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Objective: To study the antioxidant activity of melatonin in diabetes in relation to the regulation
and levels of plasma copper (Cu), zinc (Zn), iron (Fe), manganese (Mn), and selenium (Se) in Zucker
diabetic fatty (ZDF) and lean (ZL) rats.
Methods: At 6 wk of age, both ZDF (n ¼ 30) and ZL (n ¼ 30) animals were subdivided into three
groups: control (C) (n¼ 10), vehicle (V) (n¼ 10), andmelatonin-treated (M) (10mg/kg/d; n¼ 10) rats
for a 6-wk period. At the end of treatment period, plasma mineral levels were measured by flame
(Cu, Zn, and Fe), electrothermal (Mn), and hydride generation (Se) atomic absorption spectrometry.
Results: ZDF rats had significantly higher Cu, Fe, and Mn plasma levels than did ZL rats (P< 0.05). No
significant differences were found between control and vehicle groups (P > 0.05). Melatonin treat-
ment did not influence plasma levels of these antioxidantminerals (Cu, Zn, Fe, andMn) in ZDF groups
(M-ZDF versus C-ZDF group) and ZL (M-ZL versus C-ZL group) rats with the exception of Zn, whose
mean plasma level was lower in the M-ZL versus C-ZL group. However, plasma Se levels increased
significantly (P < 0.05) after melatonin supplementation in both groups (M-ZDF and M-ZL).
Conclusion: The higher mean plasma Cu, Fe, and Mn levels in the ZDF group are related to the
enhanced oxidative stress in diabetes and obesity. Melatonin administration significantly enhanced
plasma Se levels in both groups (M-ZDF and M-ZL). This is the first study to report that melatonin
treatment increases plasma Se levels.
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Introduction

Human diet has progressively diverged from that of our
ancestors. This discrepancy between our ancient, genetically
4-958249577.
con).

ll rights reserved.
determined biology and the present nutritional pattern of
Western populations has contributed to a major rise in the
incidence of cardiovascular diseases (CVDs), metabolic
syndrome, cancer, and diabetes [1]. Diseases related to over-
weight and obesity also are reaching epidemic proportions
worldwide. Obesity during childhood and adolescence increases
the risk for metabolic syndrome, which is associated with an
increase in oxidative stress and inflammatory processes [2,3].
Recent strategies developed to prevent and treat these diseases
include the use of functional foods fortified with biologically
active compounds from plants. One of these compounds is
melatonin, which is present in food plants (fruit, vegetables,
cereals, edible seeds, and nuts), medicinal herbs, and processed
foods (e.g., wine and beer) [4–7].

An excess of reactive oxygen species (ROS) in mitochondria
can overcome antioxidant defenses, causing bioenergetic failure
and metabolic complications. Melatonin, an amphipatic antiox-
idant, enters the mitochondria in a dose- and time-dependent
manner [8] and exerts its antioxidant effect via multiple
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mechanisms [6], as scavenging several radical species
(e.g., hydroxyl and peroxil radicals), regulating the activity of
antioxidant enzymes (as indirect antioxidant properties),
reducing oxygen consumption, maintaining membrane poten-
tial, or abating superoxide radical production [9]. It is widely
documented that this antioxidant indolamine, and its endoge-
nous metabolites can detoxify harmful reactants and reduce
molecular damage [10–14]. Furthermore, various animal and
human studies on different diseases have reported that mela-
tonin significantly increases the activity of several antioxidant
enzymes, including cytoplasmic and mitochondrial superoxide
dismutase (SOD), catalase (CAT), and glutathione peroxidase
(GPx) [11,15–21]. All of these enzymes are known to have
different antioxidant elements as cofactors, namely copper (Cu),
zinc (Zn), and manganese (Mn), iron (Fe), and selenium (Se),
respectively. We have lately studied the mechanism whereby
melatonin treatment, abrogates increased plasma lipid perox-
idation in basal (endogenous) condition and after challenge with
hydoxil radical ex vivo [22]. Notwithstanding, melatonin can
exert its antioxidant properties in these Zucker diabetic fatty
(ZDF) animals through its capacity to reduce serum levels of the
prooxidant adipokine leptin [23], and by increasing adiponectin
[23] and high-density lipoprotein (HDL) cholesterol concentra-
tions [24], both possessing antioxidant properties [25,26]. The
administration of melatonin also was found to normalize
elevated erythrocyte SOD activity in patients with Alzheimer’s
disease [27]. However, no research data are available on the
effect of melatonin supplementation on the body’s homeostasis
of these antioxidant elements (Cu, Zn, Fe, Mn, and Fe) in young
diabetic Zucker rats and their lean littermates.

