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A B S T R A C T

Assessment of the visual quality of colour images is usually a difficult process, validated through hard-to-carry-
out psychophysical experiments, used to record observer quality scores. Visual image quality metrics aim to
maximise the agreement between computed indexes and observer scores, or opinions. Therefore, in this area,
it is of critical importance to have appropriate measures of this agreement (i.e. performance) between the
computed image quality metric values and observer’s quality scores, both for the development, as well as
for the use of image quality metrics. Among the measures of agreement, the most used one nowadays is the
well-known Pearson correlation coefficient, while Spearman rank correlation coefficient is also commonly used.
The aim of this paper is two-fold. First, to introduce the Standardised Residual Sum of Squares (𝑆𝑇𝑅𝐸𝑆𝑆)
as an alternative metric for the agreement between computed image quality and observers quality scores
and analyse its properties and advantages in front of Pearson, Spearman and Kendall correlation coefficients;
Second, to introduce a new version of 𝑆𝑇𝑅𝐸𝑆𝑆 (called 𝑈𝑆𝑇𝑅𝐸𝑆𝑆) that takes observers’ scores variability
into account. The results on synthetic and real datasets support that 𝑆𝑇𝑅𝐸𝑆𝑆 has a series of benefits in front
of the classical approaches and that the inclusion of uncertainty in 𝑆𝑇𝑅𝐸𝑆𝑆 has an important effect on the
results, quantified by statistical significance tests. A free to download MATLAB code version of 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 is
available at https://viplab.webs.upv.es/resources/
1. Introduction

Images and multimedia information are a type of data that is
increasingly present in our lives. The assessment of their quality is
an active research topic nowadays in the areas of computer vision,
entertainment, colour vision, and perception, just to cite a few of them.

Image quality can be inferred by subjective and by objective meth-
ods. The former ones are based on the perceptual assessment (or the
opinion, or a numerical assignment) of a human viewer about an
(or a group of) attribute(s) of an image or a set of them. Objective
methods use computational models that somehow assign a perceptual
quality value to the images. These are commonly referred to as Image
quality Metrics (IQMs). IQMs can be divided into three main types
depending on the availability of the reference image [1]: full-reference,
where the reference image (original) and test image (distorted) are
used to estimate perceptual quality; reduced-reference, where partial
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information of the reference and test images are used; and no-reference,
where only the test image is used.

Inferring the visual quality of colour images, which needs to be done
through psychophysical experiments used to record observers’ scores, is
a costly and hard process. This is the reason why it is important to have
IQMs available that might avoid these experiments. Obviously, the aim
of any IQMs is to maximise the agreement with observers scores which
are considered the true value.

Among the full-reference IQMs used so far [1], one of the most rel-
evant currently used ones is the structural similarity index (SSIM) [2],
which represents more than 23 K citations according to Scopus [3]
nowadays. Other IQMs are: (a) the so-called image Color Appearance
Model difference (iCAM) [4]; (b) The Fuzzy Color Structural Similarity
(FCCS) [5]; (c) The Multiscale version of SSIM (MSSIM) [6]; (d) The
Color Structural Similarity Index (CSSIM) [7]; (e) The Feature Simi-
larity Index (FSIMc) [8]; (f) The Mean Squared Error (MSE); (g) The
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Root-Mean-Square Error (RMSE); (h) The Peak Signal-To-Noise Ratio
(PSNR); and (i) The Normalised Color Difference (NCD) [9]. In total,
we have considered 10 of the most representative IQMs currently in
use. iCAM is a difference measure derived from the iCAM image Color
Appearance Model that is in turn an extension of a Color Appearance
Model (CAM) to include aspects concerning spatial effects on the
perception of colours. SSIM uses three different measures of similarity
(luminance, contrast, and structure) between image patches that are
combined to obtain a single similarity degree. FCSS is an extension
to the fuzzy context of SSIM where highly nonlinear fuzzy measures
are used to measure the luminance, contrast and structure similarities.
MSSIM is similar to SSIM but applied over multiple spatial scales, by
considering a multi-stage sub-sampling process, in a similar way as that
considered is made in the early vision system. CMSSIM is an extension
of the MSSIM merit figure, where the contrast and structure terms of
SSIM are applied at each scale, the luminance comparison is applied
at the highest scale only, and the colour comparison is applied only
at the lowest scale. FSIMc is based on the fact that the human visual
system processes and analyses an image taking into account mainly
its low-level features. In particular, FSIMc considers phase congruency
(a dimensionless measure of the significance of a local structure) and
the image gradient magnitude as the two features to obtain a local
quality map and a final image quality score. Other classical measures
from the signal processing field include: MSE (measures the average
squared difference between the estimated values and the actual values
to be compared against), RMSE (represents the quadratic mean of
the differences between the predicted and the corresponding observed
values), PSNR computes the ratio between the maximum possible value
of a signal (variable) and the power of corrupting noise that affects it
(obtained from MSE) and it is usually expressed in logarithmic units.
Finally, NCD works by comparing all pairs of colour pixels in a more
perceptually uniform colour space (for instance, the CIELUV colour
space) instead of the RGB space, computing their Euclidean distances,
and normalising by the norm of one of the two vectors.

There also exist a wide range of no-reference IQMs, which only use
the test (distorted) image for estimating image quality. These include
the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE)
[10] that is a natural scene statistic-based distortion-generic IQM in
the spatial domain. The Natural Image Quality Evaluator (NIQE) [11]
uses a set of statistical features from natural scene statistic models. The
Perception-based Image Quality Evaluator (PIQE) [12] is based on how
human perceive images and exploits local features. The blurMetric [13]
is based on comparing the discrimination between different levels of
blur, while CEIQ [14] is based on calculating the degree of deviation
from the natural scene statistics models. The Cumulative Probability of
Blur Detection (CPBD) [15] uses a probabilistic model to calculate the
probability of being able to detect blur at edges in images. Feature maps
based Referenceless Image QUality Evaluation Engine (FRIQUEE) [16]
uses a bag of feature-maps approach, which does not make assumptions
on the distortions present in images. The Just-Noticeable-Blur Measure
(JNBM) [17] uses the notion of just-noticeable-blur to estimate sharp-
ness. In addition to these there exist a vast literature on no-reference
IQMs.

Within this context, with the wide proposal of IQMs, it is easy to see
that it is necessary and of critical importance to measure the agreement
between image visual and computed quality in a solid and reliable way.
This is done to assess the performance of the IQMs in terms of finding
how well an IQM is able to predict perceived image quality.

For this task, the most used indicators are the well-known Pear-
son correlation coefficient [18], the Spearman rank correlation coef-
ficient [19], and Kendalls correlation [20]. The Pearson correlation
coefficient measures the linear relationship between the IQM values
and the subjective scores. A higher correlation between the IQM values
and subjective scores indicates higher performance. On the other hand,
the Spearman and Kendalls correlation coefficients measure the rela-
2

tionship between the IQM rankings and the subjective scores rankings,
using a monotonic function. Often a non-linear regression is applied
to deal with the fact that the relationship between subjective scores
and metric values can be of non-linear nature [21]. More recently, the
Perceptually Weighted Rank Correlation (PWRC) [22] was proposed
a performance measure that awards correct ranking of high-quality
images and at the same time reduces the importance of mistakes in
insensitive ranking. I still miss a reference to Kendal

An alternative strategy that we analyse in this paper is the 𝑆𝑇𝑅𝐸𝑆𝑆
metric, which was originally used in multidimensional scaling (MDS)
techniques [23,24], and it has been extensively used afterwards to
measure the agreement between visually assessed and computed colour
differences [25]. It is currently the standard figure of merit for this
problem [26,27]. 𝑆𝑇𝑅𝐸𝑆𝑆 has some interesting properties that en-
courage us to use it to measure the agreement between the computed
image quality and the observers scores. The most relevant one from
a theoretical point of view is the possibility of applying statistical
significance tests to it. That is, the possibility to figure out through it,
and up to a certain degree of confidence, whether the performance of
two IQMs can be considered significantly different, from a statistical
point of view, or not.

