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Ras-induced cellular events (Review)

VeroÂ nica AylloÂ n and Angelita Rebollo*

Centro Nacional de Biotecnologõ Â a, Department of
Immunology and Oncology, Campus de Cantoblanco, UAM,
E-28049 Madrid, Spain

Summary
Ras is a crucial regulator of cell growth in eukaryotic cells.
Activated Ras can stimulate signal transduction cascades,
leading to cell proliferation, differentiation or apoptosis. It is
also one of the most commonly mutated genes in both solid
tumours and haematologic neoplasias. In leukaemia and
tumours, aberrant Ras signalling can be induced directly by
Ras mutation or indirectly by altering genes that associate with
Ras or its signalling pathways. A requisite for Ras function is
localization to the plasma membrane, which is induced by the
post-translational modification farnesylation. Molecules that
interfere with this Ras modification have been used as anti-
tumour agents. Ras is emerging as a dual regulator of cell
functions, playing either positive or negative roles in the control
of proliferation or apoptosis. The diversity of Ras-mediated
effects may be related in part to the differential involvement of
Ras homologues in distinct cellular processes or to the
expanding array of Ras effectors.

Keywords: Ras effectors, proliferation, apoptosis, cancer, Ras
homologues.

Introduction

Ras proteins are critical components of the signalling
pathways that link the activation of cell surface receptors to
the control of proliferation, differentiation or apoptosis
(McCormick 1996, Hall 1998). The 21 kDa Ras family
comprises H-Ras, K-Ras, N-Ras and other homologous
proteins such as R-Ras, M-Ras, TC21, Rap and Ral (figure
1). The two K-Ras forms, K-Ras 4A and 4B, diverge in the C-
terminal as a consequence of alternate exon utilization.

The activity of Ras proteins is controlled by a cycle
between a GDP-bound inactive state and a GTP-bound
active state. Ras proteins are activated transiently in
response to diverse extracellular signals such as growth
factors, cytokines , hormones , reactive free radicals , cellular
redox stress and neurotransmitters . Activated Ras, in turn,
stimulates a cascade of serine/threonine kinases that
activate multiple signalling pathways.

The aim of this review is to analyse emerging aspects of
Ras protein biology, focusing on novel mechanisms of Ras
activation as well as on the involvement of Ras in cancer and
in pro- or anti-apoptotic signalling pathways.

Specific roles of Ras proteins

The mammalian Ras proteins are almost identica l throughout
most of their length, diverging only in the 20 C-terminal
amino acids (figure 2). Ras isoforms are indistinguishable in
most assays, leading to the speculation that they are
redundant. Nonetheless , recent evidence has begun to
accumulate for differentia l activities of the Ras isoforms .

The H-, N- and K-Ras genes are ubiquitiously expressed
in mammalian cells . Mutation of specific Ras homologue s is
associated with different tumour types. K-Ras mutation was
detected in mammary tumour progression (Liu et al. 1998)
and activated K-Ras is involved in stimulation of human colon
cancer cells (Okumura et al. 1999). H-Ras stimulates tumour
angiogenesis (Arbiser et al. 1997) and mutation of H-Ras
may be involved in pathogenesis of juvenile chronic
myelogenous leukaemia (JCML) (Miyauchi et al. 1994), as
well as in acute myelogenous leukaemia (AML) (Kiyoi et al.
1999). N-Ras mutations induce myeloproliferative disorders
and apoptosis in bone marrow-repopulated mice (MacKenzie
et al. 1999). Erythroid progenitor cells expressing mutated N-
Ras exhibit a proliferative defect, resulting in an increased
cell doubling time and a decrease in the proportion of cells in
the S/G2 cell cycle phase (Darley et al. 1999).

