −Xr3,G) (1)

After the mutation phase, the crossover operation is
applied to each pair of the target vector Xi,G and its
corresponding mutant vector Vi,G to generate a new trial
vector that we denote Ui,G. There are three kinds of
crossover operators known as ’Binomial’, ’Exponential’
and ’Arithmetic’ crossovers.

Specifically, we will focus on the well-known
DE/CurrentToRand/1 strategy [30], which generates
the trial vector Ui,G by linearly combining the target
vector Xi,G and the corresponding mutant vector Vi,G
likeas follows:

Ui,G = Xi,G +K · (Vi,G −Xi,G) (2)

Now incorporating equation (1) in (2) and simplifying, we
obtain

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. X, NO. Y, SEPTEMBER 2010 3

Ui,G = Xi,G+K ·(Xr1,G−Xi,G)+F ·(Xr2,G−Xr3,G) (3)

The indices ri1, ri2, ri3 are mutually exclusive integers
randomly generated within the range [1, NP], which are
also different from the base index i. The scaling factor
F is a positive control parameter for scaling the different
vectors. K is a random number from [0,1].

When the trial vector has been generated, we must decide
which individual between Xi,G and Ui,G should survive
in the population of the next generation G + 1. If the
new trial vector yields an equal or better solution than the
target vector, it replaces the corresponding target vector in
the next generation; otherwise the target is retained in the
population.

The success of the DE algorithm in solving a specific
problem crucially depends on the appropriately choice of
their associated control parameter values that determine the
convergence speed. Hence, a fixed selection of these pa-
rameters can produce a slow and/or premature convergence
depending on the problem. Thus, researchers have investi-
gated the parameter adaptation mechanisms to improve the
performance of the basic DE algorithm. One of the most
successful adaptive DE algorithms is SFLSDE [31]. It uses
two local search algorithms in the scale factor space to find
the appropriate parameters for a given Xi,G.

III. ITERATIVE PROTOTYPE ADJUSTMENT BASED ON
DIFFERENTIAL EVOLUTION

In this section, we present and describe the IPADE
approach in depth. IPADE follows an iterative scheme,
in which it determines the most appropriate number of
prototypes per class and their best positioning. Concretely,
IPADE is divided into three different stages: initialization
(Subsection III-A), optimization (Subsection III-B) and
addition of prototypes (Subsection III-C). Figure 1 shows
the pseudocode of the model proposed. In the following we
describe the most significant instructions enumerated from
1 to 26.

A. Initialization

A random selection (stratified or not) of examples from
TR may not be the most adequate procedure to initialize the
GS. Instead, IPADE iteratively learns prototypes in order
to find the most appropriate structure of GS. Instruction
1 generates the initial solution GS. In this step, GS must
represent each class with one prototype and should cover
the entire search space as much as possible. For this reason,
each class distribution is represented with its respective
centroid. This initialization was satisfactorily used by the
approaches proposed in [16], [20]. The centroid of the
class does not completely cover the region of each class
and it does not avoid misclassifications. Thus, instruction
2 applies the first optimization stage using the initial GS
composed of centroids for each class. The optimization
stage must modify the prototypes of GS using the move-
ment idea in the m-dimensional space, adding or subtracting

1: GS = Initialization(TR)
2: DE Optimization(GS, TR)
3: AccuracyGlobal = Evaluate(GS, TR)
4: registerClass[0..Ω] = optimizable
5: while AccuracyGlobal <> 1.0 or all classes are non−
optimizables do

6: lessAccuracy = ∞
7: for i = 1 to Ω do
8: if registerClass[i] == optimizable then
9: AccuracyClass[i] = Evaluate (GS, Examples

of class i in TR)
10: if AccuracyClass[i] < lessAccuracy then
11: lessAccuracy = AccuracyClass[i]
12: targetClass = i
13: end if
14: end if
15: end for
16: GStest = GS ∪ RandomExampleForClass(TR,

targetClass)
17: DE Optimization(GStest, TR)
18: accuracyTest = Evaluate(GStest, TR)
19: if accuracyTest > AccuracyGlobal then
20: AccuracyGlobal = accuracyTest
21: GS = GStest
22: else
23: registerClass[targetClass] = non− optimizable
24: end if
25: end while
26: return GS

Fig. 1: IPADE algorithm basic structure

some quantities to the attribute values of the prototypes. It
is important to point out that we normalize all attributes of
the data set to the [0, 1] range.