The aim of this paper is two-fold: First, to study the appropriateness
of the 𝑆𝑇𝑅𝐸𝑆𝑆 index to measure the agreement between the com-
puted and observed image quality scores. Second, to propose a mod-
ification of 𝑆𝑇𝑅𝐸𝑆𝑆 which incorporates the observers scores’ vari-
ability or uncertainty in a natural way. A version of 𝑆𝑇𝑅𝐸𝑆𝑆, called
𝑊𝑁𝑆𝑇𝑅𝐸𝑆𝑆 (Weighted Normalised STRESS) [25–27], has been pre-
viously proposed for this purpose. However, a new modification, called
𝑈𝑆𝑇𝑅𝐸𝑆𝑆 (Uncertainty STandardized REsidual Sum of Squares), that
uses the standard deviation of the observed scores as a measure of
observers’ scores variability/uncertainty, is proposed. Incorporating
this uncertainty aims to reflect that errors committed by IQMs are
more or less important depending on the corresponding observers’
scores variability. 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 holds almost all of the properties of
𝑆𝑇𝑅𝐸𝑆𝑆, including that it is also possible to apply statistical signifi-
cance tests based on it. In this paper, a comparison of the performance
of 𝑆𝑇𝑅𝐸𝑆𝑆, 𝑊𝑁𝑆𝑇𝑅𝐸𝑆𝑆, 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 and the Pearson, Spearman
and Kendall coefficients, using both synthetic datasets and a recent
visual image quality evaluation dataset, is carried out. Moreover, we
propose a different way to perform statistical significance tests, which
better reflects the influence of the uncertainty in the score values.

Fig. 1 shows a flowchart of the whole methodology carried out in
this work, for the case of one IQM. Therefore, this process would be re-
peated for as many IQMs as needed to be compared against. First of all,
the observers have analysed each image in the database and assigned
opinion scores with a certain average and standard deviation. On the
other hand, the IQM for each image in the database is obtained. Then,
a measure of agreement is obtained comparing the opinion score with
the corresponding IQM. Finally, a ranking of the agreement measures
is made to, in turn, rank the IQMs according to their performance.

2. 𝑺𝑻𝑹𝑬𝑺𝑺: Standardised residual sum of squares

In multi-dimensional scaling [28,29], loss functions are used to
characterise the differences between two vectors (or objects, in gen-
eral). When these vectors represent groundtruth information
(observers’ scores) and predicted data (computed scores or IQMs in
our context), the closeness between them is interpreted as a measure
of approximation quality for the prediction. From now onward, we will
only use the terms groundtruth and predicted data, instead of observers’
and computed scores.

Thus, in multi-dimensional scaling, the usual loss function is the
so-called normalised (or Kruskal’s) 𝑆𝑇𝑅𝐸𝑆𝑆, which can be defined in
different equivalent ways. One of them is the following:

𝑆𝑇𝑅𝐸𝑆𝑆(𝐆,𝐏) =
(
∑𝑁

𝑖=1(𝐹𝑝𝑃𝑖 − 𝐺𝑖)2
∑𝑁 2

)

1
2

(1)

𝑖=1 𝐺𝑖
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Fig. 1. Flowchart or the methodology proposed in this paper, for one particular agreement measure.
where 𝐆 and 𝐏 are 𝑁 component vectors denoting groundtruth and
predicted data respectively. 𝑁 here represents the number of image
quality scores either determined by visual experimentation or com-
puted with a given IQM. 𝐹𝑝 is a non-arbitrary scaling factor determined
to minimise the value of the loss function for 𝐏 in relation to 𝐆. 𝐹𝑝 can
be analytically determined as:

𝐹𝑝 =
∑𝑁

𝑖=1 𝑃𝑖𝐺𝑖
∑𝑁

𝑖=1 𝑃
2
𝑖

(2)

2.1. 𝑊𝑁𝑆𝑇𝑅𝐸𝑆𝑆: Weighted normalised 𝑆𝑇𝑅𝐸𝑆𝑆

In a comparison of predicted and groundtruth scores, related to
the measurement of the quality of an image, the measures defined
up to now do not currently reflect the uncertainty that the dispersion
associated to the scores convey. This seems important, because a high
dispersion in the scores for an image would indicate that this image
might be difficult to assess by the observers, which in turn may bias the
results regarding the assessment of the correlation between these quan-
titative and qualitative measures. For example, a difference equal to 𝑚
units between computed and groundtruth data should be interpreted
differently when the variability of the groundtruth (given in terms of
the standard deviation) is low in relation to when it is high.

𝑆𝑇𝑅𝐸𝑆𝑆 can be adapted to take into account the contribution of
individual comparison pairs through specific weights [25]. Weighted
normalised 𝑆𝑇𝑅𝐸𝑆𝑆 (or 𝑊𝑁𝑆𝑇𝑅𝐸𝑆𝑆) can be defined as:

𝑊𝑁𝑆𝑇𝑅𝐸𝑆𝑆(𝐆,𝐏) =
(
∑𝑁

𝑖=1 𝜔𝑖(𝐹𝑝𝑃𝑖 − 𝐺𝑖)2
∑𝑁

𝑖=1 𝜔𝑖(𝐺𝑖)2

)

1
2

(3)

where 𝜔𝑖 is a measurement of the goodness of the data and indicates
the weight applied to each pair, and 𝐹𝑝 would have the same values
as for 𝑆𝑇𝑅𝐸𝑆𝑆, given by Eq. (2). In particular, we would consider:
𝜔𝑖 =

1
𝜎2𝑖

, being 𝜎𝑖 the standard deviation of the groundtruth data of the
𝑖th image.

2.2. Statistical significance tests for 𝑆𝑇𝑅𝐸𝑆𝑆

It is easy to see that the numerator of Eq. (1) is just a classical
Euclidean distance between two vectors, 𝐆 and 𝐏, one of them appro-
priately re-scaled (by 𝐹𝑃 ), i.e. ∑𝑁

𝑖=1(𝐹𝑝𝑃𝑖−𝐺𝑖)2 = (𝐹𝑝⋅𝐏−𝐆)⋅I⋅(𝐹𝑝⋅𝐏−𝐆)𝑇 ,
where 𝑇 means transpose, and I is the 𝑁 × 𝑁 identity matrix in this
case. It is not necessary to introduce the identity matrix here, but it is
3

included to easily see the extension of the 𝑆𝑇𝑅𝐸𝑆𝑆 measure proposed
at the beginning of Section 3.

Therefore, the residual variance of the differences is defined as:

𝑉 =
∑𝑁

𝑖=1(𝐹𝑝𝑃𝑖 − 𝐺𝑖)2

𝑁 − 1
(4)

which, by the central limit theorem, can be stated to follow a chi-
squared distribution with 𝑁 − 1 degrees of freedom [28], if 𝑁 is large
enough. It is important to consider that this property would also hold
if another semidefinite positive matrix was considered, instead of the
identity matrix (I).

Now, for the same groundtruth vector, 𝐆, given two different pre-
diction vectors 𝐏𝟏 and 𝐏𝟐 their corresponding 𝑉1 and 𝑉2 values can be
computed using Eq. (4). Their ratio:

𝐹𝑡𝑒𝑠𝑡 =
𝑉1
𝑉2

,

follows, by definition, the distribution of an F variable [29]. It is easy
to see that

𝑉1
𝑉2

=
𝑆𝑇𝑅𝐸𝑆𝑆(𝐆,𝐏1)2

𝑆𝑇𝑅𝐸𝑆𝑆(𝐆,𝐏2)2
.