A number of recent reports suggest that the different Ras
homologue s may preferentially mediate distinct cellular
processes . K-Ras, but not H- or N-Ras, has an essentia l
role in murine development (Johnson et al. 1997, Koera et al.
1997). K-Ras interacts specifically with microtubules (This-
sen et al. 1997), and oncogenic K-Ras, but not N-Ras,
disrupts basolatera l polarity in epithelial cells (Yan et al.
1997). H-Ras is important in both the genesis and
maintenance of solid tumours (Chin et al. 1999), and
oncogenic H-Ras inhibits Fas ligand-mediated apoptosis by
downregulating Fas expression via the phosphatidylinositol 3
kinase (PI3K) pathway (Peli et al. 1999). Cells with elevated
levels of the serine/threonine phosphatas e type 2A (PP2A)
are more resistant to H-Ras-induced focus formation, which
correlates with reduced H-Ras-stimulated expression of the
c-fos promoter (Baharians and Schontha l 1999). Finally,
activated H-Ras induces apoptosis by association with
phosphorylate d Bcl-2 in a mitogen-activated protein kinase-
independent manner (Navarro et al. 1999).

Recent reports suggest that oncogenic N-Ras induces
alterations in Golgi complex architecture and in constitutive
protein transport (Babia et al. 1999). In keeping with this,
the four Ras homologue s differentially induce focus
formation, cell migration or anchorage-dependent cell
growth (Voice et al. 1999). Ras homologues vary in their
ability to activate the Raf and PI3K effectors (Yan et al.
1998). The activation of these effectors has been related
to induction or protection from apoptosis (Downward 1998).
Results from the laboratory have shown distinct behaviours
for Ras homologue s in cells undergoing apoptosis or
proliferation, with K-Ras present in mitochondria of IL-2-
supplemented cells and H-Ras in mitochondria of IL-2-*Author for correspondence: e-mail: arebollo@cnb.uam.es
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deprived cells (PeÂ rez-Sala and Rebollo 1999, Rebollo et al.
1999), suggesting that each Ras protein may mediate
different signalling pathways.

Interestingly, the Ras-related protein M-Ras, which inter-
acts with the Ras effector protein AF6 (Louahed et al. 1999,

Quilliam et al. 1999), is regulated by upstream stimuli similar
to those for H-Ras, but novel targets are responsible for its
effects on cell transformation and differentiation. Constitutive
M-Ras expression results in factor-independent growth of an
IL-3-dependent cell line (Ehrhaedt et al. 1999). The Ras-

Figure 1. Schematic view of the mammalian Ras superfamily of monomeric G proteins. Ras proteins are involved in nuclear transport (Ran
family), vesicular trafficking (Rab family), cytoskeleton organization/apoptosis (Rho and Rac family) and proliferation/differentiation/apoptosis
(Ras, Rap and Ral family).

Figure 2. C-terminal amino acids of H-Ras, N-Ras, K-Ras 4A and K-Ras 4B proteins. A farnesyl group is added to the cysteine in the CAAX
motif. The C-terminal tripeptide is removed by proteolysis and the newly-exposed cysteine residue is methylated. Ras proteins can be further
palmitoylated (H-Ras, N-Ras and K-Ras 4A) or phosphorylated (K-Ras 4B). The palmitoylation sites of H-Ras, N-Ras and K-Ras 4A, the
phosphorylation site of K-Ras 4B, the farnesylation sites and the CAAX motif of each of the Ras proteins are indicated.
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related protein R-Ras promotes cell adhesion and regulation
of apoptotic responses in haematopoietic cells (Osada et al.
1999). It has been recently shown that Ras homologues
differ significa ntly in their abilitie s to activate Raf and induce
distinct biological responses. These studies, in addition to
previous reports demonstrating that the four homologues can
be differentially activated by upstream guanine nucleotide
exchange factors, indicate that each Ras protein may
participate qualitative ly or quantitative ly in distinct signalling
cascades and have significantly different biological roles in
vivo (Voice et al. 1999). These studies also suggest that the
distinct, cooperative biological functions of K-Ras 4A and K-
Ras 4B proteins may help explain why mutations of K-Ras,
but not of N- or H-Ras, are frequently detected in human
carcinomas (Voice et al. 1999).