To date, few data have been published correlating the
protective effects of melatonin with the metabolic complications
derived from obesity and diabetes in relation to its potential
regulation of the homeostasis of transition metals that act as
cofactors of antioxidant enzymes. The aim of the present study
was to determine the antioxidant activity of melatonin in dia-
betes in relation to the regulation and levels of plasma Cu, Zn, Fe,
Mn, and Se in ZDF and lean (ZL) rats. The ZDF (fa/fa) is a rodent
model with genetic obesity that develops type 2 diabetes mel-
litus (T2DM) similar to that in humans and is associated with
cardiovascular complications at 9 to 10 wk. However, their lean
ZL littermates (fa/�) develop insulin resistance but not diabetes.

Our group previously reported that melatonin supplemen-
tation significantly diminished the overweight condition and
low-density lipoprotein and free fatty-acid levels in young ZDF
rats and significantly increased HDL levels in ZDF and ZL rats [23,
24]. These previous studies demonstrated that oral melatonin
administration ameliorates glucose homeostasis in young ZDF
rats by improving both insulin action and b-cell function. In the
present study, we investigated the effects of melatonin on the
regulation of antioxidant mineral homeostasis in young ZDF rats
and their lean littermates.

Materials and methods

Animals and experimental protocol

Male ZDF (fa/fa; 180–200 g body weight [BW]; n ¼ 30) and male ZL litter-
mates (fa/�; 120–140 g BW; n¼ 30) were obtained at an age of 5 wk from Charles
River (Barcelona, Spain). Animals were maintained on Purina 5008 rat chow
(23% protein, 6.5% fat, 58.5% carbohydrates, 4% fiber, and 6.8% ash [13, 73, 230, 71
and 0.23 ppm for Cu, Zn, Fe, Mn, and Se, respectively]; Charles River) and tap
water ad libitum [23,24]. The food and water intake in both ZL and ZDF groups
(control and melatonin-treated) were published elsewhere [24]; however, the
ratio of ingested food for ZDF/ZL rat groups is about 2.5 times (during 6 wk of
treatment). Animals were housed in clear plastic cages (three to four animals per
cage) in a controlled room under a 12-h dark/light cycle (lights on at 07:00 h). The
study complied with European Community Council Directives and was approved
by the ethics committee of our university. At 6 wk of age, ZDF and ZL rats were
subdivided into three groups of 10 animals each, giving a total of six groups:
control ZDF and ZL (C-ZDF and C-ZL) groups; vehicle-treated ZDF and ZL (V-ZDF
and V-ZL) groups; and melatonin-treated (10 mg/kg/d) ZDF and ZL (M-ZDF and
M-ZL) groups. Vehicle (0.066% ethanol) and melatonin were administered in the
drinking water. The water intake in both ZL and ZDF groups (control and
melatonin-treated) also was shown previously [24]; while the ratio of water
ingested for ZDF/ZL rat groups is about 2.9 times (during 6 wk of treatment), the
melatonin treatment significantly reduced the weight gain in ZDF rats without
food and water intake differences [24]. At the end of the 6-wk treatment period
(12 wk old rats), the animals were fasted overnight and were then anesthetized
with sodium thiobarbital (thiopental) and sacrificed between 09:00 and 11:00 h
the next day. Blood was collected by heart puncture into ethylenediaminetetra-
acetic acid (EDTA) vacutainer tubes and centrifuged, and the plasma was
aliquoted and frozen at �80�C for subsequent determinations of multiple
biochemical parameters [22–24] and antioxidant minerals.

Apparatus

A Perkin-Elmer 1110B double-beam atomic absorption spectrophotometer
equippedwithadeuteriumbackgroundcorrectorandCu, Fe, Zn,Mn, andSehollow
cathode lamps were used together with an HGA-700 furnace spectrophotometer
or a MHS-10 hydride generator (Perkin-Elmer, Norwalk CT, USA). A thermostatic
multiplace digestion block (Selecta, S.A., Barcelona, Spain) was also used.