As proposed in [25], and using 𝐹𝑡𝑒𝑠𝑡, we can formulate the null
hypothesis that 𝐏𝟏 and 𝐏𝟐 have no significant differences in predicting
𝐆. This hypothesis must be rejected when 𝐹𝑡𝑒𝑠𝑡 < 1

𝐹𝐶
or 𝐹𝐶 < 𝐹𝑡𝑒𝑠𝑡,

where 1
𝐹𝐶

and 𝐹𝐶 are the critical bounds of the two-tailed F distribution
with a certain (usually 95%) confidence level and (𝑁−1, 𝑁−1) degrees
of freedom. Notice that 𝐹𝐶 is determined as the value that lies in the
97.5% percentile of the F-distribution (and consequently 1

𝐹𝐶
is the value

that lies in the 2.5% percentile) so that 95% of the samples fall in the
interval

[

1
𝐹𝐶

, 𝐹𝐶

]

and 5% out of it.
Consequently, using 𝐹𝑡𝑒𝑠𝑡, we may conclude that the predictions 𝐏𝟏

and 𝐏𝟐 are equal (𝐹𝑡𝑒𝑠𝑡 = 1), insignificantly different ( 1
𝐹𝐶

≤ 𝐹𝑡𝑒𝑠𝑡 ≤ 𝐹𝐶 ),
or significantly different (𝐹𝑡𝑒𝑠𝑡 <

1
𝐹𝐶

or 𝐹𝐶 < 𝐹𝑡𝑒𝑠𝑡). In the latter case,
the one that has the lowest value of 𝑉 (or 𝑆𝑇𝑅𝐸𝑆𝑆) is significantly
better than the other.

It is important to note that this statistical significance test cannot
be applied for 𝑊𝑁𝑆𝑇𝑅𝐸𝑆𝑆 because it uses the same 𝐹𝑃 value that
𝑆𝑇𝑅𝐸𝑆𝑆 and consequently the values given by 𝑊𝑁𝑆𝑇𝑅𝐸𝑆𝑆 are not
guaranteed to be minimal. In this scenario, statistical significant tests
make no sense because they would be biased by 𝐹 .
𝑃
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2.3. A new hypothesis test for 𝑆𝑇𝑅𝐸𝑆𝑆

As an alternative way to indicate when two measures are statisti-
cally different with a 95% confidence value, we propose to perform a
different (albeit related) statistical test. The new test aims to study the
null hypothesis (𝐻0) that 𝑆𝑇𝑅𝐸𝑆𝑆 is lower for a given IQM 𝑖, than
for a given IQM 𝑗. Notice that since 𝑆𝑇𝑅𝐸𝑆𝑆 should be minimised,
this can be interpreted as IQM 𝑖 being better than IQM 𝑗. For this, we
compute the 𝑝−value associated with this hypothesis that represents the
probability of error we would incur if we reject the null hypothesis that
𝑆𝑇𝑅𝐸𝑆𝑆(𝑖) < 𝑆𝑇𝑅𝐸𝑆𝑆(𝑗). In particular, the 𝑝−value is computed as
the percentile of the F-distribution where 𝐹𝑡𝑒𝑠𝑡 =

𝑉𝑗
𝑉𝑖

, falls. A very small
𝑝−value implies that we should reject the null hypothesis, because the
risk of being mistaken is also low and, therefore, conclude that IQM 𝑗
is significantly better than IQM 𝑖.

3. 𝑼𝑺𝑻𝑹𝑬𝑺𝑺: Uncertainty 𝑺𝑻𝑹𝑬𝑺𝑺

We develop in this Section an alternative measure to 𝑆𝑇𝑅𝐸𝑆𝑆 and
𝑊𝑁𝑆𝑇𝑅𝐸𝑆𝑆 that is able to consider the uncertainty or variability
of the groundtruth data (remember, we assume that it corresponds to
the observer’s scores) while keeping some of the 𝑆𝑇𝑅𝐸𝑆𝑆 properties,
particularly the statistical inferences. As explained in detail in the
following, we propose to use the Mahalanobis distance instead of the
Euclidean distance used in 𝑆𝑇𝑅𝐸𝑆𝑆. First, we review the definition of
this distance and what it intends to represent.

3.1. The Mahalanobis distance

Let us consider that we have a group of 𝑀 data points (𝐗 ≡ {𝐱𝑖}, 𝑖 =
1,… ,𝑀) in an 𝑁−dimensional space that are distributed in a natural
way, so that the dispersion in each dimension is different and there
may exist some correlations among some of the dimensions. A simple
way to account for these two facts is to use the variance in each
dimension to characterise the first one of them, and the covariance
between every dimension pair for the second. All this information is
collected in the covariance matrix, Σ, associated with the cloud point
distribution. Now, to measure the distances between points in the
cloud taking into account their natural distribution, the Mahalanobis
distance [30–33] proposes to use the inverse of the Σ as the scalar inner
product matrix of the 𝑁−dimensional vector space. By doing this, the
distance compensates for the vector differences that are indeed related
to the natural distribution of the dataset by assuming that it follows
a Gaussian distribution whose covariance matrix is Σ. Thus, distances
between two points, 𝐱𝑖, 𝐱𝑗 , in the cloud are given by:

𝑑2(𝐱𝑖, 𝐱𝑗 ) = (𝐱𝑖 − 𝐱𝑗 )𝑇Σ−1(𝐱𝑖 − 𝐱𝑗 ) (5)

where the superscript 𝑇 denotes matrix transpose.
It can be seen that since Σ is a (nonsingular) covariance matrix, it

is positive definite and hence 𝑑2(𝐱𝑖, 𝐱𝑗 ) is a metric, in fact [31]. This
is the so-called Mahalanobis distance between two data points, and it
considers how the variables are dispersed in the space and how they
correlate with each other. It is important to emphasise that the use of
Σ−1 allows for the existence of different scales for the variables, and
for nonzero correlations between them. Its quadratic form (Eq. (5)) has
the effect of transforming the variables to an uncorrelated standardised
variant of them. More in detail, the Mahalanobis distance operates by
measuring distances in the context of a multivariate normal distribution
characterised by Σ and it is known that the sum of squared residuals of
the metric (squared differences) follows a chi-squared distribution [34].

To show how the metric works, it is quite illustrative to define the
locus of points that are at the same distance from the centroid of the
group by the following equation:

𝑑2(𝐱 , 𝜇) = (𝐱 − 𝜇)𝑇Σ−1(𝐱 − 𝜇) = 𝐾 (6)
4

𝑖 𝑖 𝑖
Fig. 2. Toy example showing the benefits of using the Mahalanobis distance: 5000 2D
Gaussian distributed data points (green points) are plotted, whose centroid vector and
covariance matrix are: 𝜇 = (2, 2) and 𝛴 =

( 2 1.5
1.5 2

)

, respectively. The black dotted curve
is the so-called isodensity curve (group of points whose probability density belong to
the distribution is the same) for this Gaussian distribution, which corresponds with
a set of points at equal Mahalanobis distance from the centroid. This particular locus
covers inside the 95% of points of the distribution as the length of each one of the two
orthogonal axes corresponds to two times the standard deviation of the distribution in
each orthogonal direction. The red dotted curve is the isodensity contour plot for the
case of a Gaussian distribution with 𝜇 = (2, 2) and 𝛴 =

( 2 0
0 2

)

, which corresponds with
a set of points at equal Euclidean distance from the centroid.

where 𝜇 denotes the centroid and 𝐾 > 0 determines the distance to all
points from the centroid.