Interaction of Ras with the plasma membrane

Ras proteins are modified by post-translationa l modifications
of the C-terminal CAAX motif (figure 2) (Clarke 1992, Zhang
and Casey 1996), which is necessary and sufficient for
recognition by a series of enzymes that modify the CAAX
protein C-terminus (Reiss et al. 1990, Ashby 1998). The first
modification, prenylation, is catalyzed by one or two soluble
prenyltransferase s that attach a farnesyl or geranylgeranyl
lipid to the CAAX cysteine. Substrate specificity is deter-
mined by the residue in the X position of the CAAX motif
(Casey and Seabra 1996). A prenyl group is added to the
cysteine, a specific protease cleaves the AAX residues , and
the modified prenylcysteine is recognized by a methyltrans-
ferase. In the case of N-, H-Ras and K-Ras 4A, but not K-Ras
4B, another cysteine is further modified by the addition of a
palmitic acid (Hancock et al. 1989). Whereas the prenyl-
transferases are soluble , the prenyl-CAAX proteases and
palmitoyl transferases are membrane-associated (Hancock
et al. 1991). Protein palmitoylation may be particularly
important for modulating protein function during cycles of
activation and deactivation. Palmitoylation can affect the
affinity of proteins for membranes, subcellula r localization
and interaction with other proteins (Dunphy and Linder 1998,
Veit and Schmidt 1998). In addition to enzymatic-mediated
palmitoyla tion a non-enzymatic catalyzed reaction of palmi-
toylation, has been described. Non-enzymatic, as well as
enzymatic palmitoylation of proteins occurs predominantly on
cysteine residues (Mollner et al. 1998, Veit et al. 1998). The
observation that enzymes that modify prenylated Ras are
localized in the endomembrane system suggests that Ras is
not targeted directly from the cytosol to the plasma
membrane. In addition, prenylation probably mediates
specific association with the endoplasmic reticulum and
Golgi, and further processing allows transport to the plasma
membrane (Choy et al. 1999, Magee and Marshall 1999).
Whereas, N- and H-Ras are connected on exocytic transport
vesicles following association with endoplasmic reticulum
and Golgi, K-Ras uses a route that may not involve the Golgi.

All the targeting information is contained in the variable
domain of Ras proteins . The three Ras proteins have in
common that the initial membrane interaction of their
farnesylated forms occurs with the endoplasmic reticulum
(Dai et al. 1998, Romano et al. 1998). It is even possible that

protease and methyltransferase are physically associated in
the membrane. Ras palmitoylation is required prior to
farnesyl attachment. The distinct contributions of these two
lipid modifications to Ras function have recently been
explored using non-farnesylated Ras mutants. These mu-
tants can be palmitoyla ted and trigger differentiation and
transformation, suggesting that palmitate can support Ras
membrane binding and two different biological functions
(Booden et al. 1999). Finally, transient palmitoylation sup-
ports H-Ras membrane binding but only partial biological
activity, suggesting that in some cellular models , farnesyla-
tion may be important for signalling, while palmitoylation may
provide dynamic membrane regulation (Coats et al. 1999).

The association of Ras proteins with plasma membrane
domains enriched in cholesterol and sphingolipids (rafts)
(Simons and Ikonen 1997) or caveolae (Anderson 1998) has
been reported. Recent studies show that raft disruption has
different effects on the ability of activated H-Ras and K-Ras
4B to activate Raf. Expression of a dominant negative mutant
of caveolin or extraction of cholesterol from rafts blocked H-
Ras, but not K-Ras 4B activation of Raf, suggesting that H-
Ras and K-Ras 4B may associate with different rafts/
caveolae or that raft/caveolae association of H-Ras may be
more sensitive to cholesterol content (Roy et al. 1999).
Inhibition of Ras farnesyltransferas e blocks proliferation by
reducing the amount of functional Ras localized at the
cytoplasmic membrane, as well as inhibiting activation of the
MAPK pathway (Kouchi et al. 1999). Moreover, farnesylation
of Ras is important in the interaction of the PI3K p110
gamma subunit with Ras (Rubio et al. 1999).