B. Differential Evolution Optimization for IPADE

In this subsection we explain the proposal to apply the
underlying idea of the DE algorithm to the PG problem as
a position adjusting of prototypes scheme.

First of all, it is necessary to define the solution cod-
ification. In the proposed DE algorithm, each individual
in the population encodes a single prototype without the
class label and, as such, the dimension of the individuals is
equal to the number of attributes of the specific problem. An
individual classifies an example of TR when it is the closest
particle (in terms of Euclidean distance) to that example.

The DE algorithm uses each prototype pu of GS, pro-
vided by the IPADE algorithm, as an initial population.
Next, mutation and crossover operators guide the optimiza-
tion of the positioning of each pu in the m-dimensional
space. It is important to point out that these operators only
produce modifications in the attributes of the prototypes of
GS. Hence, the class value remains unchangeable through-
out the evolutionary cycle. We will focus on the well-
known DE/CurrentToRand/1 strategy [30] to generate the
trial prototypes p

′

u because it has reported the best behavior.
It can be viewed as:

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. X, NO. Y, SEPTEMBER 2010 4

p
′

u = pu +K · (pr1 − pu) + F · (pr2 − pr3) (4)

The examples pr1 , pr2 , pr3 are randomly extracted
from TR and they belong to the same class as pu. In
the hypothetical case that TR does not contain enough
prototypes of the pu class, that is, there is not at least
three prototypes of this class in TR, we artificially generate
the necessary number of new prototypes prj , 1 ≤ j ≤ 3,
with the same class label as pu, using little random per-
turbations such as prj = (pu1 + rand[−0.1, 0.1],pu2 +
rand[−0.1, 0.1], ...,pum + rand[−0.1, 0.1],puω).

After applying this operator, we check if there have been
values out of range of [0, 1]. If a computed value is greater
than 1, we truncate it to 1, and if is lower than 0, we
establish it at 0.

After the mutation process over all the prototypes of
GS, we obtain a trial solution GS

′
, which is constituted

for each p
′

u. The selection operator decides which solution
GS

′
or GS should survive for the next iteration. The 1-

NN rule guides this operator to obtain the corresponding
fitness value. We try to maximize this value, so the selection
operator can be viewed as follows:

GS =

{
GS

′
if accuracy(GS

′
) >= accuracy(GS)

GS Otherwise
(5)

In order to guarantee a high quality solution, we use
the ideas established in [31] to obtain a self adaptive
algorithm. Instruction 3 evaluates the accuracy of the initial
solution, measured by classifying the examples of TR with
the prototypes of GS by using the NN rule.

C. Addition of Prototypes

After the first optimization process, IPADE enters in
an iterative loop (Instructions 5-25) to determine which
classes need more prototypes to faithfully represent their
class distribution. In order to do this, we need to define
two types of classes. A class ω is said to be optimizable
if it allows the addition of new prototypes to improve
its local classification accuracy. The local accuracy of ω
is computed by classifying the examples of TR whose
class is ω with the prototypes kept in GS (using the NN
rule). The target class will be the optimizable class with
the least accuracy registered. From instructions 7 to 15,
the algorithm identifies the target class in each iteration.
Initialy, all classes start as optimizable (Instruction 4)

In order to reduce the classification error of the target
class, IPADE extracts a random example of this class from
TR and adds this to the current GS in a new trial set GStest
(Instruction 16). This addition forces the re-positioning of
the prototypes of GStest by again using the optimization
process (Instruction 17) and its corresponding evaluation
(Instruction 18) of predictive accuracy.

