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Asthma and nonasthmatic eosinophilic bronchitis (NAEB) are respiratory disorders characterized by a predominance of Th2 cells
and eosinophilic inflammation. Suppressors of cytokine signaling (SOCS) proteins play an important role in Th2-mediated allergic
responses through control of the balance between Th1 and Th2 cells, particularly, SOCS3 and SOCS5. The aim of this study was
to analyze SOCS expression in human peripheral blood eosinophils from patients with asthma, NAEB and healthy controls. SOCS
expression in eosinophils from subjects was demonstrated by different techniques. Results showed that expression of SOCS3 in
eosinophils and CD4 T cells from patients was higher than in healthy subjects. In addition, we demonstrated that prostaglandin E2

(PGE2) and Th2 cytokines are able to upregulate SOCS3 production in eosinophils and attenuate its degranulation. In conclusion,
eosinophils are able to transcribe and translate SOCS3 protein and can contribute to the regulation of the Th1/Th2 balance through
SOCS3 production.

1. Introduction

Th2 respiratory disorders, such as asthma, allergic rhinitis,
and nonasthmatic eosinophilic bronchitis (NAEB), have
been major public health problems in the last two decades.
NAEB was originally described by Gibson et al. [1] and
has subsequently been recognized as an important cause of
chronic cough [2]. Asthma and NAEB are associated with a
similar T-helper type 2 cytokine-driven airway inflammation
[3, 4]. However, airway hyperresponsiveness and variable
airflow obstruction, which are the hallmarks of asthma, are
not present in NAEB.

Inflammatory mediators and cytokines play essential
roles in the control of immune system; they not only
act as growth factors, but also regulate the differentiation,
maintenance, and activation of naı̈ve effectors and the
memory state of immune cells [5]. The Th1/Th2 balance
determines the nature of an immune response [6]; however,

the mechanism by which Th1 and Th2 cytokines cross-
regulate the immune response remains unclear.

In both physiologic and pathologic conditions, cytokine
function is strictly controlled. Cytokine signaling pathways
are negatively regulated by the so-called suppressor of
cytokine signaling (SOCS) family of proteins. There are eight
members of the CIS-SOCS family [7]. Several reports have
indicated that SOCS proteins are necessary for regulation
of normal immune responses [8]. SOCS proteins not only
act as simple negative-feedback regulators, but they are also
involved in fine-tuning the immune response and in the
crosstalk of complicated cytokine signal networks. Since
cytokines are constantly present in the microenvironment
of immune cells, signal regulation by SOCS-family proteins
may be important for the proper progress, remission, and
relapse of an immune response. Therefore, SOCS1, SOCS3,
and SOCS5 participate in CD4+ Th-cell differentiation
and in Th1/Th2-cell balance [9]. SOCS3 is predominantly
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expressed in Th2 cells and inhibits Th1 differentiation [10–
12]. Conversely, SOCS5 is predominantly expressed in Th1
cells and inhibits Th2 differentiation [8, 13]. The cyclo-
oxygenase product, prostaglandin E2 (PGE2), is produced
by several cells in human airways, including the epithe-
lium [14] and smooth muscle [15]; PGE2 is produced
during inflammatory responses, and increased levels of PGE2

mediate some of the cardinal features of inflammation. In
contrast, several studies suggest that in addition to its pro-
inflammatory actions, PGE2 may also exert strong anti-
inflammatory and bronchoprotective effects in patients with
bronchial asthma [15–18]. Recently, it has been demon-
strated that prostaglandins are capable of inducing SOCS3
expression [19–21]; moreover, we have reported that PGE2

is present in lung from subjects with NAEB and asthma
[22], diseases that are characterized by high eosinophil
counts. Thus, PGE2 may represent an endogenous protective
mechanism in the airways as a modulator of immune
responses.

The SOCS implication in Th1/Th2 balance regulation
and allergic phenotypes suggests a range of new therapeutic
strategies that could reduce Th2-induced inflammation and
eosinophilia. For these reasons, we determined if eosinophils,
the characteristic inflammatory cells of asthma and NAEB,
are able to express mRNA and synthesize SOCS3 protein,. In
addition, we tested the hypothesis that both Th2 cytokines
and PGE2 upregulate SOCS3 expression in eosinophils. This
study reports SOCS3 production by eosinophils, a process
which is regulated by cytokines and PGE2.

2. Materials and Methods

2.1. Subjects. Eight subjects with NAEB, 6 subjects with
asthma, and 9 healthy control subjects were recruited from
the Fundación Jimenez Dı́az Allergy clinic outpatients and
staff. The investigation has been conducted according to
the principles expressed in the Declaration of Helsinki.
The study was approved by the Ethical Committee from
Fundación Jimenez Dı́az, and informed consent of all partic-
ipating subjects was obtained. Blood samples were obtained
from adult donors. Total IgE levels were measured using
the immunoCAP immunoassay system (Phadia, Uppsala,
Sweden) and PGE2 levels by ELISA kit (Cayman Chemical
Company, Ann Arbor, MI, USA).