Interference with the post-translationa l modifications of
Ras may be an important therapeutic strategy for cancer.
One of the most successful Ras activity-blocking drugs is the
farnesyltransferase inhibitor (FTI). This enzyme catalyzes
the transfer of a farnesyl group to a cysteine residue located
near the C-terminus of the protein. FTI blocks Ras
farnesylation, antagonize s its cell transforming activities,
and can, therefore, be used as an antitumour agent (Gibbs
and Oliff 1997). Several groups of FTI have been described,
and some seem to be very effective (Perrin et al. 1996, Quian
et al. 1997). Peptide analogues were designed to inhibit
farnesyl protein transferase activity, on the basis of the last
four amino acids of the Ras proteins. When comparable
studies were performed in cells transformed by K-Ras or N-
Ras, FTIs appears to be less potent at inhibiting Ras
farnesylation (Cox and Der 1997). Whether the FTI have
an effect on cells expressing wild-type Ras is unknown. FTI
can be used not only in treating tumours expressing mutated
Ras, but also for tumours in which Ras is deregulated. The
effect of these compounds on T cell signalling is not known.
Ras has an important role in signal transduction via IL-2R
and TCR, among others. FTI prevent many changes
associated with neoplastic transformation in mouse fibro-
blasts , including anchorage-independent growth, morpholo-
gic transformation and cytoskeleta l alterations (Gibbs and
Oliff 1997). Many of the FTI-induced cellula r effects may be
considered cytostatic, as suggested by the return of H-Ras-
transformed fibroblasts to the transformed phenotype once
FTI is removed from the culture medium (James et al. 1993,
Pendergast et al. 1994).
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The three Ras homologue s differ in their susceptibility to
inhibition of farnesyltransferase . H-Ras is uniquely sensitive
to FTI and K-Ras is highly resistant to inhibition due to its
ability to be alternatively modified by geranylgeranyl in cells
treated with FTI (Lerner et al. 1997, Whyte et al. 1997). Novel
mechanisms for regulation of Ras processing have recently
been proposed. Induction of isoprenoid biosynthetic pathway
by lipoprote in depletion can upregulate the farnesylation and
membrane association of Ras (Gadbut et al. 1997). The
modification of Ras post-translationa l status may contribute
to the potentiation of growth factor induced DNA synthesis by
insulin, since insulin can activate FTase and augment levels
of farnesylated Ras (Goalstone et al. 1998). It should also be
taken into account that FTI can target proteins other than
Ras, including RhoB, nuclear lamin A and B, and TC21 (Cox
and Der 1997). Ras palmitoylation also requires prior
farnesyl attachment. The distinct contribution of these two
lipid modifications to Ras function have been explored using
non-farnesylated mutants of H-Ras (Booden et al. 1999).
These mutants can be palmitoyla ted and trigger differentia-
tion and transformation, suggesting that palmitate can
support H-Ras membrane binding and two different biologi-
cal functions.

Treatment of H-Ras transformed cells with FTI inactivates
the Raf/MAPK cascade by preventing binding of Raf to
membrane-bound Ras-GTP (Lerner et al. 1995). The
incomplete correlation between Ras status and sensitivity
to FTI suggests that not all cells with Ras mutations depend
on Ras for transformed growth. These cells may have other
mutations that make mutant Ras redundant. Alternatively,
farnesylation of other proteins , in addition to Ras, is
important for cancer cell growth.

Ras and cancer

Mutated Ras oncogenes were initially identified by their
ability to transform NIH3T3 cells (Perucho et al. 1981, Boss
1989). These mutations render Ras proteins resistant to
GTPase-activating proteins (GAPs) and prevent hydrolysis
of GTP into GDP (Lowy and Wilumsen 1993). This
continuously activated Ras protein autonomously stimulates
cell growth or differentiation by stimulating its downstream
effectors. Analysis of a variety of tumour samples revealed
that, in some human tumours , one of the three Ras genes
had a point mutation. As a result, the protein product has an
altered amino acid, most commonly at one of the critical
positions (12, 13 or 61) that lock the GTP binding protein into
a state of permanent activation. In human tumours, mutation
at residue 12 is the most common (Krontiris and Cooper
1981, Perucho et al. 1981, Shib and Weinberg 1982); with
regard to Ras genes, K-Ras is the most frequently found in
human tumours, whereas H- and N-Ras are rarer. In
addition, the type of Ras mutation seems to correlate with
tumour type (Bollag and McCormick 1991, Bogusti and
McCormick 1993, Lowy and Wilumsen 1993). Although
activating Ras mutations are particularly associated with
myeloid malignancie s and carcinomas of colon, pancreas,
lung and thyroid, they have also been detected in other
cancer types (Beaupre and Kuzrock 1999, Rowinsky et al.
1999, Weijzen et al. 1999).

