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Recent multivariate analyses of brain data have boosted our understanding of the organizational principles that shape neural coding.
However, most of this progress has focused on perceptual visual regions (Connolly et al., 2012), whereas far less is known about the
organization of more abstract, action-oriented representations. In this study, we focused on humans’ remarkable ability to turn novel
instructions into actions. While previous research shows that instruction encoding is tightly linked to proactive activations in frontopa-
rietal brain regions, little is known about the structure that orchestrates such anticipatory representation. We collected fMRI data while
participants (both males and females) followed novel complex verbal rules that varied across control-related variables (integrating
within/across stimuli dimensions, response complexity, target category) and reward expectations. Using representational similarity
analysis (Kriegeskorte et al., 2008), we explored where in the brain these variables explained the organization of novel task encoding, and
whether motivation modulated these representational spaces. Instruction representations in the lateral PFC were structured by the three
control-related variables, whereas intraparietal sulcus encoded response complexity and the fusiform gyrus and precuneus organized its
activity according to the relevant stimulus category. Reward exerted a general effect, increasing the representational similarity among
different instructions, which was robustly correlated with behavioral improvements. Overall, our results highlight the flexibility of
proactive task encoding, governed by distinct representational organizations in specific brain regions. They also stress the variability of
motivation-control interactions, which appear to be highly dependent on task attributes, such as complexity or novelty.
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Introduction
Humans quickly learn from instructions which elements are rel-
evant in a context and their respective appropriate actions. These

parameters are encoded proactively in our brain in an action-
based code (Brass et al., 2017; Cole et al., 2017), preparing our
perceptual and motor systems in advance (Cole et al., 2013) and
facilitating success in novel environments. Instructed behavior is
thus critical to avoid less effective and slow trial-and-error learn-
ing, and also enables the social transmission of task procedures.
There is scarce knowledge, however, about how the informa-
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Significance Statement

In comparison with other primates, humans display a remarkable success in novel task contexts thanks to our ability to transform
instructions into effective actions. This skill is associated with proactive task-set reconfigurations in frontoparietal cortices. It
remains yet unknown, however, how the brain encodes in anticipation the flexible, rich repertoire of novel tasks that we can
achieve. Here we explored cognitive control and motivation-related variables that might orchestrate the representational space for
novel instructions. Our results showed that different dimensions become relevant for task prospective encoding, depending on the
brain region, and that the lateral PFC simultaneously organized task representations following different control-related variables.
Motivation exerted a general modulation upon this process, diminishing rather than increasing distances among instruction
representations.
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tional and motivational content of novel instructions organizes
neural activity in a proactive manner.

Behavioral results support the role of proactive control
(Braver, 2012) on instructed action (Luria, 1966; Duncan et al.,
2008; e.g., Liefooghe et al., 2012; see also Cole et al., 2018). Re-
cently, neuroimaging studies have revealed a link between novel
instruction preparation and the frontoparietal (FP) network
(e.g., Cole et al., 2010; Hartstra et al., 2011; Palenciano et al.,
2019). The middle (MFG) and inferior (IFG) frontal gyri, and the
inferior frontal sulcus (IFS), together with the intraparietal sulcus
(IPS), encode novel instruction content both in multivoxel activ-
ity patterns (González-García et al., 2017; Muhle-Karbe et al.,
2017; Bourguignon et al., 2018) and distributed functional con-
nectivity (Cole et al., 2013). Crucially, the fidelity of information
encoding is linked to the intention to implement the instruction
(vs mere memorization demands; Muhle-Karbe et al., 2017;
Bourguignon et al., 2018), and it is also closely related to the
efficiency of behavior (Cole et al., 2016; González-García et al.,
2017). Nonetheless, while current studies have mainly focused on
decoding the upcoming target category (González-García et al.,
2017; Muhle-Karbe et al., 2017), the wider organizational struc-
ture that shapes anticipatory task representation remains un-
known. To study the relevant dimensions organizing novel
instruction encoding, we selected three variables known to be
relevant for proactive control.

Task preparation consists of a two-step process (Rubinstein et
al., 2001), composed first by an abstract goal reconfiguration and
second by the activation of specific stimulus–response contin-
gencies (De Baene and Brass, 2014; Muhle-Karbe et al., 2014).
Our study exploited these two phases. First, in relation to the
high-level task goal setting, we manipulated the integration of
information within or across feature dimensions of stimuli (Rig-
otti et al., 2013), a variable traditionally linked to task complexity
and top-down attention (e.g., Treisman and Gelade, 1980).
Second, the stimulus–response reconfiguration process was ma-
nipulated by the response set complexity, requiring single or se-
quential motor responses. Moreover, to explore stimuli-specific
preparatory mechanisms previously documented (Sakai and
Passingham, 2003, 2006; e.g., González-García et al., 2016), we
also manipulated the relevant target category.

Finally, cognitive control and motivation maintain an intri-
cate relationship during task preparation (Pessoa, 2009, 2017).
Reward expectation boosts cue-locked activity across the FP net-
work (Parro et al., 2018), and it has been recently linked to stron-
ger anticipatory rule encoding (Etzel et al., 2016). Nonetheless,
contradictory findings have also been observed (Wisniewski et
al., 2019), and a comprehensive characterization of this interac-
tion in complex, novel scenarios is still pending. Consequently,
we included economic incentives in our paradigm and assessed
the nature of their effect on instruction preparation. By varying
these four variables (dimension integration, response-set com-
plexity, target category, and reward), we built a set of novel, ver-
bal instructions that were followed by healthy participants while
fMRI data were collected. Using representation similarity analy-
sis (RSA; Kriegeskorte et al., 2008), we assessed the extent to
which each of our control-related variables organized instruction en-
coding, as well as the effect of motivation upon this organization.

Materials and Methods
Participants
Thirty-six students from the University of Granada completed the exper-
imental paradigm inside an MRI scanner (16 women, mean age � 22.97
years, SD � 3.32 years). All of them were right-handed, with normal or

corrected-to-normal vision, and native Spanish speakers. In exchange for
their participation, they received between 20 and 40€, depending on their
performance on the rewarded trials (see below). They all signed a consent
form approved by the Ethics Committee of the University of Granada.
Four participants were later excluded due to excess of head movement
(�3 mm) or poor performance (�70% of correct responses).

Apparatus, stimuli, and procedure
For the experiment, we built a set of 192 different novel verbal instruc-
tions. Each instruction referred to two independent conditions about
faces or food items that could be met or not by the upcoming grids, and
their associated responses (e.g.: “If there are two women and an additional
sad person, press A; if not, press L”). The conditions in the instructions
referred to several dimensions of the stimuli: gender (woman, man), race
(black, white), emotion (happy, sad) and size (big, small ) of faces, or kind
(fruit, vegetable), color (green, yellow), form (round, elongated), and size
(big, small) of food items.