Subjects with asthma had a consistent history of the
disease and objective evidence of asthma (as defined by the
American Thoracic Society) [23] for at least 6 months. These
patients either showed a greater than 12% improvement in
FEV1, 10 minutes after administration of 500 μg of inhaled
terbutaline, or had methacholine airway hyperresponsive-
ness (PC20 methacholine <16 mg/mL). Patients with asthma
had mild persistent disease [24] and were clinically stable.
None had a history of respiratory infection for at least the
6-week period preceding the study. We included both atopic
and nonatopic patients in the asthmatic group, since no
differences in the parameters assessed for both sets of patients
had been observed previously.

The subjects with NAEB had an isolated cough last-
ing >8 weeks, no symptoms suggesting variable airflow

obstruction, normal spirometric values, a methacholine PC20

value >16 mg/mL, a normal chest radiograph, and sputum
eosinophilia (sputum eosinophils >3%).

For patients who were receiving inhaled corticosteroids,
the drugs were withdrawn for at least 2 weeks before sputum
induction. No patient was receiving oral corticosteroids (for
at least 6 months prior to the study), leukotriene receptor
antagonists, aspirin, or any other cyclooxygenase inhibitor.

2.2. Eosinophil and CD4 T Cell Purification. Eosinophils
and CD4 T cells were purified from peripheral blood
of healthy control and patient donors using a two-step
procedure. First, the polymorphonuclear and mononuclear
cell fractions were obtained by Ficoll gradient centrifugation.
The second step involved removal of residual cells from the
polymorphonuclear cell fraction. For eosinophil purifica-
tion, CD2, CD3, CD14, CD16, CD19, CD20, CD36, CD56,
CD123, and glycophorin A positive cells were discarded by
a magnetic bead separation technique, as described in the
manufacturer’s procedure (EasySep; StemCell Technologies,
Vancouver, Canada). The CD4 T cell purification from the
mononuclear fraction was achieved using a similar protocol
by removing monocytes, CD8 T cells, B cells and others
by a magnetic bead separation technique, using CD14,
CD16, CD19, CD20, CD36, CD56, CD123, TCRγ/δ, and
glycophorin A antibodies. Remaining cells were CD4 T
cells. The viability and purity of the cells were assessed by
staining with trypan blue and flow cytometry, respectively.
Eosinophils are defined as CCR3+CD16−cells, so we mea-
sured purity of eosinophils staining cells with fluorochrome-
conjugated anti-CCR3 (CCR3-FITC) and anti-CD16 (CD16
PE) antibodies by flow cytometry. The viability and purity
were routinely >98%.

2.3. Bronchial Biopsies. Bronchoscopies were performed
(healthy controls n = 2, asthma n = 2, and NAEB n = 4)
using a flexible fiberoptic or rigid bronchoscope. Biopsies
were taken from the subcarinae of the left or right lower
lobe using fenestrated forceps and finally immersed in Trizol
reagent and frozen at −80◦C until use.

2.4. Eosinophil Culture. Purified eosinophils from healthy
control, asthmatics, and NAEB subjects were plated at
1 × 106 cells/mL in RPMI 1640 with 10% fetal bovine
serum, 100 U/mL penicillin, and 100 μg/mL streptomycin at
37◦C and 5% CO2. Cells were then treated with different
doses of recombinant human IL-4 or IL-5 (0.1, 1, and
10 ng/mL; Bender MedSystem, Vienna, Austria) or IL-13
(0.5, 10 and 50 ng/mL; R&D System, MN, USA) or PGE2

(10−4 and 10−6 M; Cayman Chemical Company, Ann Arbor
MI, USA) or IFNγ (5, 10, 20 ng/mL; R&D System, MN,
USA) for different time periods (30–120 min). All conditions
were performed in triplicate, in at least 4 independent
experiments.

2.5. Confocal Microscopy. Purified eosinophils (5× 105 cells/
mL; 100 μL/slide) were adhered to slides by cytocentrifuga-
tion (Shandon Southern Instruments, Waltham, MA, USA).
Adhered eosinophils were fixed and permeabilized with
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methanol and 0.1% Triton, respectively, and blocked with
4% BSA and 6% normal goat serum in PBS, washed, then
incubated with SOCS3 antibody at 100 μg/mL (Santa Cruz
Biotechnology, Inc., Santa Cruz, CA, USA) or rabbit IgG as
control, during 1 hour at room temperature. The slides were
washed again and then exposed to Texas Red conjugated goat
antirabbit IgG (Santa Cruz Biotechnology, Inc.) overnight
at 4◦C. The slides were observed by confocal microscopy
(Leica Microsystems, Wetzlar, Germany). The fluorescence
intensity over the area of a single cell was integrated, and
nonspecific fluorescence (negative control) was subtracted.
Net fluorescence intensity was divided by the average area of
the eosinophil in μm2 and expressed as fluorescence intensity
units (FIU)/μm2. For statistical analysis, average net intensity
values were calculated from a minimum of 100 cells per
sample.