Fig. 2 shows a toy example of the application of the Mahalanobis
distance. Let us consider an 𝑁−dimensional multivariate Gaussian
distribution. Its probability density would be given by:

𝑝(𝐱;𝜇,𝛴) = 1
(2 × 𝜋)𝑁∕2 ×

√

|𝛴|

𝑒
[

− 1
2 [(𝑥−𝜇)

𝑇𝛴−1(𝑥−𝜇)]
]

(7)

We can see in Eq. (7) how the Mahalanobis distance appears in the
exponent of this probability density function. Fig. 2 shows the plot of a
group of 5000 points generated following a 2D Gaussian distribution,
with 𝜇 = (2, 2) and 𝛴 =

( 2 1.5
1.5 2

)

. Fig. 2 also shows the so-called
isodensity curve (group of points whose probability density is the same)
for this Gaussian distribution (black dashed line) that corresponds with
a set of points at equal Mahalanobis distance from the centroid. The
length of the two orthogonal axes of the elliptic curve corresponds to
two times the standard deviation of the distribution in those directions
which implies that the curve contains the 95% of the cloud. Finally,
Fig. 2 also shows (red dashed line), for comparative purposes, the
isodensity contour plot for the case of a Gaussian distribution with
𝜇 = (2, 2) and 𝛴 =

( 2 0
0 2

)

, i.e., a diagonal covariance matrix whose
main diagonal elements are equal to those of the previous distribution.
The use of the covariance matrix 𝛴 = 2 ⋅

( 1 0
0 1

)

instead of 𝛴 =
( 2 1.5
1.5 2

)

in the assessment of the distance between any pair of points in Fig. 2
would be equivalent to the strict application of the Euclidean distance
between them (with a factor of 2). We can see how the inclusion of
the covariance matrix in the assessment of the probability distribution
correctly reflects the nature of the distributed data themselves. There-
fore, the Mahalanobis distance (taken into account in Eq. (7)) helps in
modelling how data distributes in the feature space.
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3.2. 𝑈𝑆𝑇𝑅𝐸𝑆𝑆

The main reason of the proposal of the 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 index would be
to include groundtruth data variability when measuring the agreement
with a set of predicted data, IQMs in our case, while keeping some
important properties of the 𝑆𝑇𝑅𝐸𝑆𝑆 index. For this, we propose to
replace the Euclidean distance in 𝑆𝑇𝑅𝐸𝑆𝑆 (Eq. (1)) with the Ma-
halanobis distance, because this distance is able to account for data
variability. Therefore, 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 can be defined as:

𝑈𝑆𝑇𝑅𝐸𝑆𝑆(𝐆,𝐏) =
(
∑𝑁

𝑖=1
(

(𝐹𝑝𝑃𝑖 − 𝐺𝑖)𝑇Σ−1(𝐹𝑝𝑃𝑖 − 𝐺𝑖)
)

∑𝑁
𝑖=1 𝐺

2
𝑖

)

1
2

(8)

However, this replacement implies, in practical terms, a high de-
pendency on how the matrix Σ is defined. For our case, we aim to be
able to incorporate the uncertainty associated with the dispersion of
the groundtruth data. Therefore, we should keep in mind that:

• Variability is only related to groundtruth information: different
observers may give different scores for the same image. However,
the score, as computed by a particular IQM is a single value,
which obviously has no dispersion.

• The predicted data values are considered independent among
them, and therefore the corresponding covariance matrix should
be of diagonal nature.

Therefore, we propose to use a particular type of covariance matrix,
of diagonal nature, where each element in the so-called main diagonal
part of the covariance matrix, should reflect the variability of the cor-
responding groundtruth data (observers’ scores), for which we choose
the variance of the scores for each stimuli. Thus, we set Σ as a diagonal
squared matrix, where the 𝑖th position in the diagonal matrix, Σ𝑖𝑖, is
qual to the variance of the groundtruth for the stimuli 𝑖, 𝜎2𝑖 . This

is a feasible alternative to the use of the sample variance–covariance
matrix which is commonly used [30–33]. It is worth to note that how
good variance is to characterise data dispersion depends on how many
data have been sampled. So, while we can use the same approach for
different datasets, results are more meaningful for datasets with more
observers’ scores, as it is logical.

We must note that the matrix proposed above Σ is positive
semidefinitive, and therefore the corresponding residual variances are
chi-square distributed [31,34]. Therefore, the ratio of variances related
to different predicted data (IQMs) also follows, by definition, the
distribution of an F variable [29]. Therefore, 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 holds this
property of 𝑆𝑇𝑅𝐸𝑆𝑆 and the statistical tests described in Sections 2.2
and 2.3 can also be used for 𝑈𝑆𝑇𝑅𝐸𝑆𝑆.

Finally, using this covariance matrix the expression that defines
𝑈𝑆𝑇𝑅𝐸𝑆𝑆 simplifies to:

𝑈𝑆𝑇𝑅𝐸𝑆𝑆(𝐆,𝐏) =
⎛

⎜

⎜

⎜

⎝

∑𝑁
𝑖=1

( 𝐹𝑝𝑃𝑖−𝐺𝑖
𝜎𝑖

)2

∑𝑁
𝑖=1 𝐺

2
𝑖

⎞

⎟

⎟

⎟

⎠

1
2

(9)

where, following the same mathematical strategy defined in [25], 𝐹𝑝 is
analytically found to minimise the value of the loss function as:

𝐹𝑝 =

∑𝑁
𝑖=1

𝑃𝑖𝐺𝑖
𝜎2𝑖

∑𝑁
𝑖=1

(

𝑃𝑖
𝜎𝑖

)2
. (10)

Thus, we come up with a natural expression to introduce this uncer-
ainty, where the differences between groundtruth and predicted data
re tuned with respect to the corresponding groundtruth variability. In
his regard, it is easy to see that the differences associated with the
ata with 𝜎𝑖 < 1 will be amplified, whereas when 𝜎𝑖 > 1 they will be
ttenuated. In the next section, we will analyse this point deeper and
e will see its consequences in practical cases and in relation to the
pplication of statistical significance tests. Note that if 𝜎𝑖 = 1 for all 𝑖,
hen 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 and 𝑆𝑇𝑅𝐸𝑆𝑆 are equal.
5

4. Experimental results

4.1. Synthetic datasets

In this section we perform synthetic experiments that allow us to
characterise the properties and performance of 𝑆𝑇𝑅𝐸𝑆𝑆,

𝑁𝑆𝑇𝑅𝐸𝑆𝑆 and 𝑈𝑆𝑇𝑅𝐸𝑆𝑆, which we compare to classical Spear-
an, Pearson, and Kendall’s correlation coefficients, and the state

f the art measure PWRC [22]. For this, a dataset of groundtruth
nd predicted data was generated using random values. In this way,
e can conveniently control and change the input data to analyse

he behaviour of the indexes against these changes in the data. In
articular, we have generated 500 pairs of groundtruth and predicted
ata using a uniformly distributed probability function in the [1, 5]
nterval. This is typically the application range of these indexes, where
alues close to 0 are clearly below the perception threshold, and are
herefore not interesting.

Initially, this random generation would also provide random results
or the above cited correlation measures. From these data, we will study
ow the agreement measures behave when progressively improve the
greement between groundtruth and prediction data. In addition, we
ill analyse how the introduction of outliers affects the corresponding

orrelation indexes. Finally, we will study the influence of different
ypes of uncertainties of the groundtruth data, above these indexes.

First, we started by reducing in an increasing way the initial dif-
erence between the ground truth and the predicted data in each pair
y modifying the predicted data towards the groundtruth in a fixed
ercentage of each difference (|𝐺𝑖 − 𝑃𝑖|, 𝑖 ∈ {1,… , 𝑁}) from 0% to
00% in steps of 10% so that, eventually, we obtain perfect data
greement. No uncertainties of the groundtruth are considered in this
tage, thus 𝑊𝑁𝑆𝑇𝑅𝐸𝑆𝑆, 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 and 𝑃𝑊 𝑅𝐶 will not be included
t the moment. We ran this experiment five times with different random
nitial values. Fig. 3 shows the average results and standard deviations
the standard deviation is multiplied by 3 for visualisation purposes)
etween the 5 experiments, provided for 𝑆𝑇𝑅𝐸𝑆𝑆, Pearson, Spearman
nd Kendall coefficients. For clarity of presentation, all measures have
een re-scaled in the interval [0, 100] as shown in the legend of Fig. 3.
t is clear that the curve for 𝑆𝑇𝑅𝐸𝑆𝑆 is almost linear while the
nes for Pearson and Spearman are highly nonlinear. In the case of
endall, linearity is higher than Pearson and Spearman but lower

han 𝑆𝑇𝑅𝐸𝑆𝑆. In particular, it is especially interesting to note that
hen differences between predicted and groundtruth data have been

educed 80% or more, the Pearson and Spearman correlations have
ittle sensitivity in this range, while 𝑆𝑇𝑅𝐸𝑆𝑆 has the same sensitivity

in every reduction step. Having the same sensitivity makes it easier to
make the comparison between the values obtained for different IQMs
over the same dataset, or alternatively the values obtained by the same
IQM over different datasets. The differences between the behaviour
of two IQMs would be quite small inside this area around 80% of
agreement, thus a high sensitivity of the indexes is very interesting.
The behaviour of Kendall in this region is fine, but it is not as linear
as 𝑆𝑇𝑅𝐸𝑆𝑆. This region of good agreement between groundtruth and
predicted data is the usual case in most of the applications of these
indexes. As we are not considering the uncertainties at this time, the
behaviour of 𝑊𝑁𝑆𝑇𝑅𝐸𝑆𝑆 and 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 is the same as 𝑆𝑇𝑅𝐸𝑆𝑆.