After this process, we have to ensure that the new
positioning of prototypes of GStest, generated with the
optimizer, has reported a successful improvement of the

TABLE I: Parameter specification for all the methods
employed in the experimentation

Algorithm Parameters
IPADE iterations of Basic DE = 300/500/1000, iterSFGSS = 8,

iterSFHC =20, Fl=0.1, Fu=0.9
RSP3 Subset Choice = Diameter

Mixt Gauss Reduction Rate = 0.95
ENPC Iterations = 300/500/1000

AMPSO Iterations = 300/500/1000, C1 = 1.0, C2 = 1.0, C3 = 0.25,
Vmax = 1, W = 0.1, X = 0.5, Pr = 0.1, Pd = 0.1

LVQPRU Iterations = 300/500/1000, alpha = 0.1 ,WindowWidth = 0.5
HYB Search Iter = 300/500/1000, Optimal Iter = 1000

alpha = 0.1 , I epsilon = 0, F epsilon = 0.5
Initial Window = 0, Final Window = 0.5
delta = 0.1, delta Window = 0.1
Initial Selection = SVM

LVQ3 Iterations = 300/500/1000, α = 0.1, WindowWidth=0.2,
epsilon = 0.1

accuracy rate in respect to the previous GS. If the global
accuracy of the GStest is lesser than the accuracy of GS,
IPADE does not add this prototype to GS and this class is
registered as non-optimizable. Otherwise, GS = GStest.

The stopping criterion is satisfied when the accuracy rate
is 1.0 or all the classes are registered as non-optimizable.
The algorithm returns GS as the smallest reduced set which
is able to classify the TR appropriately.

IV. EXPERIMENTAL FRAMEWORK AND ANALYSIS OF
RESULTS

This section presents the experimental framework (Sub-
section IV-A) and the comparative study between our
proposal and other PG techniques (Subsection IV-B).

A. Experimental Framework

In this section we show the issues related to the experi-
mental study. In order to compare the performance of the
algorithms, we use four measures: Accuracy [1], [32], the
Reduction rate measured as

ReductionRate = 1− size(GS)/size(TR) (6)

Acc·Red measured as Accuracy·Reduction rate and Execu-
tion time1.

We use 50 data sets2 from the KEEL-dataset reposi-
tory3[33], [34]. These data sets contain between 100 and
20,000 instances, and the number of attributes ranges from
2 to 60. The data sets considered are partitioned using the
ten fold cross-validation (10-fcv) procedure.

Many different configurations are established by the
authors of each paper for the different techniques. We
focus this experimentation on the recommended parameters
proposed by their respective authors, assuming that the
choice of the values of the parameters was optimally

1Reduction rate and execution time information can be found in the
web page

2Data sets: abalone, appendicitis, australian, balance, banana, bands,
breast, bupa, car, chess, cleveland, coil2000, contraceptive, crx, derma-
tology, ecoli, flare-solar, german, glass, haberman, hayes-roth, heart, hep-
atitis, housevotes, iris, led7digit, lymphography, magic, mammographic,
marketing, monks, newthyroid, page-blocks, pima, ring, saheart, satim-
age, segment, sonar, spectheart, splice, tae, thyroid, tic-tac-toe, titanic,
twonorm, wine, wisconsin, yeast, zoo.

3http://sci2s.ugr.es/keel/datasets

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. X, NO. Y, SEPTEMBER 2010 5

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

u
ra

cy
 o

f
th

e
se

co
n
d
 a

lg
o

ri
th

m

Accuracy of IPADE

IPADE Comparison

vs 1NN
vs RSP3

vs LVQ3
vs MixtGauss
vs LVQPRU

vs HYB
vs AMPSO

vs ENPC
y=x

Fig. 2: Accuracy Results over 50 data sets

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

u
ra

cy
*
R

ed
u
ct

io
n
 R

at
e

o
f

th
e

se
co

n
d

 a
lg

o
ri

th
m

Accuracy*Reduction Rate of IPADE

IPADE Comparison

vs 1NN
vs RSP3

vs LVQ3
vs MixtGauss
vs LVQPRU

vs HYB
vs AMPSO

vs ENPC
y=x

Fig. 3: Acc·Red Results over 50 data sets

chosen. However, we have done a previous study for each
method that depends on the number of iterations performed,
with 300, 500 and 1000 iterations in all the data sets. This
parameter can be very sensitive to the problem tackled.
An excesive number of iterations may produce overfitting
for some problems, and a lower number of iterations may
not be enough to tackle other data sets. For this reason,
we present the results of the best performing number
of iterations in each method and data set. The complete
set of results can be found in the associated web site
(http://sci2s.ugr.es/ipade/). The configuration parameters of
IPADE and the methods used in the comparison are shown
in Table I. In this table, the values of the parameters Fl, Fu,
iterSFGSS and iterSFHC of the IPADE algorithm are
the recommended values established in [31]. Furthermore,
euclidean distance is used as a similarity function and those
which are stochastic methods have been run three times per
partition.