2.6. Immunocytochemistry. Slides with purified eosinophils
were treated with methanol and 3% hydrogen peroxide in
PBS to block endogen peroxidase. Then, slides were blocked
with 4% BSA and 6% normal goat serum in PBS, washed,
and then exposed to SOCS3 antibody at 60 μg/mL or rabbit
IgG as control for 30 min at room temperature, and stained
with the LSAB and System HRP Kit, according to the
manufacturer’s instructions (DAKO, Carpinteria, CA, USA).
The slides were then lightly stained with hematoxylin and
examined.

2.7. Western Blot Analysis. The lysates from purified
eosinophils (10 μg total protein), and 5 μg recombinant
SOCS3 (rSOCS3) as positive control (Santa Cruz Biotech-
nology, Inc.), were resolved on SDS-PAGE and analyzed
by Western blotting, using a 1 : 200 dilution of SOCS3
antibody or rabbit IgG as isotype control. The secondary
antibody, HRP-conjugated goat antirabbit IgG (Santa Cruz
Biotechnology, Inc.), was diluted 1 : 1000.

Chemiluminescent protein bands were detected by an
ECL detection system (Amersham Biosciences, GE Health-
care, Buckinghamshire, UK) according to the manufacturer’s
protocol. The protein concentration was estimated according
to the method of Bradford [25].

2.8. RNA Extraction and Real-Time Quantitative PCR
of SOCS3 and SOCS5. Total RNA was extracted from
eosinophils, CD4 T cells, and bronchial biopsies according to
TRIzol reagent protocol (Invitrogen Life Technologies, CA,
USA). Bronchial biopsies were homogenized previously. Two
micrograms of RNA were DNase treated, followed by reverse
transcription according to the kit instructions (Applied
Biosystems, Warrington, UK). TaqMan PCR was performed
using a 20 μL final reaction volume containing 10 μl of
TaqMan Universal PCR Master Mix (Applied Biosystems,
Branchburg, NJ, USA), 1 μl of 20X Assays-on-Demand Gene
Expression Assay Mix, and 9 μl of cDNA diluted in RNase-
free water. Each assay was performed in triplicate. The PCR
conditions used in all reactions were 2 min at 50◦C and
10 min at 95◦C, with 40 two-step cycles (95◦C for 15 s
and 60◦C for 60 s). Assays-on-Demand Gene Expression
primers specific for SOCS3, SOCS5, and rRNA (used

as an endogen) were obtained from Applied Biosystems
(http://www.appliedbiosystems.com/). The genes analyzed in
this study were examined for their relative expression by
means of the ΔΔCT method [26].

2.9. Eosinophil Degranulation. To determine the release
of eosinophil peroxidase (EPO) from purified human
eosinophils, cells were resuspended in assay buffer (PBS,
0.1% BSA, 10 nm HEPES, 10 nm Glucose; pH: 7.4) at
1 × 106 cells/mL, mixed with cytochalasin B (10 μg/mL),
and 50-μL aliquots were loaded into the wells of a 96-
well microplate. Cells were stimulated with 20 μL of C5a
(300 nM) for 20 min at 37◦C. Thereafter, 60 μl of H2O2

(1 mM) were added to each well to start the peroxidase
reaction. To detect the reaction, 70 μl of 2.8 mM tetram-
ethylbenzidine was used. Following incubation for 1 min
at room temperature, the peroxidase reaction and the
color development were stopped with 4 M acetic acid [27].
Microplates were analyzed on a bench reader at a wavelength
of 630 nm. Data were expressed as the percentage of the
maximal control response (C5a at 300 nM).

2.10. Statistical Analysis. The subject characteristics were
described using descriptive statistics and expressed as geo-
metric mean and standard deviation (SD), and median and
range.

Results were compared and evaluated using the Kruskal
Wallis test and posttest Dun’s multiple comparison tests.
Correlation coefficients and statistical significance were
determined using Spearman correlation coefficient. Statis-
tical significance was recognized at P ≤ .05. Statistical
analyses were performed using GraphPad InStat3 (GraphPad
Software Inc., San Diego, CA, USA).

3. Results

3.1. Clinical Characteristics of the Subjects. Eight subjects
with NAEB, six subjects with asthma, and nine healthy
control subjects were recruited from the Fundación Jimenez
Dı́az Allergy Clinic outpatients and staff. The subjects’
clinical characteristics are shown in Table 1.

The age of asthma and NAEB patients was very similar
(41.75 ± 8.94 and 38.55 ± 12.06 years, resp.), and no
differences existed in the evaluated parameters as a function
of age or gender in adult patients with asthma or NAEB.