Secondly, using the 500 pairs of random values for 𝐺 and the 𝑃
approached at 80%, which represents realistic values in applications,
and also repeating five times the computations, random outliers are
introduced into the generated data. In particular, each outlier corre-
sponds to multiplying by a factor of 10 one pair prediction value, chosen
randomly. That is, we arbitrarily considered an outlier as a change of
one order of magnitude. We proceeded by gradually introducing one
by one more outliers, from one to a number of 10, which corresponds
from 0.2% to 2% of the whole dataset. Fig. 4 shows the relative wors-
ening, with respect to their initial values without outliers, observed

for 𝑆𝑇𝑅𝐸𝑆𝑆, Pearson, Spearman and Kendall coefficients (normalised
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Fig. 3. 𝑆𝑇𝑅𝐸𝑆𝑆 values, and Pearson, Spearman and Kendall correlations when
increasingly reducing the differences between random groundtruth data and random
predictions.

Fig. 4. Relative worsening of 𝑆𝑇𝑅𝐸𝑆𝑆 values, and Pearson, Spearman and Kendall
orrelations when increasing the number of outliers in the data set.

n the range [0, 100] as commented above), when introducing one by
ne the outliers while keeping the previous ones. Specifically, Fig. 4
hows the average and standard deviations (in this case without any
actor) of the relative worsening. We can see that Kendall and Spearman
re insensitive to outliers, while Pearson and 𝑆𝑇𝑅𝐸𝑆𝑆 are not. The

worsening ratio has an up to 25% increase for 10 outliers in the case
of Pearson and 5% for 𝑆𝑇𝑅𝐸𝑆𝑆. On the one hand, the insensitivity
to outliers would be seen as a higher robustness of the index, but
makes it impossible to detect outliers. On the other hand, it is expected
that a worsening of 2% of the whole dataset must have an effect on
the index. Again, with no uncertainties in the groundtruth values, the
𝑊𝑁𝑆𝑇𝑅𝐸𝑆𝑆 and 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 values are the same as 𝑆𝑇𝑅𝐸𝑆𝑆.

Third and last, we analyse the behaviour of 𝑊𝑁𝑆𝑇𝑅𝐸𝑆𝑆 and
𝑆𝑇𝑅𝐸𝑆𝑆 against 𝑆𝑇𝑅𝐸𝑆𝑆 and PWRC and Pearson, Spearman and

Kendall coefficients. As we have seen above, 𝑊𝑁𝑆𝑇𝑅𝐸𝑆𝑆 and
𝑆𝑇𝑅𝐸𝑆𝑆 will inherit many of the properties of 𝑆𝑇𝑅𝐸𝑆𝑆, as they are

based on it. However, when the uncertainties of the groundtruth values
are considered, the results of 𝑊𝑁𝑆𝑇𝑅𝐸𝑆𝑆, 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 and 𝑆𝑇𝑅𝐸𝑆𝑆
are different, because each pair, groundtruth-predicted value, counts
6

i

Fig. 5. 𝑆𝑇𝑅𝐸𝑆𝑆, 𝑊𝑁𝑆𝑇𝑅𝐸𝑆𝑆, 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 and PWRC values, and Pearson, Spear-
man and Kendall correlations with uncertainties 𝜎𝑎 with four types in the groundtruth
data.

differently in the final sum. In usual application of these indexes, un-
certainties of the groundtruth correspond to inter- and intra-observers
variability in the scores, and can be computed as their standard de-
viation. The starting point is again 500 pairs of random values for 𝐺
in the interval [1, 5] and initial 𝑃 values approached at 80% to 𝐺, for
the sake of realistic values in applications. This time the value of the
uncertainties of the groundtruth values are also considered, through 𝜔𝑖
in Eq. (3) and 𝜎𝑖 in Eqs. (9) and (10), where 𝜔 and 𝜎 are vectors of 500
values. Note that, if the uncertainties 𝜎𝑖 are considered as the standard
deviation between groundtruth data, for consistency 𝜔 = 1

𝜎2𝑖
.

To analyse the influence of these uncertainties 𝜎𝑖 has been modelled
n two different ways, being 𝜔 the inverse of the squared in each case:

• 𝜎𝑎: 𝜎𝑖 are random numbers using a uniformly distributed proba-
bility function centred in different values with different widths:
(1) centred in 0.5, width 0.5, i.e. values lower than 1; (2) centred
in 2, width 2, i.e. values higher than 1; (3) centred in 1, width 1,
i.e. values lower and higher than 1; and (4) centred in 4, width
1, i.e. higher values.

• 𝜎𝑏: 𝜎𝑖 is set as a percentage, between 10% and 100%, of the
groundtruth value.

In both cases, 𝜎𝑎 and 𝜎𝑏, a first step is included corresponding to
alues of 𝜎 equal to 1, which represents the case when WNSTRESS and
STRESS coincide in value with STRESS just to show how much they
hange when different uncertainties are introduced.

The two considered 𝜎 include a progressive uncertainty of the data
o study their effects on the indexes. For 𝜎𝑎 the 4 cases corresponds
espectively to uncertainties below 1, above 1, above and below 1 and
bove 1 but greater.

Fig. 5 shows the results for uncertainties 𝜎𝑎 and Fig. 6 shows the
esults for 𝜎𝑏. Once again it is plotted the mean of five different
xperiments, corresponding the error bars to the standard deviation
etween the 5 (multiplied by 3 for visualisation purposes). Obviously,
𝑇𝑅𝐸𝑆𝑆, Pearson, Spearman and Kendall correlations are insensitive

o the uncertainty in the data, and have the same value in all the cases.
ust this is the reason why 𝑊𝑁𝑆𝑇𝑅𝐸𝑆𝑆 and 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 have been
ntroduced. In both figures the plotted values for Pearson (2.85 ± 0.47)
nd Spearman (2.81 ± 0,26) are almost identical and overlap in the
raphs. In the case of Kendall the plotted value is (15.42 ± 0.50) and
n the case of 𝑆𝑇𝑅𝐸𝑆𝑆, its value is 10.05 ± 0.95 in all the cases.



Journal of Visual Communication and Image Representation 90 (2023) 103704P. Latorre-Carmona et al.

o
s
o
a
(

t

1
c
t
o
c
b
b
i

i
w
u
t
a
b
𝜎
m
t
a
1
v

t
t
o

4

c
P
a
f
a
F
w

4

r
d
P
i
s
w
d
a
v
h

(
S
𝑆
C
s
e
e
F
q
a
s
f
r
t

Fig. 6. 𝑆𝑇𝑅𝐸𝑆𝑆, 𝑊𝑁𝑆𝑇𝑅𝐸𝑆𝑆, 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 and PWRC values, and Pearson, Spear-
man and Kendall correlations with uncertainties 𝜎𝑏 with 10 different degrees in the
groundtruth data.

Table 1
Results of the statistical significant test for 𝑆𝑇𝑅𝐸𝑆𝑆 under the null
hypothesis (𝐻0) that the 𝑆𝑇𝑅𝐸𝑆𝑆 value for IQM in row 𝑖 (𝑆𝑇𝑅𝐸𝑆𝑆(𝑖))
is insignificantly different than the 𝑆𝑇𝑅𝐸𝑆𝑆 value for IQM in column
𝑗 (𝑆𝑇𝑅𝐸𝑆𝑆(𝑗)), for the CID:IQ dataset.