Apart from Ras gene mutations, other events affect Ras
regulation. Constitutive activation of guanine nucleotide
exchange factor (GEF) Sos leads to a persistent activation
of Ras (Sanchez-Garcia and Martin-Zanca 1997, Boriack-
Sjodin et al. 1998). In addition, loss of GAPs can result in
constitutive association of Ras with GTP, followed by
activation (Skorski et al. 1994, Chuang et al. 1995,
Largaespada et al. 1996). Disturbance of proteins upstream
of Ras can also affect Ras activation, i.e. overexpression or
truncation of certain growth factor receptors (Gibbs et al.
1990, Satoh et al. 1990, 1993, Sawyers and Denny 1994). To
prevent neoplasia , cells from multicellular organisms activate
cellula r programmes such as apoptosis in response to
deregulated oncogene expression, making the suppression
of such programmes an essentia l step in the establishment
of neoplastic cells as tumours . It has been suggested that
cells may activate a non-apoptotic cell death programme;
accordingly, it has been shown that oncogenic Ras triggers
cell suicide through the activation of a caspase-independent
cell death programme in human cancer cells (Chi et al.
1999). The activation of this non-apoptotic cell death
programme may become a potential cancer therapy,
complementing apoptosis-based therapies .

Activation of effector proteins

Two mechanisms have been proposed to explain how Ras-
GTP activates its downstream effectors. In the recruitment
model, Ras is anchored to the plasma membrane, where it
binds to the cytoplasmic effectors. In the allosteric model,
Ras binding induces a conformationa l change in the effector
molecule. Both mechanisms may be involved, depending on
which effector protein is activated.

In its activated state, Ras can stimulate several down-
stream effector pathways, the best characterized of which is
the serine/threonine kinase c-Raf-1 (Campbell et al. 1998,
Bonni et al. 1999). Ras/c-Raf-1 association induces MEK1
and 2 kinase activation and, in turn, ERK1 and 2 kinases.
ERKs phosphorylate cytoplasmic targets such as RSK, Mnk
and phospholipase A2 (Waskiewicz et al. 1997, Sturgill et al.
1998, Wang et al. 1998) and translocate to the nucleus ,
where they phosphorylate a variety of substrates such as the
transcription factor Elk1. In addition to ERK 1 and 2 and
MEK, an important contribution of the ERK5/MEK5 pathway
to Ras/c-Raf-1 signalling and growth control has recently
been described (English et al. 1999). Ras interacts with two
distinct parts of the c-Raf-1 N-terminal region (Fabian et al.
1994, Brtva et al. 1995), and the strength of this Ras/c-Raf-1
interaction determines the response of c-Raf-1 to Ras
(Okada et al. 1999). Ras isoforms vary in their ability to
activate c-Raf-1, suggesting that activation of different Ras
isoforms can have distinct biochemica l consequence s for the
cell (Yan et al. 1998).