Predicted values for FEV1 fell within a normal range,
although asthmatic patients showed a significant decrease
compared to healthy control subjects and NAEB patients
(P < .05). The median percentage of eosinophils on whole
blood was significantly higher in the subjects with NAEB
and asthma than in healthy control subjects (4.4%, 2.66%,
and 0.14%, resp.; P < .01 and P < .05). In concordance
with these data, sputum eosinophils were also statistically
higher in NAEB and asthma patients than in healthy controls
(15.9%, 15.1%, and 2.1% resp.). No significant differences
were observed in the eosinophil count between patients with
asthma and patients with NAEB, as shown in Table 1. The
IgE level in patients with NAEB and asthma was significantly
higher than in healthy controls (P < .05). There was
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Table 1: Clinical characteristics of study subjects.

Healthy controls Nonasthmatic eosinophilic bronchitis (NAEB) Asthma

N 9 8 6

Age (years) 23 (20–30) 40 (31–55) 37(21–61)

Male (%) 4 (44.4%) 4 (50%) 3 (50%)

Atopy (%) 0 5 (62.5%) 3 (50%)

FEV1 predicteda 105 (100–129) 108.95 (96–115)§ 99,47 (73–110)∗

FEV1/FVCa 85 (79–92) 80.6 (74.5–89.6) 78,91 (77.6–95.2)

Total IgE (kU/L)a 21.15 (4.52–144) 163 (34.50–605)∗ 65.2 (57.6–360)∗

Eosinophil count (%) 0.14 (0–3.32) 4.40 (1.5–8.39)† 2.66 (1.34–7.92)∗

Sputum eosinophils (%)a 2.1 (0.1–9.7) 15.9 (2–35) 15.1 (0.6–52.3)

PGE2 in sputum supernatant (pg/mL)a 2.89 (0.78–5.28) 15.582 (3.81–1336)∗ 33.8 (12.9–54.7)

FVC: forced vital capacity, FEV1: forced expiratory volume in the first second.
aMedian (range).
∗P < .05 (versus healthy control; Kruskal Wallis test; posttest Dunn’s multiple comparison test).
†P < .01(versus healthy control; Kruskal Wallis test; post test Dunn’s multiple comparison test).
§P < .05 (versus asthma patients; Kruskal Wallis test; post test Dunn’s multiple comparison test).

a tendency toward higher levels of PGE2 in patients with
NAEB (P < .05) and asthma (not significant).

3.2. SOCS Gene Expression Correlates with Th2 Respira-
tory Disorders. Asthma and NAEB are allergic diseases
characterized by massive infiltration of eosinophils and T
cells secreting Th2 cytokines into the pathologic site. We
therefore examined whether purified CD4 T cells (>98%)
from patients with NAEB and asthma had higher levels of
SOCS3 gene expression as consequence of the preferential
development of Th2 cells. Expressions of SOCS3 and SOCS5
mRNA were analyzed by real-time quantitative PCR in
peripheral CD4 T cells from adult patients with NAEB,
asthma and healthy controls.

The expression of SOCS3 mRNA in patients with
asthma and NAEB was significantly higher than in healthy
individuals (P < .05 and P < .01, resp.; Figure 1(a)); however,
no significant difference was observed in the expression of
SOCS5 between patients and controls (Figure 1(b)).

3.3. Eosinophils from Donors with Th2 Respiratory Disor-
ders Exhibit Increased SOCS3 mRNA Expression in Com-
parison to Normal Eosinophils. Because the accumulation
of eosinophils is a feature of both asthma and NAEB,
we determined if eosinophils are able to transcribe and
translate mRNA for SOCS3. Thus, SOCS mRNA expression
in purified eosinophils (>98%) from patients and healthy
individuals was studied. SOCS3 mRNA levels in patients
with NAEB were higher than in healthy controls (P < .01,
Figure 1(c)); although there was a weak SOCS3 level increase
in patients with asthma (1.51-fold), it did not reach statistical
signification versus healthy subjects. SOCS5 expression was
higher in eosinophils from patients, but there were no sig-
nificant differences between the patient groups and control
subjects (Figure 1(d)). As elevation of serum IgE is a charac-
teristic of patients with NAEB and asthma, we determined
the correlation between serum IgE and the expression of
SOCS3. Individuals with a high expression of SOCS3 had
high levels of serum IgE (P < 03, r: 0.5; data not shown).

3.4. Differential Expression of SOCS3 mRNA between Bron-
chial Biopsies from Asthmatics and NAEB Patients. The lung
undergoes dramatic changes in asthma and NAEB. Because
SOCS3 is involved in the regulation of the Th1/Th2 axis in
allergic diseases, we measured the SOCS3 mRNA expression
in bronchial biopsies from healthy controls, asthmatics, and
NAEB subjects (Figure 1(e)).

Our results showed that SOCS3 mRNA expression in
bronchial biopsies was strikingly increased (12.7-fold higher)
in subjects with NAEB as compared with asthmatics (P <
.05).