STRESS iC
AM

FC
SS

SS
IM

M
SS

SI
M

CM
SS

IM

FS
IM

c

M
SE

RM
SE

PS
N

R

N
CD

iCAM
FCSS
SSIM
MSSSIM
CMSSIM
FSIMc
MSE
RMSE
PSNR
NCD

Table 2
Results of the statistical significant test for 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 under the
null hypothesis (𝐻0) that the 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 value for IQM in row
𝑖 (𝑆𝑇𝑅𝐸𝑆𝑆(𝑖)) is insignificantly different than the 𝑈𝑆𝑇𝑅𝐸𝑆𝑆
value for IQM in column 𝑗 (𝑈𝑆𝑇𝑅𝐸𝑆𝑆(𝑗)), for the CID:IQ
dataset.

USTRESS iC
AM

FC
SS

SS
IM

M
SS

SI
M

CM
SS

IM

FS
IM

c

M
SE

RM
SE

PS
N

R

N
CD

iCAM
FCSS
SSIM
MSSSIM
CMSSIM
FSIMc
MSE
RMSE
PSNR
NCD

Initially, with 𝜎 = 1, 𝑊𝑁𝑆𝑇𝑅𝐸𝑆𝑆 and 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 give the value
f 𝑆𝑇𝑅𝐸𝑆𝑆. Note that PWRC cannot be computed for this case. It
hould be noted that 𝑊𝑁𝑆𝑇𝑅𝐸𝑆𝑆 is not affected by the uncertainty
f the data for each case of 𝜔. In the case of 𝜔𝑎 (Fig. 5) the values
re almost equal than 𝑆𝑇𝑅𝐸𝑆𝑆, being slightly higher in the case of 𝜔𝑏

Fig. 6), but also insensitive to changes.
Thus, only 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 and PWRC are sensitive to uncertainties in

he groundtruth data. In the case where all uncertainties are below
7

d

(Fig. 5, type 1) the value of 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 clearly increases and,
onversely, decreases in the cases of all uncertainties above 1 (Fig. 5,
ypes 2 and 4). With the uncertainties above and below 1 of type 3 we
btain intermediate values. In the case of the PWRC index, it can be
omputed neither with the uncertainties type 0 or 4. All uncertainties
elow 1 of above 1 give the same value for PWRC. Only uncertainties
elow and above 1 make the index decrease. In conclusion, 𝑈𝑆𝑇𝑅𝐸𝑆𝑆
s much more sensitive to these different types of uncertainties.

By modelling the uncertainties in the groundtruth data by 𝜎𝑏, a sim-
lar behaviour can be seen in Fig. 6. In the comparison of 𝑈𝑆𝑇𝑅𝐸𝑆𝑆
ith 𝑆𝑇𝑅𝐸𝑆𝑆 (the value of 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 with all 𝜎 = 1), small
ncertainties (Fig. 6, 10% and 20%) worsen the final agreement be-
ween groundtruth and predicted data, while large uncertainties (Fig. 6,
bove 50%) make that 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 better agreement is determined. The
ehaviour of 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 is quite linear with the progressive change in
𝑏. In this case, 𝑊𝑁𝑆𝑇𝑅𝐸𝑆𝑆 has an increase from 10 to 17, which
eans that it is sensitive to the introduction of weights but not to

heir change. For these type of uncertainties PWRC is sensitive, with
behaviour similar to 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 for large uncertainties (i.e. about

0%), but different for small uncertainties. Anyway the changes in the
alue of PWRC are smaller than for 𝑆𝑇𝑅𝐸𝑆𝑆.

Summarising, 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 is sensitive to any type of uncertainty in
he groundtruth data, independently of the type and degree. In addi-
ion, it is always possible to compute 𝑈𝑆𝑇𝑅𝐸𝑆𝑆, while the assessment
f PWRC has some restrictions.

.2. Image quality scores dataset

In this section, the performance of Spearman, Pearson, and Kendall’s
orrelation coefficients, and 𝑆𝑇𝑅𝐸𝑆𝑆, 𝑊𝑆𝑇𝑅𝐸𝑆𝑆, 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 and
WRC [22] measures are compared. All of them are used to analyse the
greement between values predicted by IQMs and groundtruth scores
or two real experimental datasets: the Colourlab Image Database: Im-
ge Quality (CID:IQ) [35] and the KONIQ-10K (KONIQ) [36] database.
or CID:IQ, we will use full-reference IQMs, while no-reference IQMs
ill be used for KONIQ.

.2.1. CID:IQ
The CID:IQ dataset contains 23 pictorial images selected as the

eference images with 6 different distortions, over 5 levels. The applied
istortions are as follows: JPEG compression, JPEG2000 compression,
oisson noise, blurring, and two gamut mapping algorithms. These
mages were evaluated by a group of 17 observers, whose image quality
cores were used as groundtruth data. It is required to have a dataset
here the variances of subjective scores are given, which results in
atasets such as LIVE [37], TID2008 [38], TID2013 [39] cannot be used
s they do not report the variance. To predict the image quality data
alues, the 10 state-of-the-art full-reference IQMs listed in Section 1
ave been considered.

In Fig. 7, we compare the agreement between the predicted data
IQMs) and the average groundtruth data (observers scores), given by
pearman, Pearson, and Kendall’s correlation coefficients, and
𝑇𝑅𝐸𝑆𝑆, 𝑊𝑆𝑇𝑅𝐸𝑆𝑆, 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 and PWRC [22] measures for the
ID:IQ dataset. Standard deviation of the groundtruth data (i.e., ob-
ervers’ scores) have been used in 𝑊𝑆𝑇𝑅𝐸𝑆𝑆 and 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 as
xplained in Section 4.1. We can see that there are some ranking differ-
nces between the 5 indexes but all agree on identifying SSIM, FCSS,
SIMc, and PSNR as those showing the best performance. However, the
uestion that arises is whether the differences among these measures
re significant or not. We will try to shed some light on this by using the
tatistical significance tests described above, which are available only
or 𝑆𝑇𝑅𝐸𝑆𝑆 and 𝑈𝑆𝑇𝑅𝐸𝑆𝑆. As we can see in Fig. 7, although the
ankings of IQMs do agree for 𝑆𝑇𝑅𝐸𝑆𝑆, 𝑊𝑆𝑇𝑅𝐸𝑆𝑆 and 𝑈𝑆𝑇𝑅𝐸𝑆𝑆,
heir absolute values differ, and the statistical significance tests show

ifferent results for 𝑆𝑇𝑅𝐸𝑆𝑆 and 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 as we will see below.
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b

Fig. 7. Agreement measures computed by each one of the indexes in the comparison list for the CID:IQ dataset. Higher values for Kendall, PWRC, Pearson and Spearman indicate
etter performance, while for 𝑆𝑇𝑅𝐸𝑆𝑆, 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 and 𝑊𝑆𝑇𝑅𝐸𝑆𝑆, lower values indicate a better performance.
Table 3
𝑝−value for the null hypothesis (𝐻0) that the 𝑆𝑇𝑅𝐸𝑆𝑆 value for IQM in row 𝑖 (𝑆𝑇𝑅𝐸𝑆𝑆(𝑖)) is lower than
the 𝑆𝑇𝑅𝐸𝑆𝑆 value for IQM in column 𝑗 (𝑆𝑇𝑅𝐸𝑆𝑆(𝑗)), for the CID:IQ dataset.