Instructions were created by manipulating in an orthogonal manner:
(1) the integration of stimuli dimensions (within vs across dimensions),
(2) the response set required (single vs sequential), and (3) the category
of the relevant stimuli that they referred to (faces vs food). For example,
the instruction “If there is a woman and there is a man, press A; if not, press
L” involves within-dimension integration (i.e., gender), requires a single
response (a left “A” or a right “L” index button press) and is face-related.
On the other hand, “If there is a fruit and a small food item, press AL; if not,
press LA” requires across-dimension integration (the type of food and its
size), demands a sequence of two button presses to respond, and is food-
related. Instructions referred to 2, 3, or 4 stimuli of the target grid. Equiv-
alent trials were created for the different levels of these three variables.

In addition, we included motivation as another variable: half of the
instructions were associated with the possibility of receiving an economic
reward if responses were fast and accurate, whereas the other half were
nonrewarded. To do so, we split our 192 instructions into two equivalent
sets in terms of the manipulations of the other independent variables,
and also regarding the specific attributes specified (e.g., the same number
of instructions referring to happy faces in both groups). We counterbal-
anced across participants the assignment of these two halves to the re-
warded and nonrewarded conditions. The reward status of each trial was
indicated by a cue consisting of either a plus (�) or a cross (x) sign, in
either silhouette or filled in black. We counterbalanced across partici-
pants whether they should attend to the shape (plus vs cross) or the
appearance (contour vs filled sign) to obtain the reward information.
This way, each participant had two different cues indicating each moti-
vation condition, preventing a one-to-one mapping between reward ex-
pectation and visual cue identity, which otherwise could generate
spurious confounds in further analysis.

For each instruction, we created two grids of stimuli: one that fulfilled
the conditions instructed and another one that did not. We counterbal-
anced them so that individual participants saw only one of the two
instruction-grid pairings. All grids were unique combinations of images
of 4 faces and 4 food items, which were pseudo-randomly selected from
a pool of 32 pictures, composed of 16 faces pictures (8 different identities,
half of them women and half men, half with happy expressions and half
with sad ones, half white and half black, appearing each of them in large
and small sizes), extracted from the NimStim database (Tottenham et al.,
2009), and 16 food pictures (8 different items, half of them vegetables and
half fruits, half in green color and half in yellow, half with a round shape
and half elongated, appearing each of them in large and small sizes)
obtained from available sources on the internet (all of them with Creative
Commons license). Upon target presentation, the responses required
were always one or two sequential button presses, performed with the left
(“A”) and/or right (“L”) index. The sequence of trial events is depicted in
Figure 1. Each trial started with a jittered fixation point (0.5°), with a
duration that ranged from 4500 to 7500 ms, in steps of 500 ms (mean �
5750 ms). Then, a reward cue was presented (1.5°; 2000 ms), followed by
the instruction (25.75°; 2500 ms). Next, a second jittered fixation ap-
peared (with the same characteristics as the previous one), and the target
grid (21°) was presented for 2500 ms, where participants were required to
respond. Afterward, a feedback symbol was presented (1.65°; 500 ms),
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indicating whether the participant had earned
money in that trial (with a Euro symbol),
whether the response was correct but no
money was achieved (tick symbol), or whether
the response was incorrect (cross symbol).

Before being scanned, participants com-
pleted a behavioral practice session. They re-
ceived indications about how to perform the
task, as well as details on how rewards would be
administered, emphasizing that both accurate
and fast responses were needed to accumulate
money for a maximum of 40€. Specifically,
they were informed that they would receive 20€

for their time and that the rest of the compen-
sation would depend on their performance on
rewarded trials: the initial extra increases
would be easier to earn while approaching the
upper limit of the payment would require a
higher accuracy rate. Then, they performed a
simple discrimination task with the different
reward cues; and after that, they practiced the
instruction-following task, completing one
block of 32 trials. Practice instructions were
drawn from a separate set (which was equiva-
lent in all the parameters specified above) and
were not used in the MRI experiment to main-
tain trial novelty. Participants repeated the
practice block as many times as needed to ob-
tain an accuracy rate �75% (on average, participants performed the
practice block 1.75 times). Once this phase was completed, the experi-
mental paradigm was performed inside the scanner. This was composed
by the full 192 instructions set, presented in six different runs (32 trials
each). All runs included an equal number of face and food-related, single
and sequential responses, within and across-dimension integration and
rewarded and nonrewarded instructions. Overall, participants spent �90
min inside the MRI scanner.

Experimental design and behavioral statistical analysis
Our task was built following a 4-way factorial design, in which the fol-
lowing within-subjects independent variables were orthogonally manip-
ulated: (1) dimension integration, (2) response set complexity, (3) target
category, and (4) reward.

We conducted an a priori power analysis to compute sample size. Using
the PANGEA software (https://jakewestfall.shinyapps.io/pangea/), we cal-
culated the minimum number of participants to detect a behavioral two-
way interaction term (i.e., between reward and any other proactive
control-related variable), assuming a medium effect size (Cohen’s d � 0.3).

We used SPSS Statistics version 20 software (IBM) to analyze accuracy
and reaction time (RT) data. We conducted two repeated-measures
ANOVAs, specifying four factors corresponding to our independent
variables. To explore significant interaction terms, we performed further
post hoc tests, using a Bonferroni correction for multiple comparisons.

fMRI preprocessing
MRI data were acquired using a 3 tesla Siemens Trio scanner located at
the Mind, Brain, and Behavior Research Center (University of Granada,
Spain). Functional images were collected using a T2* EPI sequence
(TR � 2210 ms, TE � 23 ms, flip angle � 70°). Each volume consisted of
40 slices, obtained in descending order, with 2.3 mm of thickness (gap �
20%, voxel size � 3 mm 3). A total of 1716 volumes were obtained, in 6
runs of 286 volumes each. We also acquired a high-resolution anatomical
T1-weighted image (192 slices of 1 mm, TR � 2500 ms, TE � 3.69 ms,
flip angle � 7°, voxel size � 1 mm 3).

The functional images were preprocessed and analyzed with SPM12
(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/), with the exception
of single-trial parameter estimation (see RSA), which was conducted on
AFNI. After discarding the first four volumes of each run to allow for stabi-
lization of the signal, the images were spatially realigned and slice-time cor-
rected. Then, the participants’ structural T1 image, which had been

coregistered with the EPI volumes, was segmented to obtain the transforma-
tion matrices needed to normalize the functional images to the MNI space.
Finally, they were smoothed with an 8 mm FWHM Gaussian kernel. The full
preprocessing pipeline was completed before conducting the univariate
analysis, whereas only realigned and slice-timing corrected images were used
for the multivariate tests (see fMRI statistical analysis). In the latter, normal-
ization and smoothing were performed after the individual-level analysis,
following the same strategy as above.

fMRI statistical analysis
Control univariate analysis. We first conducted a univariate standard
GLM, modeling each of the 16 combinations of our variables (e.g.,
within-dimension integration/simple response required/faces-related/
rewarded) and specifying two regressors per trial: one for the encoding
phase (from the reward cue until the end of the instruction) and another
for the implementation stage (encompassing the target grid presentation
and until the end of the feedback cue). All regressors were convolved with
the canonical hemodynamic response function. We also added error
trials and six motion parameters as nuisance regressors, and a high-pass
filter of 128 s to avoid low-frequency noise.