3.5. Identification of SOCS3 in Eosinophils by Immunocy-
tochemistry, Confocal Microscopy, and Immunoblotting. Im-
munocytochemistry, confocal microscopy, and immunoblot-
ting were performed to confirm the expression of SOCS3
in eosinophils. Figure 2 shows an example of highly
purified eosinophil preparations from asthmatics (Figures
2(b) and 2(f)), NAEB (Figures 2(c) and 2(g)) and healthy
subjects (Figures 2(d) and 2(h)), in which eosinophils clearly
show the characteristic bilobular nuclei of mature blood
eosinophils. There were eosinophils positively immunos-
tained for SOCS3 in asthmatics and NAEB samples, as
indicated by the expression of the brown reaction product
(Figures 2(b) and 2(c), resp.) or red fluorescence (Figures
2(d) and 2(h), resp.). The expression of SOCS3 protein
measured as fluorescence intensity was higher in patients
with NAEB (30.56 ± 8.81 FIU/μm2; Figure 2(g)) than in
asthmatics (12.35 ± 5.5 FIU/μm2; Figure 2(f)) whereas in
healthy controls was hardly intense (5.765 ± 2.64 FIU/μm2

Figure 2(h)). Similar results were obtained by immunocyto-
chemistry (Figures 2(c) and 2(b)).

When we examined the distribution of SOCS3 in
eosinophils, using both techniques we showed that SOCS3
immunoreactivity or immunofluorescence was largely con-
fined to the eosinophil cytoplasmic compartment with
granular expression pattern (Figures 2(b), 2(c), 2(f), and
2(g)). The negative control was treated with HRPO isotype
antibody, and the absence of specific staining is revealed
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Figure 1: Semiquantitative expression of SOCS3 and SOCS5 genes in peripheral blood purified CD4 T cells and eosinophils. Relative mRNA
levels of SOCS3 and SOCS5 in CD4 T cells ((a) and (b)), and eosinophils ((c) and (d)) of healthy controls, asthmatic and NAEB patients were
determined by real-time quantitative PCR. Values were normalized with rRNA gene used as an endogen. Black boxes represent the healthy
control group (mean± SD, n = 9), white boxes represent the asthmatic patient group (mean± SD, n = 6), and lineated boxes represent the
NAEB group (mean ± SD, n = 8). Significant differences in the levels of SOCS3 expression in CD4 T cells were obtained for asthmatic and
NAEB patients versus the healthy control group (∗P < .05 and ∗∗P < 0.01, resp.). In eosinophils, the SOCS3 level was significantly higher
in NAEB patients than in healthy controls (∗∗P < .01). In the case of SOCS5, no significant differences were found between the groups. (e)
SOCS3 mRNA levels in bronchial biopsies from healthy controls (mean ± SD, n = 2), asthmatics (mean ± SD, n = 2), and NAEB patients
(mean ± SD, n = 4). Significant differences in the levels of SOCS3 expression were obtained for asthmatic versus NAEB patients (∗P < .05).
The results represent relative gene expression, as determined by the ΔΔCT method.
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Figure 2: SOCS3 expression in peripheral blood eosinophils from Th2 patients analyzed by immunohistochemical, immunofluorescence,
and Western blot techniques. Eosinophils from asthmatic and NAEB patients within healthy controls were adhered to slides and incubated
with peroxidase-conjugated goat antirabbit IgG against SOCS3 antibody ((b), (c), and (d)) or rabbit IgG as a control (a), and Texas Red
conjugated goat antirabbit IgG against SOCS3 antibody ((f), (g), and (h)) or rabbit IgG as a control (e). The slides were observed by optical
((a), (b), (c), (d)) or confocal ((e), (f), (g) and (h)) microscopy. Western blot analysis of the cytosolic extract of purified eosinophils was
achieved using antibody against SOCS3 (i). Lane 1: recombinant SOCS3 was loaded as a positive control; lane 2: eosinophil lysate from NAEB
patients; lane 3: eosinophil lysate from healthy control patients; lane 4: isotype negative control. The picture is a representative example of
5 individuals, all displaying similar results. (j): SOCS3 bands were quantified by densitometry and corrected by actin expression; data are
expressed as the mean ± SD, n = 5, ∗P < .05 (2: NAEB; 3: healthy patients).

Figure 2(a). Also, Figure 2(e) represents images taken from
Texas Red isotype control, and demonstrates that there was
negligible autofluorescence or nonspecific binding in these
samples.

Finally, SOCS3 protein production by eosinophils was
verified by Western blot, using SOCS3 antibody (Figure 2(i)).
The result pointed out a protein band with a similar molec-
ular weight to the commercial positive control (rSOCS3,
38 kDa) in the protein lysates of highly purified eosinophils
from patients with NAEB and control subjects. The SOCS3
levels were quantified by densitometry and normalized
to actin levels (Figure 2(j)), and the data demonstrated
that the quantified band was statistically more intense in

eosinophils from patients compared to healthy individuals
(P < .05). This data confirm the SOCS3 protein expression
in eosinophils. Figure 2 shows a representative example of 5
individuals, all of whom display similar results.