STRESS iCAM FCSS SSIM MSSSIM CMSSIM FSIMc MSE RMSE PSNR NCD

iCAM 0.500 0.000 0.000 0.000 0.000 0.000 0.631 0.000 0.000 0.004

FCSS 1.000 0.500 0.027 0.903 0.998 0.799 1.000 1.000 0.091 1.000

SSIM 1.000 0.973 0.500 0.999 1.000 0.997 1.000 1.000 0.724 1.000

MSSSIM 1.000 0.097 0.001 0.500 0.952 0.322 1.000 1.000 0.004 1.000

CMSSIM 1.000 0.002 0.000 0.048 0.500 0.017 1.000 1.000 0.000 1.000

FSIMc 1.000 0.201 0.003 0.678 0.983 0.500 1.000 1.000 0.015 1.000

MSE 0.369 0.000 0.000 0.000 0.000 0.000 0.500 0.000 0.000 0.002

RMSE 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.500 0.000 0.873

PSNR 1.000 0.909 0.276 0.996 1.000 0.985 1.000 1.000 0.500 1.000

NCD 0.996 0.000 0.000 0.000 0.000 0.000 0.998 0.127 0.000 0.500
Table 4
𝑝−value under the null hypothesis (𝐻0) that the 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 value for IQM in row 𝑖 (𝑈𝑆𝑇𝑅𝐸𝑆𝑆(𝑖)) is lower
than the 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 value for IQM in row 𝑗 (𝑈𝑆𝑇𝑅𝐸𝑆𝑆(𝑗)), for the CID:IQ dataset.

USTRESS iCAM FCSS SSIM MSSSIM CMSSIM FSIMc MSE RMSE PSNR NCD

iCAM 0.500 0.000 0.000 0.000 0.000 0.000 0.595 0.000 0.000 0.022

FCSS 1.000 0.500 0.121 0.767 0.977 0.652 1.000 1.000 0.163 1.000

SSIM 1.000 0.879 0.500 0.971 0.999 0.940 1.000 1.000 0.574 1.000

MSSSIM 1.000 0.233 0.029 0.500 0.897 0.368 1.000 1.000 0.044 1.000

CMSSIM 1.000 0.023 0.001 0.103 0.500 0.055 1.000 1.000 0.001 1.000

FSIMc 1.000 0.348 0.060 0.632 0.945 0.500 1.000 1.000 0.085 1.000

MSE 0.405 0.000 0.000 0.000 0.000 0.000 0.500 0.000 0.000 0.012

RMSE 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.500 0.000 0.910

PSNR 1.000 0.837 0.426 0.956 0.999 0.915 1.000 1.000 0.500 1.000

NCD 0.978 0.000 0.000 0.000 0.000 0.000 0.988 0.090 0.000 0.500
8
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Subsequently, we run statistical significance tests for 𝑆𝑇𝑅𝐸𝑆𝑆 and
𝑆𝑇𝑅𝐸𝑆𝑆, as explained in Section 2.2. The results for the first tests

re shown in the Tables 1 and 2. In this case the null hypothesis
𝐻0) for table position (𝑖, 𝑗) is that the 𝑆𝑇𝑅𝐸𝑆𝑆 (or the 𝑈𝑆𝑇𝑅𝐸𝑆𝑆)
alue for IQM 𝑖 is insignificantly different than the 𝑆𝑇𝑅𝐸𝑆𝑆 value for
QM 𝑗. If this hypothesis can be rejected at a 95% confidence level,
hen the colour assigned in the table position (𝑖, 𝑗) is green, and red

otherwise. In particular, for 𝑆𝑇𝑅𝐸𝑆𝑆, IQMs SSIM, FCSS, and PSNR
o not show statistically significant differences at a 95% confidence
evel. However, the difference between SSIM and FSIMc is indeed
tatistically significant. For 𝑈𝑆𝑇𝑅𝐸𝑆𝑆, not only are the differences
etween SSIM, FCSS, and PSNR insignificant but also the differences
etween those and FSIMc and MSSSIM. In general, we can see that
here are more insignificant differences found for 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 than
or 𝑆𝑇𝑅𝐸𝑆𝑆. This happens because in this dataset, overall, standard
eviations of observers scores are higher than 1. This, reduces the
alues in numerator of Eq. (9) and consequently the quotient computed
n the F-test gets closer to 1 and more likely to be within the given
onfidence limits.

However, these results only reflect those cases when the computed
atios for the test move in or out of the critical bounds established for
he given confidence interval. We think it is also interesting to look
t the variations in the ratios in general. Therefore, we also run the
lternative significance test described in Section 2.3. Tables 3 and 4
how in position (𝑖, 𝑗) the 𝑝−value of the contrast hypothesis when
omparing the 𝑆𝑇𝑅𝐸𝑆𝑆 and the 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 values for a pair of

IQMs, (𝑖, 𝑗), for the CID:IQ dataset. This 𝑝−value quantifies the risk to
be mistaken that we should assume if we reject the null hypothesis.
In our case, the null hypothesis is that 𝑆𝑇𝑅𝐸𝑆𝑆(𝑖) < 𝑆𝑇𝑅𝐸𝑆𝑆(𝑗)
(or 𝑈𝑆𝑇𝑅𝐸𝑆𝑆(𝑖) < 𝑈𝑆𝑇𝑅𝐸𝑆𝑆(𝑗)). Therefore, a very small 𝑝−value
implies that we should reject the null hypothesis, because the risk to be
mistaken is as low as the corresponding 𝑝−value. In our particular case,
since a lower 𝑆𝑇𝑅𝐸𝑆𝑆 (or 𝑈𝑆𝑇𝑅𝐸𝑆𝑆) value means better quality,
rejecting the hypothesis 𝑆𝑇𝑅𝐸𝑆𝑆(𝑖) < 𝑆𝑇𝑅𝐸𝑆𝑆(𝑗) implies rejecting
the hypothesis that IQM 𝑖 is better than IQM 𝑗. That is, it means exactly
the opposite: IQM 𝑗 is significantly better than IQM 𝑖. However, a large
𝑝−value implies the opposite: the null hypothesis should not be rejected
and then IQM 𝑖 is significantly better than IQM 𝑗.

Looking at this table in more detail, we can see that the 𝑝−values
found for 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 are less extreme than those for 𝑆𝑇𝑅𝐸𝑆𝑆, that
is, they are closer to 0.5. Notice that 𝑝−values close to 0 imply strong
evidence that the null hypothesis should be rejected. On the other
hand, 𝑝−values close to 1 imply the opposite, that is, rejecting the null
hypothesis implies a high error probability. Then, in our case, when
the 𝑝−values are more extreme it is easier to conclude if a given IQM
is significantly better than another. However, when the 𝑝−values are
closer to 0.5 in general, there is less evidence indicating that one metric
is significantly better than another, as 0.5 is the value that does not
represent any evidence in favour or against the null hypothesis. That is,
according to 𝑈𝑆𝑇𝑅𝐸𝑆𝑆, the differences are in general less significant,
as a consequence of including uncertainty in the groundtruth data.
This happens because in this dataset, overall, standard deviations of
observers scores are higher than 1, as said before. As an example, in a
omparison of the two best performing IQMs, SSIM and PSNR, we can
ee that they do not have significant performance differences in the
irst statistical test. In the second, we can see that the probability of
rror we incur when rejecting the hypothesis that SSIM is significantly
etter than PSNR is 0.724 for 𝑆𝑇𝑅𝐸𝑆𝑆 and 0.574 for 𝑈𝑆𝑇𝑅𝐸𝑆𝑆.

So, according to 𝑆𝑇𝑅𝐸𝑆𝑆 there is slight evidence that SSIM is better
than PSNR, but according to 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 this evidence is practically
negligible as its 𝑝−value is very close to 0.5.

Last, it is important to note that whatever influence there is in
including data uncertainty in the statistical significance tests, this is
independent on how well IQMs agree with average observers’ scores
as the uncertainty of data is commonly independent from its average
9

(except when using some specific probability distributions).
Fig. 8. Comparison of squared sample errors in 𝑆𝑇𝑅𝐸𝑆𝑆 and 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 in relation
to their corresponding scores standard deviations. On the top we show standard
deviation of observers scores. The middle and bottom plots are the squared error in
numerator of Eqs. (1) and (9), respectively.