Among other candidate Ras effectors is the phosphatidy-
linositol 3 kinase (PI3K). The PI3K p110 subunit interacts
with Ras-GTP through the domain located between amino
acids 133-314. Mutants of this region show differentia l
impairment of effector interaction (Winkler et al. 1997).
PI3K-dependent Ras activation also controls the activity of
Akt/PKB, Rac and p70s6k (Marte and Downward 1997). In
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addition to Raf and PI3K, other Ras effectors have been
described, including Rin1, p120GAP, AF6, RalGDS, Nore1,
Rfl and protein kinase C (PKC) f (Diaz-Meco et al. 1994, Han
and Colicelli 1995, Feig et al. 1996, Kuriyama et al. 1996,
McCormick 1998, Vavvas et al. 1998, Watari et al. 1998,
Vetter et al. 1999, Wolthuis and Bos 1999, Yamamoto et al.
1999). p120GAP was the first molecule to be proposed as a
Ras effector. Although it acts as a negative regulator of Ras,
recent evidence suggests that p120GAP regulates Rho
functions. PKC f associates with Ras-GTP, suggesting that
Ras localizes PKC f to the plasma membrane. Another Ras
effector candidate is the mitogen-activated protein kinase 1
(MEKK1), a serine/threonine kinase that is an upstream
activator of SEK and may also serve as a cdc42 and Rac
effector (Fanger et al. 1997). Ras is also reported to interact
with REKS and Bcl-2 (Shimizu et al. 1994, Chen and Faller
1996, Rebollo et al. 1999). In addition, it has been shown that
Ras interacts with the transcription factor Aiolos. This
association results in inhibition of Bcl-2 expression, conse-
quently leading to apoptosis (Romero et al. 1999). Finally,
other Ras effectors have been identified that may contribute
to Ras regulation; Ras interacts with N-Jun amino-terminal
kinase (JNK), MEK kinase and kinase suppressor of Ras
(KSR) (Shimizu et al. 1994, Adler et al. 1995, Russell et al.
1995, Therrien et al. 1995, Zhang et al. 1997).

Ras-GTP also activates Rac and Rho. The activation of
Rac and Rho by oncogenic Ras may lead to morphologic
changes that increase the invasive properties of transformed
cells. Cells expressing constitutively activated Rac show an
increase in membrane ruffling, whereas cells expressing
constitutively activated Rho show cytoskeletal reorganization
and increased numbers of focal adhesions (Tanaka et al.
1999).

Role of Ras in proliferation and aptosis

Ras proteins have been implicated in both protection from and
promotion of apoptosis , due to the ability of Ras to regulate
multiple signalling pathways through its interaction with
differenteffectors (Downward 1998). Expression of oncogenic
forms of Ras proteins leads to the induction of cell cycle
progression, causing exit of quiescent cells from G0 and
passage throughG1 and S phase (Downward 1997). Cyclin D1
is one of the earliest cell cycle regulators affected by Ras. Ras
activation induces cyclin D1 expression and downregulation of
the cdk inhibitor p27kip, probably through a mitogen activated
protein kinase (MAPK)-mediated pathway (Jarpe et al. 1998).
Ras function has also been associated to the retinoblastoma
(Rb) cell cycle checkpoint (Mittnacht et al. 1997, Lee et al.
1999, You et al. 1999). Ras may also act at many other later
regulatory points in the cell cycle, for instance, regulation of
E2F transcription factor release from Rb following its phos-
phorylation. Cellular Ras and cyclin D1 are required at similar
times of the cellcycle in quiescentNIH3T3 cells thathave been
induced to proliferate, but not in the case of cycling cells.
Continuous cellcycle progression inNIH3T3cells requires Ras
activity topromote cyclin D1synthesis duringG2phase. Cyclin
D1 expression then continues through G1 phase indepen-
dently of Ras activity and drives the G1-S phase transition,
suggesting that Ras-dependent induction of cyclin D1 expres-

sion beginning in G2 phase is critical for continuous cell cycle
progression in NIH3T3 cells (Hitomi and Stacey 1999a, b).