Implementations of the algorithms can be found in the
web site associated or in the KEEL software tool [33].

B. Analysis of Results

In this section, we analyze the results obtained. Specifi-
cally, we check the performance of the IPADE model and

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1 2 3 4 5 6 7 8 9

A
cc

u
ra

cy

Iterations of the main loop

Convergence process

Acc Cleveland
Acc Thyroid

Acc Car

(0.9995)

(0.9995)

(0.9993) (0.9992) (0.9992) (0.9990) (0.9989)
(0.9989) (0.9987) (0.9987)

(0.9816)

(0.9780)
(0.9743)

(0.9706)
(0.9670) (0.9633) (0.9633) (0.9633) (0.9633) (0.9633)

(0.9974)

(0.9967)

(0.9961) (0.9954) (0.9954) (0.9948) (0.9948)
(0.9942) (0.9942)

Fig. 4: Map of convergence over 3 different data sets

another 7 PG techniques.
In the scatterplot of Figure 2, each point compares

IPADE to some second algorithm on a single dataset. The
x-axis position of the point is the accuracy of IPADE, and
the y-axis position is the accuracy of the comparison algo-
rithm. Therefore, points below the y = x line correspond
to datasets for which IPADE performs better than some
second algorithm.

In order to test the reduction capabilities of PG methods
in comparison with IPADE, Figure 3 shows at each point
the Acc·Red obtained on a single data set.

Figure 4 shows a graphical representation of the con-
vergence of the IPADE model over 3 different data sets.
The graphic shows a line representing the accuracy rate in
each step and its corresponding reduction rate (in brackets).
The x-axis represents the number of iterations of the main
loop of IPADE, and the y-axis represents the accuracy rate
currently achieved.

Tables II and III present the statistical analysis con-
ducted by nonparametric multiple comparison procedures
for Accuracy and Acc·Red respectively. More specifically,
we have used the Friedman Aligned (FA) procedure [35],
[36] to compute the set of rankings that represent the effec-
tiveness associated with each algorithm (second column).
Both tables are ordered from the best to the worst ranking.
In addition, the third column shows the adjusted p-value
with the Holm’s test (HAPV) [35]. Note that IPADE is
established as the control algorithm because it has obtained
the best FA ranking. By using a level of significance of
α = 0.01, IPADE is significantly better than the rest of
methods, considering both Accuracy and Acc·Red measures.
More information about these tests and other statistical
procedures can be found at http://sci2s.ugr.es/sicidm/.

For the sake of simplicity, we only include the graphical
and statistical results achieved, whereas the complete results
can be found at the web page associated with this paper.

Looking at Tables II and III and Figures 2, 3, 4, we want
to outline some interesting comments:

• Figure 2 shows that the proposed IPADE outperforms
on average the rest of the PG techniques with the
parameter setting established. The most competitive

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. X, NO. Y, SEPTEMBER 2010 6

TABLE II: Average Rankings of the algorithms (FA +
HAPV) for the Accuracy measure

Algorithm Accuracy FA Accuracy HAPV
IPADE 109.63 –

LVQPRU 199.66 6.4064·10−4

LVQ3 203.22 6.4064·10−4

RSP3 231.80 7.9160·10−6

1-NN 236.53 4.2657·10−6

AMPSO 248.11 5.0703·10−7

ENPC 259.13 5.4223·10−8

HYB 268.14 5.6781·10−9

Mixt Gauss 272.02 3.4239·10−6

TABLE III: Average Rankings of the algorithms (FA +
HAPV) for the Acc·Red measure

Algorithm Acc·Red FA Acc·Red HAPV
IPADE 53.83 –
LVQ3 125.92 0.0055

Mixt Gauss 169.18 2.2324·10−5

LVQPRU 170.38 2.2324·10−5

AMPSO 182.54 2.9965·10−6

ENPC 267.91 9.3280·10−16

RSP3 275.32 9.9684·10−17

HYB 362.57 1.5321·10−31

1NN 421.83 1.5321·10−44

algorithms for IPADE, in terms of the accuracy mea-
sure, are the LVQ3 and LVQPRU algorithms. In this
figure, most of the LVQ3 and LVQPRU points are
close to the y = x line. However, the statistical test
confirms that IPADE significantly outperforms these
methods.