We can analyse a bit deeper the behaviour discussed. We can
see that the average standard deviations of the groundtruth data in
the dataset is about 1.40 and most of them are higher than 1. This
means that, according to Eq. (9), in most cases the differences between
predicted and groundtruth data are attenuated, which makes the IQMs
performace being closer together, and so there are less significant
differences among them. This effect is shown in Fig. 8 where we plot
for each image in the dataset the standard deviation of the observers’
scores and the individual errors found in 𝑆𝑇𝑅𝐸𝑆𝑆 and 𝑈𝑆𝑇𝑅𝐸𝑆𝑆
that are summarised in Eqs. (1) and (9), respectively. It can be seen
that in the case of 𝑈𝑆𝑇𝑅𝐸𝑆𝑆, most of the errors are attenuated with
respect to 𝑆𝑇𝑅𝐸𝑆𝑆. For instance, those for images 95, 321, 363, 365,
454 which are associated to large standard deviations. This means
that 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 models that errors committed related to cases where
observers’ scores differ greatly are less important. It also happens that
for some images the standard deviation of the scores is very low;
117, 120, 520 and 583 for instance. In these cases, the errors are
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Fig. 9. Agreement measures computed by each of the indexes in the comparison list for the KONIQ dataset. Higher values for Kendall, PWRC, Pearson and Spearman indicate
better performance, while for 𝑆𝑇𝑅𝐸𝑆𝑆, 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 and 𝑊𝑆𝑇𝑅𝐸𝑆𝑆 lower values indicate better performance.
amplified in 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 which means that errors committed by IQMs
for images where there is good agreement in observers’ opinions are
more important. We strongly believe that this reasoning makes total
sense in general when measuring the agreement between groundtruth
and predicted data in the psychophysics field, which is one of the main
advantages of 𝑈𝑆𝑇𝑅𝐸𝑆𝑆.

4.2.2. KONIQ
The KONIQ dataset consists of 10,073 quality scored images from

an online experiment. It has a total of 1.2 million ratings from 1459 ob-
servers. KONIQ contains the following distortions: noise, JPEG artifacts,
aliasing, lens and motion blur, over-sharpening, wrong exposure, colour
fringing, and over-saturation. The experiment was carried out using the
standard 5-point absolute category rating scale. We use the following
no-reference IQMs for the analysis as mentioned in the introduction:
BRISQUE [10], NIQE [11], PIQE [12], blurMetric [13], CEIQ [14],
CPBD [15], FRIQUEE [16], and JNBM [17].

The results for all the agreement measures considered can be found
in Fig. 9. From this figure we can see that Kendall, Pearson, Spearman
and PWRC coincide on pointing NIQE and CEIQ as the best two per-
forming IQMs followed by FRIQUEE, PIQE and blurMetric with slight
different orderings. However, STRESS, USTRESS and WSTRESS find
CEIQ and CPBD the two best ones, followed by blurMetric and JNBM in
the case of STRESS and JNBM and blurMetric in the case of USTRESS
and WSTRESS. The fact that JNBM gets better than blurMetric when
the score uncertainty is taken into account means that JNBM makes
less error than blurMetric in images where the observers agree more
(low standard deviation of scores) and/or that blurMetric makes less
error than JNBM in images where the observers do not agree that much
(high standard deviation). Both situations would be in favour of JNBM
when the standard deviation is considered.

Statistical significance tests for STRESS and USTRESS can be found
in Tables 5 and 6. In this case, there is no difference between the tests
at 95% of confidence level but we do see clear changes in the p-values
computed in Tables 7 and 8. For instance, in the comparison between
BRISQUE and FRIQUEE which is opposite for STRESS and UTRESS, and
also when comparing JNBM and blurMetric: 𝑃 -value in position (JNBM,
blurMetric) is 0.398 for STRESS and 0.932 for USTRESS. So, for STRESS
there is a slight evidence of blurMetric being better than JNBM whereas
for USTRESS there is a quite strong evidence of the opposite.

5. Conclusions

We have proposed not only the 𝑆𝑇𝑅𝐸𝑆𝑆 measure but an exten-
sion of it, 𝑈𝑆𝑇𝑅𝐸𝑆𝑆, to assess the performance of image quality
metrics. 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 incorporates information about the variability of
10
Table 5
Results of statistical significant test for 𝑆𝑇𝑅𝐸𝑆𝑆 under the null hy-
pothesis (𝐻0) that the 𝑆𝑇𝑅𝐸𝑆𝑆 value for IQM in row 𝑖 (𝑆𝑇𝑅𝐸𝑆𝑆(𝑖))
is insignificantly different than the 𝑆𝑇𝑅𝐸𝑆𝑆 value for IQM in column
𝑗 (𝑆𝑇𝑅𝐸𝑆𝑆(𝑗)), for the KONIQ dataset.

STRESS BR
IS

Q
U

E

N
IQ

E

PI
Q

E

bl
ur

M
et

ric

CE
IQ

CP
BD

FR
IQ

U
EE

JN
BM

BRISQUE

NIQE

PIQE

blurMetric

CEIQ

CPBD

FRIQUEE

JNBM

Table 6
Results of statistical significant test for 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 under the null hy-
pothesis (𝐻0) that the 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 value for IQM in row 𝑖 (𝑆𝑇𝑅𝐸𝑆𝑆(𝑖))
is insignificantly different than the 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 value for IQM in column
𝑗 (𝑈𝑆𝑇𝑅𝐸𝑆𝑆(𝑗)), for the KONIQ dataset.
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observer’s scores. This information is not incorporated in commonly
used performance measures, such as Pearson and Spearman correlation
coefficients.

Evaluations on synthetic and real datasets have shown that the
proposed 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 measure has advantageous properties. On the one
hand, it is more linear, sensitive, robust and stable than other measures.
On the other hand, it allows to apply statistical significance tests to
the results found being not only able to rank a series of image quality

metrics but to characterise up to what extent the ranking differences are
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Table 7
𝑝−value for the null hypothesis (𝐻0) that the 𝑆𝑇𝑅𝐸𝑆𝑆 value for IQM in row 𝑖 (𝑆𝑇𝑅𝐸𝑆𝑆(𝑖))
is lower than the 𝑆𝑇𝑅𝐸𝑆𝑆 value for IQM in column 𝑗 (𝑆𝑇𝑅𝐸𝑆𝑆(𝑗)), for the KONIQ dataset.

STRESS BRISQUE NIQE PIQE blurMetric CEIQ CPBD FRIQUEE JNBM

BRISQUE 0.500 0.000 1.000 0.000 0.000 0.000 0.928 0.000

NIQE 1.000 0.500 1.000 0.000 0.000 0.000 1.000 0.000

PIQE 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000

blurMetric 1.000 1.000 1.000 0.500 0.000 0.000 1.000 0.602

CEIQ 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

CPBD 1.000 1.000 1.000 1.000 0.000 0.500 1.000 1.000

FRIQUEE 0.072 0.000 1.000 0.000 0.000 0.000 0.500 0.000

JNBM 1.000 1.000 1.000 0.398 0.000 0.000 1.000 0.500
Table 8
𝑝−value under the null hypothesis (𝐻0) that the 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 value for IQM in row 𝑖
(𝑈𝑆𝑇𝑅𝐸𝑆𝑆(𝑖)) is lower than the 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 value for IQM in row 𝑗 (𝑈𝑆𝑇𝑅𝐸𝑆𝑆(𝑗)), for
the KONIQ dataset.

USTRESS BRISQUE NIQE PIQE blurMetric CEIQ CPBD FRIQUEE JNBM

BRISQUE 0.500 0.000 1.000 0.000 0.000 0.000 0.036 0.000

NIQE 1.000 0.500 1.000 0.000 0.000 0.000 1.000 0.000

PIQE 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000

blurMetric 1.000 1.000 1.000 0.500 0.000 0.000 1.000 0.068

CEIQ 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

CPBD 1.000 1.000 1.000 1.000 0.000 0.500 1.000 1.000

FRIQUEE 0.964 0.000 1.000 0.000 0.000 0.000 0.500 0.000

JNBM 1.000 1.000 1.000 0.932 0.000 0.000 1.000 0.500
really significant. 𝑈𝑆𝑇𝑅𝐸𝑆𝑆 therefore, results in a beneficial measure
for the assessment of the performance of image quality metrics. The
proposed measure is seen as a complement to existing performance
measures.
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