Reagents

Melatonin was obtained from Sigma Chemicals Madrid, Spain. Commercially
available standard solutions of Cu, Zn, Fe, Mn, and Se (1000 mg/L; Tritisol, Merck,
Darmstadt, Germany) were used to prepare calibration graphs. All solutions were
prepared from analytical grade reagents (Suprapur, Merck): 65% HNO3, 65%
HClO4, 37% HCl, Triton-X 100, NaBH4, and NaOH. Double- distilled deionized
water with a specific resistivity of 18 mU/cm was used to prepare standards for
calibration and dilutions and was obtained immediately before use by filtering
distilled water through a Milli-Q purifier (Millipore, Waters, Mildford, MA, USA).

Determination of plasma Cu, Zn, Fe, Mn, and Se levels by atomic absorption
spectrometry

Plasma samples from ZDF and ZL rats were thawed and homogenized for the
Cu, Zn, and Fe determinations. A 0.150-mL aliquot was diluted with double-
distilled deionized water (1:5) following procedures reported elsewhere [28,
29]. Cu, Zn, and Fe levels were determined by flame (direct aspiration) atomic
absorption spectrophotometry. In an accuracy test, Cu and Zn concentrations
obtained by this method in certified reference material (Contox Trace Serum
Metal Control A Level I, Kaulson Laboratories Inc., NJ, USA [91.6 � 1.6 and
78.9 � 4.2 mg/dL, respectively]) did not significantly differ (P > 0.05) from
certified levels (90.0� 7.5 and 80.0� 6.0 mg/dL, respectively). Likewise, the mean
Fe concentration obtained by this method in the reference material (SeronormTM

CRM M10181 Trace Elements in Serum from Sero AS Nycomed Pharma AS, Bill-
ingstad, Norway [157 � 10 mg/dL]) did not significantly differ (P > 0.05) from the
certified level (154 � 8 mg/dL).

A previously optimized hydride generation atomic absorption spectrometry
procedure was used for Se determinations [30]. In an accuracy test, the mean Se
concentration obtained by this method in the reference material (0148 Contox
trace metal serum control Panel C from the Kaulson Laboratories Inc., NY, USA
[15.64 � 1.10 mg/dL]) did not significantly differ (P > 0.05) from the certified level
(15.05 � 0.49 mg/dL).

Mnwas directlymeasured inplasma samples dilutedwith 0.1% TritionX 100 in
water (1:1) after optimizing the volume of the diluted samples. The linear cali-
bration method was applied for the determination, using a micropipette to
manually inject 20 mL of diluted sample through a graphite tube without L’Vov
platform [31]. Furnace conditions for electrothermal atomic absorption spec-
trometry at 279.5 nmwere previously reported [31]. The mean Mn concentration
obtained by this method in the reference material (CRMM10181) (1.28� 0.01 mg/
dL)didnot significantlydiffer (P>0.05) fromthe certified level (1.30� 0.015mg/dL).

Statistical analysis

The Statistical Package for the Social Sciences (version 15.0; SPSS, Chicago, IL)
was used for data analyses. Results were expressed as arithmetic means and SD,
and the normal distribution of data and the homogeneity of variances were
checked by Kolmogorov-Smirnov’s and Levene’s tests respectively. ANOVA and
Duncan multiple range tests were used for comparisons for parametric variables,
the Kruskall-Wallis test for non-parametric variables. P < 0.05 was considered
significant.



Table 1
Comparison of plasma Cu, Zn, Fe, Mn, and Se levels between ZDF and ZL rats

Mineral P-value ZDF rats ZL rats

n Mean � SD n Mean � SD

Cu (mg/dL) 0.007 30 141.1 � 3.3 30 123.5 � 5.1
Zn (mg/dL) 0.149 30 158.7 � 6.1 30 150.5 � 9.6
Fe (mg/dL) 0.002 30 844.0 � 77.3 30 425.0 � 146.0
Mn (ng/dL) 0.023 30 123.6 � 12.5 30 102.3 � 20.1
Se (ng/dL) 0.101 30 1257 � 35 30 1137 � 61.5

Cu, copper; Fe, iron; Mn, manganese; Se, selenium; Zn, zinc; ZDF, Zucker diabetic
fatty; ZL, Zucker lean

Fig. 2. Plasma Zn levels in control (C-ZL and C-ZDF) and melatonin-treated (M-ZL
and M-ZDF) animals. Values are means � SEM (n ¼ 10, each group). a,bDuncan
multiple range test showed significant differences between rat groups with the
same superscript. ZDF, Zucker diabetic fatty; ZL, Zucker lean.
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Results and discussion

No statistically significant differences in plasma concentra-
tions of Cu, Zn, Fe, Mn, and Se were found between the naïve (C-
ZL, N-ZDF) and vehicle (V-ZL, V-ZDF) groups (P > 0.05). Hence,
the vehicle used for the melatonin administration had no effect
on the plasma levels of these antioxidant minerals.