• The trade-off between accuracy and reduction rate
is an important factor because the efficiency of the
NN classifier depends on the resulting number of
prototypes of the GS. Figure 3 shows that achieving
this balance between accuracy and reduction rate is a
difficult task. IPADE is the best performing method
considering the balance between accuracy and reduc-
tion rates. In Figure 3, there are more point under the
y = x line in comparison with Figure 2. Furthermore,
Table III also supports this statement, showing smaller
p-values when the reduction rate is considered.

• Observing the map of convergence of Figure 4, we can
highlight the DE algorithm as a promising optimizer
because it is able to reach highly accurate results very
fast. This implies that the IPADE scheme needs a small
number of iterations.

V. CONCLUSIONS

In this brief paper, we have presented a new data reduc-
tion technique called IPADE which iteratively learns the
most adequate number of prototypes per class and their
respective positioning for the nearest neighbor algorithm,
acting as a prototype generation method. This technique
uses a real parameter optimization procedure based on dif-
ferential evolution in order to adjust the positioning of the

prototypes at each step. The large experimental study per-
formed allows us to show that IPADE is a suitable method
for prototype generation in nearest neighbor classification.
Furthermore, due to the fact that IPADE is an heuristic
optimization approach, as future work, this technique could
be used for building an ensemble of classifiers.

ACKNOWLEDGMENT

This work was supported by TIN2008-06681-C06-01.

REFERENCES

[1] E. Alpaydin, Introduction to Machine Learning, 2nd Edition. The
MIT Press, 2010.

[2] I. Kononenko and M. Kukar, Machine Learning and Data Mining:
Introduction to Principles and Algorithms. Horwood Publishing
Limited, 2007.

[3] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.
[4] E. K. Garcia, S. Feldman, M. R. Gupta, and S. Srivastava, “Com-

pletely lazy learning,” IEEE Transactions on Knowledge and Data
Engineering, vol. 22, no. 9, pp. 1274–1285, 2010.

[5] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,”
IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21–27,
1967.

[6] A. N. Papadopoulos and Y. Manolopoulos, Nearest Neighbor Search:
A Database Perspective. Springer, 2004.

[7] X. Wu and V. Kumar, Eds., The Top Ten Algorithms in Data Mining.
Chapman & Hall/CRC Data Mining and Knowledge Discovery,
2009.

[8] D. R. Wilson and T. R. Martinez, “Improved heterogeneous distance
functions,” Journal of Artificial Intelligence Research, vol. 6, pp.
1–34, 1997.

[9] F. Fernández and P. Isasi, “Local feature weighting in nearest
prototype classification,” IEEE Transactions on Neural Networks,
vol. 19, no. 1, pp. 40–53, 2008.

[10] N. Garcı́a-Pedrajas, “Constructing ensembles of classifiers by means
of weighted instance selection,” IEEE Transactions on Neural Net-
works, vol. 20, no. 2, pp. 258–277, 2009.

[11] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted
learning,” Artificial Intelligence Review, vol. 11, pp. 11–73, 1997.

[12] R. Parades and E. Vidal, “Learning prototypes and distances: a
prototype reduction technique based on nearest neighbor error min-
imization,” Pattern Recognition, vol. 39, pp. 180–188, 2006.

[13] H. Liu and H. Motoda, Feature Extraction, Construction and Selec-
tion: A Data Mining Perspective. Kluwer Academic Publishers,
2001.

[14] ——, Instance Selection and Construction for Data Mining. Kluwer
Academic Publishers, 2001.

[15] H. Fayed and A. Atiya, “A novel template reduction approach for the
k-nearest neighbor method,” IEEE Transactions on Neural Networks,
vol. 20, no. 5, pp. 890–896, 2009.

[16] H. A. Fayed, S. R. Hashem, and A. F. Atiya, “Self-generating
prototypes for pattern classification,” Pattern Recognition, vol. 40,
no. 5, pp. 1498–1509, 2007.