The rationale of this analysis was to check the effect of motivation
during the encoding of novel instructions with the aim of ensuring that
our manipulation successfully generated typical reward-related patterns
of activation (Parro et al., 2018). This was done by performing t tests at
the individual (first) level, contrasting rewarded versus nonrewarded
encoding regressors, and carrying these statistical maps to a group one-
sample t test. The result was clusterwise FWE-corrected for multiple com-
parison at p � 0.05 (from an initial threshold of p � 0.001 and k � 10). With
this approach, we obtained one large cluster that extended across multiple
brain regions. To obtain smaller, anatomically coherent clusters, we used a
stricter threshold (uncorrected cluster-forming threshold of p � 0.0001,
with the corresponding FWE correction at p � 0.05), as done previously
(e.g., Dumontheil et al., 2011; Palenciano et al., 2019).

RSA
We conducted a series of multivariate RSAs, following a two-step ap-
proach. First, we analyzed whole-brain data, using a searchlight ap-
proach, to find regions encoding novel instructions according to each of
our three control-related variables. Second, we used the significant areas
as ROIs and focused on them to explore the effect of reward on their
representational geometry.

Whole-brain model-based RSA. We first studied whether the represen-
tational structure of novel instructions was explained by three variables

Figure 1. Sequence of events in a single trial. ISI, Interstimulus interval.

8388 • J. Neurosci., October 16, 2019 • 39(42):8386 – 8397 Palenciano et al. • Representational Structure for Novel Instructions

https://jakewestfall.shinyapps.io/pangea/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/


related to cognitive control preparation: dimension integration, re-
sponse set complexity, and target category. Importantly, we specifically
wanted to explore this during the initial encoding stage, where proactive
task-set reconfiguration takes place. To do so, we first obtained trial-by-
trial estimations of our signal, following a least-square-sum approach
(Turner, 2010) to ensure the smallest possible collinearity among regres-
sors (Arco et al., 2018). We generated and estimated one separate model
per trial, in which we defined: (1) a regressor isolating the encoding phase
of the individual trial of interest; (2) a second regressor containing the
rest of trials (encoding phase) of the same condition; (3) 31 additional
regressors encompassing the rest of conditions at the encoding and im-

plementation phases (as in the GLM specified above); and (4) nuisance
regressors (movement, errors). To do so, we used AFNI’s function 3dLSS
(https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dLSS.html).
Once the trialwise parameter images were obtained, the rest of the RSA
was performed with the Decoding Toolbox (Hebart et al., 2014).

In our analysis, we compared three theoretical models of representa-
tional organization (one per preparation-related independent variable)
with the empirical one, built from spatially distributed activity patterns.
To do so, we used a spherical searchlight (radius: 4 voxels) and applied it
to the whole brain (Kriegeskorte et al., 2006). First, we built three theo-
retical representational dissimilarity matrices (RDMs) (Fig. 2a), which

Figure 2. Main analysis procedure. a, Theoretical RDMs used in the RSA. Within/Across-D, Within-dimension and across-dimension integration; Single/Sequential R, single response and
sequential response. b, RDMs capturing differences in instruction length (number of letters) and RT, included in a multiple regression analysis together with matrices shown in a to control for the
effect of these two variables. c, Following a searchlight approach, we extracted the neural RDM at each brain location and compared it (via Spearman correlation) with our three theoretical RDMs.
As a result, we obtained three whole-brain correlation maps, one per model. d, To assess the effect of motivation, for each region, significant in c, we extracted the neural RDMs from rewarded (R�)
and nonrewarded (NR) trials. To study potential interactions of reward expectation and the corresponding model variable (Hypothesis 1), we averaged the dissimilarity values among same-condition
and different-condition trials and tested whether the subtraction among these two values was higher in the rewarded condition (using Wilcoxon signed-rank test). We also checked for a general
increase in dissimilarities associated with reward (Hypothesis 2). All matrices in the figure were simplified for visualization purposes by averaging cells within conditions. b, The matrices were further
averaged across the sample. d, Matrices display only one task variable (collapsing between the remaining two) to highlight the analysis logic. In all the analyses, however, trialwise and single subject
matrices were used.
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captured the expected dissimilarity (represented with 0 and 1 s) between
pairs of trials, according to the corresponding variables of interest. For
example, in the Category RDM, dissimilarity is expected to be minimal
within pairs of trials that refer either to faces or to food, whereas it should
be maximal between pairs of trials that refer to different target categories.
Then, in each iteration of the searchlight, we generated a neural RDM,
using a measure of distance based on Pearson correlation. Specifically, we
extracted the corresponding single-trial � values of the voxels involved,
correlated each pair of the trials’ activity patterns, and subtracted that
value from 1. Afterward, this neural RDM was Spearman-correlated with
the theoretical ones (Fig. 2c), and the coefficients were normalized with
Fisher’s z transformation and assigned to the central voxel of the search-
light sphere. Importantly, both theoretical and neural matrices were built
trialwise (i.e., not averaging within conditions) and, thus, were fully sym-
metrical with a diagonal of 0 s. Consequently, only the lower triangle of
the matrices, excluding the diagonal, was included in the correlation to
avoid inflated positive results (Ritchie et al., 2017). After iterating the
searchlight across the whole brain, we obtained three maps per participant, rep-
resenting how well the representational geometry in different regions matched
the one expected by each of our three theoretical models.

Statistical significance was assessed nonparametrically via permuta-
tion testing, as proposed by Stelzer et al. (2013). We first performed 100
permutations at the individual level, where trial labels were randomly
shifted and the whole analysis was repeated. Then, at the group level, we
resampled 50,000 times one of the permuted maps of each subject and
averaged them. The resulting bootstrapped group maps were used to
build a voxelwise null distribution of correlation values, which was used
to extract the correlation coefficient coinciding with a probability of
0.001 of the right-tailed area of the distribution (i.e., linked to a p �
0.001) of each individual voxel. The group map of the results was then
thresholded using these values. From the bootstrapped maps, we also
built a null distribution of cluster sizes (Stelzer et al., 2013), which deter-
mined the probability of each cluster extent under the null distribution.
We used this to assign the corresponding p value to the surviving clusters
of the group results map, and FWE-corrected ( p � 0.05) them to control
for multiple comparisons.

We performed a further conjunction test to find areas sharing the three
representational organization schemes. To do so, we thresholded ( p �
0.05, FWE-corrected) and binarized the three maps from the previous
step, and obtained the overlapping voxels (Nichols et al., 2005).