As shown in Table 1, plasma Cu, Fe, and Mn levels were
significantly higher in the ZDF groups (C-ZDF, M-ZDF) than in the
ZL groups (C-ZL plus M-ZL group) (P < 0.05), which may be
related to the enhanced oxidative stress that is characteristic of
diabetes and obesity [32,33]. In the ZDF rats, however, melatonin
administration (M-ZDF group) did not significantly reduce these
elevated plasma Cu, Zn, Fe, or and Mn levels in comparison with
the untreated animals (C-ZDF group) (Fig. 1–4, respectively). This
may be related to the need for ZDF rats to maintain high plasma
Cu, Zn, Fe, and Mn levels in response to the increase in antioxi-
dant enzymes (SOD and CAT) induced by melatonin treatment
[11,15–21]. However, little is known about the precise nature of
oxidative stress in diabetes and the mechanism by which it
causes tissue damage [34]. Cooper implicated excessive transi-
tion metal-catalyzed oxidative stress in this process [33]. The
role of Cu and Fe ions as catalyzers of oxidative stress in diabetes
is supported by our finding of elevated plasma Cu and Fe levels in
the ZDF rats. Elevated serum Cu values were previously
described in rats [35]. Nevertheless, no significant difference in
serum Cu levels has been observed between diabetics and
healthy controls [36,37].

Among the control rats, the plasma Fe level was significantly
higher in the C-ZDF group than in the C-ZL group (P¼ 0.003). The
C-ZDF group also showed a borderline significant tendency to
higher plasma Cu (P ¼ 0.051), Zn (P ¼ 0.065), and Mn (P ¼ 0.051)
concentrations.
Fig. 1. Plasma Cu levels in control (C-ZL and C-ZDF) and melatonin-treated (M-ZL
and M-ZDF) animals. Values are means � SEM (n ¼ 10, each group). a,bRat groups
with the same superscript were significantly different (P < 0.01). ZDF, Zucker dia-
betic fatty; ZL, Zucker lean.
The effects of melatonin administration on plasma Cu, Zn, Fe,
Mn, and Se levels are depicted in Figures 1 to 5. Over the 6-wk
treatment period, plasma Cu (Fig. 1), Zn (Fig. 2), and Fe (Fig. 3)
levels were significantly lower (P < 0.05) in the M-ZL group than
in the M-ZDF group (113.8 � 6.9, 128.6 � 12.9 and 382.5 � 167.5
versus 137.1 � 4.0, 159.6 � 7.3, and 961.8 � 96.7 mg/dL; respec-
tively). The mean plasma Cu concentration was significantly
lower (P< 0.01) in theM-ZL group (113.8� 6.9 mg/dL) than in the
C-ZDF group (147.1 � 4.9 mg/dL) (Fig. 1). The Duncan multiple
range test results showed that melatonin supplementation
significantly reduced plasma Zn levels in the ZL group (C-ZL,
172.4 � 12.9 mg/dL; M-ZL, 128.6 � 12.9 mg/dL) (Fig. 2). No
significant differences in plasma Mn concentrations were found
among M-ZDF (133.7 � 18.1 ng/dL), C-ZDF (113.6 � 18.1 ng/dL),
M-ZL (85.3 � 31.3 ng/dL), and C-ZL (115.0 � 27.1 ng/dL) groups
(Fig. 4), although a tendency to significance was observed
(Kruskal-Wallis test, P ¼ 0.086).

A previous report that melatonin increases the absorption of
Zn in the digestive system [38] is not supported by the present
results. Other animal studies found that plasma Zn levels were
increased by melatonin supplementation [39,40] even in pine-
alectomized rats [41]. In one of these studies, plasma Zn levels
[39] were significantly higher after melatonin treatment versus
controls in middle-aged rats but not in old rats.
Fig. 3. Plasma Fe levels in control (C-ZL and C-ZDF) and melatonin-treated (M-ZL
and M-ZDF) animals. Values are means � SEM (n ¼ 10, each group). aRat groups
with the same superscript were significantly different (P < 0.01). ZDF, Zucker dia-
betic fatty; ZL, Zucker lean.