[17] W. Lam, C.-K. Keung, and D. Liu, “Discovering useful concept
prototypes for classification based on filtering and abstraction,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 24,
no. 8, pp. 1075–1090, 2002.

[18] C.-L. Chang, “Finding prototypes for nearest neighbor classifiers,”
IEEE Transactions on Computers, vol. 23, no. 11, pp. 1179–1184,
1974.

[19] C. H. Chen and A. Jóźwik, “A sample set condensation algorithm
for the class sensitive artificial neural network,” Pattern Recognition
Letters, vol. 17, no. 8, pp. 819–823, 1996.

[20] M. Lozano, J. M. Sotoca, J. S. Sánchez, F. Pla, E. Pekalska, and
R. P. W. Duin, “Experimental study on prototype optimisation algo-
rithms for prototype-based classification in vector spaces,” Pattern
Recognition, vol. 39, no. 10, pp. 1827–1838, 2006.

[21] J. S. Sánchez, “High training set size reduction by space partitioning
and prototype abstraction,” Pattern Recognition, vol. 37, no. 7, pp.
1561–1564, 2004.

[22] T. Kohonen, “The self organizing map,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1464–1480, 1990.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. X, NO. Y, SEPTEMBER 2010 7

[23] J. Li, M. T. Manry, C. Yu, and D. R. Wilson, “Prototype classifier
design with pruning.” International Journal on Artificial Intelligence
Tools, vol. 14, no. 1-2, pp. 261–280, 2005.

[24] S.-W. Kim and B. J. Oommen, “Enhancing prototype reduction
schemes with LVQ3-type algorithms,” Pattern Recognition, vol. 36,
no. 5, pp. 1083–1093, 2003.

[25] F. Fernández and P. Isasi, “Evolutionary design of nearest prototype
classifiers,” Journal of Heuristics, vol. 10, no. 4, pp. 431–454, 2004.

[26] L. Nanni and A. Lumini, “Particle swarm optimization for prototype
reduction,” Neurocomputing, vol. 72, no. 4-6, pp. 1092–1097, 2009.

[27] A. Cervantes, I. M. Galván, and P. Isasi, “AMPSO: A new particle
swarm method for nearest neighborhood classification,” IEEE Trans-
actions on Systems, Man, and Cybernetics - Part B: Cybernetics,
vol. 39, no. 5, pp. 1082–1091, 2009.

[28] R. Storn and K. V. Price, “Differential evolution - A simple and
efficient heuristic for global optimization over continuous spaces,”
Journal of Global Optimization, vol. 11, no. 10, pp. 341–359, 1997.

[29] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution
A Practical Approach to Global Optimization, ser. Natural Comput-
ing Series, G. Rozenberg, T. Bäck, A. E. Eiben, J. N. Kok, and H. P.
Spaink, Eds., 2005.

[30] K. V. Price, An introduction to differential evolution. New Ideas
Optimization, London, U.K.: McGraw-Hill, 1999.

[31] F. Neri and V. Tirronen, “Scale factor local search in differential
evolution,” Memetic Computing, vol. 1, no. 2, pp. 153–171, 2009.

[32] I. H. Witten and E. Frank, Data Mining: Practical machine learning
tools and techniques, 2nd ed. Morgan Kaufmann, San Francisco,
2005.

[33] J. Alcalá-Fdez, L. Sánchez, S. Garcı́a, M. J. del Jesus, S. Ventura,
J. M. Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas,
J. C. Fernández, and F. Herrera, “KEEL: a software tool to assess
evolutionary algorithms for data mining problems,” Soft Computing,
vol. 13, no. 3, pp. 307–318, 2009.

[34] J. Alcalá-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. Garcı́a,
L. Sánchez, and F. Herrera, “KEEL data-mining software tool: Data
set repository, integration of algorithms and experimental analysis
framework,” Journal of Multiple-Valued Logic and Soft Computing,
2010, in press.

[35] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera, “Advanced
nonparametric tests for multiple comparisons in the design of exper-
iments in computational intelligence and data mining: Experimental
analysis of power,” Information Sciences, vol. 180, pp. 2044–2064,
2010.

[36] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera, “A study of
statistical techniques and performance measures for genetics–based
machine learning: Accuracy and interpretability,” Soft Computing,
vol. 13, no. 10, pp. 959–977, 2009.