3.6. Th2 but Not Th1 Cytokines Stimulate SOCS-3 mRNA Ex-
pression in Eosinophils. The increased expression of SOCS3
in eosinophils from patients with NAEB and asthma com-
pared with controls is probably due to factors that could
regulate SOCS3 expression in these cells under disease
conditions. For this reason, in vitro effects of Th2 and Th1
cytokines in SOCS3 mRNA expression in eosinophils were
assessed using real-time quantitative PCR.
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Figure 3: SOCS3 expression in peripheral blood eosinophils treated with Th2 cytokines and IFN-γ. Purified eosinophils from healthy donors
were cultured with 10 ng/mL of IL-4 (a), IL-5 (b), IL-13 (c), or IFN-γ (d) for different periods of time. Dose-response curves were performed
with IL-4, IL-5, IL-13, or IFN-γ (e)–(h) at maximal time response; SOCS3 mRNA was measured by real-time quantitative PCR. The results
are expressed as a fold induction relative to untreated eosinophils, and significant differences are indicated. Data represent the geometric
mean ± SD from four individuals, and each measure was performed in triplicate.

The treatment of eosinophils from healthy subjects with
recombinant human IL-4, IL-5, or IL-13 (Th2 cytokines)
induces upregulation of SOCS3 mRNA expression in a time-
dependent manner, with higher levels of SOCS3 mRNA at
120 min for IL-4 (Figure 3(a)) and at 60 min for IL-5, and
IL-13 (Figures 3(b) and 3(c)). Furthermore, SOCS3 mRNA
expression was significantly enhanced by the incubation
with human recombinant IL-4, IL-5, or IL-13 in a dose-
dependent manner (Figures 3(e), 3(f), and 3(g)). Our results
showed that SOCS3 production was strikingly increased
(14.10-fold; Figure 3(f)) in IL-5-induced eosinophils as
compared with IL-4-, or IL-13-induced eosinophils (3.71-
fold; Figure 3(e) and 3.39-fold; Figure 3(g), resp.). In con-
trast, when eosinophils were cultured with IFN-γ, typically
secreted by Th1 cells, SOCS3 expression was not statistically
affected at any dose or time assayed (Figures 3(d) and
3(h)). Similar results came out when stimulation was carried
out with IL-2, another well-known Th1 cytokine (data not
shown). Collectively, these results demonstrate that SOCS3
expression is activated in response to increased amounts of
Th2 cytokines.

We wanted to compare the effects of Th2 cytokines on
the expression of SOCS3 mRNA in eosinophils from healthy
controls, asthmatics, and NAEB patients. When eosinophils
from asthmatics and NAEB patients were treated during
optimal period of time with IL-4, the relative level of SOCS3
mRNA expression was significantly lower than in healthy
controls with the same treatment (0.8 ± 0.3, 0.6 ± 0.6, and
3.71 ± 1.2 resp., P < .05, Figure 4). Similar results were
obtained when eosinophils were cultured with IL-5 (3.02 ±
2.2, 1.86 ± 0.6 and 14.11 ± 4.2, resp., P < .05, Figure 4).
However, stimulation with IL-13 did not significantly modify
SOCS3 mRNA expression.

3.7. PGE2 Treatment Produces Increased SOCS3 mRNA Ex-
pression in Eosinophil Cultures. Because it has been reported
that PGE2 upregulates SOCS3 gene expression in different
cell types, we examined the effect of PGE2 on SOCS3
expression in eosinophils from healthy subjects. We tested
different doses of PGE2 (10−4 and 10−6 M), and SOCS3 gene
activation was determined by real-time quantitative PCR.
After treatment of eosinophils with PGE2, SOCS3 mRNA
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Figure 4: SOCS3 mRNA expression in Th2-stimulated eosinophils
from healthy controls, asthmatics, and NAEB patients. Eosinophils
from healthy controls, asthmatics, and NAEB patients were cultured
with 10 ng/mL of IL-4 or IL-5, or IL-13 during 60 min. SOCS3
mRNA was measured by real-time quantitative PCR. The results are
expressed as a fold induction relative to untreated eosinophils, and
significant differences are indicated. Data represent the geometric
mean ± SD from three individuals, and each measure was
performed in triplicate.

expression was upregulated at 60 and 120 min (Figure 5(a)).
This regulation was dose dependent, and significant differ-
ences were found compared with the control eosinophils
(Figure 5(b)). PGE2,10−4 M and 10−6 M, increased SOCS3
gene expression by 7.76- and 5.58-fold, respectively.

These data indicate that PGE2 induces SOCS3 mRNA
expression, suggesting that PGE2 can be a regulatory metabo-
lite of SOCS3 protein production in eosinophils.