Fig. 4. Plasma Mn levels in control (C-ZL and C-ZDF) and melatonin-treated (M-ZL
and M-ZDF) animals. Values are means � SEM (n ¼ 10, each group). ZDF, Zucker
diabetic fatty; ZL, Zucker lean.
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Some authors reported that melatonin ameliorated oxidative
stress by controlling Fe, after finding that adriamycin-treated rats
that received melatonin normalized plasma Fe levels to
concentrations found in controls [11]. However, melatonin did
not affect plasma Zn or Se levels. The researchers concluded that
the damaging action of ROS, lipids, and proteins requires a cata-
lyst such as Fe [11]. This finding may be related to other reports
that melatonin and its derivatives possess Fe-binding properties
[42] and contribute to Fe homeostasis by maintaining Fe pools at
appropriate levels. Other researchers also found that the
elevated total Fe levels induced by CCl4 injections were signifi-
cantly reduced by melatonin [40]. However, this effect was not
observed in the present study, given that melatonin treatment
only significantly diminished plasma Zn levels in ZL rats, as
confirmed by applying the Duncan multiple range tests. This
result also may be related to the Zn-binding properties of
melatonin and its derivatives, as previously reported for Fe [42].
A similar tendency to statistical significance was found for lower
plasma Mn concentrations in ZL rats (P ¼ 0.087). These findings
reveal a differential effect of melatonin in ZDF and ZL rats on
regulation of the plasma homeostasis of Zn and probably Mn.

It has been reported that melatonin supplementation signif-
icantly enhanced the activity of SOD and CAT enzymes in non–
insulin-dependent diabetes mellitus [15]. Other researchers also
found that melatonin treatment improves antioxidant status by
increasing the activity of antioxidant enzymes such as SOD, CAT,
Fig. 5. Plasma Se (B) levels in control (C-ZL and C-ZDF) and melatonin-treated (M-
ZL and M-ZDF) animals. Values are means � SEM (n ¼ 10, each group). a,b,cRat
groups with the same superscript were significantly different (P < 0.01). ZDF,
Zucker diabetic fatty; ZL, Zucker lean.
and GPx [11,15–19]. It also has been reported that Zn deficiency
reduces Cu-Zn SOD activity [19]. Themelatonin-induced increase
in Cu-Zn SOD activity counteracts the elevated increase in
oxidative stress in diabetes [15]. In the situation of lower
oxidative stress and inflammation characteristic of ZL rats, the
lower plasma levels of Cu, Zn, and Fe measured in
melatonin-treated rats (M-ZL versus M-ZDF group) may be
related to the reduced activities of cytoplasmic SOD and CAT.

Although melatonin administration did not significantly
influence plasma Cu, Zn, Fe, and Mn levels in the ZDF rats, other
researchers found that this indolamine interacts with metals,
neutralizing their toxic effects in some cases [43–45].

The regulation of Se plasma levels by melatonin showed
a distinct behavior. Thus, plasma Se levels were significantly
higher (P < 0.01) in the M-ZDF (1320 � 38.5) versus C-ZDF
(1177 � 47.1 ng/dL) groups (Fig. 5) and in the M-ZL (1340 � 85.5)
versus C-ZL (1016 � 66.5 ng/dL) (Fig. 5). The enhancement in Se
levels after melatonin administration (10 mg/kg/d) may be
related to the release of Se from body stores for use in the
synthesis of the GPx antioxidant enzyme. Previous studies have
reported an increased activity of this enzyme after melatonin
treatment [20,21,46]. Probably this result is related with
a previous finding of our research group on that melatonin
improved basal lipid peroxidation (LPO) in ZDF rats as well as the
total antioxidant capacity (measured as Fe2þ/H2O2�induced
LPO), in both ZL and ZDF rats [22].

Conclusions

In conclusion, the elevatedmean plasma Cu, Fe, andMn levels
measured in the ZDF rats are related to the enhanced oxidative
stress characteristic of diabetes and obesity. Melatonin admin-
istration enhances plasma Se levels in M-ZDF and M-ZL rats.
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