Importantly, the RSA results could be influenced by other variables
statistically related to our manipulations (Popov et al., 2018), such as
instructions’ length and speed of responses, which differed slightly be-
tween conditions. To examine their influence on the results, we per-
formed an additional multiple regression analysis taking both variables
into account. We built two different RDMs (Fig. 2b) in which each cell
contained the absolute difference in the number of letters (instruction’s
length RDM) or RT (response speed RDM), respectively, between spe-
cific pairs of instructions. We then used them as regressors together with
the three proactive control-related RDMs, predicting the neural pattern
of dissimilarities in each iteration of a searchlight. The regressors were
built vectorizing the lower triangle of the RDM, excluding the diagonal
values. It is important to note that there were small, but still significant,
correlations among some of the regressors included in the analysis. Spe-
cifically, dimension integration correlated with instruction length and
RT, and target category did so with instruction length. To assess the
impact of these correlations on the regression estimation, we computed
variance inflation factors (Mumford et al., 2015), an index of the regres-
sors’ collinearity. For our five models, and in all the participants, variance
inflation factors were always �1.1 (being 5 a typical cutoff above which
the estimation would be compromised; Mumford et al., 2015). Thus,
even despite the relationship among variables, the results of our main anal-
yses are still meaningful. The corresponding � weight maps obtained showed
the regions where the effect of our variables of interest remained significant,
even when instruction’s length and response speed were included.

Finally, even when the distance measure used to build the neural
RDMs (i.e., Pearson correlation) is insensitive to differences in mean
signal intensity between conditions, differences in signal variance could
be affecting it (Walther et al., 2016). For that reason, these analyses as well

as the reward-related tests (see below) were repeated after a z normaliza-
tion of the multivoxel activity patterns, ensuring equal mean (0) and SD
(1) across all pairs of trials. The results thus obtained did not differ from
the initial non-normalized ones, so we do not report them here.

ROI-based RSA. The previous analysis identified brain areas encoding
instructions according to each one of three proactive control variables
separately. We next ran ROI analyses to further explore the role of the
three variables for task coding in these regions. Specifically, we estimated
the extent to which each of the manipulated control variables explained
the neural organization in the ROIs identified in the previous analysis.
We followed a leave-one-subject-out (LOSO) cross-validation proce-
dure (Esterman et al., 2010), using the searchlight maps obtained before.
First, we identified regions sensitive to each of the three models for each
participant, running a group-level t test with the corresponding maps
from the rest of the sample (i.e., excluding their own data). Significant
clusters showing consistency across all LOSO iterations were selected as
ROIs, and inverse normalized to the participants’ native space. In a sec-
ond step, we estimated the ROI RDMs and correlated them with the three
theoretical models. Importantly, thanks to the LOSO procedure, we
avoided circularity in the analysis, as independent data were used to select
the ROIs and to compute correlations with the models. The correlation
coefficients (for each participant, one per ROI and model) were then
introduced into a repeated-measures ANOVA, with ROI and model as
factors, and the interaction term was examined to detect heterogeneity in
task encoding organization across regions (Reverberi et al., 2012). Inter-
actions were further characterized by one-sample t tests, to determine
which models had an effect on the different regions studied. Whenever
the normality assumption was not met (assessed with the Shapiro–Wilk
test), we used Wilcoxon signed-rank tests instead. All p values were
Bonferroni-corrected for multiple comparisons, adjusting them to the
number of ROIs explored.

Additionally, we aimed to extrapolate our findings to regions consis-
tently found in the literature during both practiced (e.g., Woolgar et al.,
2011) and novel (e.g., González-García et al., 2017) task preparation, and
in general, when demanding cognitive processing is deployed (Duncan,
2010). This set of brain areas belong to the multiple demand network
(Duncan, 2010), which includes the bilateral rostrolateral prefrontal cor-
tex (RLPFC), MFG, IFS, anterior insula/frontal operculum (aIfO) area,
IPS, anterior cingulate cortex (ACC), and presupplementary motor area
(pre-SMA). To assess the organization of novel task encoding across this
multiple demand network, we used functionally derived masks of its
nodes (Fedorenko et al., 2013; template available at http://imaging.mrc-
cbu.cam.ac.uk/imaging/MDsystem), inverse normalized them to the
participants’ native space, and followed the same ROI approach as above,
extracting each ROI RDM and correlating it with the models’ matrices.
Again, correlation coefficients were entered into a repeated-measures
ANOVA with ROI and model as factors, interactions were examined, and
finally, a series of one-sample t tests (or Wilcoxon signed-rank test when
normality was violated) were conducted.

Analysis of reward-related effects on RSA results. A final goal of our
study was to assess whether the representational space of novel instruc-
tions was affected by motivation. Our initial hypothesis was that reward
would polarize the representational geometry, enhancing the effect of
our control-related variables at structuring rule encoding. In other
words, and taking as an example the target category variable, we
assessed whether reward expectations would increase the distance
between representations of instructions referring to different stimu-
lus categories (in extension to the other variables, indicated as
different-condition dissimilarity) while decreasing the distance
among those referring to same target category (same-condition dis-
similarity). Our second, alternative hypothesis was that reward would
exert a general effect, globally increasing the distances among instruc-
tion representations, independently of the other variables manipu-
lated. In this sense, we expected that both different and same-
condition dissimilarity would be increased in rewarded trials, in
comparison with nonrewarded ones. The two possibilities would be
compatible with previous findings showing that reward expectancy
enhances rule decodability (Etzel et al., 2016).
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To test these two hypotheses, we run ROI analyses (Fig. 2d) for each of
our control-related variables, focusing on the regions that resulted sta-
tistically significant in the main RSA. To do so, at the individual level and
for each variable, we first ran a searchlight and generated four whole-
brain maps containing dissimilarity values among: (1) same-condition
rewarded trials; (2) different-conditions rewarded trials; (3) same-
condition nonrewarded trials; and (4) different-conditions nonrewarded
trials. These values were the result of averaging and normalizing (with the
Fisher transformation) the pertinent cells of the neural RDM (see, e.g.,
Fig. 2d) in each searchlight iteration. The maps thus obtained were nor-
malized to the MNI space, so we could extract participants’ mean dissim-
ilarities for each of our ROIs using MarsBar (Brett et al., 2002). After that,
and for each ROI and variable, we conducted two Wilcoxon signed-rank
tests (Nili et al., 2014). First, to assess our main hypothesis, we tested
whether (DifferentCond.Rewarded � SameCond.Rewarded) � (Different-
Cond.NonRewarded � SameCond.NonRewarded). To explore the second pos-
sible hypothesis, we collapsed across same and different conditions, and
tested whether (DifferentCond.Rewarded � SameCond.Rewarded)/2 �
(DifferentCond.NonRewarded � SameCond.NonRewarded)/2 was �0 (Fig.
2d). In both analyses, we corrected for multiple comparisons (number of
ROIs being tested) with an FWE threshold of p � 0.05.

Last, to investigate the relevance for behav-
ior of the effect of motivation on representa-
tional structure, we correlated this effect with
behavioral data. Specifically, for each partici-
pant, we computed the average decrease in dis-
similarity and in the inverse efficiency scores
(Townsend and Ashby, 1978) linked to re-
warded trials (in comparison with nonre-
warded ones). The inverse efficiency score was
used in this analysis to take into account, si-
multaneously, improvements in accuracy and
response speed. As we performed as many cor-
relations as ROIs assessed in this analysis, we
again controlled for multiple comparisons
with an FWE threshold of p � 0.05.