3.8. Th2 Cytokines and PGE2 Inhibit Eosinophil Degranu-
lation. We assessed the biological significance of SOCS3
augmentation in eosinophils by examining the effects of
Th2 cytokines and PGE2 in eosinophil degranulation. We
observed that C5a-induced release of EPO was significantly
attenuated by both Th2 cytokines and PGE2 (Figure 6).
All inhibitions obtained were statistically significant and is
ranged between 32.5% and 77%, obtained with PGE2 and
IL-5, respectively.

4. Discussion

Our results reveal that eosinophils are able to transcribe and
express SOCS3 at the protein level, and this production is
upregulated by IL-4, IL-5, IL-13, and PGE2. In addition,
SOCS3 production was increased in patients with NAEB.

These data suggest that eosinophils can contribute to the
regulation of the inflammatory response through SOCS3
production.

This study examined SOCS protein expression in blood
eosinophils from patients with two Th2 conditions (asthma
and NAEB). These respiratory disorders are characterized by
the recruitment and activation of inflammatory cells, includ-
ing eosinophils and lymphocytes, which produce cytokines
[22]. However, the amplitude and duration of the response
depend on precise fine-tuning and coordination of immune
cell responses, and these aspects are regulated by endogenous
feedback regulators of cytokine activities. Prominent among
this class of intracellular regulators are members of the
SOCS proteins family [5, 7]. Significant interest in the
SOCS family stems from the belief that SOCS proteins
may integrate multiple cytokine signals and mediate cross-
communication between antagonistic cytokines elaborated
by different cells through inhibitory effects on cytokine
receptors and signaling molecules.

SOCS proteins exert negative regulation of cytokine
signaling in a variety of ways and are known to be involved
in the pathogenesis of many inflammatory diseases. Hence,
some members of the SOCS protein family, and SOCS1,
SOCS3, and SOCS5 in particular, participate in regulation
of the Th1/Th2 balance [28, 29].

According to this, the evaluation of SOCS3 in bronchial
biopsies from healthy controls, asthmatics, and NAEB
subjects ascertained the expression at mRNA level of this
negative regulator. Notably, this expression was enhanced in
bronchial biopsies from NAEB subjects in comparison with
those from healthy control or asthmatics.

Considering that eosinophils play a prominent pro-
inflammatory role in allergic airway inflammation, and
noting that other authors have recently described the SOCS3
expression in different cellular types, such as macrophages
and microglia [30], we determined if blood eosinophils are
able to express SOCS3 and SOCS5 at the protein level and
thus contribute to regulate cytokine balance in NAEB and
asthma, conditions in which eosinophils are one of the most
important cell types.

We have demonstrated that blood eosinophils express
SOCS proteins. SOCS3 and SOCS5 gene expressions were
detected by real-time quantitative PCR, and SOCS3 pro-
tein was detected in the cytosol of blood eosinophils
with granular expression pattern by immunohistochemistry,
immunofluorescence, and immunoblotting.

Moreover, blood eosinophils from patients with Th2
disorders exhibit higher levels of SOCS3 mRNA than healthy
subjects. These data suggest that eosinophils may play an
important role in regulating inflammation in respiratory
disorders through SOCS3 expression. We tested the effects
of Th2 cytokines (IL-4, IL-5, and IL-13) on the expression
of SOCS3 in blood eosinophils in vitro, and we showed
upregulation of SOCS3 expression in a time- and dose-
dependent manner, thus corroborating SOCS-3 activation in
response to the Th2 environment under disease conditions.
We also found that SOCS-3 expression in blood eosinophils
from patients with asthma and NAEB was correlated with
serum IgE levels (r = 0.5, P < .03). This result can
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Figure 5: PGE2 stimulation of SOCS3 mRNA expression. Purified eosinophils from healthy donors were cultured with 10−4 M of PGE2

for up to 120 min (a), and with increasing doses of PGE2at 120 min (b), and SOCS3 mRNA was measured by real-time quantitative PCR.
The results are expressed as a fold induction relative to untreated eosinophils, and significant differences are indicated. Data represent the
geometric mean ± SD from four individuals, and each measure was performed in triplicate.
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Figure 6: Th2 cytokines and PGE2 inhibit eosinophil degranu-
lation. Purified human eosinophils were pretreated with vehicle,
IL-4 (10 ng/mL), IL-5 (10 ng/mL), IL-13 (10 ng/mL), and PGE2

(10−6 M) for 1 or 2 hours and then stimulated with C5a (300 nM)
for 30 min at 37◦C. The release of EPO activity into supernatants
was determined by photometry. Data were expressed as a percentage
of the maximal control response (300 nM) and are shown as the
mean ± SD; n = 5–9; ∗∗P < .005, ∗P < .05 versus C5a alone
(vehicle).

be since both phenomenons are occurring simultaneously
after IL-4 stimulation. The increase of SOCS3 expression in
response to Th2 cytokines in healthy individuals is markedly
greater than in those from asthmatic and NAEB patients,
indicating that eosinophils from individuals with asthma
and NAEB had impaired upregulation of SOCS3 after Th2
stimulation. These results may be explained because, in these
patients, Th2 cytokines are present in the microenvironment

conferring an intrinsic Th2 status that could provide a neg-
ative feedback mechanism, so further stimulation hardly
causes additional effect in SOCS3 mRNA expression. Similar
findings have been published [31, 32].