Oncogenic Ras also causes growth arrest and premature
senescence associated with upregulation of p53 and p16 ink
(Serrano et al. 1997). Ras is involved in phosphorylation and
activation of the cdc25 phosphoserine phosphatase s (Ga-
laktionov et al. 1996). Finally, it has been shown that Ras
regulates c-myc expression and its stability, suggesting that
one aspect of the Myc/Ras collaboration is the ability of Ras
to enhance the accumulation of transcriptionally active Myc
protein (Kerkhoff and Rapp 1998, Sears et al. 1999). The
extent of Ras activation in PC12 cells determines prolifera-
tion or differentiation. Treatment of cells with epidermal
growth factor (EGF) leads to transient activation of Ras and
proliferation, while stimulation with nerve growth factor (NGF)
results in sustained Ras activation, which leads to differ-
entiation (Yan and Ziff 1995, Yao and Cooper 1995). The
antiapoptotic activity of Ras has been linked to its ability to
activate PI3K (Wennstron and Downward 1999). The PI3K-
mediated survival signal is triggered by activation of the
serine/threonine kinase Akt/PKB (Franke et al. 1997, Cerezo
et al. 1998), although Akt/PKB can be activated in a PI3K-
independent fashion (Konishi et al. 1996). Activated PI3K
induces cyclin D1 transcription and E2F activity, mediated at
least in part by Akt/PKB. Akt/PKB activation correlates with
inhibition of JNK2 activity and prevention of apoptosis in IL-4-
stimulated T cells (Cerezo et al. 1998). One mechanism for
Akt/PKB protection against apoptosis is the phosphoryla tion
and inactivation of Bad, a pro-apoptotic molecule (Datta et al.
1997, del Peso et al. 1997). Taken together, these results
suggest that multiple cooperating pathways mediate the
effect of Ras on progression through the cell cycle (Gille and
Downward 1999). Finally, IL-2- and IL-3-dependent cells are
protected from starvation-induced apoptosis by activated
Ras through upregulation of Bcl-2 and Bcl-x expression
(Kinoshita et al. 1995, GoÂ mez et al. 1997). Ras-mediated
JNK activation may promote different cellula r consequences ,
depending on the cell type or the activation of complemen-
tary pathways (Xia et al. 1995, Lenczwski et al. 1997). IL-2
deprivation correlates with an increase in JNK1 activity
directly related to induction of apoptosis (Cerezo et al. 1999).
On the contrary, activation of the ERK pathway suppresses
JNK activity and promotes cell survival (Xia et al. 1995).

Multicellular organisms may protect against the oncogenic
potentia l of Ras by mounting an anti-proliferative activation of
Ras; this can be in the form of inducing expression of cyclin-
dependent kinase inhibitor p21 and p16ink (Serrano et al.
1997, Wood et al. 1997)or the induction of apoptosis in some
cell types (Downward 1998). Ras activation has also been
implicated in apoptosis induction. Ras is reported to mediate
signals triggered by activation of the cell death receptor Fas
(Gulbins et al. 1995). Ras is also linked to apoptosis induction
in the phaechromocytoma cell line PC12 (Ferrari and
Greene 1994). Ras is activated following both IL-2-stimulation
or -deprivation in T cells, leading to cell proliferation or
apoptosis , depending on complementary stimuli (GoÂ mez et al.
1996, 1997). In this context, the interaction described between
Aiolos andRas delineates a novelRas-mediated pro-apoptotic
pathway (Romero et al. 1999). Finally, oncogenic Ras down-
modulates the expression of Par-4, a transcriptiona l repressor
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protein, that is essential, but not sufficient to induce apoptosis
(Barradas et al. 1999, Goufang Qiu et al. 1999, Nalca et al.
1999).

Concluding Remarks

The functional spectrum of the Ras superfamily covers
almost every cellular process, and recent data suggest that
they are functionally interconnected. Thus, a major part of
the choice between cell life and death may be assumed by
Ras superfamily proteins. The nature of the signals they
transmit may be modulated by other simultaneously triggered
parallel signalling pathways that may result in the final order
that allows the cell to keep on living or to die. Ras is a crucial
regulator of cell growth in eukaryotic cells . The importance of
a fine regulation of commitment to apoptosis during the cell
cycle is critical for the prevention of the tumorogenic state.
Ras is one of the most commonly mutated genes in solid
tumours and haematologic neoplasms. Aberrant Ras signal-
ling can be induced directly by mutation of the Ras gene or
indirectly by altering genes that associate with Ras or its
signalling pathways. New molecules that interfere with Ras
activity by inhibiting the enzyme FTase have been described.
Clinical studies suggest that these molecules have significant
antitumour activity, which appears to be mediated through
both apoptosis and cell cycle regulation. In addition to FTIs,
other approaches have been used to block Ras function,
such as antisense Ras, retrovirus therapy and neutralizing
anti-Ras antibodies
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