Additionally, to explore the possibility of
motivation exerting an effect during the subse-
quent implementation of instructions, we also
ran the analyses detailed above with � images
obtained from this stage.

Multivoxel pattern analysis (MVPA)-
based assessment of reward effects
Finally, to further connect our results with pre-
vious findings, we performed MVPA to explore
the effect of reward on decoding precisions (Et-
zel et al., 2016). We decoded the two condi-
tions of each of our three control-related
variables, training three binary classifiers: one
for distinguishing between within versus
across-dimension integration instructions,
other for single versus sequential response re-
quirements, and the last one for faces and food-
related trials. This was done separately for
rewarded and nonrewarded trials. Again, we
used non-normalized and unsmoothed trial-
wise � images from the encoding stage. As we
aimed to detect any region with reward-related
increases in task decodability, we performed
the MVPA in a whole-brain fashion, using
searchlight (instead of biasing the results using
ROIs resulting from the RSA). In each search-
light iteration, we followed a leave one-run-out
cross-validation approach, training a linear
support-vector machine classifier (C � 1)
(Pereira et al., 2009) with five of our six runs,
and testing it with the remaining one, in an
iterative fashion. Then, for each of our vari-
ables, we subtracted the accuracy map ob-

tained from nonrewarded trials to the map from rewarded ones, and then
normalized and smoothed these images, to conduct an above zero one-
sample t test at the group level. This way, we assessed the benefits in
classification precision associated with reward.

Results
Behavioral results
We analyzed RT and accuracy data separately, conducting two
repeated-measures ANOVAs with four factors, corresponding to
the four variables manipulated: dimension integration (within vs
across), response set complexity (single vs sequential), category
(faces vs food items), and motivation (rewarded vs nonre-
warded). Importantly, the main effect of motivation was statisti-
cally significant on both accuracy (F(1,31) � 4.97, p � 0.05, �p

2 �
0.14) and RT (F(1,31) � 6.52, p � 0.05, �p

2 � 0.17) data, with more
accurate (rewarded: M � 0.85, SD � 0.11; nonrewarded: M �
0.83, SD � 0.12) and faster (rewarded: M � 1.16, SD � 0.21;
nonrewarded: M � 1.20, SD � 0.20) responses on the rewarded
condition (Fig. 3). This indicates that participants made use of

Figure 3. Behavioral data. Violin plots showing correct responses (a) and RT (b) data for each condition, in rewarded and
nonrewarded trials. Asterisks indicate p � 0.05 for main effects in the repeated-measures ANOVA.
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reward cues and the economic incentives had the expected effect
on behavior, improving its efficiency.

In addition, accuracy data showed a main effect of dimension
integration (F(1,31) � 9.24, p � 0.05, �p

2 � 0.23), with better perfor-
mance when within-dimension integration was required (within di-
mension: M � 0.86, SD � 0.13; across dimensions: M � 0.83, SD �
0.12), and a significant three-way interaction of category, response
set complexity, and dimension integration (F(1,31) � 4.46, p � 0.043,
�p

2 � 0.13). Even despite the lack of hypothesis regarding an interac-
tion at this level, we performed post hoc pairwise comparisons, which
revealed that the interaction was driven by less robust (p � 0.05)
differences among within and across-dimensions trials that required
a single response and was food-related (while, in the rest of combi-
nations of independent variables, this difference was significant).

On the other hand, RT results also showed a main effect of
dimension integration (F(1,31) � 61.81, p � 0.001, �p

2 � 0.67) in
the same direction as above (within-dimension: M � 1.12, SD �
0.17; across-dimensions: M � 1.24, SD � 0.2), and a main effect
of category (F(1,31) � 74.89, p � 0.001, �p

2 � 0.71), with faster
responses to food-related instructions (faces: M � 1.23, SD �
0.21; food items: M � 1.14, SD � 0.19). Neither the effect of
response set complexity (accuracy: F(1,31) � 0.31, p � 0.579, �p

2 �
0.01; RT: F(1,31) � 0.21, p � 0.653, �p

2 � 0.01) nor any other
ANOVA term resulted in significant behavioral measures (main
effect of category on accuracy: F(1,31) � 3.23, p � 0.082, �p

2 �
0.094; all interactions terms, except the ones stated above, p �
0.1).

Univariate results: reward-related activations during
instruction encoding
We first assessed mean activity during novel instruction encod-
ing, comparing rewarded against nonrewarded trials. To do so,
we performed a univariate GLM, defining regressors for each
combination of variables (e.g., within-dimension integration,
single response, face-related rewarded trials), separately for the
encoding and the implementation stages. A group-level t test
showed that, in accordance with our expectations and previous
literature (Parro et al., 2018), the basal ganglia and FP cortices
were more active for rewarded than nonrewarded instruction
encoding. We observed peaks of activation (Fig. 4) in the bilateral
inferior frontal junction (IFJ), premotor and supplementary mo-
tor areas (left: [�33, 5, 26], z � 5.07, k � 489; right: [33, 2, 59],
z � 4.79, k � 572), cingulate cortex ([�9, 5, 32], z � 5.48, k �
20), bilateral IPS extending into the precuneus (left:[�18, �64,
35], z � 4.77, k � 357; right: [33, �52, 53], z � 4.36, k � 324), the
accumbens, ventral portion of the caudate and thalamus ([12,
�22, 20], z � 5.13, k � 1176), inferior temporal gyrus ([48, �58,
�13], z � 4.48, k � 52), occipital cortex ([30, �61, �25], z � 5,
k � 1364), and midbrain ([0, �31, �4], z � 5.19, k � 255). Thus,
regions involved in reward processing (Haber and Knutson,
2010), as well as in cognitive control paradigms with monetary
incentive manipulations (e.g., Engelmann, 2009), were engaged
by our task, indicating the success of the reward manipulation.