It was also interesting to evaluate the potential role
of IFN-γ in regulating SOCS3 expression in purified
eosinophils due to its ability to counteract the effects of Th2
cytokines in various cells types, including T cells, B cells,
endothelium, and epithelium [33]. Nevertheless, our results
did not reveal any variation in the SOCS3 mRNA expression,
suggesting that SOCS3 is not regulated by this mediator.

We also analyzed the expression of SOCS3 and SOCS5
in peripheral blood CD4 T cells from patients with NAEB
and asthmatics compared with healthy controls. The results
showed that the expression of SOCS3 in patients was
significantly higher than in control subjects, and we found
a correlation between level of SOCS3 mRNA in CD4+ cells
and IgE level (r = 0.58, P < .04). Similarly, Seki et al. [32]
reported that the level of SOCS3 mRNA in peripheral CD3+
cells was elevated and correlated with the serum IgE level
in patients with atopic dermatitis and asthma. Analysis of
the levels of SOCS5 gene expression indicated that there was
no significant change between the groups. These results are
in concordance with other studies in which there were no
differences in SOCS5 gene expression level between healthy
subjects and those with asthma or atopic dermatitis [34, 35].

SOCS3 has the potential to modify responsiveness of
airways to important cytokines. SOCS3 is expressed in
eosinophils, and although cytokines themselves are likely
to contribute to this, we have shown that PGE2, which is
produced in airways, can also stimulate SOCS3 expression
in eosinophils. Several studies have reported that PGE2

treatment not only stimulates the expression of SOCS3 in
different cells, but also prolongs the stability of SOCS3
mRNA [19–21, 36]. Recently, we have described increased
PGE2 levels in the airways of patients with NAEB [16], so
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it is not surprising that individuals with NAEB who have
high PGE2 levels also have high levels of expression of SOCS3
(r = 0.81, P < .05). When we analyzed the effect of PGE2 in
SOCS3 expression in blood eosinophils in vitro, we observed
a significant increase in SOCS3 mRNA expression in a time-
and dose-dependent manner.

The differential regulation of SOCS3 expression by
distinct stimuli creates a situation whereby potentiation of
SOCS3 expression is possible. In our study, we observed that
IL-4, IL-5, and IL-13, at doses to produce maximal SOCS3
expression, inhibited eosinophil degranulation, probably
through SOCS3 augmentation. According with these results,
Hebenstreit et al. show that SOCS1 and SOCS3 can nega-
tively regulate IL-4- and IL-13-induced CCL26 expression
[37], which is one of the main attractants of eosinophils.
Both results highlight an important mechanism SOCS3
mediated for regulating the activation and recruitment of
eosinophils during inflammation by limiting the effects of
Th2 cytokines.

Also, in our study eosinophils degranulation is par-
tially inhibited by PGE2. Perhaps, in addition to other
effects, PGE2-induced SOCS3 expression may be impor-
tant in regulating responsiveness to cytokines and could
be involved in the pathogenesis and regulation of Th2
respiratory disorders. Recently, Sturm et al. point out that
prostaglandin E2 inhibits eosinophil trafficking through
EP2 receptors [38]. This data provide a novel mechanistic
concept to substantiate previous observations that PGE2

acts as an anti-inflammatory mediator in human airways
[15–18].

The diverse and specific effects of PGE2 depend on
different EP receptor subtypes. In eosinophils, all forms of
EP receptor genes are expressed [39]; in our patients, EP2 and
EP4 were expressed at a higher level when compared with EP1

and EP3(data not shown),so these results suggest that PGE2-
induced modulation of cytokines signaling can occur via EP2

and/or EP4 receptors, although further studies are necessary
to confirm this notion.

5. Conclusions

The most important finding in the current study was that
expression of SOCS3 protein has been described for the
first time in eosinophils, and as SOCS3 has an important
role in regulating the onset and maintenance of Th2-
mediated allergic immune diseases, this could contribute to
improve the understanding of the pathways implicated in
the regulation of these diseases. It is also a novel finding
that PGE2,which is highly produced in some Th2 diseases,can
modulate effects on the immune response via regulation of
cytokine signaling.

A precise regulation of both, the magnitude and dura-
tion of cytokine signaling, is essential for orchestration of
immune reactions. Interventions that regulate Th2 cytokine
effector pathways are attractive as potential therapeutic
targets. The implication of SOCS proteins in the regulation
of the Th1/Th2 balance suggests a range of new therapeutic
strategies that might reduce Th2-induced inflammation and
its consequences in eosinophilia.
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