Model-based RSA results: instruction encoding structured by
proactive-control variables
We aimed to identify regions whose organization during task
encoding was explained by dimension integration, response set
complexity, and target category. With that purpose, we used an
RSA (Kriegeskorte et al., 2008) to compare the RDMs found in
neural data during the encoding stage with theoretical RDMs
corresponding to the three proactive control-related variables
(Fig. 2). In neural RDMs, each cell contained the dissimilarity

(1 � Pearson correlation) between the multivariate patterns of
activation of two trials. In the theoretical RDMs, cells contained
dissimilarities (1 � maximal; 0 � minimal) that we would expect
if a certain variable organized encoding (i.e.: for target category,
all faces-related trials would be minimally dissimilar, while face
and food-related trials would be maximally dissimilar). Using
searchlight (Kriegeskorte et al., 2006), we Spearman-correlated
neural and theoretical RDMs across the brain and obtained maps
showing how well these three variables captured the representa-
tional space of different areas. The modality of dimension inte-
gration (Fig. 5a) only had a significant effect on rule encoding at
the left MFG and IFG, incurring into the IFS ([�51, 20, 26], k �
642). Response set complexity (Fig. 5b), on the other hand, orga-
nized task representations on a wide cluster, including the bilat-
eral IFG, premotor, supplementary, and primary motor cortices,
somatosensory area, middle temporal gyrus, and superior and
inferior parietal lobe extending along the IPS ([�42, �31, 44],
k � 8583) and in the left parahippocampal cortex ([�18, �40, �1],
k � 301). Finally, in the case of the target category RSA (Fig. 5c),
significant correlations were found in an extensive cluster on the left
hemisphere covering the IFG incurring into the IFJ, the fusiform
gyrus, the temporoparietal junction, the inferior and middle tempo-
ral gyrus and the precuneus ([�39,�67, 17], k�5581). On the right
hemisphere, the analysis was also significant at the right middle tem-
poral gyrus and temporoparietal junction ([39, �58, 23], k � 442)
and the IFG ([42, 26, 14], k � 295). Finally, the medial superior
frontal gyrus ([�9, 53, 26], k � 377) was also involved.

As instructions’ length and speed of responses varied among
some of our variables, we performed an additional multiple re-
gression analysis, in which we included our three theoretical
models, an RDM based on dissimilarities in length, and another one
based on RT as regressors. Importantly, the multiple regression sta-
tistical model was examined to detect an excess of collinearity, which
could have impaired the interpretability of these results. We com-
puted the variance inflation factor for all the regressors and across
our whole sample of participants, and all were �1.1, an index of
good estimability of regression weights. The � maps (one per model)
obtained after iterating the analysis in a searchlight procedure en-
sured that the variance linked to our RSA models was not misattrib-

Figure 4. Regions showing greater activity during the encoding of rewarded compared with
nonrewarded instructions. N. Acc, Nucleus accumbens; PMC, premotor cortex.

8392 • J. Neurosci., October 16, 2019 • 39(42):8386 – 8397 Palenciano et al. • Representational Structure for Novel Instructions



uted due to differences in instruction length or speed of responses.
Importantly, the results obtained this way were very similar to the
ones extracted with the standard approach, identifying the same
clusters as before.

We also conducted a conjunction analysis to assess the overlap
among regions common to the three organizational schemes.
Only the left IFG and IFJ resulted significant in this test (Fig. 6).

LOSO-based ROI analysis: assessing confluence of models
within regions
The previous analyses left unexplained the extent to which each
of the brain areas isolated by RDM analyses reflected in their
organization the three manipulated variables. Furthermore, the
conservative correction for multiple comparisons used in the
searchlight could overshadow this effect elsewhere in the brain.
To shed some light upon this issue, we used a more sensitive ROI
analysis, together with an LOSO approach to avoid double dip-
ping when selecting regions.

All the clusters identified in the main group results (Fig. 5)
were consistently found across all participants with the LOSO
approach, with the exception of the medial superior frontal gyrus
under the category model, which was absent in four subjects and
thus not included in the analysis. The correlations of the ROIs’
RDMs and the three models’ matrices were analyzed with a
repeated-measures ANOVA, in which we found a significant in-
teraction of ROI and Model (F(12,348) � 6.050, p � 0.001, �p

2 �
0.173), evidencing variability in instruction coding structure
across regions. We then ran one-sample t tests or Wilcoxon
signed-rank tests (depending on data distribution) to assess
model performance in each ROI (Table 1). The general pattern
obtained replicated the searchlight results: the model that origi-
nally identified each specific ROI in the searchlight was the one
explaining most robustly its encoding activity. Further, in almost
all the regions, we did not find enough evidence supporting the
effect of the remaining variables. Converging with the previous
analyses, the left IFG identified with the dimension integration
model was also significantly correlated with response set com-
plexity and category. Similarly, the left IFG cluster found in the
category RSA was correlated with the dimension integration
model too. In addition, this confluence of models analysis re-
vealed that the response set model was also significant in the

Figure 5. Model-based RSA searchlight results for the three models (a– c) and render image showing the overlap among them (d). Identical sections were used to display the results across models.

Figure 6. Conjunction analysis results.
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category-related cluster involving the left fusiform and precu-
neus (Table 1).

ROI analysis spanning multiple demand network regions
Following a similar strategy as above, we also examined task en-
coding organization across the regions comprising the MD net-
work. We extracted each MD region’s RDM and correlated it
with our three models’ RDM, and then entered the correlation
coefficients into a repeated-measures ANOVA. Again, a signifi-
cant ROI � Model interaction was found (F(20,620) � 2.168, p �
0.002, �p

2 � 0.065). To assess which models significantly struc-
tured activations across MD ROIs, we conducted one-sample t
tests or Wilcoxon signed-rank tests when data were not normally
distributed (Table 2).

Only a subset of MD network regions encoded instructions
consistently according to any of the proactive control variables,
and all of them were located on the left hemisphere and in the
LPFC and parietal cortex. The findings were, however, consistent
with the searchlight and ROI-related results presented so far. The
three variables exerted an effect on different left lateral prefrontal
sections: dimension integration and response complexity on the
IFG; dimension integration and target category on the more dor-
sal MFG; and finally, category on the RLPFC. Response complex-
ity was the attribute that most robustly captured representational
organization in the IPS.

Effects of reward on representational geometry
We then explored the effects of motivation in each of the ROIs
encoding different attributes of the instructions (Fig. 5), assessing
two possible mechanisms that could underlie the behavioral im-
provements linked to reward (Fig. 2). On the one hand, we tested
whether reward made our variables more efficient in sharpening
the representational space (Fig. 2d, Hypothesis 1). In other
words, and taking as an example the target category variable, we
assessed whether reward expectations increased the distance be-
tween representations of instructions referring to different stim-
ulus categories (in extension to the other variables, indicated as

different-condition dissimilarity), while decreasing the distance
among those referring to same target category (same-condition
dissimilarity). On the other, we tested the alternative possibility
that dissimilarities would be, in general, greater in the rewarded
trials (Fig. 2d, Hypothesis 2), regardless of the variables manipu-
lated (i.e., regardless of the pair of instructions being same or
different-condition). This could reflect a mechanism for making
rule representations more distinguishable among each other; and
also, it would be compatible with the increase in rule decoding
accuracy that has been liked to motivation in previous reports
(Etzel et al., 2016). With that purpose, we extracted, for each
region, the average dissimilarity among pairs of instructions
pertaining to the same and different conditions, separately for
rewarded and nonrewarded trials. We then used Wilcoxon
signed-rank tests (Nili et al., 2014) to check whether the differ-
ence between different-condition and same-condition trials was
larger in the rewarded than in the nonrewarded condition, and
also, whether the mean dissimilarity (collapsing across same and
different-condition) was increased by motivation.

In the first case, no reward-related differences were observed
for any of the instruction-related variables (all p values �0.1). It is
important to note, however, that these results (as most of the
findings presented in this study) are anchored to the instruction’s
encoding stage, in which proactive configuration takes place. To
explore the possibility that the hypothesized interaction shaped
neural activations during the later implementation phase (more

Table 1. Effect of the three models on the LOSO-estimated ROIsa

Original model ROI
Model
tested t z p

Dimension
integration

Left IFG Dim. 3.354 0.008
Resp. 3.292 0.009
Cat. 3.635 0.004

Response set
complexity

Left IPS Dim. 0.614 1
Resp. 5.351 �0.001
Cat. 1.975 0.163

Motor cortices, left LPFC Dim. 2.478 0.067
Resp. 3.647 0.004
Cat. 1.166 0.886

Target category Left fusiform gyrus
and precuneus

Dim. 0.476 1
Resp. 3.463 0.006
Cat. 5.466 �0.001

Left IFG Dim. 2.832 0.029
Resp. 0.699 0.242
Cat. 4.930 �0.001

Right MTG Dim. �0.144 0.557
Resp. �1.008 0.843
Cat. 2.859 0.002

Right IFG Dim. 1.275 0.101
Resp. �0.206 0.582
Cat. 3.085 0.001

ap values displayed are Bonferroni-corrected for multiple comparisons. MTG, Middle temporal gyrus; Dim., dimen-
sion integration model; Resp., response complexity model; Cat., target category.

Table 2. Effect of the three models on the MD network ROIsa

ROI
Model
tested t z p

ACC/pre-SMA Dim. 0.645 1
Resp. 1.673 0.115
Cat. �0.026 1

Left RLPFC Dim. 1.019 0.571
Resp. 0.346 0.365
Cat. 2.665 0.023

Left IFS Dim. 3.644 0.005
Resp. 4.423 �0.001
Cat. 2.328 0.058

Left MFG Dim. 2.739 0.014
Resp. 0.870 0.754
Cat. 4.298 0.002

Left aIfO Dim. 0.667 1
Resp. 1.206 0.228
Cat. 2.197 0.060

Left IPS Dim. 1.617 0.638
Resp. 2.814 0.025
Cat. 2.639 0.071

Right RLPFC Dim. 0.365 1
Resp. 1.460 0.849
Cat. 0.861 1

Right IFS Dim. 2.220 0.186
Resp. 1.599 0.211
Cat. �0.626 1

Right MFG Dim. 2.311 0.152
Resp. 1.294 1
Cat. 2.042 0.273

Right aIfO Dim. 0.023 1
Resp. 1.299 0.280
Cat. 1.352 1

Right IPS Dim. 1.262 0.548
Resp. 1.842 0.330
Cat. �0.701 1

ap values displayed are Bonferroni-corrected for multiple comparisons. Dim., Dimension integration model; Resp.,
response complexity model; Cat., target category.
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related to reactive control; Braver, 2012; Palenciano et al., 2019),
we conducted a further test using � images from this epoch.
However, and again, the expected effect was not significant for
any of the ROIs examined (all p values �0.1).

When addressing the second hypothesis, surprisingly, we found
the opposite pattern: reward systematically decreased the dissimilar-
ity values in all the ROIs evaluated (all p values �0.05; Table 3). To
test the behavioral relevance of this finding we correlated, across our
participants, the average decrease in dissimilarities associated with
reward, with the benefit of motivation on performance (inverse ef-
ficiency score; Townsend and Ashby, 1978). We found that, indeed,
the decrease in representational distances due to reward was signifi-
cantly correlated with the motivation-related improvements in be-
havioral performance. Furthermore, this seemed to be a quite robust
effect, being present in all of the ROIs included in the analysis (for
further details, see Table 3).

MVPA results
We finally aimed to explore the effect of reward directly on de-
coding accuracies, using MVPA (Haxby et al., 2014), as it has
been previously reported during rule encoding in a classic, repet-
itive task-switching setting (Etzel et al., 2016). We discriminated
between the two conditions of each instruction-related variable
(i.e., one among faces and food-related trials, other for single vs
sequential response requirements, and a last one for within vs
across-dimension integration instructions) separately for re-
warded and nonrewarded trials. We trained and tested our clas-
sifiers across the whole brain using searchlight and obtained, as a
result, an accuracy map for each motivation condition and vari-
able. Nonetheless, while classification was above chance in differ-
ent brain regions for the three variables, we did not detect any
differences in accuracies between rewarded and nonrewarded tri-
als, as no cluster survived at the group level the t test assessing
above 0 differences between the two motivation conditions.

Discussion
In the present study, we aimed to characterize the representa-
tional space for novel instructions during their proactive prepa-
ration. We assessed whether variables linked to proactive control
organized encoding activity patterns and whether this structure
was affected by reward expectations. Our results portrayed a
complex landscape, where different organizational principles
governed instruction encoding in FP cortices and lower-level
perceptual and motor areas.

The left IFG/IFJ reflected the most complex and overarching
representational structure, with activity patterns structured by
dimension integration, response complexity, and target category.
Robust evidence supports the role of the IFJ in task-set reconfigu-
ration (Brass et al., 2005) in practiced (e.g., Woolgar et al., 2011)
and novel contexts (e.g., González-García et al., 2016; Muhle-
Karbe et al., 2017), orchestrating neural dynamics during atten-
tional selection (e.g., Baldauf and Desimone, 2014). This region
seems to be involved in task-set maintenance (Sakai, 2008), se-
lecting task-relevant information represented in perceptual re-
gions (Miller and Cohen, 2001; Cole et al., 2013). The current
study advances our knowledge about the structure underlying
how information is coded during novel instruction encoding,
and stresses the diversity of task parameters that orchestrate task
encoding in the IFG/IFJ. Such a complex, multidimensional rep-
resentational space (Rigotti et al., 2013) could be key to support
the richness and flexibility of human behavior in novel environ-
ments. This perspective qualifies recent research, based on
MVPA, that highlights the compositionality characterizing rep-
resentations held in the IFG (Reverberi et al., 2012; Cole et al.,
2013; Deraeve et al., 2019), by which complex tasks are coded by
combining their simpler constituent elements.

The IPS also encoded novel rules proactively, but now accord-
ing to response complexity. While this is consistent with previous
studies linking the parietal cortex to action preparation, it is
worth noticing the distinction found in our data between parietal
and prefrontal regions, a finding further confirmed with a more
sensitive ROI analysis. Dimension integration, the variable ma-
nipulated to appeal to a higher-level task goal representation, had
an effect only on LPFC, while the IPS was linked to the more
specific response-set complexity (Rubinstein et al., 2001; De
Baene and Brass, 2014). The frequent coactivation of IFG/IFJ and
IPS in demanding paradigms (Duncan, 2010) had complicated
the identification of their separate contributions. The differential
pattern we observed is highly relevant to disentangle their proac-
tive role. Interestingly, the emerging picture portraits the IFG/IFJ
and the IPS collaborating during novel task representation, with
the former maintaining overarching representations of all relevant
variables, and the latter activating the relevant stimulus–response
contingencies (see also Muhle-Karbe et al., 2014). The use of RSA in
our paradigm provides a deeper understanding of this process, em-
phasizing that the proposed two-stage preparatory mechanism also
guides task-set encoding in FP cortices. In this sense, variables key for
abstract goals or specific stimulus-response mappings become rele-
vant differentially depending on the region.

Additional medial and lateral frontal cortices also participate
in the FP network and are frequently recruited during task prep-
aration (Duncan, 2010). Consequently, we also examined in-
struction coding in these MD regions. Our findings highlighted
other LPFC areas reflecting target category (both the RLPFC and
MFG) and dimension integration (MFG). The overall pattern of
results obtained both with whole-brain and with ROI approaches
reflects high heterogeneity within the FP network in general, and
in the LPFC in particular, in terms of the attributes structuring
task-set representation. In contrast, we did not obtain evidence
supporting proactive task-set encoding in the ACC/pre-SMA and
the aIfO regions. This finding fits with the subdivision of the FP
network into two differentiated components: one anchored in
the LPFC and IPS, and a second one composed by the ACC and
the aIfO (Dosenbach et al., 2007; Palenciano et al., 2019). In line
with our results, anticipatory task coding has been predominantly
found in regions from the former rather than in the latter (Crit-
tenden et al., 2016). Ultimately, the variability found within the FP

Table 3. Effect of reward on dissimilarity values and correlation with behavioral
improvementa

ROI
Effect of reward on
dissimilarity values

Correlation RSA
and behavior

Task set complexity
Left IFG/IFJ z � �3.005* r � 0.515*

Response set complexity
M1/PM/SMA/IPS z � �3.712* r � 0.565*
Left PHC z � �3.712* r � 0.558*

Target category
Left fusiform gyrus/precuneus/IFG/IFJ z � �3.712* r � 0.543*
Right MTG/TPJ z � �4.419* r � 0.495*
Right IFG z � �3.712* r � 0.533*
Medial SFG z � �2.652* r � 0.482*

a In the last case, multiple comparisons were controlled with an FWE criterion. M1, Primary motor cortex; PM,
premotor cortex; PHC, parahippocampal cortex; MTG, middle temporal gyrus; TPJ, temporoparietal junction; SFG,
superior frontal gyrus.

*p � 0.05, Wilcoxon paired-sample signed-rank test (middle column) or Pearson correlation coefficient (left
column).
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control network during proactive novel task setting (Palenciano et
al., 2019), with different processes and representational formats be-
ing combined, could be key to maximize flexibility.

FP cortices were not the sole brain regions encoding novel
instruction parameters. Activity in fusiform gyri was organized
according to target category, whereas patterns in somatomotor
cortices reflected response complexity. While these regions are
not associated per se with proactive control, their involvement
reflects that their representational geometry is tuned in an antic-
ipatory fashion by relevant task parameters conveyed by instruc-
tions. It is important to stress that all the results discussed were
locked to instruction encoding, where no target stimuli had
been presented, neither any specific motor response could have
been prepared. These findings suggest that FP areas exert a bias in
posterior cortices, according to the content of instructions. Sup-
porting this, increments of mean activity (Esterman and Yantis,
2010) and target-specific information encoding (e.g., Stokes et
al., 2009) have been reported in perceptual and motor regions
during preparation. Importantly, these changes have been linked
to boosts in functional connectivity between the FP and posterior
cortices (Sakai and Passingham, 2006; González-García et al.,
2016). In direct relation to our findings, a recent study showed
that the representational organization in regions along the visual
pathway is dynamically adapted to task demands (Nastase et al.,
2017). Our current results add to these findings by showing that
representational space tuning could be a mechanism of prepara-
tory bias, which could reflect predictive coding principles where
iterative loops of feedback and feedforward communication
shape cognition (Friston, 2005).

Crucially, the structure of information encoded by all these
regions was sensitive to trialwise motivational states. Surpris-
ingly, reward expectation diminished the dissimilarities between
the representations of the instructions, yet preserving the organi-
zational scheme found in each area. Based on recent findings of
increased task decodability (Etzel et al., 2016), we had hypothe-
sized that reward would either polarize the representational
structure or increase the representational distances overall. Re-
sults were, however, in the opposite direction, even when our
reward manipulation was successful at boosting performance
and also increased activity in control and reward-related regions
(Parro et al., 2018). Most importantly, decreases in dissimilarities
were also robustly correlated with behavioral improvements.
Taking into account that additional analysis using MVPA and
using data from the implementation stage corroborated these
results, their implication must be thoughtfully considered. One
possibility is that the decrease in dissimilarities is generated by a
general boost of reward in signal-to-noise ratio. Although our
results persisted after normalizing data across trials, a reward-
related reduction of multivariate noise pattern could still be pos-
sible, and it could benefit task coding in the absence of the
hypothesized RSA results. However, the MVPA did not reveal
improved task classification accuracy in the rewarded condition;
thus, this interpretation remains uncertain. Alternatively, moti-
vation could have influenced task coding in ways that our search-
light procedure was not sensitive to. That would be the case if
reward affected the spatial distribution of information: as ROIs
were defined by size-fixed searchlight spheres, and were equal in
rewarded and nonrewarded conditions, an effect like that would
remain shadowed. Finally, task complexity could also be key. In
less demanding situations, such as repetitive task switching (Etzel
et al., 2016), reward could directly sharpen task encoding repre-
sentations. In novel environments, however, motivation could
exert a more general effect at the process level instead of at the

representational one. It could increase the efficiency of task re-
configuration (Braem and Egner, 2018), as indexed by the im-
provements in behavior, while the specific rule representations
would remain equally structured. Nonetheless, more research is
needed to properly characterize the intricate interactions among
proactive control and motivation (Pessoa, 2017) in rich task en-
vironments, more akin to daily life situations.

The current study entails some limitations that constrain the
scope of our findings and call for further research. On the one
hand, the nature of our paradigm demanded the selection of a few
instruction-organizing variables. Some other dimensions, critical
for anticipatory encoding, may have been left unaddressed. Fur-
thermore, nonlinear combinations of variables could add to the
organization principles governing control regions (Rigotti et al.,
2013). Considering an increasing number of plausible models in
more complex and/or naturalistic scenarios, together with data-
driven methods, such as multidimensional scaling or component
analysis, will complement our results. On the other hand, our
main dependent variable (fMRI hemodynamic signal) provided
spatially precise, but temporally impoverished data. Temporally
resolved techniques, such as EEG or MEG, could be key to unveil
the temporal dynamics of the representational patterns.

Overall, our findings provide novel insights on how verbal
complex novel instructions organize proactive brain activations.
The emerging picture departs from pure localizationist ap-
proaches where brain regions carry fixed information about con-
crete cognitive processes. Rather, the different dimensions
relevant for efficient instructed action shape brain activity across
an extended set of areas, flexibly structuring encoding activity
according to the relevant task parameters.
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